// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class GemmMicrokernelTester { public: enum class Variant { Native, Scalar, }; inline GemmMicrokernelTester& mr(size_t mr) { this->mr_ = mr; return *this; } inline size_t mr() const { return this->mr_; } inline GemmMicrokernelTester& nr(size_t nr) { this->nr_ = nr; return *this; } inline size_t nr() const { return this->nr_; } inline GemmMicrokernelTester& kr(size_t kr) { this->kr_ = kr; return *this; } inline size_t kr() const { return this->kr_; } inline GemmMicrokernelTester& sr(size_t sr) { this->sr_ = sr; return *this; } inline size_t sr() const { return this->sr_; } inline GemmMicrokernelTester& m(size_t m) { this->m_ = m; return *this; } inline size_t m() const { return this->m_; } inline GemmMicrokernelTester& n(size_t n) { this->n_ = n; return *this; } inline size_t n() const { return this->n_; } inline GemmMicrokernelTester& k(size_t k) { this->k_ = k; return *this; } inline size_t k() const { return this->k_; } inline GemmMicrokernelTester& ks(size_t ks) { this->ks_ = ks; return *this; } inline size_t ks() const { return this->ks_; } inline size_t packed_k() const { return k() % kr() == 0 ? k() : (k() / kr() + 1) * kr(); } inline size_t packed_n() const { return n() % nr() == 0 ? n() : (n() / nr() + 1) * nr(); } inline size_t bias_n() const { return n() % nr() == 0 ? n() : (n() / nr() + 1) * nr(); } inline GemmMicrokernelTester& a_stride(size_t a_stride) { this->a_stride_ = a_stride; return *this; } inline size_t a_stride() const { return this->a_stride_ == 0 ? k() : this->a_stride_; } inline GemmMicrokernelTester& cm_stride(size_t cm_stride) { this->cm_stride_ = cm_stride; return *this; } inline size_t cm_stride() const { return this->cm_stride_ == 0 ? cn_stride() * ((n() - 1) / nr()) + (n() - 1) % nr() + 1 : this->cm_stride_; } inline GemmMicrokernelTester& cn_stride(size_t cn_stride) { this->cn_stride_ = cn_stride; return *this; } inline size_t cn_stride() const { return this->cn_stride_ == 0 ? nr() : this->cn_stride_; } inline GemmMicrokernelTester& a_zero_point(uint8_t a_zero_point) { this->a_zero_point_ = a_zero_point; return *this; } inline uint8_t a_zero_point() const { return this->a_zero_point_; } inline GemmMicrokernelTester& b_zero_point(uint8_t b_zero_point) { this->b_zero_point_ = b_zero_point; return *this; } inline uint8_t b_zero_point() const { return this->b_zero_point_; } inline GemmMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline GemmMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline GemmMicrokernelTester& a_offset(size_t a_offset) { this->a_offset_ = a_offset; return *this; } inline size_t a_offset() const { return this->a_offset_; } inline GemmMicrokernelTester& zero_index(size_t zero_index) { this->zero_index_ = zero_index; return *this; } inline size_t zero_index() const { return this->zero_index_; } inline GemmMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_q8_gemm_ukernel_function gemm, Variant variant = Variant::Native) const { ASSERT_LE(m(), mr()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto s32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto u8rng = std::bind(std::uniform_int_distribution(), rng); std::vector a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector b(n() * k()); std::vector bias(n()); std::vector> packed_w(packed_n() * packed_k() + bias_n() * sizeof(uint32_t) / sizeof(uint8_t)); std::vector c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1); std::vector acc(m() * n()); std::vector c_ref(m() * n()); for (size_t iteration = 0; iteration < iterations(); iteration++) { do { std::generate(a.begin(), a.end(), std::ref(u8rng)); } while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend())); do { std::generate(b.begin(), b.end(), std::ref(u8rng)); } while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend())); std::generate(bias.begin(), bias.end(), std::ref(s32rng)); std::fill(c.begin(), c.end(), 0xA5); std::fill(packed_w.begin(), packed_w.end(), b_zero_point()); xnn_pack_q8_gemm_goi_w(1, n(), k(), nr(), kr(), a_zero_point(), b_zero_point(), b.data(), bias.data(), packed_w.data()); // Compute 32-bit results and output quantization arguments. std::fill(acc.begin(), acc.end(), 0); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { for (size_t k_index = 0; k_index < k(); k_index++) { acc[m_index * n() + n_index] += (int32_t(a[m_index * a_stride() + k_index]) - int32_t(a_zero_point())) * (int32_t(b[n_index * k() + k_index]) - int32_t(b_zero_point())); } acc[m_index * n() + n_index] += bias[n_index]; } } const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend()); const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend()); const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001; const uint8_t c_zero_point = uint8_t(std::max(std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const float requantization_scale = 1.0f / float(c_scale); union xnn_q8_gemm_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_q8_gemm_params( a_zero_point(), b_zero_point(), requantization_scale, c_zero_point, qmin(), qmax()); break; case