/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "interpreter_common.h" #include #include "base/casts.h" #include "base/enums.h" #include "class_root.h" #include "debugger.h" #include "dex/dex_file_types.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "handle.h" #include "intrinsics_enum.h" #include "jit/jit.h" #include "jvalue-inl.h" #include "method_handles-inl.h" #include "method_handles.h" #include "mirror/array-alloc-inl.h" #include "mirror/array-inl.h" #include "mirror/call_site-inl.h" #include "mirror/class.h" #include "mirror/emulated_stack_frame.h" #include "mirror/method_handle_impl-inl.h" #include "mirror/method_type-inl.h" #include "mirror/object_array-alloc-inl.h" #include "mirror/object_array-inl.h" #include "mirror/var_handle.h" #include "reflection-inl.h" #include "reflection.h" #include "shadow_frame-inl.h" #include "stack.h" #include "thread-inl.h" #include "transaction.h" #include "var_handles.h" #include "well_known_classes.h" namespace art { namespace interpreter { void ThrowNullPointerExceptionFromInterpreter() { ThrowNullPointerExceptionFromDexPC(); } bool CheckStackOverflow(Thread* self, size_t frame_size) REQUIRES_SHARED(Locks::mutator_lock_) { bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); uint8_t* stack_end = self->GetStackEndForInterpreter(implicit_check); if (UNLIKELY(__builtin_frame_address(0) < stack_end + frame_size)) { ThrowStackOverflowError(self); return false; } return true; } bool UseFastInterpreterToInterpreterInvoke(ArtMethod* method) { Runtime* runtime = Runtime::Current(); const void* quick_code = method->GetEntryPointFromQuickCompiledCode(); if (!runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) { return false; } if (!method->SkipAccessChecks() || method->IsNative() || method->IsProxyMethod()) { return false; } if (method->IsIntrinsic()) { return false; } if (method->GetDeclaringClass()->IsStringClass() && method->IsConstructor()) { return false; } if (method->IsStatic() && !method->GetDeclaringClass()->IsVisiblyInitialized()) { return false; } ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); if ((profiling_info != nullptr) && (profiling_info->GetSavedEntryPoint() != nullptr)) { return false; } return true; } template bool SendMethodExitEvents(Thread* self, const instrumentation::Instrumentation* instrumentation, ShadowFrame& frame, ObjPtr thiz, ArtMethod* method, uint32_t dex_pc, T& result) { bool had_event = false; // We can get additional ForcePopFrame requests during handling of these events. We should // respect these and send additional instrumentation events. StackHandleScope<1> hs(self); Handle h_thiz(hs.NewHandle(thiz)); do { frame.SetForcePopFrame(false); if (UNLIKELY(instrumentation->HasMethodExitListeners() && !frame.GetSkipMethodExitEvents())) { had_event = true; instrumentation->MethodExitEvent( self, h_thiz.Get(), method, dex_pc, instrumentation::OptionalFrame{ frame }, result); } // We don't send method-exit if it's a pop-frame. We still send frame_popped though. if (UNLIKELY(frame.NeedsNotifyPop() && instrumentation->HasWatchedFramePopListeners())) { had_event = true; instrumentation->WatchedFramePopped(self, frame); } } while (UNLIKELY(frame.GetForcePopFrame())); if (UNLIKELY(had_event)) { return !self->IsExceptionPending(); } else { return true; } } template bool SendMethodExitEvents(Thread* self, const instrumentation::Instrumentation* instrumentation, ShadowFrame& frame, ObjPtr thiz, ArtMethod* method, uint32_t dex_pc, MutableHandle& result); template bool SendMethodExitEvents(Thread* self, const instrumentation::Instrumentation* instrumentation, ShadowFrame& frame, ObjPtr thiz, ArtMethod* method, uint32_t dex_pc, JValue& result); // We execute any instrumentation events that are triggered by this exception and change the // shadow_frame's dex_pc to that of the exception handler if there is one in the current method. // Return true if we should continue executing in the current method and false if we need to go up // the stack to find an exception handler. // We accept a null Instrumentation* meaning we must not report anything to the instrumentation. // TODO We should have a better way to skip instrumentation reporting or possibly rethink that // behavior. bool MoveToExceptionHandler(Thread* self, ShadowFrame& shadow_frame, const instrumentation::Instrumentation* instrumentation) { self->VerifyStack(); StackHandleScope<2> hs(self); Handle exception(hs.NewHandle(self->GetException())); if (instrumentation != nullptr && instrumentation->HasExceptionThrownListeners() && self->IsExceptionThrownByCurrentMethod(exception.Get())) { // See b/65049545 for why we don't need to check to see if the exception has changed. instrumentation->ExceptionThrownEvent(self, exception.Get()); if (shadow_frame.GetForcePopFrame()) { // We will check in the caller for GetForcePopFrame again. We need to bail out early to // prevent an ExceptionHandledEvent from also being sent before popping. return true; } } bool clear_exception = false; uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock( hs.NewHandle(exception->GetClass()), shadow_frame.GetDexPC(), &clear_exception); if (found_dex_pc == dex::kDexNoIndex) { if (instrumentation != nullptr) { if (shadow_frame.NeedsNotifyPop()) { instrumentation->WatchedFramePopped(self, shadow_frame); if (shadow_frame.GetForcePopFrame()) { // We will check in the caller for GetForcePopFrame again. We need to bail out early to // prevent an ExceptionHandledEvent from also being sent before popping and to ensure we // handle other types of non-standard-exits. return true; } } // Exception is not caught by the current method. We will unwind to the // caller. Notify any instrumentation listener. instrumentation->MethodUnwindEvent(self, shadow_frame.GetThisObject(), shadow_frame.GetMethod(), shadow_frame.GetDexPC()); } return shadow_frame.GetForcePopFrame(); } else { shadow_frame.SetDexPC(found_dex_pc); if (instrumentation != nullptr && instrumentation->HasExceptionHandledListeners()) { self->ClearException(); instrumentation->ExceptionHandledEvent(self, exception.Get()); if (UNLIKELY(self->IsExceptionPending())) { // Exception handled event threw an exception. Try to find the handler for this one. return MoveToExceptionHandler(self, shadow_frame, instrumentation); } else if (!clear_exception) { self->SetException(exception.Get()); } } else if (clear_exception) { self->ClearException(); } return true; } } void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) { LOG(FATAL) << "Unexpected instruction: " << inst->DumpString(shadow_frame.GetMethod()->GetDexFile()); UNREACHABLE(); } void AbortTransactionF(Thread* self, const char* fmt, ...) { va_list args; va_start(args, fmt); AbortTransactionV(self, fmt, args); va_end(args); } void AbortTransactionV(Thread* self, const char* fmt, va_list args) { CHECK(Runtime::Current()->IsActiveTransaction()); // Constructs abort message. std::string