// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include static enum xnn_status create_binary_elementwise_nd_f32( float output_min, float output_max, uint32_t flags, enum xnn_operator_type operator_type, xnn_operator_t* binary_elementwise_op_out) { xnn_operator_t binary_elementwise_op = NULL; enum xnn_status status = xnn_status_uninitialized; if (!xnn_params.initialized) { xnn_log_error("failed to create Add/Subtract/Multiply/Divide/Minimum/Maximum operator: XNNPACK is not initialized"); goto error; } status = xnn_status_invalid_parameter; if (isnan(output_min)) { xnn_log_error( "failed to create Add/Subtract/Multiply/Divide/Minimum/Maximum operator with NaN output lower bound: lower bound must be non-NaN"); goto error; } if (isnan(output_max)) { xnn_log_error( "failed to create Add/Subtract/Multiply/Divide/Minimum/Maximum operator with NaN output upper bound: upper bound must be non-NaN"); goto error; } if (output_min >= output_max) { xnn_log_error( "failed to create Add/Subtract/Multiply/Divide/Minimum/Maximum operator with [%.7g, %.7g] output range: lower bound must be below upper bound", output_min, output_max); goto error; } status = xnn_status_out_of_memory; binary_elementwise_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); if (binary_elementwise_op == NULL) { xnn_log_error("failed to allocate %zu bytes for Add/Subtract/Multiply/Divide/Minimum/Maximum operator descriptor", sizeof(struct xnn_operator)); goto error; } binary_elementwise_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max); binary_elementwise_op->type = operator_type; binary_elementwise_op->ukernel.type = xnn_ukernel_type_binary_elementwise; binary_elementwise_op->state = xnn_run_state_invalid; *binary_elementwise_op_out = binary_elementwise_op; return xnn_status_success; error: xnn_delete_operator(binary_elementwise_op); return status; } enum xnn_status xnn_create_add_nd_f32( float output_min, float output_max, uint32_t flags, xnn_operator_t* add_op_out) { return create_binary_elementwise_nd_f32( output_min, output_max, flags, xnn_operator_type_add_nd_f32, add_op_out); } enum xnn_status xnn_create_divide_nd_f32( float output_min, float output_max, uint32_t flags, xnn_operator_t* divide_op_out) { return create_binary_elementwise_nd_f32( output_min, output_max, flags, xnn_operator_type_divide_nd_f32, divide_op_out); } enum xnn_status xnn_create_maximum_nd_f32( uint32_t flags, xnn_operator_t* maximum_op_out) { return create_binary_elementwise_nd_f32( -INFINITY /* output_min */, INFINITY /* output_max */, flags, xnn_operator_type_maximum_nd_f32, maximum_op_out); } enum xnn_status xnn_create_minimum_nd_f32( uint32_t flags, xnn_operator_t* minimum_op_out) { return create_binary_elementwise_nd_f32( -INFINITY /* output_min */, INFINITY /* output_max */, flags, xnn_operator_type_minimum_nd_f32, minimum_op_out); } enum xnn_status xnn_create_multiply_nd_f32( float output_min, float output_max, uint32_t flags, xnn_operator_t* multiply_op_out) { return create_binary_elementwise_nd_f32( output_min, output_max, flags, xnn_operator_type_multiply_nd_f32, multiply_op_out); } enum xnn_status xnn_create_subtract_nd_f32( float output_min, float output_max, uint32_t flags, xnn_operator_t* subtract_op_out) { return create_binary_elementwise_nd_f32( output_min, output_max, flags, xnn_operator_type_subtract_nd_f32, subtract_op_out); } static enum xnn_status setup_binary_elementwise_nd_f32( xnn_operator_t binary_elementwise_op, enum xnn_operator_type expected_operator_type, size_t num_input1_dims, const size_t* input1_shape, size_t num_input2_dims, const size_t* input2_shape, const float* input1, const float* input2, float* output, const struct vbinary_parameters vbinary[restrict static 1], size_t num_threads) { if (binary_elementwise_op->type != expected_operator_type) { xnn_log_error("failed to setup Add/Subtract/Multiply/Divide/Minimum/Maximum (ND, F32) operator: operator type mismatch"); return xnn_status_invalid_parameter; } binary_elementwise_op->state = xnn_run_state_invalid; if (!xnn_params.initialized) { xnn_log_error("failed to setup Add/Subtract/Multiply/Divide/Minimum/Maximum operator: XNNPACK is not initialized"); return xnn_status_uninitialized; } if (max(num_input1_dims, num_input2_dims) > XNN_MAX_TENSOR_DIMS) { xnn_log_error( "failed to setup Add/Subtract/Multiply/Divide/Minimum/Maximum