Variant::Scalar: quantization_params = xnn_init_scalar_q8_gemm_params( a_zero_point(), b_zero_point(), requantization_scale, c_zero_point, qmin(), qmax()); break; } const union xnn_q31_requantization_params scalar_requantization_params = xnn_init_scalar_requantization_params( requantization_scale, c_zero_point, qmin(), qmax()); gemm( m(), n(), k(), a.data(), a_stride() * sizeof(uint8_t), packed_w.data(), c.data(), cm_stride() * sizeof(uint8_t), cn_stride() * sizeof(uint8_t), &quantization_params); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { c_ref[m_index * n() + n_index] = xnn_q31_requantize(acc[m_index * n() + n_index], scalar_requantization_params); } } for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_LE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmax())); ASSERT_GE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmin())); ASSERT_EQ(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(c_ref[i * n() + j])) << "at " << i << ", " << j << ": reference = " << (uint32_t) c_ref[i * n() + j] << " (accumulator = " << acc[i * n() + j] << "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k() << ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point); } } } } void Test(xnn_q8_igemm_ukernel_function igemm, Variant variant = Variant::Native) const { ASSERT_LE(m(), mr()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto s32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto u8rng = std::bind(std::uniform_int_distribution(), rng); std::vector a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector b(n() * ks() * k()); std::vector> packed_w(ks() * packed_n() * packed_k() + bias_n() * sizeof(uint32_t) / sizeof(uint8_t)); std::vector bias(n()); std::vector c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1); std::vector acc(m() * n()); std::vector c_ref(m() * n()); std::vector junk(k() + 8); std::vector im2col(mr() * ks()); std::fill(junk.begin(), junk.end(), 0xA5); for (size_t iteration = 0; iteration < iterations(); iteration++) { do { std::generate(a.begin(), a.end(), std::ref(u8rng)); } while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend())); do { std::generate(b.begin(), b.end(), std::ref(u8rng)); } while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend())); std::generate(bias.begin(), bias.end(), std::ref(s32rng)); std::fill(c.begin(), c.end(), 0xA5); std::fill(packed_w.begin(), packed_w.end(), b_zero_point()); xnn_pack_q8_conv_goki_w( 1, n(), ks(), k(), nr(), kr(), a_zero_point(), b_zero_point(), b.data(), bias.data(), packed_w.data()); for (size_t ks_index = 0; ks_index < ks(); ks_index++) { for (size_t m_index = 0; m_index < mr(); m_index++) { im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset(); } } std::shuffle(im2col.begin(), im2col.end(), rng); if (zero_index() != SIZE_MAX) { for (size_t ks_index = 0; ks_index < ks(); ks_index++) { im2col[ks_index * mr() + zero_index()] = a.data(); } } for (size_t ks_index = 0; ks_index < ks(); ks_index++) { for (size_t m_index = m(); m_index < mr(); m_index++) { im2col[ks_index * mr() + m_index] = junk.data(); } } // Compute 32-bit results and output quantization arguments. std::fill(acc.begin(), acc.end(), 0); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { for (size_t ks_index = 0; ks_index < ks(); ks_index++) { for (size_t k_block_start = 0; k_block_start < k(); k_block_start += kr()) { for (size_t k_block_offset = 0; k_block_offset < std::min(k() - k_block_start, kr()); k_block_offset++) { if (im2col[ks_index * mr() + m_index] == a.data()) { acc[m_index * n() + n_index] += (int32_t(im2col[ks_index * mr() + m_index][k_block_start + k_block_offset]) - int32_t(a_zero_point())) * (int32_t(b[(n_index * ks() + ks_index) * k() + k_block_start + k_block_offset]) - int32_t(b_zero_point())); } else { acc[m_index * n() + n_index] += (int32_t(im2col[ks_index * mr() + m_index][k_block_start + k_block_offset + a_offset()]) - int32_t(a_zero_point())) * (int32_t(b[(n_index * ks() + ks_index) * k() + k_block_start + k_block_offset]) - int32_t(b_zero_point())); } } } } acc[m_index * n() + n_index] += bias[n_index]; } } const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend()); const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend()); const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001; const uint8_t c_zero_point = uint8_t(std::max(std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const float requantization_scale = 1.0f / float(c_scale); union xnn_q8_gemm_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_q8_gemm_params( a_zero_point(), b_zero_point(), requantization_scale, c_zero_point, qmin(), qmax()); break; case Variant::Scalar: quantization_params = xnn_init_scalar_q8_gemm_params( a_zero_point(), b_zero_point(), requantization_scale, c_zero_point, qmin(), qmax()); break; } const union xnn_q31_requantization_params scalar_requantization_params = xnn_init_scalar_requantization_params( requantization_scale, c_zero_point, qmin(), qmax()); const