// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "../testBase.h" #include #define MAX_ERR 0.005f #define MAX_HALF_LINEAR_ERR 0.3f extern bool gDebugTrace, gTestSmallImages, gEnablePitch, gTestMaxImages, gDeviceLt20; extern bool gTestReadWrite; const char *read2DArrayKernelSourcePattern = "__kernel void sample_kernel( read_only %s input, sampler_t sampler, __global int *results )\n" "{\n" " int tidX = get_global_id(0), tidY = get_global_id(1), tidZ = get_global_id(2);\n" " int offset = tidZ*get_image_width(input)*get_image_height(input) + tidY*get_image_width(input) + tidX;\n" " int4 coords = (int4)( tidX, tidY, tidZ, 0 );\n" " %s clr = read_image%s( input, coords );\n" " int4 test = (clr != read_image%s( input, sampler, coords ));\n" " if ( test.x || test.y || test.z || test.w )\n" " results[offset] = -1;\n" " else\n" " results[offset] = 0;\n" "}"; const char *read_write2DArrayKernelSourcePattern = "__kernel void sample_kernel( read_only %s read_only_image, read_write %s read_write_image, sampler_t sampler, __global int *results )\n" "{\n" " int tidX = get_global_id(0), tidY = get_global_id(1), tidZ = get_global_id(2);\n" " int offset = tidZ*get_image_width(read_only_image)*get_image_height(read_only_image) + tidY*get_image_width(read_only_image) + tidX;\n" " int4 coords = (int4)( tidX, tidY, tidZ, 0 );\n" " %s clr = read_image%s( read_only_image, sampler, coords );\n" " write_image%s(read_write_image, coords, clr);\n" " atomic_work_item_fence(CLK_IMAGE_MEM_FENCE, memory_order_acq_rel, memory_scope_work_item);\n" " int4 test = (clr != read_image%s( read_write_image, coords ));\n" " if ( test.x || test.y || test.z || test.w )\n" " results[offset] = -1;\n" " else\n" " results[offset] = 0;\n" "}"; int test_read_image_2D_array( cl_context context, cl_command_queue queue, cl_kernel kernel, image_descriptor *imageInfo, image_sampler_data *imageSampler, ExplicitType outputType, MTdata d ) { int error; size_t threads[3]; cl_sampler actualSampler; BufferOwningPtr imageValues; generate_random_image_data( imageInfo, imageValues, d ); // Don't use clEnqueueWriteImage; just use copy host ptr to get the data in cl_image_desc image_desc; cl_mem read_only_image, read_write_image; memset(&image_desc, 0x0, sizeof(cl_image_desc)); image_desc.image_type = CL_MEM_OBJECT_IMAGE2D_ARRAY; image_desc.image_width = imageInfo->width; image_desc.image_height = imageInfo->height; image_desc.image_array_size = imageInfo->arraySize; image_desc.image_row_pitch = ( gEnablePitch ? imageInfo->rowPitch : 0 ); image_desc.image_slice_pitch = ( gEnablePitch ? imageInfo->slicePitch : 0 ); image_desc.num_mip_levels = 0; read_only_image = clCreateImage( context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, imageInfo->format, &image_desc, imageValues, &error ); if ( error != CL_SUCCESS ) { log_error( "ERROR: Unable to create read_only 2D image array of size %d x %d x %d (pitch %d, %d ) (%s)", (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->arraySize, (int)imageInfo->rowPitch, (int)imageInfo->slicePitch, IGetErrorString( error ) ); return error; } if(gTestReadWrite) { read_write_image = clCreateImage(context, CL_MEM_READ_WRITE, imageInfo->format, &image_desc, NULL, &error ); if ( error != CL_SUCCESS ) { log_error( "ERROR: Unable to create read_write 2D image array of size %d x %d x %d (pitch %d, %d ) (%s)", (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->arraySize, (int)imageInfo->rowPitch, (int)imageInfo->slicePitch, IGetErrorString( error ) ); return error; } } // Create sampler to use actualSampler = clCreateSampler( context, CL_FALSE, CL_ADDRESS_NONE, CL_FILTER_NEAREST, &error ); test_error( error, "Unable to create image sampler" ); // Create results buffer cl_mem results = clCreateBuffer( context, 0, imageInfo->width * imageInfo->height * imageInfo->arraySize * sizeof(cl_int), NULL, &error); test_error( error, "Unable to create results buffer" ); size_t resultValuesSize = imageInfo->width * imageInfo->height * imageInfo->arraySize * sizeof(cl_int); BufferOwningPtr resultValues(malloc( resultValuesSize )); memset( resultValues, 0xff, resultValuesSize ); clEnqueueWriteBuffer( queue, results, CL_TRUE, 0, resultValuesSize, resultValues, 0, NULL, NULL ); // Set arguments int idx = 0; error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &read_only_image ); test_error( error, "Unable to set kernel arguments" ); if(gTestReadWrite) { error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &read_write_image ); test_error( error, "Unable to set kernel arguments" ); } error = clSetKernelArg( kernel, idx++, sizeof( cl_sampler ), &actualSampler ); test_error( error, "Unable to set kernel arguments" ); error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &results ); test_error( error, "Unable to set kernel arguments" ); // Figure out thread dimensions threads[0] = (size_t)imageInfo->width; threads[1] = (size_t)imageInfo->height; threads[2] = (size_t)imageInfo->arraySize; // Run the kernel error = clEnqueueNDRangeKernel( queue, kernel, 3, NULL, threads, NULL, 0, NULL, NULL ); test_error( error, "Unable to run kernel" ); // Get results error = clEnqueueReadBuffer( queue, results, CL_TRUE, 0, resultValuesSize, resultValues, 0, NULL, NULL ); test_error( error, "Unable to read results from kernel" ); if ( gDebugTrace ) log_info( " results read\n" ); // Check for non-zero comps bool allZeroes = true; for ( size_t ic = 0; ic < imageInfo->width * imageInfo->height * imageInfo->arraySize; ++ic ) { if ( resultValues[ic] ) { allZeroes = false; break; } } if ( !allZeroes ) { log_error( " Sampler-less reads differ from reads with sampler.