abort_msg; android::base::StringAppendV(&abort_msg, fmt, args); // Throws an exception so we can abort the transaction and rollback every change. Runtime::Current()->AbortTransactionAndThrowAbortError(self, abort_msg); } // START DECLARATIONS : // // These additional declarations are required because clang complains // about ALWAYS_INLINE (-Werror, -Wgcc-compat) in definitions. // template static ALWAYS_INLINE bool DoCallCommon(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, JValue* result, uint16_t number_of_inputs, uint32_t (&arg)[Instruction::kMaxVarArgRegs], uint32_t vregC) REQUIRES_SHARED(Locks::mutator_lock_); template ALWAYS_INLINE void CopyRegisters(ShadowFrame& caller_frame, ShadowFrame* callee_frame, const uint32_t (&arg)[Instruction::kMaxVarArgRegs], const size_t first_src_reg, const size_t first_dest_reg, const size_t num_regs) REQUIRES_SHARED(Locks::mutator_lock_); // END DECLARATIONS. void ArtInterpreterToCompiledCodeBridge(Thread* self, ArtMethod* caller, ShadowFrame* shadow_frame, uint16_t arg_offset, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* method = shadow_frame->GetMethod(); // Ensure static methods are initialized. if (method->IsStatic()) { ObjPtr declaringClass = method->GetDeclaringClass(); if (UNLIKELY(!declaringClass->IsVisiblyInitialized())) { self->PushShadowFrame(shadow_frame); StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(declaringClass)); if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized( self, h_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true))) { self->PopShadowFrame(); DCHECK(self->IsExceptionPending()); return; } self->PopShadowFrame(); DCHECK(h_class->IsInitializing()); // Reload from shadow frame in case the method moved, this is faster than adding a handle. method = shadow_frame->GetMethod(); } } // Basic checks for the arg_offset. If there's no code item, the arg_offset must be 0. Otherwise, // check that the arg_offset isn't greater than the number of registers. A stronger check is // difficult since the frame may contain space for all the registers in the method, or only enough // space for the arguments. if (kIsDebugBuild) { if (method->GetCodeItem() == nullptr) { DCHECK_EQ(0u, arg_offset) << method->PrettyMethod(); } else { DCHECK_LE(arg_offset, shadow_frame->NumberOfVRegs()); } } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && caller != nullptr) { jit->NotifyInterpreterToCompiledCodeTransition(self, caller); } method->Invoke(self, shadow_frame->GetVRegArgs(arg_offset), (shadow_frame->NumberOfVRegs() - arg_offset) * sizeof(uint32_t), result, method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty()); } void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame, uint16_t this_obj_vreg, JValue result) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr existing = shadow_frame->GetVRegReference(this_obj_vreg); if (existing == nullptr) { // If it's null, we come from compiled code that was deoptimized. Nothing to do, // as the compiler verified there was no alias. // Set the new string result of the StringFactory. shadow_frame->SetVRegReference(this_obj_vreg, result.GetL()); return; } // Set the string init result into all aliases. for (uint32_t i = 0, e = shadow_frame->NumberOfVRegs(); i < e; ++i) { if (shadow_frame->GetVRegReference(i) == existing) { DCHECK_EQ(shadow_frame->GetVRegReference(i), reinterpret_cast32(shadow_frame->GetVReg(i))); shadow_frame->SetVRegReference(i, result.GetL()); DCHECK_EQ(shadow_frame->GetVRegReference(i), reinterpret_cast32(shadow_frame->GetVReg(i))); } } } template static bool DoMethodHandleInvokeCommon(Thread* self, ShadowFrame& shadow_frame, bool invoke_exact, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // Make sure to check for async exceptions if (UNLIKELY(self->ObserveAsyncException())) { return false; } // Invoke-polymorphic instructions always take a receiver. i.e, they are never static. const uint32_t vRegC = (is_range) ? inst->VRegC_4rcc() : inst->VRegC_45cc(); const int invoke_method_idx = (is_range) ? inst->VRegB_4rcc() : inst->VRegB_45cc(); // Initialize |result| to 0 as this is the default return value for // polymorphic invocations of method handle types with void return // and provides sane return result in error cases. result->SetJ(0); // The invoke_method_idx here is the name of the signature polymorphic method that // was symbolically invoked in bytecode (say MethodHandle.invoke or MethodHandle.invokeExact) // and not the method that we'll dispatch to in the end. StackHandleScope<2> hs(self); Handle method_handle(hs.NewHandle( ObjPtr::DownCast(shadow_frame.GetVRegReference(vRegC)))); if (UNLIKELY(method_handle == nullptr)) { // Note that the invoke type is kVirtual here because a call to a signature // polymorphic method is shaped like a virtual call at the bytecode level. ThrowNullPointerExceptionForMethodAccess(invoke_method_idx, InvokeType::kVirtual); return false; } // The vRegH value gives the index of the proto_id associated with this // signature polymorphic call site. const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc(); const dex::ProtoIndex callsite_proto_id(vRegH); // Call through to the classlinker and ask it to resolve the static type associated // with the callsite. This information is stored in the dex cache so it's // guaranteed to be fast after the first resolution. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Handle callsite_type(hs.NewHandle( class_linker->ResolveMethodType(self, callsite_proto_id, shadow_frame.GetMethod()))); // This implies we couldn't resolve one or more types in this method handle. if (UNLIKELY(callsite_type == nullptr)) { CHECK(self->IsExceptionPending()); return false; } // There is a common dispatch method for method handles that takes // arguments either from a range or an array of arguments depending // on whether the DEX instruction is invoke-polymorphic/range or // invoke-polymorphic. The array here is for the latter. if (UNLIKELY(is_range)) { // VRegC is the register holding the method handle. Arguments passed // to the method handle's target do not include the method handle. RangeInstructionOperands operands(inst->VRegC_4rcc() + 1, inst->VRegA_4rcc() - 1); if (invoke_exact) { return MethodHandleInvokeExact(self, shadow_frame, method_handle, callsite_type, &operands, result); } else { return MethodHandleInvoke(self, shadow_frame, method_handle, callsite_type, &operands, result); } } else { // Get the register arguments for the invoke. uint32_t args[Instruction::kMaxVarArgRegs] = {}; inst->GetVarArgs(args, inst_data); // Drop the first register which is the method handle performing the invoke. memmove(args, args + 1, sizeof(args[0]) * (Instruction::kMaxVarArgRegs - 1)); args[Instruction::kMaxVarArgRegs - 1] = 0; VarArgsInstructionOperands operands(args, inst->VRegA_45cc() - 1); if (invoke_exact) { return MethodHandleInvokeExact(self, shadow_frame, method_handle, callsite_type, &operands, result); } else { return MethodHandleInvoke(self, shadow_frame, method_handle, callsite_type, &operands, result); } } } bool DoMethodHandleInvokeExact(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { if (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC) { static const bool kIsRange = false; return DoMethodHandleInvokeCommon( self, shadow_frame, /* invoke_exact= */ true, inst, inst_data, result); } else { DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_POLYMORPHIC_RANGE); static const bool kIsRange = true; return DoMethodHandleInvokeCommon( self, shadow_frame, /* invoke_exact= */ true, inst, inst_data, result); } } bool DoMethodHandleInvoke(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { if (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC) { static const bool kIsRange = false; return DoMethodHandleInvokeCommon( self, shadow_frame, /* invoke_exact= */ false, inst, inst_data, result); } else { DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_POLYMORPHIC_RANGE); static const bool kIsRange = true; return DoMethodHandleInvokeCommon( self, shadow_frame, /* invoke_exact= */ false, inst, inst_data, result); } } static bool DoVarHandleInvokeCommon(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result, mirror::VarHandle::AccessMode access_mode) REQUIRES_SHARED(Locks::mutator_lock_) { // Make sure to check for async exceptions if (UNLIKELY(self->ObserveAsyncException())) { return false; } StackHandleScope<2> hs(self); bool is_var_args = inst->HasVarArgs(); const uint16_t vRegH = is_var_args ? inst->VRegH_45cc() : inst->VRegH_4rcc(); ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); Handle callsite_type(hs.NewHandle( class_linker->ResolveMethodType(self, dex::ProtoIndex(vRegH), shadow_frame.GetMethod()))); // This implies we couldn't resolve one or more types in this VarHandle. if (UNLIKELY(callsite_type == nullptr)) { CHECK(self->IsExceptionPending()); return false; } const uint32_t vRegC = is_var_args ? inst->VRegC_45cc() : inst->VRegC_4rcc(); ObjPtr receiver(shadow_frame.GetVRegReference(vRegC)); Handle var_handle(hs.NewHandle(ObjPtr::DownCast(receiver))); if (is_var_args) { uint32_t args[Instruction::kMaxVarArgRegs]; inst->GetVarArgs(args, inst_data); VarArgsInstructionOperands all_operands(args, inst->VRegA_45cc()); NoReceiverInstructionOperands operands(&all_operands); return VarHandleInvokeAccessor(self, shadow_frame, var_handle, callsite_type, access_mode, &operands, result); } else { RangeInstructionOperands all_operands(inst->VRegC_4rcc(), inst->VRegA_4rcc()); NoReceiverInstructionOperands operands(&all_operands); return VarHandleInvokeAccessor(self, shadow_frame, var_handle, callsite_type, access_mode, &operands, result); } } #define DO_VAR_HANDLE_ACCESSOR(_access_mode) \ bool DoVarHandle ## _access_mode(Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, \ uint16_t inst_data, \ JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { \ const auto access_mode = mirror::VarHandle::AccessMode::k ## _access_mode; \ return DoVarHandleInvokeCommon(self, shadow_frame, inst, inst_data, result, access_mode); \ } DO_VAR_HANDLE_ACCESSOR(CompareAndExchange) DO_VAR_HANDLE_ACCESSOR(CompareAndExchangeAcquire) DO_VAR_HANDLE_ACCESSOR(CompareAndExchangeRelease) DO_VAR_HANDLE_ACCESSOR(CompareAndSet) DO_VAR_HANDLE_ACCESSOR(Get) DO_VAR_HANDLE_ACCESSOR(GetAcquire) DO_VAR_HANDLE_ACCESSOR(GetAndAdd) DO_VAR_HANDLE_ACCESSOR(GetAndAddAcquire) DO_VAR_HANDLE_ACCESSOR(GetAndAddRelease) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAnd) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAndAcquire) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAndRelease) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOr) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOrAcquire) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOrRelease) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXor) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXorAcquire) DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXorRelease) DO_VAR_HANDLE_ACCESSOR(GetAndSet) DO_VAR_HANDLE_ACCESSOR(GetAndSetAcquire) DO_VAR_HANDLE_ACCESSOR(GetAndSetRelease) DO_VAR_HANDLE_ACCESSOR(GetOpaque) DO_VAR_HANDLE_ACCESSOR(GetVolatile) DO_VAR_HANDLE_ACCESSOR(Set) DO_VAR_HANDLE_ACCESSOR(SetOpaque) DO_VAR_HANDLE_ACCESSOR(SetRelease) DO_VAR_HANDLE_ACCESSOR(SetVolatile) DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSet) DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetAcquire) DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetPlain) DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetRelease) #undef DO_VAR_HANDLE_ACCESSOR template bool DoInvokePolymorphic(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) { const int invoke_method_idx = inst->VRegB(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtMethod* invoke_method = class_linker->ResolveMethod( self, invoke_method_idx, shadow_frame.GetMethod(), kVirtual); // Ensure intrinsic identifiers are initialized. DCHECK(invoke_method->IsIntrinsic()); // Dispatch based on intrinsic identifier associated with method. switch (static_cast(invoke_method->GetIntrinsic())) { #define CASE_SIGNATURE_POLYMORPHIC_INTRINSIC(Name, ...) \ case Intrinsics::k##Name: \ return Do ## Name(self, shadow_frame, inst, inst_data, result); #include "intrinsics_list.h" SIGNATURE_POLYMORPHIC_INTRINSICS_LIST(CASE_SIGNATURE_POLYMORPHIC_INTRINSIC) #undef INTRINSICS_LIST #undef SIGNATURE_POLYMORPHIC_INTRINSICS_LIST #undef CASE_SIGNATURE_POLYMORPHIC_INTRINSIC default: LOG(FATAL) << "Unreachable: " << invoke_method->GetIntrinsic(); UNREACHABLE(); return false; } } static JValue ConvertScalarBootstrapArgument(jvalue value) { // value either contains a primitive scalar value if it corresponds // to a primitive type, or it contains an integer value if it // corresponds to an object instance reference id (e.g. a string id). return JValue::FromPrimitive(value.j); } static ObjPtr GetClassForBootstrapArgument(EncodedArrayValueIterator::ValueType type) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ObjPtr> class_roots = class_linker->GetClassRoots(); switch (type) { case EncodedArrayValueIterator::ValueType::kBoolean: case EncodedArrayValueIterator::ValueType::kByte: case EncodedArrayValueIterator::ValueType::kChar: case EncodedArrayValueIterator::ValueType::kShort: // These types are disallowed by JVMS. Treat as integers. This // will result in CCE's being raised if the BSM has one of these // types. case EncodedArrayValueIterator::ValueType::kInt: return GetClassRoot(ClassRoot::kPrimitiveInt, class_roots); case EncodedArrayValueIterator::ValueType::kLong: return GetClassRoot(ClassRoot::kPrimitiveLong, class_roots); case EncodedArrayValueIterator::ValueType::kFloat: return GetClassRoot(ClassRoot::kPrimitiveFloat, class_roots); case EncodedArrayValueIterator::ValueType::kDouble: return GetClassRoot(ClassRoot::kPrimitiveDouble, class_roots); case