uint8_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL; igemm( m(), n(), k(), ks() * mr() * sizeof(void*), im2col.data(), packed_w.data(), c.data(), cm_stride() * sizeof(uint8_t), cn_stride() * sizeof(uint8_t), a_offset() * sizeof(uint8_t), zero_pointer, &quantization_params); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { c_ref[m_index * n() + n_index] = xnn_q31_requantize(acc[m_index * n() + n_index], scalar_requantization_params); } } for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_LE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmax())); ASSERT_GE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmin())); ASSERT_EQ(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(c_ref[i * n() + j])) << "at " << i << ", " << j << ": reference = " << uint32_t(c_ref[i * n() + j]) << " (accumulator = " << acc[i * n() + j] << "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k() << ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point); } } } } void Test(xnn_f16_gemm_ukernel_function gemm, Variant variant = Variant::Native) const { ASSERT_LE(m(), mr()); ASSERT_GE(a_stride(), k()); ASSERT_GE(cm_stride(), n()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector b(n() * k()); std::vector> packed_w(packed_n() * packed_k() + bias_n()); std::vector bias(n()); std::vector c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1); std::vector c_ref(m() * n()); xnn_f16_output_params output_params; output_params.scale = UINT16_C(0x3C00) /* 1.0 */; for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f16rng)); std::generate(b.begin(), b.end(), std::ref(f16rng)); std::generate(bias.begin(), bias.end(), std::ref(f16rng)); std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */); std::fill(c_ref.begin(), c_ref.end(), 0.0f); std::fill(packed_w.begin(), packed_w.end(), 0); xnn_pack_f16_gemm_goi_w(1, n(), k(), nr(), kr(), b.data(), bias.data(), packed_w.data()); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { for (size_t k_block_start = 0; k_block_start < k(); k_block_start += kr()) { for (size_t k_block_offset = 0; k_block_offset < std::min(k() - k_block_start, kr()); k_block_offset++) { ASSERT_LE(n(), packed_n()); ASSERT_LT(m_index * n() + n_index, c_ref.size()); ASSERT_LT(m_index * k() + k_block_start + k_block_offset, a.size()); c_ref[m_index * n() + n_index] += fp16_ieee_to_fp32_value(a[m_index * a_stride() + k_block_start + k_block_offset]) * fp16_ieee_to_fp32_value(b[n_index * k() + k_block_start + k_block_offset]); } } c_ref[m_index * n() + n_index] += fp16_ieee_to_fp32_value(bias[n_index]); } } const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend()); const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend()); const float c_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()))); const float c_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()))); output_params.max = fp16_ieee_from_fp32_value(c_max); output_params.min = fp16_ieee_from_fp32_value(c_min); for (float& c_value : c_ref) { c_value = std::max(std::min(c_value, c_max), c_min); } gemm(m(), n(), k() * sizeof(uint16_t), a.data(), a_stride() * sizeof(uint16_t), packed_w.data(), c.data(), cm_stride() * sizeof(uint16_t), cn_stride() * sizeof(uint16_t), &output_params); // Validate micro-kernel outputs. for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_NEAR( fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), c_ref[i * n() + j], std::abs(c_ref[i * n() + j]) * 1.0e-2f) << "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j] << ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k(); } } } } void Test(xnn_f32_ppmm_ukernel_function ppmm, Variant variant = Variant::Native) const { ASSERT_LE(m(), mr()); ASSERT_GE(cm_stride(), n()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector a(packed_k() * mr()); std::vector b(n() * k()); std::vector bias(n()); std::vector> packed_w(packed_n() * packed_k() + bias_n()); std::vector c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1); std::vector c_ref(m() * n()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f32rng)); std::generate(b.begin(), b.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(c.begin(), c.end(), nanf("")); std::fill(c_ref.begin(), c_ref.end(), 0.0f); std::fill(packed_w.begin(), packed_w.end(), 0.0f); xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data()); for (size_t i = m(); i < mr(); i++) { for (size_t l = 0; l < k(); l++) { a[l * mr() + i] = a[l * mr() + m() - 1]; } } for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { for (size_t l = 0; l < k(); l++) { c_ref[i * n() + j] += a[l * mr() + i] * b[j * k() + l]; } c_ref[i * n() + j] += bias[j]; } } const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend()); const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend()); const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Prepare output parameters. xnn_f32_output_params output_params = { }; switch (variant) { case Variant::Native: output_params = xnn_init_f32_output_params(c_min, c_max); break; case