// // Copyright 2002 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/translator/ParseContext.h" #include #include #include "common/mathutil.h" #include "compiler/preprocessor/SourceLocation.h" #include "compiler/translator/Declarator.h" #include "compiler/translator/ParseContext_interm.h" #include "compiler/translator/StaticType.h" #include "compiler/translator/ValidateGlobalInitializer.h" #include "compiler/translator/ValidateSwitch.h" #include "compiler/translator/glslang.h" #include "compiler/translator/tree_util/IntermNode_util.h" #include "compiler/translator/util.h" namespace sh { /////////////////////////////////////////////////////////////////////// // // Sub- vector and matrix fields // //////////////////////////////////////////////////////////////////////// namespace { const int kWebGLMaxStructNesting = 4; bool ContainsSampler(const TStructure *structType); bool ContainsSampler(const TType &type) { if (IsSampler(type.getBasicType())) { return true; } if (type.getBasicType() == EbtStruct) { return ContainsSampler(type.getStruct()); } return false; } bool ContainsSampler(const TStructure *structType) { for (const auto &field : structType->fields()) { if (ContainsSampler(*field->type())) return true; } return false; } // Get a token from an image argument to use as an error message token. const char *GetImageArgumentToken(TIntermTyped *imageNode) { ASSERT(IsImage(imageNode->getBasicType())); while (imageNode->getAsBinaryNode() && (imageNode->getAsBinaryNode()->getOp() == EOpIndexIndirect || imageNode->getAsBinaryNode()->getOp() == EOpIndexDirect)) { imageNode = imageNode->getAsBinaryNode()->getLeft(); } TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode(); if (imageSymbol) { return imageSymbol->getName().data(); } return "image"; } bool CanSetDefaultPrecisionOnType(const TPublicType &type) { if (!SupportsPrecision(type.getBasicType())) { return false; } if (type.getBasicType() == EbtUInt) { // ESSL 3.00.4 section 4.5.4 return false; } if (type.isAggregate()) { // Not allowed to set for aggregate types return false; } return true; } // Map input primitive types to input array sizes in a geometry shader. GLuint GetGeometryShaderInputArraySize(TLayoutPrimitiveType primitiveType) { switch (primitiveType) { case EptPoints: return 1u; case EptLines: return 2u; case EptTriangles: return 3u; case EptLinesAdjacency: return 4u; case EptTrianglesAdjacency: return 6u; default: UNREACHABLE(); return 0u; } } bool IsBufferOrSharedVariable(TIntermTyped *var) { if (var->isInterfaceBlock() || var->getQualifier() == EvqBuffer || var->getQualifier() == EvqShared) { return true; } return false; } } // namespace // This tracks each binding point's current default offset for inheritance of subsequent // variables using the same binding, and keeps offsets unique and non overlapping. // See GLSL ES 3.1, section 4.4.6. class TParseContext::AtomicCounterBindingState { public: AtomicCounterBindingState() : mDefaultOffset(0) {} // Inserts a new span and returns -1 if overlapping, else returns the starting offset of // newly inserted span. int insertSpan(int start, size_t length) { gl::RangeI newSpan(start, start + static_cast(length)); for (const auto &span : mSpans) { if (newSpan.intersects(span)) { return -1; } } mSpans.push_back(newSpan); mDefaultOffset = newSpan.high(); return start; } // Inserts a new span starting from the default offset. int appendSpan(size_t length) { return insertSpan(mDefaultOffset, length); } void setDefaultOffset(int offset) { mDefaultOffset = offset; } private: int mDefaultOffset; std::vector mSpans; }; TParseContext::TParseContext(TSymbolTable &symt, TExtensionBehavior &ext, sh::GLenum type, ShShaderSpec spec, ShCompileOptions options, bool checksPrecErrors, TDiagnostics *diagnostics, const ShBuiltInResources &resources, ShShaderOutput outputType) : symbolTable(symt), mDeferredNonEmptyDeclarationErrorCheck(false), mShaderType(type), mShaderSpec(spec), mCompileOptions(options), mShaderVersion(100), mTreeRoot(nullptr), mLoopNestingLevel(0), mStructNestingLevel(0), mSwitchNestingLevel(0), mCurrentFunctionType(nullptr), mFunctionReturnsValue(false), mChecksPrecisionErrors(checksPrecErrors), mFragmentPrecisionHighOnESSL1(false), mEarlyFragmentTestsSpecified(false), mDefaultUniformMatrixPacking(EmpColumnMajor), mDefaultUniformBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared), mDefaultBufferMatrixPacking(EmpColumnMajor), mDefaultBufferBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared), mDiagnostics(diagnostics), mDirectiveHandler(ext, *mDiagnostics, mShaderVersion, mShaderType, resources.WEBGL_debug_shader_precision == 1), mPreprocessor(mDiagnostics, &mDirectiveHandler, angle::pp::PreprocessorSettings(spec)), mScanner(nullptr), mMinProgramTexelOffset(resources.MinProgramTexelOffset), mMaxProgramTexelOffset(resources.MaxProgramTexelOffset), mMinProgramTextureGatherOffset(resources.MinProgramTextureGatherOffset), mMaxProgramTextureGatherOffset(resources.MaxProgramTextureGatherOffset), mComputeShaderLocalSizeDeclared(false), mComputeShaderLocalSize(-1), mNumViews(-1), mMaxNumViews(resources.MaxViewsOVR), mMaxImageUnits(resources.MaxImageUnits), mMaxCombinedTextureImageUnits(resources.MaxCombinedTextureImageUnits), mMaxUniformLocations(resources.MaxUniformLocations), mMaxUniformBufferBindings(resources.MaxUniformBufferBindings), mMaxAtomicCounterBindings(resources.MaxAtomicCounterBindings), mMaxShaderStorageBufferBindings(resources.MaxShaderStorageBufferBindings), mDeclaringFunction(false), mGeometryShaderInputPrimitiveType(EptUndefined), mGeometryShaderOutputPrimitiveType(EptUndefined), mGeometryShaderInvocations(0), mGeometryShaderMaxVertices(-1), mMaxGeometryShaderInvocations(resources.MaxGeometryShaderInvocations), mMaxGeometryShaderMaxVertices(resources.MaxGeometryOutputVertices), mFunctionBodyNewScope(false), mOutputType(outputType) {} TParseContext::~TParseContext() {} bool TParseContext::anyMultiviewExtensionAvailable() { return isExtensionEnabled(TExtension::OVR_multiview) || isExtensionEnabled(TExtension::OVR_multiview2); } bool TParseContext::parseVectorFields(const TSourceLoc &line, const ImmutableString &compString, int vecSize, TVector *fieldOffsets) { ASSERT(fieldOffsets); size_t fieldCount = compString.length(); if (fieldCount > 4u) { error(line, "illegal vector field selection", compString); return false; } fieldOffsets->resize(fieldCount); enum { exyzw, ergba, estpq } fieldSet[4]; for (unsigned int i = 0u; i < fieldOffsets->size(); ++i) { switch (compString[i]) { case 'x': (*fieldOffsets)[i] = 0; fieldSet[i] = exyzw; break; case 'r': (*fieldOffsets)[i] = 0; fieldSet[i] = ergba; break; case 's': (*fieldOffsets)[i] = 0; fieldSet[i] = estpq; break; case 'y': (*fieldOffsets)[i] = 1; fieldSet[i] = exyzw; break; case 'g': (*fieldOffsets)[i] = 1; fieldSet[i] = ergba; break; case 't': (*fieldOffsets)[i] = 1; fieldSet[i] = estpq; break; case 'z': (*fieldOffsets)[i] = 2; fieldSet[i] = exyzw; break; case 'b': (*fieldOffsets)[i] = 2; fieldSet[i] = ergba; break; case 'p': (*fieldOffsets)[i] = 2; fieldSet[i] = estpq; break; case 'w': (*fieldOffsets)[i] = 3; fieldSet[i] = exyzw; break; case 'a': (*fieldOffsets)[i] = 3; fieldSet[i] = ergba; break; case 'q': (*fieldOffsets)[i] = 3; fieldSet[i] = estpq; break; default: error(line, "illegal vector field selection", compString); return false; } } for (unsigned int i = 0u; i < fieldOffsets->size(); ++i) { if ((*fieldOffsets)[i] >= vecSize) { error(line, "vector field selection out of range", compString); return false; } if (i > 0) { if (fieldSet[i] != fieldSet[i - 1]) { error(line, "illegal - vector component fields not from the same set", compString); return false; } } } return true; } /////////////////////////////////////////////////////////////////////// // // Errors // //////////////////////////////////////////////////////////////////////// // // Used by flex/bison to output all syntax and parsing errors. // void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token) { mDiagnostics->error(loc, reason, token); } void TParseContext::error(const TSourceLoc &loc, const char *reason, const ImmutableString &token) { mDiagnostics->error(loc, reason, token.data()); } void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token) { mDiagnostics->warning(loc, reason, token); } void TParseContext::outOfRangeError(bool isError, const TSourceLoc &loc, const char *reason, const char *token) { if (isError) { error(loc, reason, token); } else { warning(loc, reason, token); } } // // Same error message for all places assignments don't work. // void TParseContext::assignError(const TSourceLoc &line, const char *op, const TType &left, const TType &right) { TInfoSinkBase reasonStream; reasonStream << "cannot convert from '" << right << "' to '" << left << "'"; error(line, reasonStream.c_str(), op); } // // Same error message for all places unary operations don't work. // void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, const TType &operand) { TInfoSinkBase reasonStream; reasonStream << "wrong operand type - no operation '" << op << "' exists that takes an operand of type " << operand << " (or there is no acceptable conversion)"; error(line, reasonStream.c_str(), op); } // // Same error message for all binary operations don't work. // void TParseContext::binaryOpError(const TSourceLoc &line, const char *op, const TType &left, const TType &right) { TInfoSinkBase reasonStream; reasonStream << "wrong operand types - no operation '" << op << "' exists that takes a left-hand operand of type '" << left << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)"; error(line, reasonStream.c_str(), op); } void TParseContext::checkPrecisionSpecified(const TSourceLoc &line, TPrecision precision, TBasicType type) { if (!mChecksPrecisionErrors) return; if (precision != EbpUndefined && !SupportsPrecision(type)) { error(line, "illegal type for precision qualifier", getBasicString(type)); } if (precision == EbpUndefined) { switch (type) { case EbtFloat: error(line, "No precision specified for (float)", ""); return; case EbtInt: case EbtUInt: UNREACHABLE(); // there's always a predeclared qualifier error(line, "No precision specified (int)", ""); return; default: if (IsOpaqueType(type)) { error(line, "No precision specified", getBasicString(type)); return; } } } } void TParseContext::markStaticReadIfSymbol(TIntermNode *node) { TIntermSwizzle *swizzleNode = node->getAsSwizzleNode(); if (swizzleNode) { markStaticReadIfSymbol(swizzleNode->getOperand()); return; } TIntermBinary *binaryNode = node->getAsBinaryNode(); if (binaryNode) { switch (binaryNode->getOp()) { case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: markStaticReadIfSymbol(binaryNode->getLeft()); return; default: return; } } TIntermSymbol *symbolNode = node->getAsSymbolNode(); if (symbolNode) { symbolTable.markStaticRead(symbolNode->variable()); } } // Both test and if necessary, spit out an error, to see if the node is really // an l-value that can be operated on this way. bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node) { TIntermSwizzle *swizzleNode = node->getAsSwizzleNode(); if (swizzleNode) { bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand()); if (ok && swizzleNode->hasDuplicateOffsets()) { error(line, " l-value of swizzle cannot have duplicate components", op); return false; } return ok; } TIntermBinary *binaryNode = node->getAsBinaryNode(); if (binaryNode) { switch (binaryNode->getOp()) { case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: if (node->getMemoryQualifier().readonly) { error(line, "can't modify a readonly variable", op); return false; } return checkCanBeLValue(line, op, binaryNode->getLeft()); default: break; } error(line, " l-value required", op); return false; } std::string message; switch (node->getQualifier()) { case EvqConst: message = "can't modify a const"; break; case EvqConstReadOnly: message = "can't modify a const"; break; case EvqAttribute: message = "can't modify an attribute"; break; case EvqFragmentIn: case EvqVertexIn: case EvqGeometryIn: case EvqFlatIn: case EvqNoPerspectiveIn: case EvqSmoothIn: case EvqCentroidIn: message = "can't modify an input"; break; case EvqUniform: message = "can't modify a uniform"; break; case EvqVaryingIn: message = "can't modify a varying"; break; case EvqFragCoord: message = "can't modify gl_FragCoord"; break; case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; case EvqHelperInvocation: message = "can't modify gl_HelperInvocation"; break; case EvqPointCoord: message = "can't modify gl_PointCoord"; break; case EvqNumWorkGroups: message = "can't modify gl_NumWorkGroups"; break; case EvqWorkGroupSize: message = "can't modify gl_WorkGroupSize"; break; case EvqWorkGroupID: message = "can't modify gl_WorkGroupID"; break; case EvqLocalInvocationID: message = "can't modify gl_LocalInvocationID"; break; case EvqGlobalInvocationID: message = "can't modify gl_GlobalInvocationID"; break; case EvqLocalInvocationIndex: message = "can't modify gl_LocalInvocationIndex"; break; case EvqViewIDOVR: message = "can't modify gl_ViewID_OVR"; break; case EvqComputeIn: message = "can't modify work group size variable"; break; case EvqPerVertexIn: message = "can't modify any member in gl_in"; break; case EvqPrimitiveIDIn: message = "can't modify gl_PrimitiveIDIn"; break; case EvqInvocationID: message = "can't modify gl_InvocationID"; break; case EvqPrimitiveID: if (mShaderType == GL_FRAGMENT_SHADER) { message = "can't modify gl_PrimitiveID in a fragment shader"; } break; case EvqLayer: if (mShaderType == GL_FRAGMENT_SHADER) { message = "can't modify gl_Layer in a fragment shader"; } break; default: // // Type that can't be written to? // if (node->getBasicType() == EbtVoid) { message = "can't modify void"; } if (IsOpaqueType(node->getBasicType())) { message = "can't modify a variable with type "; message += getBasicString(node->getBasicType()); } else if (node->getMemoryQualifier().readonly) { message = "can't modify a readonly variable"; } } ASSERT(binaryNode == nullptr && swizzleNode == nullptr); TIntermSymbol *symNode = node->getAsSymbolNode(); if (message.empty() && symNode != nullptr) { symbolTable.markStaticWrite(symNode->variable()); return true; } std::stringstream reasonStream = sh::InitializeStream(); reasonStream << "l-value required"; if (!message.empty()) { if (symNode) { // Symbol inside an expression can't be nameless. ASSERT(symNode->variable().symbolType() != SymbolType::Empty); const ImmutableString &symbol = symNode->getName(); reasonStream << " (" << message << " \"" << symbol << "\")"; } else { reasonStream << " (" << message << ")"; } } std::string reason = reasonStream.str(); error(line, reason.c_str(), op); return false; } // Both test, and if necessary spit out an error, to see if the node is really // a constant. void TParseContext::checkIsConst(TIntermTyped *node) { if (node->getQualifier() != EvqConst) { error(node->getLine(), "constant expression required", ""); } } // Both test, and if necessary spit out an error, to see if the node is really // an integer. void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token) { if (!node->isScalarInt()) { error(node->getLine(), "integer expression required", token); } } // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token) { if (!symbolTable.atGlobalLevel()) { error(line, "only allowed at global scope", token); return false; } return true; } // ESSL 3.00.5 sections 3.8 and 3.9. // If it starts "gl_" or contains two consecutive underscores, it's reserved. // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a webgl shader. bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const ImmutableString &identifier) { static const char *reservedErrMsg = "reserved built-in name"; if (identifier.beginsWith("gl_")) { error(line, reservedErrMsg, "gl_"); return false; } if (sh::IsWebGLBasedSpec(mShaderSpec)) { if (identifier.beginsWith("webgl_")) { error(line, reservedErrMsg, "webgl_"); return false; } if (identifier.beginsWith("_webgl_")) { error(line, reservedErrMsg, "_webgl_"); return false; } } if (identifier.contains("__")) { error(line, "identifiers containing two consecutive underscores (__) are reserved as " "possible future keywords", identifier); return false; } return true; } // Make sure the argument types are correct for constructing a specific type. bool TParseContext::checkConstructorArguments(const TSourceLoc &line, const TIntermSequence &arguments, const TType &type) { if (arguments.empty()) { error(line, "constructor does not have any arguments", "constructor"); return false; } for (TIntermNode *arg : arguments) { markStaticReadIfSymbol(arg); const TIntermTyped *argTyped = arg->getAsTyped(); ASSERT(argTyped != nullptr); if (type.getBasicType() != EbtStruct && IsOpaqueType(argTyped->getBasicType())) { std::string reason("cannot convert a variable with type "); reason += getBasicString(argTyped->getBasicType()); error(line, reason.c_str(), "constructor"); return false; } else if (argTyped->getMemoryQualifier().writeonly) { error(line, "cannot convert a variable with writeonly", "constructor"); return false; } if (argTyped->getBasicType() == EbtVoid) { error(line, "cannot convert a void", "constructor"); return false; } } if (type.isArray()) { // The size of an unsized