\n" ); return -1; } clReleaseSampler(actualSampler); clReleaseMemObject(results); clReleaseMemObject(read_only_image); if(gTestReadWrite) { clReleaseMemObject(read_write_image); } return 0; } int test_read_image_set_2D_array( cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format, image_sampler_data *imageSampler, ExplicitType outputType ) { char programSrc[10240]; const char *ptr; const char *readFormat; const char *dataType; RandomSeed seed( gRandomSeed ); int error; clProgramWrapper program; clKernelWrapper kernel; // Get operating parameters size_t maxWidth, maxHeight, maxArraySize; cl_ulong maxAllocSize, memSize; image_descriptor imageInfo = { 0 }; size_t pixelSize; imageInfo.format = format; imageInfo.type = CL_MEM_OBJECT_IMAGE2D_ARRAY; pixelSize = get_pixel_size( imageInfo.format ); error = clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE_MAX_ARRAY_SIZE, sizeof( maxArraySize ), &maxArraySize, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL ); test_error( error, "Unable to get max image 2D array size from device" ); if (memSize > (cl_ulong)SIZE_MAX) { memSize = (cl_ulong)SIZE_MAX; } // Determine types if ( outputType == kInt ) { readFormat = "i"; dataType = "int4"; } else if ( outputType == kUInt ) { readFormat = "ui"; dataType = "uint4"; } else // kFloat { readFormat = "f"; dataType = (format->image_channel_order == CL_DEPTH) ? "float" : "float4"; } // Construct the source if(gTestReadWrite) { sprintf( programSrc, read_write2DArrayKernelSourcePattern, (format->image_channel_order == CL_DEPTH) ? "image2d_array_depth_t" : "image2d_array_t", (format->image_channel_order == CL_DEPTH) ? "image2d_array_depth_t" : "image2d_array_t", dataType, readFormat, readFormat, readFormat); } else { sprintf( programSrc, read2DArrayKernelSourcePattern, (format->image_channel_order == CL_DEPTH) ? "image2d_array_depth_t" : "image2d_array_t", dataType, readFormat, readFormat ); } ptr = programSrc; error = create_single_kernel_helper_with_build_options( context, &program, &kernel, 1, &ptr, "sample_kernel", gDeviceLt20 ? "" : "-cl-std=CL2.0" ); test_error( error, "Unable to create testing kernel" ); // Run tests if ( gTestSmallImages ) { for ( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ ) { imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format ); for ( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ ) { imageInfo.slicePitch = imageInfo.rowPitch * imageInfo.height; for ( imageInfo.arraySize = 2; imageInfo.arraySize < 9; imageInfo.arraySize++ ) { if ( gDebugTrace ) log_info( " at size %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.arraySize ); int retCode = test_read_image_2D_array( context, queue, kernel, &imageInfo, imageSampler, outputType, seed ); if ( retCode ) return retCode; } } } } else if ( gTestMaxImages ) { // Try a specific set of maximum sizes size_t numbeOfSizes; size_t sizes[100][3]; get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, maxArraySize, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D_ARRAY, imageInfo.format); for ( size_t idx = 0; idx < numbeOfSizes; idx++ ) { imageInfo.width = sizes[ idx ][ 0 ]; imageInfo.height = sizes[ idx ][ 1 ]; imageInfo.arraySize = sizes[ idx ][ 2 ]; imageInfo.rowPitch = imageInfo.width * pixelSize; imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch; log_info("Testing %d x %d x %d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ], (int)sizes[ idx ][ 2 ]); if ( gDebugTrace ) log_info( " at max size %d,%d,%d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ], (int)sizes[ idx ][ 2 ] ); int retCode = test_read_image_2D_array( context, queue, kernel, &imageInfo, imageSampler, outputType, seed ); if ( retCode ) return retCode; } } else { for ( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ ) { cl_ulong size; // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that // image, the result array, plus offset arrays, will fit in the global ram space do { imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed ); imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed ); imageInfo.arraySize = (size_t)random_log_in_range( 16, (int)maxArraySize / 32, seed ); imageInfo.rowPitch = imageInfo.width * pixelSize; imageInfo.slicePitch = imageInfo.rowPitch * imageInfo.height; if ( gEnablePitch ) { size_t extraWidth = (int)random_log_in_range( 0, 64, seed ); imageInfo.rowPitch += extraWidth * pixelSize; size_t extraHeight = (int)random_log_in_range( 0, 64, seed ); imageInfo.slicePitch = imageInfo.rowPitch * (imageInfo.height + extraHeight); } size = (cl_ulong)imageInfo.slicePitch * (cl_ulong)imageInfo.arraySize * 4 * 4; } while ( size > maxAllocSize || ( size * 3 ) > memSize ); if ( gDebugTrace ) log_info( " at size %d,%d,%d (pitch %d,%d) out of %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.arraySize, (int)imageInfo.rowPitch, (int)imageInfo.slicePitch, (int)maxWidth, (int)maxHeight, (int)maxArraySize ); int retCode = test_read_image_2D_array( context, queue, kernel, &imageInfo, imageSampler, outputType, seed ); if ( retCode ) return retCode; } } return 0; }