Variant::Scalar: output_params = xnn_init_scalar_f32_output_params(c_min, c_max); break; } for (float& c_value : c_ref) { c_value = std::max(std::min(c_value, c_max), c_min); } ppmm(m(), n(), k() * sizeof(float), a.data(), packed_w.data(), c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float), &output_params); // Validate micro-kernel outputs. for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_NEAR( c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_ref[i * n() + j], std::abs(c_ref[i * n() + j]) * 1.0e-6f) << "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k(); } } } } void Test(xnn_f32_gemm_ukernel_function gemm, Variant variant = Variant::Native) const { ASSERT_LE(m(), mr()); ASSERT_GE(a_stride(), k()); ASSERT_GE(cm_stride(), n()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float)); std::vector b(n() * k()); std::vector bias(n()); std::vector> packed_w(packed_n() * packed_k() + bias_n()); std::vector c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1); std::vector c_ref(m() * n()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f32rng)); std::generate(b.begin(), b.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(c.begin(), c.end(), nanf("")); std::fill(c_ref.begin(), c_ref.end(), 0.0f); std::fill(packed_w.begin(), packed_w.end(), 0.0f); xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data()); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { for (size_t k_index = 0; k_index < k(); k_index++) { ASSERT_LE(n(), packed_n()); ASSERT_LT(m_index * n() + n_index, c_ref.size()); c_ref[m_index * n() + n_index] += a[m_index * a_stride() + k_index] * b[n_index * k() + k_index]; } c_ref[m_index * n() + n_index] += bias[n_index]; } } const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend()); const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend()); const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Prepare output parameters. xnn_f32_output_params output_params = { }; switch (variant) { case Variant::Native: output_params = xnn_init_f32_output_params(c_min, c_max); break; case Variant::Scalar: output_params = xnn_init_scalar_f32_output_params(c_min, c_max); break; } for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { c_ref[m_index * n() + n_index] = std::max(std::min(c_ref[m_index * n() + n_index], c_max), c_min); } } gemm(m(), n(), k() * sizeof(float), a.data(), a_stride() * sizeof(float), packed_w.data(), c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float), &output_params); // Validate micro-kernel outputs. for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max) << "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k(); ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min) << "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k(); ASSERT_NEAR( c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_ref[i * n() + j], std::abs(c_ref[i * n() + j]) * 1.0e-6f) << "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k(); } } } } void Test(xnn_f32_gemminc_ukernel_function gemminc, Variant variant = Variant::Native) const { ASSERT_LE(m(), mr()); ASSERT_GE(a_stride(), k()); ASSERT_GE(cm_stride(), n()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float)); std::vector b(n() * k()); std::vector bias(n()); std::vector> packed_w(packed_n() * packed_k()); // no bias_n() std::vector c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1); std::vector c_ref(m() * n()); std::vector> acc(mr() * packed_n()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f32rng)); std::generate(b.begin(), b.end(), std::ref(f32rng)); std::fill(c.begin(), c.end(), nanf("")); std::fill(c_ref.begin(), c_ref.end(), 0.0f); std::generate(acc.begin(), acc.end(), std::ref(f32rng)); std::fill(packed_w.begin(), packed_w.end(), 0.0f); xnn_pack_f32_gemminc_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), packed_w.data()); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { for (size_t k_index = 0; k_index < k(); k_index++) { ASSERT_LE(n(), packed_n()); ASSERT_LT(m_index * n() + n_index, c_ref.size()); c_ref[m_index * n() + n_index] += a[m_index * a_stride() + k_index] * b[n_index * k() + k_index]; } c_ref[m_index * n() + n_index] += acc[n_index / nr() * nr() * mr() + m_index % mr() * nr() + n_index % nr()]; } } const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend()); const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend()); const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Prepare output parameters. xnn_f32_output_params output_params = { }; switch (variant) { case Variant::Native: output_params = xnn_init_f32_output_params(c_min, c_max); break; case Variant::Scalar: output_params = xnn_init_scalar_f32_output_params(c_min, c_max); break; } for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { c_ref[m_index * n() + n_index] = std::max(std::min(c_ref[m_index * n() + n_index], c_max), c_min); } } gemminc(m(), n(), k() * sizeof(float), a.data(), a_stride() * sizeof(float), packed_w.data(), c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float), acc.data(), &output_params); // Validate