EncodedArrayValueIterator::ValueType::kMethodType: return GetClassRoot(class_roots); case EncodedArrayValueIterator::ValueType::kMethodHandle: return GetClassRoot(class_roots); case EncodedArrayValueIterator::ValueType::kString: return GetClassRoot(); case EncodedArrayValueIterator::ValueType::kType: return GetClassRoot(); case EncodedArrayValueIterator::ValueType::kField: case EncodedArrayValueIterator::ValueType::kMethod: case EncodedArrayValueIterator::ValueType::kEnum: case EncodedArrayValueIterator::ValueType::kArray: case EncodedArrayValueIterator::ValueType::kAnnotation: case EncodedArrayValueIterator::ValueType::kNull: return nullptr; } } static bool GetArgumentForBootstrapMethod(Thread* self, ArtMethod* referrer, EncodedArrayValueIterator::ValueType type, const JValue* encoded_value, JValue* decoded_value) REQUIRES_SHARED(Locks::mutator_lock_) { // The encoded_value contains either a scalar value (IJDF) or a // scalar DEX file index to a reference type to be materialized. switch (type) { case EncodedArrayValueIterator::ValueType::kInt: case EncodedArrayValueIterator::ValueType::kFloat: decoded_value->SetI(encoded_value->GetI()); return true; case EncodedArrayValueIterator::ValueType::kLong: case EncodedArrayValueIterator::ValueType::kDouble: decoded_value->SetJ(encoded_value->GetJ()); return true; case EncodedArrayValueIterator::ValueType::kMethodType: { StackHandleScope<2> hs(self); Handle class_loader(hs.NewHandle(referrer->GetClassLoader())); Handle dex_cache(hs.NewHandle(referrer->GetDexCache())); dex::ProtoIndex proto_idx(encoded_value->GetC()); ClassLinker* cl = Runtime::Current()->GetClassLinker(); ObjPtr o = cl->ResolveMethodType(self, proto_idx, dex_cache, class_loader); if (UNLIKELY(o.IsNull())) { DCHECK(self->IsExceptionPending()); return false; } decoded_value->SetL(o); return true; } case EncodedArrayValueIterator::ValueType::kMethodHandle: { uint32_t index = static_cast(encoded_value->GetI()); ClassLinker* cl = Runtime::Current()->GetClassLinker(); ObjPtr o = cl->ResolveMethodHandle(self, index, referrer); if (UNLIKELY(o.IsNull())) { DCHECK(self->IsExceptionPending()); return false; } decoded_value->SetL(o); return true; } case EncodedArrayValueIterator::ValueType::kString: { dex::StringIndex index(static_cast(encoded_value->GetI())); ClassLinker* cl = Runtime::Current()->GetClassLinker(); ObjPtr o = cl->ResolveString(index, referrer); if (UNLIKELY(o.IsNull())) { DCHECK(self->IsExceptionPending()); return false; } decoded_value->SetL(o); return true; } case EncodedArrayValueIterator::ValueType::kType: { dex::TypeIndex index(static_cast(encoded_value->GetI())); ClassLinker* cl = Runtime::Current()->GetClassLinker(); ObjPtr o = cl->ResolveType(index, referrer); if (UNLIKELY(o.IsNull())) { DCHECK(self->IsExceptionPending()); return false; } decoded_value->SetL(o); return true; } case EncodedArrayValueIterator::ValueType::kBoolean: case EncodedArrayValueIterator::ValueType::kByte: case EncodedArrayValueIterator::ValueType::kChar: case EncodedArrayValueIterator::ValueType::kShort: case EncodedArrayValueIterator::ValueType::kField: case EncodedArrayValueIterator::ValueType::kMethod: case EncodedArrayValueIterator::ValueType::kEnum: case EncodedArrayValueIterator::ValueType::kArray: case EncodedArrayValueIterator::ValueType::kAnnotation: case EncodedArrayValueIterator::ValueType::kNull: // Unreachable - unsupported types that have been checked when // determining the effect call site type based on the bootstrap // argument types. UNREACHABLE(); } } static bool PackArgumentForBootstrapMethod(Thread* self, ArtMethod* referrer, CallSiteArrayValueIterator* it, ShadowFrameSetter* setter) REQUIRES_SHARED(Locks::mutator_lock_) { auto type = it->GetValueType(); const JValue encoded_value = ConvertScalarBootstrapArgument(it->GetJavaValue()); JValue decoded_value; if (!GetArgumentForBootstrapMethod(self, referrer, type, &encoded_value, &decoded_value)) { return false; } switch (it->GetValueType()) { case EncodedArrayValueIterator::ValueType::kInt: case EncodedArrayValueIterator::ValueType::kFloat: setter->Set(static_cast(decoded_value.GetI())); return true; case EncodedArrayValueIterator::ValueType::kLong: case EncodedArrayValueIterator::ValueType::kDouble: setter->SetLong(decoded_value.GetJ()); return true; case EncodedArrayValueIterator::ValueType::kMethodType: case EncodedArrayValueIterator::ValueType::kMethodHandle: case EncodedArrayValueIterator::ValueType::kString: case EncodedArrayValueIterator::ValueType::kType: setter->SetReference(decoded_value.GetL()); return true; case EncodedArrayValueIterator::ValueType::kBoolean: case EncodedArrayValueIterator::ValueType::kByte: case EncodedArrayValueIterator::ValueType::kChar: case EncodedArrayValueIterator::ValueType::kShort: case EncodedArrayValueIterator::ValueType::kField: case EncodedArrayValueIterator::ValueType::kMethod: case EncodedArrayValueIterator::ValueType::kEnum: case EncodedArrayValueIterator::ValueType::kArray: case EncodedArrayValueIterator::ValueType::kAnnotation: case EncodedArrayValueIterator::ValueType::kNull: // Unreachable - unsupported types that have been checked when // determining the effect call site type based on the bootstrap // argument types. UNREACHABLE(); } } static bool PackCollectorArrayForBootstrapMethod(Thread* self, ArtMethod* referrer, ObjPtr array_type, int32_t array_length, CallSiteArrayValueIterator* it, ShadowFrameSetter* setter) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); JValue decoded_value; #define COLLECT_PRIMITIVE_ARRAY(Descriptor, Type) \ Handle array = \ hs.NewHandle(mirror::Type ## Array::Alloc(self, array_length)); \ if (array.IsNull()) { \ return false; \ } \ for (int32_t i = 0; it->HasNext(); it->Next(), ++i) { \ auto type = it->GetValueType(); \ DCHECK_EQ(type, EncodedArrayValueIterator::ValueType::k ## Type); \ const JValue encoded_value = \ ConvertScalarBootstrapArgument(it->GetJavaValue()); \ GetArgumentForBootstrapMethod(self, \ referrer, \ type, \ &encoded_value, \ &decoded_value); \ array->Set(i, decoded_value.Get ## Descriptor()); \ } \ setter->SetReference(array.Get()); \ return true; #define COLLECT_REFERENCE_ARRAY(T, Type) \ Handle> array = /* NOLINT */ \ hs.NewHandle(mirror::ObjectArray::Alloc(self, \ array_type, \ array_length)); \ if (array.IsNull()) { \ return false; \ } \ for (int32_t i = 0; it->HasNext(); it->Next(), ++i) { \ auto type = it->GetValueType(); \ DCHECK_EQ(type, EncodedArrayValueIterator::ValueType::k ## Type); \ const JValue encoded_value = \ ConvertScalarBootstrapArgument(it->GetJavaValue()); \ if (!GetArgumentForBootstrapMethod(self, \ referrer, \ type, \ &encoded_value, \ &decoded_value)) { \ return false; \ } \ ObjPtr o = decoded_value.GetL(); \ if (Runtime::Current()->IsActiveTransaction()) { \ array->Set(i, ObjPtr::DownCast(o)); \ } else { \ array->Set(i, ObjPtr::DownCast(o)); \ } \ } \ setter->SetReference(array.Get()); \ return true; ObjPtr> class_roots = class_linker->GetClassRoots(); ObjPtr component_type = array_type->GetComponentType(); if (component_type == GetClassRoot(ClassRoot::kPrimitiveInt, class_roots)) { COLLECT_PRIMITIVE_ARRAY(I, Int); } else if (component_type == GetClassRoot(ClassRoot::kPrimitiveLong, class_roots)) { COLLECT_PRIMITIVE_ARRAY(J, Long); } else if (component_type == GetClassRoot(ClassRoot::kPrimitiveFloat, class_roots)) { COLLECT_PRIMITIVE_ARRAY(F, Float); } else if (component_type == GetClassRoot(ClassRoot::kPrimitiveDouble, class_roots)) { COLLECT_PRIMITIVE_ARRAY(D, Double); } else if (component_type == GetClassRoot()) { COLLECT_REFERENCE_ARRAY(mirror::MethodType, MethodType); } else if (component_type == GetClassRoot()) { COLLECT_REFERENCE_ARRAY(mirror::MethodHandle, MethodHandle); } else if (component_type == GetClassRoot(class_roots)) { COLLECT_REFERENCE_ARRAY(mirror::String, String); } else if (component_type == GetClassRoot()) { COLLECT_REFERENCE_ARRAY(mirror::Class, Type); } else { UNREACHABLE(); } #undef COLLECT_PRIMITIVE_ARRAY #undef COLLECT_REFERENCE_ARRAY } static ObjPtr BuildCallSiteForBootstrapMethod(Thread* self, const DexFile* dex_file, uint32_t call_site_idx) REQUIRES_SHARED(Locks::mutator_lock_) { const dex::CallSiteIdItem& csi = dex_file->GetCallSiteId(call_site_idx); CallSiteArrayValueIterator it(*dex_file, csi); DCHECK_GE(it.Size(), 1u); StackHandleScope<2> hs(self); // Create array for parameter types. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ObjPtr class_array_type = GetClassRoot>(class_linker); Handle> ptypes = hs.NewHandle( mirror::ObjectArray::Alloc(self, class_array_type, static_cast(it.Size()))); if (ptypes.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } // Populate the first argument with an instance of j.l.i.MethodHandles.Lookup // that the runtime will construct. ptypes->Set(0, GetClassRoot(class_linker)); it.Next(); // The remaining parameter types are derived from the types of // arguments present in the DEX file. int index = 1; while (it.HasNext()) { ObjPtr ptype = GetClassForBootstrapArgument(it.GetValueType()); if (ptype.IsNull()) { ThrowClassCastException("Unsupported bootstrap argument type"); return nullptr; } ptypes->Set(index, ptype); index++; it.Next(); } DCHECK_EQ(static_cast(index), it.Size()); // By definition, the return type is always a j.l.i.CallSite. Handle rtype = hs.NewHandle(GetClassRoot()); return mirror::MethodType::Create(self, rtype, ptypes); } static ObjPtr InvokeBootstrapMethod(Thread* self, ShadowFrame& shadow_frame, uint32_t call_site_idx) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<5> hs(self); // There are three mandatory arguments expected from the call site // value array in the DEX file: the bootstrap method handle, the // method name to pass to the bootstrap method, and the method type // to pass to the bootstrap method. static constexpr size_t kMandatoryArgumentsCount = 3; ArtMethod* referrer = shadow_frame.GetMethod(); const DexFile* dex_file = referrer->GetDexFile(); const dex::CallSiteIdItem& csi = dex_file->GetCallSiteId(call_site_idx); CallSiteArrayValueIterator it(*dex_file, csi); if (it.Size() < kMandatoryArgumentsCount) { ThrowBootstrapMethodError("Truncated bootstrap arguments (%zu < %zu)", it.Size(), kMandatoryArgumentsCount); return nullptr; } if (it.GetValueType() != EncodedArrayValueIterator::ValueType::kMethodHandle) { ThrowBootstrapMethodError("First bootstrap argument is not a method handle"); return nullptr; } uint32_t bsm_index = static_cast(it.GetJavaValue().i); it.Next(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Handle bsm = hs.NewHandle(class_linker->ResolveMethodHandle(self, bsm_index, referrer)); if (bsm.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } if (bsm->GetHandleKind() != mirror::MethodHandle::Kind::kInvokeStatic) { // JLS suggests also accepting constructors. This is currently // hard as constructor invocations happen via transformers in ART // today. The constructor would need to be a class derived from java.lang.invoke.CallSite. ThrowBootstrapMethodError("Unsupported bootstrap method invocation kind"); return nullptr; } // Construct the local call site type information based on the 3 // mandatory arguments provided by the runtime and the static arguments // in the DEX file. We will use these arguments to build a shadow frame. MutableHandle call_site_type = hs.NewHandle(BuildCallSiteForBootstrapMethod(self, dex_file, call_site_idx)); if (call_site_type.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } // Check if this BSM is targeting a variable arity method. If so, // we'll need to collect the trailing arguments into an array. Handle collector_arguments; int32_t collector_arguments_length; if (bsm->GetTargetMethod()->IsVarargs()) { int number_of_bsm_parameters = bsm->GetMethodType()->GetNumberOfPTypes(); if (number_of_bsm_parameters == 0) { ThrowBootstrapMethodError("Variable arity BSM does not have any arguments"); return nullptr; } Handle collector_array_class = hs.NewHandle(bsm->GetMethodType()->GetPTypes()->Get(number_of_bsm_parameters - 1)); if (!collector_array_class->IsArrayClass()) { ThrowBootstrapMethodError("Variable arity BSM does not have array as final argument"); return nullptr; } // The call site may include no arguments to be collected. In this // case the number of arguments must be at least the number of BSM // parameters less the collector array. if (call_site_type->GetNumberOfPTypes() < number_of_bsm_parameters - 1) { ThrowWrongMethodTypeException(bsm->GetMethodType(), call_site_type.Get()); return nullptr; } // Check all the arguments to be collected match the collector array component type. for (int i = number_of_bsm_parameters - 1; i < call_site_type->GetNumberOfPTypes(); ++i) { if (call_site_type->GetPTypes()->Get(i) != collector_array_class->GetComponentType()) { ThrowClassCastException(collector_array_class->GetComponentType(), call_site_type->GetPTypes()->Get(i)); return nullptr; } } // Update the call site method type so it now includes the collector array. int32_t collector_arguments_start = number_of_bsm_parameters - 1; collector_arguments_length = call_site_type->GetNumberOfPTypes() - number_of_bsm_parameters + 1; call_site_type.Assign( mirror::MethodType::CollectTrailingArguments(self, call_site_type.Get(), collector_array_class.Get(), collector_arguments_start)); if (call_site_type.