// Auto-generated file. Do not edit! // Template: src/f32-sigmoid/neon-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x4( size_t n, const float* x, float* y, const void* params) { assert(n % sizeof(float) == 0); const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f); // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f); const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f); // Last 7 bits are zeroes const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E400p-1f); const float32x4_t vln2_lo = vmovq_n_f32(0x1.7F7D1Cp-20f); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f); const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f); const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f); const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f); const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f); for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(x); x += 4; // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[z] if x <= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); // Subtract the large number back to get final n := round(-z / log(2)). vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi); vt = vmlaq_f32(vt, vn, vln2_lo); // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2]. float32x4_t vp = vmlaq_f32(vc4, vc5, vt); vp = vmlaq_f32(vc3, vp, vt); vp = vmlaq_f32(vc2, vp, vt); vp = vmlaq_f32(vc1, vp, vt); // Reconstruct the exp(-z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = vmulq_f32(vt, vs); float32x4_t ve = vmlaq_f32(vs, vp, vt); // Denominator of the sigmoid fraction: 1.0 + exp(-z) float32x4_t vd = vaddq_f32(ve, vone); // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. float32x4_t vr = vrecpeq_f32(vd); vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vmulq_f32(ve, vr); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(y, vf); y += 4; } if XNN_UNLIKELY(n != 0) { const float32x4_t vx = vld1q_f32(x); // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[z] if x <= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); // Subtract the large number back to get final n := round(-z / log(2)). vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi); vt = vmlaq_f32(vt, vn, vln2_lo); // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2]. float32x4_t vp = vmlaq_f32(vc4, vc5, vt); vp = vmlaq_f32(vc3, vp, vt); vp = vmlaq_f32(vc2, vp, vt); vp = vmlaq_f32(vc1, vp, vt); // Reconstruct the exp(-z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = vmulq_f32(vt, vs); float32x4_t ve = vmlaq_f32(vs, vp, vt); // Denominator of the sigmoid fraction: 1.0 + exp(-z) float32x4_t vd = vaddq_f32(ve, vone); // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. float32x4_t vr = vrecpeq_f32(vd); vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vmulq_f32(ve, vr); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (n & (2 * sizeof(float))) { vst1_f32(y, vf_lo); y += 2; vf_lo = vget_high_f32(vf); } if (n & (1 * sizeof(float))) { vst1_lane_f32(y, vf_lo, 0); } } }