constructor should already have been determined. ASSERT(!type.isUnsizedArray()); if (static_cast(type.getOutermostArraySize()) != arguments.size()) { error(line, "array constructor needs one argument per array element", "constructor"); return false; } // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of // the array. for (TIntermNode *const &argNode : arguments) { const TType &argType = argNode->getAsTyped()->getType(); if (mShaderVersion < 310 && argType.isArray()) { error(line, "constructing from a non-dereferenced array", "constructor"); return false; } if (!argType.isElementTypeOf(type)) { error(line, "Array constructor argument has an incorrect type", "constructor"); return false; } } } else if (type.getBasicType() == EbtStruct) { const TFieldList &fields = type.getStruct()->fields(); if (fields.size() != arguments.size()) { error(line, "Number of constructor parameters does not match the number of structure fields", "constructor"); return false; } for (size_t i = 0; i < fields.size(); i++) { if (i >= arguments.size() || arguments[i]->getAsTyped()->getType() != *fields[i]->type()) { error(line, "Structure constructor arguments do not match structure fields", "constructor"); return false; } } } else { // We're constructing a scalar, vector, or matrix. // Note: It's okay to have too many components available, but not okay to have unused // arguments. 'full' will go to true when enough args have been seen. If we loop again, // there is an extra argument, so 'overFull' will become true. size_t size = 0; bool full = false; bool overFull = false; bool matrixArg = false; for (TIntermNode *arg : arguments) { const TIntermTyped *argTyped = arg->getAsTyped(); ASSERT(argTyped != nullptr); if (argTyped->getBasicType() == EbtStruct) { error(line, "a struct cannot be used as a constructor argument for this type", "constructor"); return false; } if (argTyped->getType().isArray()) { error(line, "constructing from a non-dereferenced array", "constructor"); return false; } if (argTyped->getType().isMatrix()) { matrixArg = true; } size += argTyped->getType().getObjectSize(); if (full) { overFull = true; } if (size >= type.getObjectSize()) { full = true; } } if (type.isMatrix() && matrixArg) { if (arguments.size() != 1) { error(line, "constructing matrix from matrix can only take one argument", "constructor"); return false; } } else { if (size != 1 && size < type.getObjectSize()) { error(line, "not enough data provided for construction", "constructor"); return false; } if (overFull) { error(line, "too many arguments", "constructor"); return false; } } } return true; } // This function checks to see if a void variable has been declared and raise an error message for // such a case // // returns true in case of an error // bool TParseContext::checkIsNonVoid(const TSourceLoc &line, const ImmutableString &identifier, const TBasicType &type) { if (type == EbtVoid) { error(line, "illegal use of type 'void'", identifier); return false; } return true; } // This function checks to see if the node (for the expression) contains a scalar boolean expression // or not. bool TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type) { if (type->getBasicType() != EbtBool || !type->isScalar()) { error(line, "boolean expression expected", ""); return false; } return true; } // This function checks to see if the node (for the expression) contains a scalar boolean expression // or not. void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType) { if (pType.getBasicType() != EbtBool || pType.isAggregate()) { error(line, "boolean expression expected", ""); } } bool TParseContext::checkIsNotOpaqueType(const TSourceLoc &line, const TTypeSpecifierNonArray &pType, const char *reason) { if (pType.type == EbtStruct) { if (ContainsSampler(pType.userDef)) { std::stringstream reasonStream = sh::InitializeStream(); reasonStream << reason << " (structure contains a sampler)"; std::string reasonStr = reasonStream.str(); error(line, reasonStr.c_str(), getBasicString(pType.type)); return false; } // only samplers need to be checked from structs, since other opaque types can't be struct // members. return true; } else if (IsOpaqueType(pType.type)) { error(line, reason, getBasicString(pType.type)); return false; } return true; } void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line, const TPublicType &pType) { if (pType.layoutQualifier.location != -1) { error(line, "location must only be specified for a single input or output variable", "location"); } } void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier) { if (layoutQualifier.location != -1) { const char *errorMsg = "invalid layout qualifier: only valid on program inputs and outputs"; if (mShaderVersion >= 310) { errorMsg = "invalid layout qualifier: only valid on shader inputs, outputs, and uniforms"; } error(location, errorMsg, "location"); } } void TParseContext::checkStd430IsForShaderStorageBlock(const TSourceLoc &location, const TLayoutBlockStorage &blockStorage, const TQualifier &qualifier) { if (blockStorage == EbsStd430 && qualifier != EvqBuffer) { error(location, "The std430 layout is supported only for shader storage blocks.", "std430"); } } void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line, TQualifier qualifier, const TType &type) { ASSERT(qualifier == EvqOut || qualifier == EvqInOut); if (IsOpaqueType(type.getBasicType())) { error(line, "opaque types cannot be output parameters", type.getBasicString()); } } // Do size checking for an array type's size. unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr) { TIntermConstantUnion *constant = expr->getAsConstantUnion(); // ANGLE should be able to fold any EvqConst expressions resulting in an integer - but to be // safe against corner cases we still check for constant folding. Some interpretations of the // spec have allowed constant expressions with side effects - like array length() method on a // non-constant array. if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt()) { error(line, "array size must be a constant integer expression", ""); return 1u; } unsigned int size = 0u; if (constant->getBasicType() == EbtUInt) { size = constant->getUConst(0); } else { int signedSize = constant->getIConst(0); if (signedSize < 0) { error(line, "array size must be non-negative", ""); return 1u; } size = static_cast(signedSize); } if (size == 0u) { error(line, "array size must be greater than zero", ""); return 1u; } if (IsOutputHLSL(getOutputType())) { // The size of arrays is restricted here to prevent issues further down the // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to // 4096 registers so this should be reasonable even for aggressively optimizable code. const unsigned int sizeLimit = 65536; if (size > sizeLimit) { error(line, "array size too large", ""); return 1u; } } return size; } // See if this qualifier can be an array. bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line, const TPublicType &elementQualifier) { if ((elementQualifier.qualifier == EvqAttribute) || (elementQualifier.qualifier == EvqVertexIn) || (elementQualifier.qualifier == EvqConst && mShaderVersion < 300)) { error(line, "cannot declare arrays of this qualifier", TType(elementQualifier).getQualifierString()); return false; } return true; } // See if this element type can be formed into an array. bool TParseContext::checkArrayElementIsNotArray(const TSourceLoc &line, const TPublicType &elementType) { if (mShaderVersion < 310 && elementType.isArray()) { TInfoSinkBase typeString; typeString << TType(elementType); error(line, "cannot declare arrays of arrays", typeString.c_str()); return false; } return true; } // Check for array-of-arrays being used as non-allowed shader inputs/outputs. bool TParseContext::checkArrayOfArraysInOut(const TSourceLoc &line, const TPublicType &elementType, const TType &arrayType) { if (arrayType.isArrayOfArrays()) { if (elementType.qualifier == EvqVertexOut) { error(line, "vertex shader output cannot be an array of arrays", TType(elementType).getQualifierString()); return false; } if (elementType.qualifier == EvqFragmentIn) { error(line, "fragment shader input cannot be an array of arrays", TType(elementType).getQualifierString()); return false; } if (elementType.qualifier == EvqFragmentOut) { error(line, "fragment shader output cannot be an array of arrays", TType(elementType).getQualifierString()); return false; } } return true; } // Check if this qualified element type can be formed into an array. This is only called when array // brackets are associated with an identifier in a declaration, like this: // float a[2]; // Similar checks are done in addFullySpecifiedType for