// Auto-generated file. Do not edit! // Template: src/f32-sigmoid/neon-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_div_x16( size_t n, const float* x, float* y, const void* params) { assert(n % sizeof(float) == 0); const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f); // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f); const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f); const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f); const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f); const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f); const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f); const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f); for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(x); x += 4; const float32x4_t vx4567 = vld1q_f32(x); x += 4; const float32x4_t vx89AB = vld1q_f32(x); x += 4; const float32x4_t vxCDEF = vld1q_f32(x); x += 4; // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[z] if x >= 0. const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); // Compute reduced argument n := round(-z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23)); // Subtract the large number back to get final n := round(-z / log(2)). vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)). float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2]. float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123); float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567); float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB); float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF); vp0123 = vfmaq_f32(vc3, vp0123, vt0123); vp4567 = vfmaq_f32(vc3, vp4567, vt4567); vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF); vp0123 = vfmaq_f32(vc2, vp0123, vt0123); vp4567 = vfmaq_f32(vc2, vp4567, vt4567); vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF); vp0123 = vfmaq_f32(vc1, vp0123, vt0123); vp4567 = vfmaq_f32(vc1, vp4567, vt4567); vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF); // Reconstruct the exp(-z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0123 = vmulq_f32(vt0123, vs0123); vt4567 = vmulq_f32(vt4567, vs4567); vt89AB = vmulq_f32(vt89AB, vs89AB); vtCDEF = vmulq_f32(vtCDEF, vsCDEF); float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123); float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567); float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB); float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF); // Denominator of the sigmoid fraction: 1.0 + exp(-z) float32x4_t vd0123 = vaddq_f32(ve0123, vone); float32x4_t vd4567 = vaddq_f32(ve4567, vone); float32x4_t vd89AB = vaddq_f32(ve89AB, vone); float32x4_t vdCDEF = vaddq_f32(veCDEF, vone); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf0123 = vdivq_f32(ve0123, vd0123); float32x4_t vf4567 = vdivq_f32(ve4567, vd4567); float32x4_t vf89AB = vdivq_f32(ve89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(veCDEF, vdCDEF); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vst1q_f32(y, vf0123); y += 4; vst1q_f32(y, vf4567); y += 4; vst1q_f32(y, vf89AB); y += 4; vst1q_f32(y, vfCDEF); y += 4; } for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(x); x += 4; // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[z] if x <= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); // Subtract the large number back to get final n := round(-z / log(2)). vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)). float32x4_t vt = vfmaq_f32(vz, vn, vln2); // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2]. float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); // Reconstruct the exp(-z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = vmulq_f32(vt, vs); float32x4_t ve = vfmaq_f32(vs, vp, vt); // Denominator of the sigmoid fraction: 1.0 + exp(-z) float32x4_t vd = vaddq_f32(ve, vone); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vdivq_f32(ve, vd); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(y, vf); y += 4; } if XNN_UNLIKELY(n != 0) { const float32x4_t vx = vld1q_f32(x); // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[z] if x <= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); // Subtract the large number back to get final n := round(-z / log(2)). vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)). float32x4_t vt = vfmaq_f32(vz, vn, vln2); // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2]. float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); // Reconstruct the exp(-z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = vmulq_f32(vt, vs); float32x4_t ve = vfmaq_f32(vs, vp, vt); // Denominator of the sigmoid fraction: 1.0 + exp(-z) float32x4_t vd = vaddq_f32(ve, vone); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vdivq_f32(ve, vd); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (n & (2 * sizeof(float))) { vst1_f32(y, vf_lo); y += 2; vf_lo = vget_high_f32(vf); } if (n & (1 * sizeof(float))) { vst1_lane_f32(y, vf_lo, 0); } } }