operator with %zu and %zu dimensions in input shapes: " "the number of input dimensions must not exceed %d", num_input1_dims, num_input2_dims, XNN_MAX_TENSOR_DIMS); return xnn_status_unsupported_parameter; } for (size_t i = 0; i < num_input1_dims; i++) { if (input1_shape[i] == 0) { xnn_log_error("failed to setup Add/Subtract/Multiply/Divide/Minimum/Maximum operator: shape dimension #%zu of input #1 is zero", i); return xnn_status_invalid_parameter; } } for (size_t i = 0; i < num_input2_dims; i++) { if (input2_shape[i] == 0) { xnn_log_error("failed to setup Add/Subtract/Multiply/Divide/Minimum/Maximum operator: shape dimension #%zu of input #2 is zero", i); return xnn_status_invalid_parameter; } } size_t num_compressed_dims = 0; size_t compressed_input1_shape[XNN_MAX_TENSOR_DIMS]; size_t compressed_input2_shape[XNN_MAX_TENSOR_DIMS]; size_t compressed_output_shape[XNN_MAX_TENSOR_DIMS]; for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) { compressed_input1_shape[i] = 1; compressed_input2_shape[i] = 1; compressed_output_shape[i] = 1; } bool broadcast_input1 = false; bool broadcast_input2 = false; bool first_nonunit = true; const size_t num_common_dims = min(num_input1_dims, num_input2_dims); for (size_t i = 1; i <= num_common_dims; i++) { const size_t input1_dim = input1_shape[num_input1_dims - i]; const size_t input2_dim = input2_shape[num_input2_dims - i]; if (input1_dim == 1 && input2_dim == 1) { continue; } assert(!broadcast_input1 || !broadcast_input2); if (input1_dim == 1) { if (!broadcast_input1) { broadcast_input1 = true; broadcast_input2 = false; num_compressed_dims++; } compressed_input2_shape[num_compressed_dims - 1] *= input2_dim; compressed_output_shape[num_compressed_dims - 1] *= input2_dim; } else if (input2_dim == 1) { if (!broadcast_input2) { broadcast_input1 = false; broadcast_input2 = true; num_compressed_dims++; } compressed_input1_shape[num_compressed_dims - 1] *= input1_dim; compressed_output_shape[num_compressed_dims - 1] *= input1_dim; } else if (input1_dim == input2_dim) { if (broadcast_input1 || broadcast_input2 || first_nonunit) { broadcast_input1 = false; broadcast_input2 = false; num_compressed_dims++; } compressed_input1_shape[num_compressed_dims - 1] *= input1_dim; compressed_input2_shape[num_compressed_dims - 1] *= input1_dim; compressed_output_shape[num_compressed_dims - 1] *= input1_dim; } else { xnn_log_error("failed to setup Add/Subtract/Multiply/Divide/Minimum/Maximum operator: " "shape dimension #%zu of input1 (%zu) does not match shape dimension #%zu of input2 (%zu)", num_input1_dims - i, input1_dim, num_input2_dims - i, input2_dim); return xnn_status_invalid_parameter; } first_nonunit = false; } if (num_input1_dims > num_input2_dims) { if (!broadcast_input2) { num_compressed_dims++; } for (size_t i = 0; i < num_input1_dims - num_input2_dims; i++) { const size_t input1_dim = input1_shape[i]; compressed_input1_shape[num_compressed_dims - 1] *= input1_dim; compressed_output_shape[num_compressed_dims - 1] *= input1_dim; } } else if (num_input2_dims > num_input1_dims) { if (!broadcast_input1) { num_compressed_dims++; } for (size_t i = 0; i < num_input2_dims - num_input1_dims; i++) { const size_t input2_dim = input2_shape[i]; compressed_input2_shape[num_compressed_dims - 1] *= input2_dim; compressed_output_shape[num_compressed_dims - 1] *= input2_dim; } } num_compressed_dims = max(num_compressed_dims, 1); binary_elementwise_op->context.elementwise_binary = (struct elementwise_binary_context) { .a = input1, .b = input2, .y = output, .elements = compressed_output_shape[0] * sizeof(float), .params.f32 = binary_elementwise_op->f32_output_params, }; const size_t* compressed_a_shape = compressed_input1_shape; const size_t* compressed_b_shape = compressed_input2_shape; if (compressed_input1_shape[0] == 1) { binary_elementwise_op->context.elementwise_binary.ukernel = vbinary->ropc_ukernel; binary_elementwise_op->context.elementwise_binary.a = input2; binary_elementwise_op->context.elementwise_binary.b = input1; compressed_a_shape = compressed_input2_shape; compressed_b_shape = compressed_input1_shape; } else if (compressed_input2_shape[0] == 1) { binary_elementwise_op->context.elementwise_binary.ukernel = vbinary->opc_ukernel; } else if (compressed_input1_shape[0] == compressed_input2_shape[0]) { binary_elementwise_op->context.elementwise_binary.ukernel = vbinary->op_ukernel; } size_t a_stride = compressed_a_shape[0], b_stride = compressed_b_shape[0], y_stride = compressed_output_shape[0]; for (size_t i = 1; i < num_compressed_dims; i++) { if (compressed_a_shape[i] != 1) { binary_elementwise_op->context.elementwise_binary.a_stride[XNN_MAX_TENSOR_DIMS - 1 - i] = a_stride * sizeof(float); } if (compressed_b_shape[i] != 1) { binary_elementwise_op->context.elementwise_binary.b_stride[XNN_MAX_TENSOR_DIMS - 1 - i] = b_stride * sizeof(float); } binary_elementwise_op->context.elementwise_binary.y_stride[XNN_MAX_TENSOR_DIMS - 1 - i] = y_stride * sizeof(float); a_stride *= compressed_a_shape[i]; b_stride *= compressed_b_shape[i]; y_stride *= compressed_output_shape[i]; } binary_elementwise_op->compute.type = xnn_parallelization_type_5d_tile_2d; binary_elementwise_op->compute.task_5d_tile_2d = (pthreadpool_task_5d_tile_2d_t) xnn_compute_elementwise_binary_5d; binary_elementwise_op->compute.range[0] = compressed_output_shape[5]; binary_elementwise_op->compute.range[1] = compressed_output_shape[4]; binary_elementwise_op->compute.range[2] = compressed_output_shape[3]; binary_elementwise_op->compute.range[3] = compressed_output_shape[2]; binary_elementwise_op->compute.range[4] = compressed_output_shape[1]; binary_elementwise_op->compute.tile[0] = 1; binary_elementwise_op->compute.tile[1] = 1; binary_elementwise_op->state = xnn_run_state_ready; return xnn_status_success; } enum xnn_status xnn_setup_add_nd_f32( xnn_operator_t add_op, size_t num_input1_dims, const size_t* input1_shape, size_t num_input2_dims, const size_t* input2_shape, const float* input1, const float* input2, float* output, pthreadpool_t threadpool) { return setup_binary_elementwise_nd_f32( add_op, xnn_operator_type_add_nd_f32, num_input1_dims, input1_shape, num_input2_dims, input2_shape, input1, input2, output, &xnn_params.f32.vadd, pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_divide_nd_f32( xnn_operator_t divide_op, size_t num_input1_dims, const size_t* input1_shape, size_t num_input2_dims, const size_t* input2_shape, const float* input1, const float* input2, float* output, pthreadpool_t threadpool) { return setup_binary_elementwise_nd_f32( divide_op, xnn_operator_type_divide_nd_f32, num_input1_dims, input1_shape, num_input2_dims, input2_shape, input1, input2, output, &xnn_params.f32.vdiv, pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_maximum_nd_f32( xnn_operator_t maximum_op, size_t num_input1_dims, const size_t* input1_shape, size_t num_input2_dims, const size_t* input2_shape, const float* input1, const float* input2, float* output, pthreadpool_t threadpool) { return setup_binary_elementwise_nd_f32( maximum_op, xnn_operator_type_maximum_nd_f32, num_input1_dims, input1_shape, num_input2_dims, input2_shape, input1, input2, output, &xnn_params.f32.vmax, pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_minimum_nd_f32( xnn_operator_t minimum_op, size_t num_input1_dims, const size_t* input1_shape, size_t num_input2_dims, const size_t* input2_shape, const float* input1, const float* input2, float* output, pthreadpool_t threadpool) { return setup_binary_elementwise_nd_f32( minimum_op, xnn_operator_type_minimum_nd_f32, num_input1_dims, input1_shape, num_input2_dims, input2_shape, input1, input2, output, &xnn_params.f32.vmin, pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_multiply_nd_f32( xnn_operator_t multiply_op, size_t num_input1_dims, const size_t* input1_shape, size_t num_input2_dims, const size_t* input2_shape, const float* input1, const float* input2, float* output, pthreadpool_t threadpool) { return setup_binary_elementwise_nd_f32( multiply_op, xnn_operator_type_multiply_nd_f32, num_input1_dims, input1_shape, num_input2_dims, input2_shape, input1, input2, output, &xnn_params.f32.vmul, pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_subtract_nd_f32( xnn_operator_t subtract_op, size_t num_input1_dims, const size_t* input1_shape, size_t num_input2_dims, const size_t* input2_shape, const float* input1, const float* input2, float* output, pthreadpool_t threadpool) { return setup_binary_elementwise_nd_f32( subtract_op, xnn_operator_type_subtract_nd_f32, num_input1_dims, input1_shape, num_input2_dims, input2_shape, input1, input2, output, &xnn_params.f32.vsub, pthreadpool_get_threads_count(threadpool)); }