array declarations where the array brackets // are associated with the type, like this: // float[2] a; bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation, const TPublicType &elementType) { if (!checkArrayElementIsNotArray(indexLocation, elementType)) { return false; } // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section // 4.3.4). // Geometry shader requires each user-defined input be declared as arrays or inside input // blocks declared as arrays (GL_EXT_geometry_shader section 11.1gs.4.3). For the purposes of // interface matching, such variables and blocks are treated as though they were not declared // as arrays (GL_EXT_geometry_shader section 7.4.1). if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct && sh::IsVarying(elementType.qualifier) && !IsGeometryShaderInput(mShaderType, elementType.qualifier)) { TInfoSinkBase typeString; typeString << TType(elementType); error(indexLocation, "cannot declare arrays of structs of this qualifier", typeString.c_str()); return false; } return checkIsValidQualifierForArray(indexLocation, elementType); } // Enforce non-initializer type/qualifier rules. void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line, const ImmutableString &identifier, TType *type) { ASSERT(type != nullptr); if (type->getQualifier() == EvqConst) { // Make the qualifier make sense. type->setQualifier(EvqTemporary); // Generate informative error messages for ESSL1. // In ESSL3 arrays and structures containing arrays can be constant. if (mShaderVersion < 300 && type->isStructureContainingArrays()) { error(line, "structures containing arrays may not be declared constant since they cannot be " "initialized", identifier); } else { error(line, "variables with qualifier 'const' must be initialized", identifier); } } // This will make the type sized if it isn't sized yet. checkIsNotUnsizedArray(line, "implicitly sized arrays need to be initialized", identifier, type); } // Do some simple checks that are shared between all variable declarations, // and update the symbol table. // // Returns true if declaring the variable succeeded. // bool TParseContext::declareVariable(const TSourceLoc &line, const ImmutableString &identifier, const TType *type, TVariable **variable) { ASSERT((*variable) == nullptr); (*variable) = new TVariable(&symbolTable, identifier, type, SymbolType::UserDefined); ASSERT(type->getLayoutQualifier().index == -1 || (isExtensionEnabled(TExtension::EXT_blend_func_extended) && mShaderType == GL_FRAGMENT_SHADER && mShaderVersion >= 300)); if (type->getQualifier() == EvqFragmentOut) { if (type->getLayoutQualifier().index != -1 && type->getLayoutQualifier().location == -1) { error(line, "If index layout qualifier is specified for a fragment output, location must " "also be specified.", "index"); return false; } } else { checkIndexIsNotSpecified(line, type->getLayoutQualifier().index); } checkBindingIsValid(line, *type); bool needsReservedCheck = true; // gl_LastFragData may be redeclared with a new precision qualifier if (type->isArray() && identifier.beginsWith("gl_LastFragData")) { const TVariable *maxDrawBuffers = static_cast( symbolTable.findBuiltIn(ImmutableString("gl_MaxDrawBuffers"), mShaderVersion)); if (type->isArrayOfArrays()) { error(line, "redeclaration of gl_LastFragData as an array of arrays", identifier); return false; } else if (static_cast(type->getOutermostArraySize()) == maxDrawBuffers->getConstPointer()->getIConst()) { if (const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) { needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->extension()); } } else { error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", identifier); return false; } } if (needsReservedCheck && !checkIsNotReserved(line, identifier)) return false; if (!symbolTable.declare(*variable)) { error(line, "redefinition", identifier); return false; } if (!checkIsNonVoid(line, identifier, type->getBasicType())) return false; return true; } void TParseContext::checkIsParameterQualifierValid( const TSourceLoc &line, const TTypeQualifierBuilder &typeQualifierBuilder, TType *type) { // The only parameter qualifiers a parameter can have are in, out, inout or const. TTypeQualifier typeQualifier = typeQualifierBuilder.getParameterTypeQualifier(mDiagnostics); if (typeQualifier.qualifier == EvqOut || typeQualifier.qualifier == EvqInOut) { checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type); } if (!IsImage(type->getBasicType())) { checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, line); } else { type->setMemoryQualifier(typeQualifier.memoryQualifier); } type->setQualifier(typeQualifier.qualifier); if (typeQualifier.precision != EbpUndefined) { type->setPrecision(typeQualifier.precision); } } template bool TParseContext::checkCanUseOneOfExtensions(const TSourceLoc &line, const std::array &extensions) { ASSERT(!extensions.empty()); const TExtensionBehavior &extBehavior = extensionBehavior(); bool canUseWithWarning = false; bool canUseWithoutWarning = false; const char *errorMsgString = ""; TExtension errorMsgExtension = TExtension::UNDEFINED; for (TExtension extension : extensions) { auto extIter = extBehavior.find(extension); if (canUseWithWarning) { // We already have an extension that we can use, but with a warning. // See if we can use the alternative extension without a warning. if (extIter == extBehavior.end()) { continue; } if (extIter->second == EBhEnable || extIter->second == EBhRequire) { canUseWithoutWarning = true; break; } continue; } if (extIter == extBehavior.end()) { errorMsgString = "extension is not supported"; errorMsgExtension = extension; } else if (extIter->second == EBhUndefined || extIter->second == EBhDisable) { errorMsgString = "extension is disabled"; errorMsgExtension = extension; } else if (extIter->second == EBhWarn) { errorMsgExtension = extension; canUseWithWarning = true; } else { ASSERT(extIter->second == EBhEnable || extIter->second == EBhRequire); canUseWithoutWarning = true; break; } } if (canUseWithoutWarning) { return true; } if (canUseWithWarning) { warning(line, "extension is being used", GetExtensionNameString(errorMsgExtension)); return true; } error(line, errorMsgString, GetExtensionNameString(errorMsgExtension)); return false; } template bool TParseContext::checkCanUseOneOfExtensions( const TSourceLoc &line, const std::array &extensions); template bool TParseContext::checkCanUseOneOfExtensions( const TSourceLoc &line, const std::array &extensions); template bool TParseContext::checkCanUseOneOfExtensions( const TSourceLoc &line, const std::array &extensions); bool TParseContext::checkCanUseExtension(const TSourceLoc &line, TExtension extension) { ASSERT(extension != TExtension::UNDEFINED); return checkCanUseOneOfExtensions(line, std::array{{extension}}); } // ESSL 3.00.6 section 4.8 Empty Declarations: "The combinations of qualifiers that cause // compile-time or link-time errors are the same whether or not the declaration is empty". // This function implements all the checks that are done on qualifiers regardless of if the // declaration is empty. void TParseContext::declarationQualifierErrorCheck(const sh::TQualifier qualifier, const sh::TLayoutQualifier &layoutQualifier, const TSourceLoc &location) { if (qualifier == EvqShared && !layoutQualifier.isEmpty()) { error(location, "Shared memory declarations cannot have layout specified", "layout"); } if (layoutQualifier.matrixPacking != EmpUnspecified) { error(location, "layout qualifier only valid for interface blocks", getMatrixPackingString(layoutQualifier.matrixPacking)); return; } if (layoutQualifier.blockStorage != EbsUnspecified) { error(location, "layout qualifier only valid for interface blocks", getBlockStorageString(layoutQualifier.blockStorage)); return; } if (qualifier == EvqFragmentOut) { if (layoutQualifier.location != -1 && layoutQualifier.yuv == true) { error(location, "invalid layout qualifier combination", "yuv"); return; } } else { checkYuvIsNotSpecified(location, layoutQualifier.yuv); } if (qualifier != EvqFragmentIn) { checkEarlyFragmentTestsIsNotSpecified(location, layoutQualifier.earlyFragmentTests); } // If multiview extension is enabled, "in" qualifier is allowed in the vertex shader in previous // parsing steps. So it needs to be checked here. if (anyMultiviewExtensionAvailable() && mShaderVersion < 300 && qualifier == EvqVertexIn) { error(location, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); } bool canHaveLocation = qualifier == EvqVertexIn || qualifier == EvqFragmentOut; if (mShaderVersion >= 310) { canHaveLocation = canHaveLocation || qualifier == EvqUniform || IsVarying(qualifier); // We're not checking