// Auto-generated file. Do not edit! // Template: src/f32-sigmoid/neon-lut64-p2.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64]; void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x20( size_t n, const float* x, float* y, const void* params) { assert(n % sizeof(float) == 0); const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f); // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f); const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f); const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(x); x += 4; const float32x4_t vx4567 = vld1q_f32(x); x += 4; const float32x4_t vx89AB = vld1q_f32(x); x += 4; const float32x4_t vxCDEF = vld1q_f32(x); x += 4; const float32x4_t vxGHIJ = vld1q_f32(x); x += 4; // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ); // Compute reduced argument n := round(-z * 64 / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e. // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the // very end of the algorithm. float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64); float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x64); // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) = // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps: // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, // and thus the adjusted exponent is not lower than -126. // // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17); const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17); const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17); const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17); const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17); // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask)); const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]); const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0); const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1); float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]); float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]); const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0); const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1); float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]); float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]); vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1); vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1); const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF); vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1); vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1); const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ); // Adjust exponent of the value l fetched from the table to get the final s value. const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF)); const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ)); // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number. vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias); // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64. float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o64); float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2_o64); // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128]. // P1(t) = 1 + t * (-1 + t * c2) float32x4_t vp0123 = vmulq_f32(vt0123, vc2); float32x4_t vp4567 = vmulq_f32(vt4567, vc2); float32x4_t vp89AB = vmulq_f32(vt89AB, vc2); float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2); float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2); vp0123 = vfmsq_f32(vt0123, vp0123, vt0123); vp4567 = vfmsq_f32(vt4567, vp4567, vt4567); vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB); vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF); vpGHIJ = vfmsq_f32(vtGHIJ, vpGHIJ, vtGHIJ); // Reconstruct the exp(-z) value: // f = s * (1 + t * (-1 + t * c2)) // = s * (1 - t + t * (t * c2)) // = s - s * (t - t * (t * c2)) // = s - s * p const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF); const float32x4_t vyGHIJ = vfmsq_f32(vsGHIJ, vsGHIJ, vpGHIJ); // Denominator of the sigmoid fraction: 1.0 + exp(-z) const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone); const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone); // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. float32x4_t vr0123 = vrecpeq_f32(vd0123); float32x4_t vr4567 = vrecpeq_f32(vd4567); float32x4_t vr89AB = vrecpeq_f32(vd89AB); float32x4_t vrCDEF = vrecpeq_f32(vdCDEF); float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ); vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123)); vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567)); vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB)); vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF)); vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ)); vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123)); vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567)); vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB)); vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF)); vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf0123 = vmulq_f32(vy0123, vr0123); float32x4_t vf4567 = vmulq_f32(vy4567, vr4567); float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB); float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF); float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ)); vst1q_f32(y, vf0123); y += 4; vst1q_f32(y, vf4567); y += 4; vst1q_f32(y, vf89AB); y += 4; vst1q_f32(y, vfCDEF); y += 4; vst1q_f32(y, vfGHIJ); y += 4; } for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(x); x += 4; // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z * 64 / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e. // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the // very end of the algorithm. float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64); // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) = // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps: // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, // and thus the adjusted exponent is not lower than -126. // // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17); // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); // Adjust exponent of the value l fetched from the table to get the final s value. const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number. vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64. float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64); // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128]. // P1(t) = 1 + t * (-1 + t * c2) float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); // Reconstruct the exp(-z) value: // f = s * (1 + t * (-1 + t * c2)) // = s * (1 - t + t * (t * c2)) // = s - s * (t - t * (t * c2)) // = s - s * p const float32x4_t vy = vfmsq_f32(vs, vs, vp); // Denominator of the sigmoid fraction: 1.0 + exp(-z) const float32x4_t vd = vaddq_f32(vy, vone); // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. float32x4_t vr = vrecpeq_f32(vd); vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vmulq_f32(vy, vr); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(y, vf); y += 4; } if XNN_UNLIKELY(n != 0) { const float32x4_t vx = vld1q_f32(x); // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z * 64 / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e. // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the // very end of the algorithm. float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64); // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) = // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps: // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, // and thus the adjusted exponent is not lower than -126. // // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17); // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); // Adjust exponent of the value l fetched from the table to get the final s value. const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number. vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64. float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64); // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128]. // P1(t) = 1 + t * (-1 + t * c2) float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); // Reconstruct the exp(-z) value: // f = s * (1 + t * (-1 + t * c2)) // = s * (1 - t + t * (t * c2)) // = s - s * (t - t * (t * c2)) // = s - s * p const float32x4_t vy = vfmsq_f32(vs, vs, vp); // Denominator of the sigmoid fraction: 1.0 + exp(-z) const float32x4_t vd = vaddq_f32(vy, vone); // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. float32x4_t vr = vrecpeq_f32(vd); vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vmulq_f32(vy, vr); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (n & (2 * sizeof(float))) { vst1_f32(y, vf_lo); y += 2; vf_lo = vget_high_f32(vf); } if (n & (1 * sizeof(float))) { vst1_lane_f32(y, vf_lo, 0); } } }