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } } else { collector_arguments_length = 0; } if (call_site_type->GetNumberOfPTypes() != bsm->GetMethodType()->GetNumberOfPTypes()) { ThrowWrongMethodTypeException(bsm->GetMethodType(), call_site_type.Get()); return nullptr; } // BSM invocation has a different set of exceptions that // j.l.i.MethodHandle.invoke(). Scan arguments looking for CCE // "opportunities". Unfortunately we cannot just leave this to the // method handle invocation as this might generate a WMTE. for (int32_t i = 0; i < call_site_type->GetNumberOfPTypes(); ++i) { ObjPtr from = call_site_type->GetPTypes()->Get(i); ObjPtr to = bsm->GetMethodType()->GetPTypes()->Get(i); if (!IsParameterTypeConvertible(from, to)) { ThrowClassCastException(from, to); return nullptr; } } if (!IsReturnTypeConvertible(call_site_type->GetRType(), bsm->GetMethodType()->GetRType())) { ThrowClassCastException(bsm->GetMethodType()->GetRType(), call_site_type->GetRType()); return nullptr; } // Set-up a shadow frame for invoking the bootstrap method handle. ShadowFrameAllocaUniquePtr bootstrap_frame = CREATE_SHADOW_FRAME(call_site_type->NumberOfVRegs(), nullptr, referrer, shadow_frame.GetDexPC()); ScopedStackedShadowFramePusher pusher( self, bootstrap_frame.get(), StackedShadowFrameType::kShadowFrameUnderConstruction); ShadowFrameSetter setter(bootstrap_frame.get(), 0u); // The first parameter is a MethodHandles lookup instance. Handle lookup_class = hs.NewHandle(shadow_frame.GetMethod()->GetDeclaringClass()); ObjPtr lookup = mirror::MethodHandlesLookup::Create(self, lookup_class); if (lookup.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } setter.SetReference(lookup); // Pack the remaining arguments into the frame. int number_of_arguments = call_site_type->GetNumberOfPTypes(); int argument_index; for (argument_index = 1; argument_index < number_of_arguments; ++argument_index) { if (argument_index == number_of_arguments - 1 && call_site_type->GetPTypes()->Get(argument_index)->IsArrayClass()) { ObjPtr array_type = call_site_type->GetPTypes()->Get(argument_index); if (!PackCollectorArrayForBootstrapMethod(self, referrer, array_type, collector_arguments_length, &it, &setter)) { DCHECK(self->IsExceptionPending()); return nullptr; } } else if (!PackArgumentForBootstrapMethod(self, referrer, &it, &setter)) { DCHECK(self->IsExceptionPending()); return nullptr; } it.Next(); } DCHECK(!it.HasNext()); DCHECK(setter.Done()); // Invoke the bootstrap method handle. JValue result; RangeInstructionOperands operands(0, bootstrap_frame->NumberOfVRegs()); bool invoke_success = MethodHandleInvoke(self, *bootstrap_frame, bsm, call_site_type, &operands, &result); if (!invoke_success) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle object(hs.NewHandle(result.GetL())); if (UNLIKELY(object.IsNull())) { // This will typically be for LambdaMetafactory which is not supported. ThrowClassCastException("Bootstrap method returned null"); return nullptr; } // Check the result type is a subclass of j.l.i.CallSite. ObjPtr call_site_class = GetClassRoot(class_linker); if (UNLIKELY(!object->InstanceOf(call_site_class))) { ThrowClassCastException(object->GetClass(), call_site_class); return nullptr; } // Check the call site target is not null as we're going to invoke it. ObjPtr call_site = ObjPtr::DownCast(result.GetL()); ObjPtr target = call_site->GetTarget(); if (UNLIKELY(target == nullptr)) { ThrowClassCastException("Bootstrap method returned a CallSite with a null target"); return nullptr; } return call_site; } namespace { ObjPtr DoResolveCallSite(Thread* self, ShadowFrame& shadow_frame, uint32_t call_site_idx) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); Handle dex_cache(hs.NewHandle(shadow_frame.GetMethod()->GetDexCache())); // Get the call site from the DexCache if present. ObjPtr call_site = dex_cache->GetResolvedCallSite(call_site_idx); if (LIKELY(call_site != nullptr)) { return call_site; } // Invoke the bootstrap method to get a candidate call site. call_site = InvokeBootstrapMethod(self, shadow_frame, call_site_idx); if (UNLIKELY(call_site == nullptr)) { if (!self->GetException()->IsError()) { // Use a BootstrapMethodError if the exception is not an instance of java.lang.Error. ThrowWrappedBootstrapMethodError("Exception from call site #%u bootstrap method", call_site_idx); } return nullptr; } // Attempt to place the candidate call site into the DexCache, return the winning call site. return dex_cache->SetResolvedCallSite(call_site_idx, call_site); } } // namespace bool DoInvokeCustom(Thread* self, ShadowFrame& shadow_frame, uint32_t call_site_idx, const InstructionOperands* operands, JValue* result) { // Make sure to check for async exceptions if (UNLIKELY(self->ObserveAsyncException())) { return false; } // invoke-custom is not supported in transactions. In transactions // there is a limited set of types supported. invoke-custom allows // running arbitrary code and instantiating arbitrary types. CHECK(!Runtime::Current()->IsActiveTransaction()); ObjPtr call_site = DoResolveCallSite(self, shadow_frame, call_site_idx); if (call_site.IsNull()) { DCHECK(self->IsExceptionPending()); return false; } StackHandleScope<2> hs(self); Handle target = hs.NewHandle(call_site->GetTarget()); Handle target_method_type = hs.NewHandle(target->GetMethodType()); DCHECK_EQ(operands->GetNumberOfOperands(), target_method_type->NumberOfVRegs()) << " call_site_idx" << call_site_idx; return MethodHandleInvokeExact(self, shadow_frame, target, target_method_type, operands, result); } // Assign register 'src_reg' from shadow_frame to register 'dest_reg' into new_shadow_frame. static inline void AssignRegister(ShadowFrame* new_shadow_frame, const ShadowFrame& shadow_frame, size_t dest_reg, size_t src_reg) REQUIRES_SHARED(Locks::mutator_lock_) { // Uint required, so that sign extension does not make this wrong on 64b systems uint32_t src_value = shadow_frame.GetVReg(src_reg); ObjPtr o = shadow_frame.GetVRegReference(src_reg); // If both register locations contains the same value, the register probably holds a reference. // Note: As an optimization, non-moving collectors leave a stale reference value // in the references array even after the original vreg was overwritten to a non-reference. if (src_value == reinterpret_cast32(o.Ptr())) { new_shadow_frame->SetVRegReference(dest_reg, o); } else { new_shadow_frame->SetVReg(dest_reg, src_value); } } template inline void CopyRegisters(ShadowFrame& caller_frame, ShadowFrame* callee_frame, const uint32_t (&arg)[Instruction::kMaxVarArgRegs], const size_t first_src_reg, const size_t first_dest_reg, const size_t num_regs) { if (is_range) { const size_t dest_reg_bound = first_dest_reg + num_regs; for (size_t src_reg = first_src_reg, dest_reg = first_dest_reg; dest_reg < dest_reg_bound; ++dest_reg, ++src_reg) { AssignRegister(callee_frame, caller_frame, dest_reg, src_reg); } } else { DCHECK_LE(num_regs, arraysize(arg)); for (size_t arg_index = 0; arg_index < num_regs; ++arg_index) { AssignRegister(callee_frame, caller_frame, first_dest_reg + arg_index, arg[arg_index]); } } } template static inline bool DoCallCommon(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, JValue* result, uint16_t number_of_inputs, uint32_t (&arg)[Instruction::kMaxVarArgRegs], uint32_t vregC) { bool string_init = false; // Replace calls to String. with equivalent StringFactory call. if (UNLIKELY(called_method->GetDeclaringClass()->IsStringClass() && called_method->IsConstructor())) { called_method = WellKnownClasses::StringInitToStringFactory(called_method); string_init = true; } // Compute method information. CodeItemDataAccessor accessor(called_method->DexInstructionData()); // Number of registers for the callee's call frame. uint16_t num_regs; // Test whether to use the interpreter or compiler entrypoint, and save that result to pass to // PerformCall. A deoptimization could occur at any time, and we shouldn't change which // entrypoint to use once we start building the shadow frame. // For unstarted runtimes, always use the interpreter entrypoint. This fixes the case where we are // doing cross compilation. Note that GetEntryPointFromQuickCompiledCode doesn't use the image // pointer size here and this may case an overflow if it is called from the compiler. b/62402160 const bool use_interpreter_entrypoint = !Runtime::Current()->IsStarted() || ClassLinker::ShouldUseInterpreterEntrypoint( called_method, called_method->GetEntryPointFromQuickCompiledCode()); if (LIKELY(accessor.HasCodeItem())) { // When transitioning to compiled code, space only needs to be reserved for the input registers. // The rest of the frame gets discarded. This also prevents accessing the called method's code // item, saving memory by keeping code items of compiled code untouched. if (!use_interpreter_entrypoint) { DCHECK(!Runtime::Current()->IsAotCompiler()) << "Compiler should use interpreter entrypoint"; num_regs = number_of_inputs; } else { num_regs = accessor.RegistersSize(); DCHECK_EQ(string_init ? number_of_inputs - 1 : number_of_inputs, accessor.InsSize()); } } else { DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs = number_of_inputs; } // Hack for String init: // // Rewrite invoke-x java.lang.String.(this, a, b, c, ...) into: // invoke-x StringFactory(a, b, c, ...) // by effectively dropping the first virtual register from the invoke. // // (at this point the ArtMethod has already been replaced, // so we just need to fix-up the arguments) // // Note that FindMethodFromCode in entrypoint_utils-inl.h was also special-cased // to handle the compiler optimization of replacing `this` with null without // throwing NullPointerException. uint32_t string_init_vreg_this = is_range ? vregC : arg[0]; if (UNLIKELY(string_init)) { DCHECK_GT(num_regs, 0u); // As the method is an instance method, there should be at least 1. // The new StringFactory call is static and has one fewer argument. if (!accessor.HasCodeItem()) { DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs--; } // else ... don't need to change num_regs since it comes up from the string_init's code item number_of_inputs--; // Rewrite the var-args, dropping the 0th argument ("this") for (uint32_t i = 1; i < arraysize(arg); ++i) { arg[i - 1] = arg[i]; } arg[arraysize(arg) - 1] = 0; // Rewrite the non-var-arg case vregC++; // Skips the 0th vreg in the range ("this"). } // Parameter registers go at the end of the shadow frame. DCHECK_GE(num_regs, number_of_inputs); size_t first_dest_reg = num_regs - number_of_inputs; DCHECK_NE(first_dest_reg, (size_t)-1); // Allocate shadow frame on the stack. const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon"); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); // Initialize new shadow frame by copying the registers from the callee shadow frame. if (do_assignability_check) { // Slow path. // We might need to do class loading, which incurs a thread state change to kNative. So // register the shadow frame as under construction and allow suspension again. ScopedStackedShadowFramePusher pusher( self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction); self->EndAssertNoThreadSuspension(old_cause); // ArtMethod here is needed to check type information of the call site against the callee. // Type information is retrieved from a DexFile/DexCache for that respective declared method. // // As a special case for proxy methods, which are not dex-backed, // we have to retrieve type information from the proxy's method // interface method instead (which is dex backed since proxies are never interfaces). ArtMethod* method = new_shadow_frame->GetMethod()->GetInterfaceMethodIfProxy(kRuntimePointerSize); // We need to do runtime check on reference assignment. We need to load the shorty // to get the exact type of each reference argument. const dex::TypeList* params = method->GetParameterTypeList(); uint32_t shorty_len = 0; const char* shorty = method->GetShorty(&shorty_len); // Handle receiver apart since it's not part of the shorty. size_t dest_reg = first_dest_reg; size_t arg_offset = 0; if (!method->IsStatic()) { size_t receiver_reg = is_range ? vregC : arg[0]; new_shadow_frame->SetVRegReference(dest_reg, shadow_frame.GetVRegReference(receiver_reg)); ++dest_reg; ++arg_offset; DCHECK(!string_init); // All StringFactory methods are static. } // Copy the caller's invoke-* arguments into the callee's parameter registers. for (uint32_t shorty_pos = 0; dest_reg < num_regs; ++shorty_pos, ++dest_reg, ++arg_offset) { // Skip the 0th 'shorty' type since it represents the return type. DCHECK_LT(shorty_pos + 1, shorty_len) << "for shorty '" << shorty << "'"; const size_t src_reg = (is_range) ? vregC + arg_offset : arg[arg_offset]; switch (shorty[shorty_pos + 1]) { // Handle Object references. 1 virtual register slot. case 'L': { ObjPtr o = shadow_frame.GetVRegReference(src_reg); if (do_assignability_check && o != nullptr) { const dex::TypeIndex type_idx = params->GetTypeItem(shorty_pos).type_idx_; ObjPtr arg_type = method->GetDexCache()->GetResolvedType(type_idx); if (arg_type == nullptr) { StackHandleScope<1> hs(self); // Preserve o since it is used below and GetClassFromTypeIndex may cause thread // suspension. HandleWrapperObjPtr h = hs.NewHandleWrapper(&o); arg_type = method->ResolveClassFromTypeIndex(type_idx); if (arg_type == nullptr) { CHECK(self->IsExceptionPending()); return false; } } if (!o->VerifierInstanceOf(arg_type)) { // This should never happen. std::string temp1, temp2; self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Invoking %s with bad arg %d, type '%s' not instance of '%s'", new_shadow_frame->GetMethod()->GetName(), shorty_pos, o->GetClass()->GetDescriptor(&temp1), arg_type->GetDescriptor(&temp2)); return false; } } new_shadow_frame->SetVRegReference(dest_reg, o); break; } // Handle doubles and longs. 