whether the uniform location is in range here since that depends on // the type of the variable. // The type can only be fully determined for non-empty declarations. } if (!canHaveLocation) { checkLocationIsNotSpecified(location, layoutQualifier); } } void TParseContext::atomicCounterQualifierErrorCheck(const TPublicType &publicType, const TSourceLoc &location) { if (publicType.precision != EbpHigh) { error(location, "Can only be highp", "atomic counter"); } // dEQP enforces compile error if location is specified. See uniform_location.test. if (publicType.layoutQualifier.location != -1) { error(location, "location must not be set for atomic_uint", "layout"); } if (publicType.layoutQualifier.binding == -1) { error(location, "no binding specified", "atomic counter"); } } void TParseContext::emptyDeclarationErrorCheck(const TType &type, const TSourceLoc &location) { if (type.isUnsizedArray()) { // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an // error. It is assumed that this applies to empty declarations as well. error(location, "empty array declaration needs to specify a size", ""); } if (type.getQualifier() != EvqFragmentOut) { checkIndexIsNotSpecified(location, type.getLayoutQualifier().index); } } // These checks are done for all declarations that are non-empty. They're done for non-empty // declarations starting a declarator list, and declarators that follow an empty declaration. void TParseContext::nonEmptyDeclarationErrorCheck(const TPublicType &publicType, const TSourceLoc &identifierLocation) { switch (publicType.qualifier) { case EvqVaryingIn: case EvqVaryingOut: case EvqAttribute: case EvqVertexIn: case EvqFragmentOut: case EvqComputeIn: if (publicType.getBasicType() == EbtStruct) { error(identifierLocation, "cannot be used with a structure", getQualifierString(publicType.qualifier)); return; } break; case EvqBuffer: if (publicType.getBasicType() != EbtInterfaceBlock) { error(identifierLocation, "cannot declare buffer variables at global scope(outside a block)", getQualifierString(publicType.qualifier)); return; } break; default: break; } std::string reason(getBasicString(publicType.getBasicType())); reason += "s must be uniform"; if (publicType.qualifier != EvqUniform && !checkIsNotOpaqueType(identifierLocation, publicType.typeSpecifierNonArray, reason.c_str())) { return; } if ((publicType.qualifier != EvqTemporary && publicType.qualifier != EvqGlobal && publicType.qualifier != EvqConst) && publicType.getBasicType() == EbtYuvCscStandardEXT) { error(identifierLocation, "cannot be used with a yuvCscStandardEXT", getQualifierString(publicType.qualifier)); return; } if (mShaderVersion >= 310 && publicType.qualifier == EvqUniform) { // Valid uniform declarations can't be unsized arrays since uniforms can't be initialized. // But invalid shaders may still reach here with an unsized array declaration. TType type(publicType); if (!type.isUnsizedArray()) { checkUniformLocationInRange(identifierLocation, type.getLocationCount(), publicType.layoutQualifier); } } // check for layout qualifier issues const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; if (IsImage(publicType.getBasicType())) { switch (layoutQualifier.imageInternalFormat) { case EiifRGBA32F: case EiifRGBA16F: case EiifR32F: case EiifRGBA8: case EiifRGBA8_SNORM: if (!IsFloatImage(publicType.getBasicType())) { error(identifierLocation, "internal image format requires a floating image type", getBasicString(publicType.getBasicType())); return; } break; case EiifRGBA32I: case EiifRGBA16I: case EiifRGBA8I: case EiifR32I: if (!IsIntegerImage(publicType.getBasicType())) { error(identifierLocation, "internal image format requires an integer image type", getBasicString(publicType.getBasicType())); return; } break; case EiifRGBA32UI: case EiifRGBA16UI: case EiifRGBA8UI: case EiifR32UI: if (!IsUnsignedImage(publicType.getBasicType())) { error(identifierLocation, "internal image format requires an unsigned image type", getBasicString(publicType.getBasicType())); return; } break; case EiifUnspecified: error(identifierLocation, "layout qualifier", "No image internal format specified"); return; default: error(identifierLocation, "layout qualifier", "unrecognized token"); return; } // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers switch (layoutQualifier.imageInternalFormat) { case EiifR32F: case EiifR32I: case EiifR32UI: break; default: if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly) { error(identifierLocation, "layout qualifier", "Except for images with the r32f, r32i and r32ui format qualifiers, " "image variables must be qualified readonly and/or writeonly"); return; } break; } } else { checkInternalFormatIsNotSpecified(identifierLocation, layoutQualifier.imageInternalFormat); checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation); } if (IsAtomicCounter(publicType.getBasicType())) { atomicCounterQualifierErrorCheck(publicType, identifierLocation); } else { checkOffsetIsNotSpecified(identifierLocation, layoutQualifier.offset); } } void TParseContext::checkBindingIsValid(const TSourceLoc &identifierLocation, const TType &type) { TLayoutQualifier layoutQualifier = type.getLayoutQualifier(); // Note that the ESSL 3.10 section 4.4.5 is not particularly clear on how the binding qualifier // on arrays of arrays should be handled. We interpret the spec so that the binding value is // incremented for each element of the innermost nested arrays. This is in line with how arrays // of arrays of blocks are specified to behave in GLSL 4.50 and a conservative interpretation // when it comes to which shaders are accepted by the compiler. int arrayTotalElementCount = type.getArraySizeProduct(); if (IsImage(type.getBasicType())) { checkImageBindingIsValid(identifierLocation, layoutQualifier.binding, arrayTotalElementCount); } else if (IsSampler(type.getBasicType())) { checkSamplerBindingIsValid(identifierLocation, layoutQualifier.binding, arrayTotalElementCount); } else if (IsAtomicCounter(type.getBasicType())) { checkAtomicCounterBindingIsValid(identifierLocation, layoutQualifier.binding); } else { ASSERT(!IsOpaqueType(type.getBasicType())); checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding); } } void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location, const ImmutableString &layoutQualifierName, int versionRequired) { if (mShaderVersion < versionRequired) { error(location, "invalid layout qualifier: not supported", layoutQualifierName); } } bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier) { const sh::WorkGroupSize &localSize = layoutQualifier.localSize; for (size_t i = 0u; i < localSize.size(); ++i) { if (localSize[i] != -1) { error(location, "invalid layout qualifier: only valid when used with 'in' in a compute shader " "global layout declaration", getWorkGroupSizeString(i)); return false; } } return true; } void TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location, TLayoutImageInternalFormat internalFormat) { if (internalFormat != EiifUnspecified) { error(location, "invalid layout qualifier: only valid when used with images", getImageInternalFormatString(internalFormat)); } } void TParseContext::checkIndexIsNotSpecified(const TSourceLoc &location, int index) { if (index != -1) { error(location, "invalid layout qualifier: only valid when used with a fragment shader output in " "ESSL version >= 3.00 and EXT_blend_func_extended is enabled", "index"); } } void TParseContext::checkBindingIsNotSpecified(const TSourceLoc &location, int binding) { if (binding != -1) { error(location, "invalid layout qualifier: only valid when used with opaque types or blocks", "binding"); } } void TParseContext::checkOffsetIsNotSpecified(const TSourceLoc &location, int offset) { if (offset != -1) { error(location, "invalid layout qualifier: only valid when used with atomic counters", "offset"); } } void TParseContext::checkImageBindingIsValid(const TSourceLoc &location, int binding, int arrayTotalElementCount) { // Expects arraySize to be 1 when setting binding for only a single variable. if (binding >= 0 && binding + arrayTotalElementCount > mMaxImageUnits) { error(location, "image binding greater than gl_MaxImageUnits", "binding"); } } void TParseContext::checkSamplerBindingIsValid(const TSourceLoc &location, int binding, int arrayTotalElementCount) { // Expects arraySize to be 1 when setting binding for only a single variable. if (binding >= 0 && binding + arrayTotalElementCount > mMaxCombinedTextureImageUnits) { error(location, "sampler binding greater than maximum texture units", "binding"); } } void TParseContext::checkBlockBindingIsValid(const TSourceLoc &location, const TQualifier &qualifier, int binding, int arraySize) { int size = (arraySize == 0 ? 