# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional test for GradientDescent.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import resources from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent class GradientDescentOptimizerTest(test.TestCase): @test_util.run_deprecated_v1 def testBasic(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) optimizer = gradient_descent.GradientDescentOptimizer(3.0) sgd_op = optimizer.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType([1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1)) self.assertEqual(0, len(optimizer.variables())) @test_util.run_deprecated_v1 def testBasicResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) sgd_op = gradient_descent.GradientDescentOptimizer(3.0).apply_gradients( zip([grads0, grads1], [var0, var1])) # TODO(apassos) calling initialize_resources on all resources here # doesn't work because the sessions and graph are reused across unit # tests and this would mean trying to reinitialize variables. Figure out # a long-term solution for this. resources.initialize_resources([var0, var1]).run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType([1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1)) @test_util.run_deprecated_v1 def testBasicCallableParams(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) lr = lambda: 3.0 sgd_op = gradient_descent.GradientDescentOptimizer(lr).apply_gradients( zip([grads0, grads1], [var0, var1])) # TODO(apassos) calling initialize_resources on all resources here # doesn't work because the sessions and graph are reused across unit # tests and this would mean trying to reinitialize variables. Figure out # a long-term solution for this. resources.initialize_resources([var0, var1]).run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType([1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1)) @test_util.run_deprecated_v1 def testMinimizeResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) pred = math_ops.matmul(var0, x) + var1 loss = pred * pred sgd_op = gradient_descent.GradientDescentOptimizer(1.0).minimize(loss) # TODO(apassos) calling initialize_resources on all resources here # doesn't work because the sessions and graph are reused across unit # tests and this would mean trying to reinitialize variables. Figure out # a long-term solution for this. resources.initialize_resources([var0, var1]).run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0], self.evaluate(var1)) # Run 1 step of sgd sgd_op.run() # Validate updated params np_pred = 1.0 * 4.0 + 2.0 * 5.0 + 3.0 np_grad = 2 * np_pred self.assertAllCloseAccordingToType( [[1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0]], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - np_grad], self.evaluate(var1)) @test_util.run_deprecated_v1 def testMinimizeSparseResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([3.0], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) pred += var1 loss = pred * pred sgd_op = gradient_descent.GradientDescentOptimizer(1.0).minimize(loss) # TODO(apassos) calling initialize_resources on all resources here # doesn't work because the sessions and graph are reused across unit # tests and this would mean trying to reinitialize variables. Figure out # a long-term solution for this. variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0], self.evaluate(var1)) # Run 1 step of sgd sgd_op.run() # Validate updated params np_pred = 1.0 * 4.0 + 2.0 * 5.0 + 3.0 np_grad = 2 * np_pred self.assertAllCloseAccordingToType( [[1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0]], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - np_grad], self.evaluate(var1)) @test_util.run_deprecated_v1 def testTensorLearningRate(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) lrate = constant_op.constant(3.0) sgd_op = gradient_descent.GradientDescentOptimizer( lrate).apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType([1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1)) @test_util.run_deprecated_v1 def testGradWrtRef(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): opt = gradient_descent.GradientDescentOptimizer(3.0) values = [1.0, 3.0] vars_ = [variables.Variable([v], dtype=dtype) for v in values] grads_and_vars = opt.compute_gradients(vars_[0] + vars_[1], vars_) variables.global_variables_initializer().run() for grad, _ in grads_and_vars: self.assertAllCloseAccordingToType([1.0], self.evaluate(grad)) @test_util.run_deprecated_v1 def testWithGlobalStep(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): global_step = variables.Variable(0, trainable=False) var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.1], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) sgd_op = gradient_descent.GradientDescentOptimizer(3.0).apply_gradients( zip([grads0, grads1], [var0, var1]), global_step=global_step) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd sgd_op.run() # Validate updated params and global_step self.assertAllCloseAccordingToType([1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], self.evaluate(var0)) self.assertAllCloseAccordingToType([3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], self.evaluate(var1)) self.assertAllCloseAccordingToType(1, self.evaluate(global_step)) @test_util.run_deprecated_v1 def testSparseBasic(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): var0 = variables.Variable([[1.0], [2.0]], dtype=dtype) var1 = variables.Variable([[3.0], [4.0]], dtype=dtype) grads0 = ops.IndexedSlices( constant_op.constant( [0.1], shape=[1, 1], dtype=dtype), constant_op.constant([0]), constant_op.constant([2, 1])) grads1 = ops.IndexedSlices( constant_op.constant( [0.01], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) sgd_op = gradient_descent.GradientDescentOptimizer(3.0).apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0], [2.0]], self.evaluate(var0)) self.assertAllCloseAccordingToType([[3.0], [4.0]], self.evaluate(var1)) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType([[1.0 - 3.0 * 0.1], [2.0]], self.evaluate(var0)) self.assertAllCloseAccordingToType([[3.0], [4.0 - 3.0 * 0.01]], self.evaluate(var1)) def testCapturingInDefunWhileExecutingEagerly(self): with context.eager_mode(): optimizer = gradient_descent.GradientDescentOptimizer(1.0) def step(): self.v = resource_variable_ops.ResourceVariable(1.0) with backprop.GradientTape() as tape: loss = self.v ** 2 grad = tape.gradient(loss, self.v) optimizer.apply_gradients([(grad, self.v)]) return self.v.read_value() compiled_step = function.defun(step) self.assertEqual(float(step()), -1.0) self.assertEqual(float(compiled_step()), -1.0) # This shouldn't fail; in particular, the learning rate tensor should # be an EagerTensor once again, not a graph Tensor. self.assertEqual(float(step()), -1.0) if __name__ == "__main__": test.main()