2 consecutive virtual register slots. case 'J': case 'D': { uint64_t wide_value = (static_cast(shadow_frame.GetVReg(src_reg + 1)) << BitSizeOf()) | static_cast(shadow_frame.GetVReg(src_reg)); new_shadow_frame->SetVRegLong(dest_reg, wide_value); // Skip the next virtual register slot since we already used it. ++dest_reg; ++arg_offset; break; } // Handle all other primitives that are always 1 virtual register slot. default: new_shadow_frame->SetVReg(dest_reg, shadow_frame.GetVReg(src_reg)); break; } } } else { if (is_range) { DCHECK_EQ(num_regs, first_dest_reg + number_of_inputs); } CopyRegisters(shadow_frame, new_shadow_frame, arg, vregC, first_dest_reg, number_of_inputs); self->EndAssertNoThreadSuspension(old_cause); } PerformCall(self, accessor, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result, use_interpreter_entrypoint); if (string_init && !self->IsExceptionPending()) { SetStringInitValueToAllAliases(&shadow_frame, string_init_vreg_this, *result); } return !self->IsExceptionPending(); } template bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) { // Argument word count. const uint16_t number_of_inputs = (is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data); // TODO: find a cleaner way to separate non-range and range information without duplicating // code. uint32_t arg[Instruction::kMaxVarArgRegs] = {}; // only used in invoke-XXX. uint32_t vregC = 0; if (is_range) { vregC = inst->VRegC_3rc(); } else { vregC = inst->VRegC_35c(); inst->GetVarArgs(arg, inst_data); } return DoCallCommon( called_method, self, shadow_frame, result, number_of_inputs, arg, vregC); } template bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, Thread* self, JValue* result) { DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY || inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE); const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c(); if (!is_range) { // Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments. CHECK_LE(length, 5); } if (UNLIKELY(length < 0)) { ThrowNegativeArraySizeException(length); return false; } uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); ObjPtr array_class = ResolveVerifyAndClinit(dex::TypeIndex(type_idx), shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(array_class == nullptr)) { DCHECK(self->IsExceptionPending()); return false; } CHECK(array_class->IsArrayClass()); ObjPtr component_class = array_class->GetComponentType(); const bool is_primitive_int_component = component_class->IsPrimitiveInt(); if (UNLIKELY(component_class->IsPrimitive() && !is_primitive_int_component)) { if (component_class->IsPrimitiveLong() || component_class->IsPrimitiveDouble()) { ThrowRuntimeException("Bad filled array request for type %s", component_class->PrettyDescriptor().c_str()); } else { self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Found type %s; filled-new-array not implemented for anything but 'int'", component_class->PrettyDescriptor().c_str()); } return false; } ObjPtr new_array = mirror::Array::Alloc( self, array_class, length, array_class->GetComponentSizeShift(), Runtime::Current()->GetHeap()->GetCurrentAllocator()); if (UNLIKELY(new_array == nullptr)) { self->AssertPendingOOMException(); return false; } uint32_t arg[Instruction::kMaxVarArgRegs]; // only used in filled-new-array. uint32_t vregC = 0; // only used in filled-new-array-range. if (is_range) { vregC = inst->VRegC_3rc(); } else { inst->GetVarArgs(arg); } for (int32_t i = 0; i < length; ++i) { size_t src_reg = is_range ? vregC + i : arg[i]; if (is_primitive_int_component) { new_array->AsIntArray()->SetWithoutChecks( i, shadow_frame.GetVReg(src_reg)); } else { new_array->AsObjectArray()->SetWithoutChecks( i, shadow_frame.GetVRegReference(src_reg)); } } result->SetL(new_array); return true; } // TODO: Use ObjPtr here. template static void RecordArrayElementsInTransactionImpl(ObjPtr> array, int32_t count) REQUIRES_SHARED(Locks::mutator_lock_) { Runtime* runtime = Runtime::Current(); for (int32_t i = 0; i < count; ++i) { runtime->RecordWriteArray(array.Ptr(), i, array->GetWithoutChecks(i)); } } void RecordArrayElementsInTransaction(ObjPtr array, int32_t count) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Runtime::Current()->IsActiveTransaction()); DCHECK(array != nullptr); DCHECK_LE(count, array->GetLength()); Primitive::Type primitive_component_type = array->GetClass()->GetComponentType()->GetPrimitiveType(); switch (primitive_component_type) { case Primitive::kPrimBoolean: RecordArrayElementsInTransactionImpl(array->AsBooleanArray(), count); break; case Primitive::kPrimByte: RecordArrayElementsInTransactionImpl(array->AsByteArray(), count); break; case Primitive::kPrimChar: RecordArrayElementsInTransactionImpl(array->AsCharArray(), count); break; case Primitive::kPrimShort: RecordArrayElementsInTransactionImpl(array->AsShortArray(), count); break; case Primitive::kPrimInt: RecordArrayElementsInTransactionImpl(array->AsIntArray(), count); break; case Primitive::kPrimFloat: RecordArrayElementsInTransactionImpl(array->AsFloatArray(), count); break; case Primitive::kPrimLong: RecordArrayElementsInTransactionImpl(array->AsLongArray(), count); break; case Primitive::kPrimDouble: RecordArrayElementsInTransactionImpl(array->AsDoubleArray(), count); break; default: LOG(FATAL) << "Unsupported primitive type " << primitive_component_type << " in fill-array-data"; UNREACHABLE(); } } // Explicit DoCall template function declarations. #define EXPLICIT_DO_CALL_TEMPLATE_DECL(_is_range, _do_assignability_check) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ bool DoCall<_is_range, _do_assignability_check>(ArtMethod* method, Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, uint16_t inst_data, \ JValue* result) EXPLICIT_DO_CALL_TEMPLATE_DECL(false, false); EXPLICIT_DO_CALL_TEMPLATE_DECL(false, true); EXPLICIT_DO_CALL_TEMPLATE_DECL(true, false); EXPLICIT_DO_CALL_TEMPLATE_DECL(true, true); #undef EXPLICIT_DO_CALL_TEMPLATE_DECL // Explicit DoInvokePolymorphic template function declarations. #define EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(_is_range) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ bool DoInvokePolymorphic<_is_range>( \ Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ uint16_t inst_data, JValue* result) EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false); EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true); #undef EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL // Explicit DoFilledNewArray template function declarations. #define EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(_is_range_, _check, _transaction_active) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ bool DoFilledNewArray<_is_range_, _check, _transaction_active>(const Instruction* inst, \ const ShadowFrame& shadow_frame, \ Thread* self, JValue* result) #define EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(_transaction_active) \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, false, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, true, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, false, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, true, _transaction_active) EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(false); EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(true); #undef EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL } // namespace interpreter } // namespace art