1 : arraySize); if (qualifier == EvqUniform) { if (binding + size > mMaxUniformBufferBindings) { error(location, "uniform block binding greater than MAX_UNIFORM_BUFFER_BINDINGS", "binding"); } } else if (qualifier == EvqBuffer) { if (binding + size > mMaxShaderStorageBufferBindings) { error(location, "shader storage block binding greater than MAX_SHADER_STORAGE_BUFFER_BINDINGS", "binding"); } } } void TParseContext::checkAtomicCounterBindingIsValid(const TSourceLoc &location, int binding) { if (binding >= mMaxAtomicCounterBindings) { error(location, "atomic counter binding greater than gl_MaxAtomicCounterBindings", "binding"); } } void TParseContext::checkUniformLocationInRange(const TSourceLoc &location, int objectLocationCount, const TLayoutQualifier &layoutQualifier) { int loc = layoutQualifier.location; if (loc >= 0 && loc + objectLocationCount > mMaxUniformLocations) { error(location, "Uniform location out of range", "location"); } } void TParseContext::checkYuvIsNotSpecified(const TSourceLoc &location, bool yuv) { if (yuv != false) { error(location, "invalid layout qualifier: only valid on program outputs", "yuv"); } } void TParseContext::checkEarlyFragmentTestsIsNotSpecified(const TSourceLoc &location, bool earlyFragmentTests) { if (earlyFragmentTests != false) { error(location, "invalid layout qualifier: only valid when used with 'in' in a fragment shader", "early_fragment_tests"); } } void TParseContext::functionCallRValueLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *fnCall) { for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) { TQualifier qual = fnCandidate->getParam(i)->getType().getQualifier(); TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped(); bool argumentIsRead = (IsQualifierUnspecified(qual) || qual == EvqIn || qual == EvqInOut || qual == EvqConstReadOnly); if (argumentIsRead) { markStaticReadIfSymbol(argument); if (!IsImage(argument->getBasicType())) { if (argument->getMemoryQualifier().writeonly) { error(argument->getLine(), "Writeonly value cannot be passed for 'in' or 'inout' parameters.", fnCall->functionName()); return; } } } if (qual == EvqOut || qual == EvqInOut) { if (!checkCanBeLValue(argument->getLine(), "assign", argument)) { error(argument->getLine(), "Constant value cannot be passed for 'out' or 'inout' parameters.", fnCall->functionName()); return; } } } } void TParseContext::checkInvariantVariableQualifier(bool invariant, const TQualifier qualifier, const TSourceLoc &invariantLocation) { if (!invariant) return; if (mShaderVersion < 300) { // input variables in the fragment shader can be also qualified as invariant if (!sh::CanBeInvariantESSL1(qualifier)) { error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); } } else { if (!sh::CanBeInvariantESSL3OrGreater(qualifier)) { error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); } } } bool TParseContext::isExtensionEnabled(TExtension extension) const { return IsExtensionEnabled(extensionBehavior(), extension); } void TParseContext::handleExtensionDirective(const TSourceLoc &loc, const char *extName, const char *behavior) { angle::pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; mDirectiveHandler.handleExtension(srcLoc, extName, behavior); } void TParseContext::handlePragmaDirective(const TSourceLoc &loc, const char *name, const char *value, bool stdgl) { angle::pp::SourceLocation srcLoc; srcLoc.file = loc.first_file; srcLoc.line = loc.first_line; mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl); } sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const { sh::WorkGroupSize result(-1); for (size_t i = 0u; i < result.size(); ++i) { if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1) { result[i] = 1; } else { result[i] = mComputeShaderLocalSize[i]; } } return result; } TIntermConstantUnion *TParseContext::addScalarLiteral(const TConstantUnion *constantUnion, const TSourceLoc &line) { TIntermConstantUnion *node = new TIntermConstantUnion( constantUnion, TType(constantUnion->getType(), EbpUndefined, EvqConst)); node->setLine(line); return node; } ///////////////////////////////////////////////////////////////////////////////// // // Non-Errors. // ///////////////////////////////////////////////////////////////////////////////// const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, const ImmutableString &name, const TSymbol *symbol) { if (!symbol) { error(location, "undeclared identifier", name); return nullptr; } if (!symbol->isVariable()) { error(location, "variable expected", name); return nullptr; } const TVariable *variable = static_cast(symbol); if (variable->extension() != TExtension::UNDEFINED) { checkCanUseExtension(location, variable->extension()); } // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared && variable->getType().getQualifier() == EvqWorkGroupSize) { error(location, "It is an error to use gl_WorkGroupSize before declaring the local group size", "gl_WorkGroupSize"); } return variable; } TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location, const ImmutableString &name, const TSymbol *symbol) { const TVariable *variable = getNamedVariable(location, name, symbol); if (!variable) { TIntermTyped *node = CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); node->setLine(location); return node; } const TType &variableType = variable->getType(); TIntermTyped *node = nullptr; if (variable->getConstPointer() && variableType.canReplaceWithConstantUnion()) { const TConstantUnion *constArray = variable->getConstPointer(); node = new TIntermConstantUnion(constArray, variableType); } else if (variableType.getQualifier() == EvqWorkGroupSize && mComputeShaderLocalSizeDeclared) { // gl_WorkGroupSize can be used to size arrays according to the ESSL 3.10.4 spec, so it // needs to be added to the AST as a constant and not as a symbol. sh::WorkGroupSize workGroupSize = getComputeShaderLocalSize(); TConstantUnion *constArray = new TConstantUnion[3]; for (size_t i = 0; i < 3; ++i) { constArray[i].setUConst(static_cast(workGroupSize[i])); } ASSERT(variableType.getBasicType() == EbtUInt); ASSERT(variableType.getObjectSize() == 3); TType type(variableType); type.setQualifier(EvqConst); node = new TIntermConstantUnion(constArray, type); } else if ((mGeometryShaderInputPrimitiveType != EptUndefined) && (variableType.getQualifier() == EvqPerVertexIn)) { ASSERT(symbolTable.getGlInVariableWithArraySize() != nullptr); node = new TIntermSymbol(symbolTable.getGlInVariableWithArraySize()); } else { node = new TIntermSymbol(variable); } ASSERT(node != nullptr); node->setLine(location); return node; } // Initializers show up in several places in the grammar. Have one set of // code to handle them here. // // Returns true on success. bool TParseContext::executeInitializer(const TSourceLoc &line, const ImmutableString &identifier, TType *type, TIntermTyped *initializer, TIntermBinary **initNode) { ASSERT(initNode != nullptr); ASSERT(*initNode == nullptr); if (type->isUnsizedArray()) { // In case initializer is not an array or type has more dimensions than initializer, this // will default to setting array sizes to 1. We have not checked yet whether the initializer // actually is an array or not. Having a non-array initializer for an unsized array will // result in an error later, so we don't generate an error message here. type->sizeUnsizedArrays(initializer->getType().getArraySizes()); } const TQualifier qualifier = type->getQualifier(); bool constError = false; if (qualifier == EvqConst) { if (EvqConst != initializer->getType().getQualifier()) { TInfoSinkBase reasonStream; reasonStream << "assigning non-constant to '" << *type << "'"; error(line, reasonStream.c_str(), "="); // We're still going to declare the variable to avoid extra error messages. type->setQualifier(EvqTemporary); constError = true; } } TVariable *variable = nullptr; if (!declareVariable(line, identifier, type, &variable)) { return false; } if (constError) { return false; } bool nonConstGlobalInitializers = IsExtensionEnabled(mDirectiveHandler.extensionBehavior(), TExtension::EXT_shader_non_constant_global_initializers); bool globalInitWarning = false; if (symbolTable.atGlobalLevel() && !ValidateGlobalInitializer(initializer, mShaderVersion, sh::IsWebGLBasedSpec(mShaderSpec), nonConstGlobalInitializers, &globalInitWarning)) { // Error message does not completely match behavior with ESSL 1.00, but // we want to steer developers towards only using constant expressions. error(line, "global variable initializers must be constant expressions", "="); return false; } if (globalInitWarning) { warning( line, "global