// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/neon-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x12( size_t elements, const float* input, float* output, float* sum, float max) { assert(elements % sizeof(float) == 0); const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f); const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f); // Last 7 bits are zeroes const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f); const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f); const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f); const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f); const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f); const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f); const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f); const float32x4_t vi_max = vdupq_n_f32(max); float32x4_t vacc0 = vmovq_n_f32(0.0f); for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) { // Load 12 (3x4) inputs at a time. const float32x4_t vi0123 = vld1q_f32(input); input += 4; const float32x4_t vi4567 = vld1q_f32(input); input += 4; const float32x4_t vi89AB = vld1q_f32(input); input += 4; // Subtract maximum input x := i - i_max. This implies x <= 0. const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max); const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max); const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max); // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end // of the algorithm. float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e); float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e); float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23)); // Subtract the large number back to get final n := round(x / log(2)). vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); // Compute reduced argument t := z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi); float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi); float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi); vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo); vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo); vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123); float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567); float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB); vp0123 = vmlaq_f32(vc3, vp0123, vt0123); vp4567 = vmlaq_f32(vc3, vp4567, vt4567); vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB); vp0123 = vmlaq_f32(vc2, vp0123, vt0123); vp4567 = vmlaq_f32(vc2, vp4567, vt4567); vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB); vp0123 = vmlaq_f32(vc1, vp0123, vt0123); vp4567 = vmlaq_f32(vc1, vp4567, vt4567); vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0123 = vmulq_f32(vt0123, vs0123); vt4567 = vmulq_f32(vt4567, vs4567); vt89AB = vmulq_f32(vt89AB, vs89AB); float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123); float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567); float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff))); // Store 12 (3x4) outputs at a time. vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; // Accumulate computed exponents. vacc0 = vaddq_f32(vacc0, vf0123); vacc0 = vaddq_f32(vacc0, vf4567); vacc0 = vaddq_f32(vacc0, vf89AB); } float32x4_t vacc = vacc0; for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) { // Load 4 inputs at a time. const float32x4_t vi = vld1q_f32(input); input += 4; // Subtract maximum input x := i - i_max. This implies x <= 0. const float32x4_t vx = vsubq_f32(vi, vi_max); // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end // of the algorithm. float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); // Subtract the large number back to get final n := round(x / log(2)). vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi); vt = vmlaq_f32(vt, vn, vminus_ln2_lo); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. float32x4_t vp = vmlaq_f32(vc4, vc5, vt); vp = vmlaq_f32(vc3, vp, vt); vp = vmlaq_f32(vc2, vp, vt); vp = vmlaq_f32(vc1, vp, vt); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = vmulq_f32(vt, vs); float32x4_t vf = vmlaq_f32(vs, vp, vt); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff))); // Store 4 outputs at a time. vst1q_f32(output, vf); output += 4; // Accumulate computed exponents. vacc = vaddq_f32(vacc, vf); } #if XNN_ARCH_ARM64 float vacc_lo = vaddvq_f32(vacc); #else float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc)); #endif if (elements != 0) { assert(elements >= 1 * sizeof(float)); assert(elements <= 3 * sizeof(float)); // Load 4 inputs at a time. const float32x4_t vi = vld1q_f32(input); input += 4; // Subtract maximum input x := i - i_max. This implies x <= 0. const float32x4_t vx = vsubq_f32(vi, vi_max); // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end // of the algorithm. float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); // Subtract the large number back to get final n := round(x / log(2)). vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi); vt = vmlaq_f32(vt, vn, vminus_ln2_lo); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. float32x4_t vp = vmlaq_f32(vc4, vc5, vt); vp = vmlaq_f32(vc3, vp, vt); vp = vmlaq_f32(vc2, vp, vt); vp = vmlaq_f32(vc1, vp, vt); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = vmulq_f32(vt, vs); float32x4_t vf = vmlaq_f32(vs, vp, vt); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff))); float32x2_t vf_lo = vget_low_f32(vf); if (elements & (2 * sizeof(float))) { // Store 2 outputs at a time. vst1_f32(output, vf_lo); output += 2; // Accumulate 2 computed exponents. #if XNN_ARCH_ARM64 vacc_lo += vaddv_f32(vf_lo); #else vacc_lo = vadd_f32(vacc_lo, vf_lo); #endif vf_lo = vget_high_f32(vf); } if (elements & (1 * sizeof(float))) { // Store 1 output at a time. vst1_lane_f32(output, vf_lo, 0); // Accumulate 1 computed exponent. #if XNN_ARCH_ARM64 vacc_lo += vget_lane_f32(vf_lo, 0); #else vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32))); #endif } } // Reduce 4 elements in the SIMD register #if XNN_ARCH_ARM64 *sum = vacc_lo; #else vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0); #endif }