micro-kernel outputs. for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max) << "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k(); ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min) << "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k(); ASSERT_NEAR( c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_ref[i * n() + j], std::abs(c_ref[i * n() + j]) * 1.0e-6f) << "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k(); } } } } void Test(xnn_f32_igemm_ukernel_function igemm, Variant variant = Variant::Native) const { ASSERT_LE(m(), mr()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float)); std::vector b(n() * ks() * k()); std::vector> packed_w(ks() * packed_k() * packed_n() + bias_n()); std::vector bias(n()); std::vector c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1); std::vector c_ref(m() * n()); std::vector junk(k() + XNN_EXTRA_BYTES / sizeof(float)); std::vector im2col(mr() * ks()); std::fill(junk.begin(), junk.end(), nanf("")); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f32rng)); std::generate(b.begin(), b.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(c.begin(), c.end(), nanf("")); std::fill(c_ref.begin(), c_ref.end(), 0.0f); std::fill(packed_w.begin(), packed_w.end(), 0.0f); xnn_pack_f32_conv_goki_w( 1, n(), ks(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data()); for (size_t ks_index = 0; ks_index < ks(); ks_index++) { for (size_t m_index = 0; m_index < mr(); m_index++) { im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset(); } } std::shuffle(im2col.begin(), im2col.end(), rng); if (zero_index() != SIZE_MAX) { for (size_t ks_index = 0; ks_index < ks(); ks_index++) { im2col[ks_index * mr() + zero_index()] = a.data(); } } for (size_t ks_index = 0; ks_index < ks(); ks_index++) { for (size_t m_index = m(); m_index < mr(); m_index++) { im2col[ks_index * mr() + m_index] = junk.data(); } } std::fill(c_ref.begin(), c_ref.end(), 0.0); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { for (size_t ks_index = 0; ks_index < ks(); ks_index++) { for (size_t k_block_start = 0; k_block_start < k(); k_block_start += kr()) { for (size_t k_block_offset = 0; k_block_offset < std::min(k() - k_block_start, kr()); k_block_offset++) { ASSERT_LT(ks_index * mr() + m_index, im2col.size()); ASSERT_LT(k_block_start + k_block_offset, k()); ASSERT_LT(k_block_start + k_block_offset, a_stride()); if (im2col[ks_index * mr() + m_index] == a.data()) { c_ref[m_index * n() + n_index] += double(im2col[ks_index * mr() + m_index][k_block_start + k_block_offset]) * double(b[(n_index * ks() + ks_index) * k() + k_block_start + k_block_offset]); } else { c_ref[m_index * n() + n_index] += double(im2col[ks_index * mr() + m_index][k_block_start + k_block_offset + a_offset()]) * double(b[(n_index * ks() + ks_index) * k() + k_block_start + k_block_offset]); } } } } c_ref[m_index * n() + n_index] += bias[n_index]; } } const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend()); const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend()); const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); for (size_t m_index = 0; m_index < m(); m_index++) { for (size_t n_index = 0; n_index < n(); n_index++) { c_ref[m_index * n() + n_index] = std::min(c_ref[m_index * n() + n_index], c_max); c_ref[m_index * n() + n_index] = std::max(c_ref[m_index * n() + n_index], c_min); } } // Prepare output parameters. xnn_f32_output_params output_params = { }; switch (variant) { case Variant::Native: output_params = xnn_init_f32_output_params(c_min, c_max); break; case Variant::Scalar: output_params = xnn_init_scalar_f32_output_params(c_min, c_max); break; } const float* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL; igemm( m(), n(), k() * sizeof(float), ks() * mr() * sizeof(void*), im2col.data(), packed_w.data(), c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float), a_offset() * sizeof(float), zero_pointer, &output_params); for (size_t i = 0; i < m(); i++) { for (size_t j = 0; j < n(); j++) { ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max) << "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks(); ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min) << "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks(); ASSERT_NEAR( c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_ref[i * n() + j], std::abs(c_ref[i * n() + j]) * 1.0e-6f) << "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j] << ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr() << " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks(); } } } } private: size_t mr_{1}; size_t nr_{1}; size_t kr_{1}; size_t sr_{1}; size_t m_{1}; size_t n_{1}; size_t k_{1}; size_t ks_{1}; size_t a_stride_{0}; size_t cm_stride_{0}; size_t cn_stride_{0}; uint8_t a_zero_point_{127}; uint8_t b_zero_point_{127}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t a_offset_{0}; size_t zero_index_{SIZE_MAX}; size_t iterations_{15}; };