variable initializers should be constant expressions " "(uniforms and globals are allowed in global initializers for legacy compatibility)", "="); } // identifier must be of type constant, a global, or a temporary if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) { error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString()); return false; } TIntermSymbol *intermSymbol = new TIntermSymbol(variable); intermSymbol->setLine(line); if (!binaryOpCommonCheck(EOpInitialize, intermSymbol, initializer, line)) { assignError(line, "=", variable->getType(), initializer->getType()); return false; } if (qualifier == EvqConst) { // Save the constant folded value to the variable if possible. const TConstantUnion *constArray = initializer->getConstantValue(); if (constArray) { variable->shareConstPointer(constArray); if (initializer->getType().canReplaceWithConstantUnion()) { ASSERT(*initNode == nullptr); return true; } } } *initNode = new TIntermBinary(EOpInitialize, intermSymbol, initializer); markStaticReadIfSymbol(initializer); (*initNode)->setLine(line); return true; } TIntermNode *TParseContext::addConditionInitializer(const TPublicType &pType, const ImmutableString &identifier, TIntermTyped *initializer, const TSourceLoc &loc) { checkIsScalarBool(loc, pType); TIntermBinary *initNode = nullptr; TType *type = new TType(pType); if (executeInitializer(loc, identifier, type, initializer, &initNode)) { // The initializer is valid. The init condition needs to have a node - either the // initializer node, or a constant node in case the initialized variable is const and won't // be recorded in the AST. if (initNode == nullptr) { return initializer; } else { TIntermDeclaration *declaration = new TIntermDeclaration(); declaration->appendDeclarator(initNode); return declaration; } } return nullptr; } TIntermNode *TParseContext::addLoop(TLoopType type, TIntermNode *init, TIntermNode *cond, TIntermTyped *expr, TIntermNode *body, const TSourceLoc &line) { TIntermNode *node = nullptr; TIntermTyped *typedCond = nullptr; if (cond) { markStaticReadIfSymbol(cond); typedCond = cond->getAsTyped(); } if (expr) { markStaticReadIfSymbol(expr); } // In case the loop body was not parsed as a block and contains a statement that simply refers // to a variable, we need to mark it as statically used. if (body) { markStaticReadIfSymbol(body); } if (cond == nullptr || typedCond) { if (type == ELoopDoWhile) { checkIsScalarBool(line, typedCond); } // In the case of other loops, it was checked before that the condition is a scalar boolean. ASSERT(mDiagnostics->numErrors() > 0 || typedCond == nullptr || (typedCond->getBasicType() == EbtBool && !typedCond->isArray() && !typedCond->isVector())); node = new TIntermLoop(type, init, typedCond, expr, EnsureBlock(body)); node->setLine(line); return node; } ASSERT(type != ELoopDoWhile); TIntermDeclaration *declaration = cond->getAsDeclarationNode(); ASSERT(declaration); TIntermBinary *declarator = declaration->getSequence()->front()->getAsBinaryNode(); ASSERT(declarator->getLeft()->getAsSymbolNode()); // The condition is a declaration. In the AST representation we don't support declarations as // loop conditions. Wrap the loop to a block that declares the condition variable and contains // the loop. TIntermBlock *block = new TIntermBlock(); TIntermDeclaration *declareCondition = new TIntermDeclaration(); declareCondition->appendDeclarator(declarator->getLeft()->deepCopy()); block->appendStatement(declareCondition); TIntermBinary *conditionInit = new TIntermBinary(EOpAssign, declarator->getLeft()->deepCopy(), declarator->getRight()->deepCopy()); TIntermLoop *loop = new TIntermLoop(type, init, conditionInit, expr, EnsureBlock(body)); block->appendStatement(loop); loop->setLine(line); block->setLine(line); return block; } TIntermNode *TParseContext::addIfElse(TIntermTyped *cond, TIntermNodePair code, const TSourceLoc &loc) { bool isScalarBool = checkIsScalarBool(loc, cond); // In case the conditional statements were not parsed as blocks and contain a statement that // simply refers to a variable, we need to mark them as statically used. if (code.node1) { markStaticReadIfSymbol(code.node1); } if (code.node2) { markStaticReadIfSymbol(code.node2); } // For compile time constant conditions, prune the code now. if (isScalarBool && cond->getAsConstantUnion()) { if (cond->getAsConstantUnion()->getBConst(0) == true) { return EnsureBlock(code.node1); } else { return EnsureBlock(code.node2); } } TIntermIfElse *node = new TIntermIfElse(cond, EnsureBlock(code.node1), EnsureBlock(code.node2)); markStaticReadIfSymbol(cond); node->setLine(loc); return node; } void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier) { checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision, typeSpecifier->getBasicType()); if (mShaderVersion < 300 && typeSpecifier->isArray()) { error(typeSpecifier->getLine(), "not supported", "first-class array"); typeSpecifier->clearArrayness(); } } TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder, const TPublicType &typeSpecifier) { TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); TPublicType returnType = typeSpecifier; returnType.qualifier = typeQualifier.qualifier; returnType.invariant = typeQualifier.invariant; returnType.precise = typeQualifier.precise; returnType.layoutQualifier = typeQualifier.layoutQualifier; returnType.memoryQualifier = typeQualifier.memoryQualifier; returnType.precision = typeSpecifier.precision; if (typeQualifier.precision != EbpUndefined) { returnType.precision = typeQualifier.precision; } checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision, typeSpecifier.getBasicType()); checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier, typeSpecifier.getLine()); checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier); checkEarlyFragmentTestsIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier.earlyFragmentTests); if (mShaderVersion < 300) { if (typeSpecifier.isArray()) { error(typeSpecifier.getLine(), "not supported", "first-class array"); returnType.clearArrayness(); } if (returnType.qualifier == EvqAttribute && (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) { error(typeSpecifier.getLine(), "cannot be bool or int", getQualifierString(returnType.qualifier)); } if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) && (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) { error(typeSpecifier.getLine(), "cannot be bool or int", getQualifierString(returnType.qualifier)); } } else { if (!returnType.layoutQualifier.isEmpty()) { checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout"); } if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || returnType.qualifier == EvqFragmentOut) { checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, typeSpecifier.getLine()); } if (returnType.qualifier == EvqComputeIn) { error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size", "in"); } } return returnType; } void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, const TPublicType &type, const TSourceLoc &qualifierLocation) { // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. if (type.getBasicType() == EbtBool) { error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); } // Specific restrictions apply for vertex shader inputs and fragment shader outputs. switch (qualifier) { case EvqVertexIn: // ESSL 3.00 section 4.3.4 if (type.isArray()) { error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); } // Vertex inputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck return; case EvqFragmentOut: // ESSL 3.00 section 4.3.6 if (type.typeSpecifierNonArray.isMatrix()) { error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); } // Fragment outputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck return; default: break; } // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of // restrictions. bool typeContainsIntegers = (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt || type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt)); if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) { error(qualifierLocation, "must use 'flat' interpolation here", getQualifierString(qualifier)); } if (type.getBasicType() == EbtStruct) { // ESSL 3.00 sections 4.3.4 and 4.3.6. // These restrictions are only implied by the ESSL 3.00 spec, but // the ESSL 3.10 spec lists these restrictions explicitly. if (type.isArray()) { error(qualifierLocation, "cannot be an array of structures", getQualifierString(qualifier)); } if (type.isStructureContainingArrays()) { error(qualifierLocation, "cannot be a structure containing an array", getQualifierString(qualifier)); } if (type.isStructureContainingType(EbtStruct)) { error(qualifierLocation, "cannot be a structure containing a structure", getQualifierString(qualifier)); } if (type.isStructureContainingType(EbtBool)) { error(qualifierLocation, "cannot be a structure containing a bool", getQualifierString(qualifier)); } } } void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier) { if (qualifier.getType() == QtStorage) { const TStorageQualifierWrapper &storageQualifier = static_cast(qualifier); if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst && !symbolTable.atGlobalLevel()) { error(storageQualifier.getLine(), "Local variables can only use the const storage qualifier.", storageQualifier.getQualifierString()); } } } void TParseContext::checkMemoryQualifierIsNotSpecified(const TMemoryQualifier &memoryQualifier, const TSourceLoc &location) { const std::string reason( "Only allowed with shader storage blocks, variables declared within shader storage blocks " "and variables declared as image types."); if (memoryQualifier.readonly) { error(location, reason.c_str(), "readonly"); } if (memoryQualifier.writeonly) { error(location, reason.c_str(), "writeonly"); } if (memoryQualifier.coherent) { error(location, reason.c_str(), "coherent"); } if (memoryQualifier.restrictQualifier) { error(location, reason.c_str(), "restrict"); } if (memoryQualifier.volatileQualifier) { error(location, reason.c_str(), "volatile"); } } // Make sure there is no offset overlapping, and store the newly assigned offset to "type" in // intermediate tree. void TParseContext::checkAtomicCounterOffsetDoesNotOverlap(bool forceAppend, const TSourceLoc &loc, TType *type) { const size_t size = type->isArray() ? kAtomicCounterArrayStride * type->getArraySizeProduct() : kAtomicCounterSize; TLayoutQualifier layoutQualifier = type->getLayoutQualifier(); auto &bindingState = mAtomicCounterBindingStates[layoutQualifier.binding]; int offset; if (layoutQualifier.offset == -1 || forceAppend) { offset = bindingState.appendSpan(size); } else { offset = bindingState.insertSpan(layoutQualifier.offset, size); } if (offset == -1) { error(loc, "Offset overlapping", "atomic counter"); return; } layoutQualifier.offset = offset; type->setLayoutQualifier(layoutQualifier); } void TParseContext::checkAtomicCounterOffsetAlignment(const TSourceLoc &location, const TType &type) { TLayoutQualifier layoutQualifier = type.getLayoutQualifier(); // OpenGL ES 3.1 Table 6.5, Atomic counter offset must be a multiple of 4 if (layoutQualifier.offset % 4 != 0) { error(location, "Offset must be multiple of 4", "atomic counter"); } } void TParseContext::checkGeometryShaderInputAndSetArraySize(const TSourceLoc &location, const ImmutableString &token, TType *type) { if (IsGeometryShaderInput(mShaderType, type->getQualifier())) { if (type->isArray() && type->getOutermostArraySize() == 0u) { // Set size for the unsized geometry shader inputs if they are declared after a valid // input primitive declaration. if (mGeometryShaderInputPrimitiveType != EptUndefined) { ASSERT(symbolTable.getGlInVariableWithArraySize() != nullptr); type->sizeOutermostUnsizedArray( symbolTable.getGlInVariableWithArraySize()->getType().getOutermostArraySize()); } else { // [GLSL ES 3.2 SPEC Chapter 4.4.1.2] // An input can be declared without an array size if there is a previous layout // which specifies the size. error(location, "Missing a valid input primitive declaration before declaring an unsized " "array input", token); } } else if (type->isArray()) { setGeometryShaderInputArraySize(type->getOutermostArraySize(), location); } else { error(location, "Geometry shader input variable must be declared as an array", token); } } } TIntermDeclaration *TParseContext::parseSingleDeclaration( TPublicType &publicType, const TSourceLoc &identifierOrTypeLocation, const ImmutableString &identifier) { TType *type = new TType(publicType); if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) && mDirectiveHandler.pragma().stdgl.invariantAll) { TQualifier qualifier = type->getQualifier(); // The directive handler has already taken care of rejecting invalid uses of this pragma // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all // affected variable declarations: // // 1. Built-in special variables which are inputs to the fragment shader. (These are handled // elsewhere, in TranslatorGLSL.) // // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but // the way this is currently implemented we have to enable this compiler option before // parsing the shader and determining the shading language version it uses. If this were // implemented as a post-pass, the workaround could be more targeted. if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut) { type->setInvariant(true); } } checkGeometryShaderInputAndSetArraySize(identifierOrTypeLocation, identifier, type); declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, identifierOrTypeLocation); bool emptyDeclaration = (identifier == ""); mDeferredNonEmptyDeclarationErrorCheck = emptyDeclaration; TIntermSymbol *symbol = nullptr; if (emptyDeclaration) { emptyDeclarationErrorCheck(*type, identifierOrTypeLocation); // In most cases we don't need to create a symbol node for an empty declaration. // But if the empty declaration is declaring a struct type, the symbol node will store that. if (type->getBasicType() == EbtStruct) { TVariable *emptyVariable = new TVariable(&symbolTable, kEmptyImmutableString, type, SymbolType::Empty); symbol = new TIntermSymbol(emptyVariable); } else if (IsAtomicCounter(publicType.getBasicType())) { setAtomicCounterBindingDefaultOffset(publicType, identifierOrTypeLocation); } } else { nonEmptyDeclarationErrorCheck(publicType, identifierOrTypeLocation); checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, type); if (IsAtomicCounter(type->getBasicType())) { checkAtomicCounterOffsetDoesNotOverlap(false, identifierOrTypeLocation, type); checkAtomicCounterOffsetAlignment(identifierOrTypeLocation, *type); } TVariable *variable = nullptr; if (declareVariable(identifierOrTypeLocation, identifier, type, &variable)) { symbol = new TIntermSymbol(variable); } } TIntermDeclaration *declaration = new TIntermDeclaration(); declaration->setLine(identifierOrTypeLocation); if (symbol) { symbol->setLine(identifierOrTypeLocation); declaration->appendDeclarator(symbol); } return declaration; } TIntermDeclaration *TParseContext::parseSingleArrayDeclaration( TPublicType &elementType, const TSourceLoc &identifierLocation, const ImmutableString &identifier, const TSourceLoc &indexLocation, const TVector &arraySizes) { mDeferredNonEmptyDeclarationErrorCheck = false; declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier, identifierLocation); nonEmptyDeclarationErrorCheck(elementType, identifierLocation); checkIsValidTypeAndQualifierForArray(indexLocation, elementType); TType *arrayType = new TType(elementType); arrayType->makeArrays(arraySizes); checkArrayOfArraysInOut(indexLocation, elementType, *arrayType); checkGeometryShaderInputAndSetArraySize(indexLocation, identifier, arrayType); checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, arrayType); if (IsAtomicCounter(arrayType->getBasicType())) { checkAtomicCounterOffsetDoesNotOverlap(false, identifierLocation, arrayType); checkAtomicCounterOffsetAlignment(identifierLocation, *arrayType); } TIntermDeclaration *declaration = new TIntermDeclaration(); declaration->setLine(identifierLocation); TVariable *variable = nullptr; if (declareVariable(identifierLocation, identifier, arrayType, &variable)) { TIntermSymbol *symbol = new TIntermSymbol(variable); symbol->setLine(identifierLocation); declaration->appendDeclarator(symbol); } return declaration; } TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, const TSourceLoc &identifierLocation, const ImmutableString &identifier, const TSourceLoc &initLocation, TIntermTyped *initializer) { mDeferredNonEmptyDeclarationErrorCheck = false; declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, identifierLocation); nonEmptyDeclarationErrorCheck(publicType, identifierLocation); TIntermDeclaration *declaration = new TIntermDeclaration(); declaration->setLine(identifierLocation); TIntermBinary *initNode = nullptr; TType *type = new TType(publicType); if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode)) { if (initNode) { declaration->appendDeclarator(initNode); } } return declaration; } TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration( TPublicType &elementType, const TSourceLoc &identifierLocation, const ImmutableString &identifier, const TSourceLoc &indexLocation, const TVector &arraySizes, const TSourceLoc &initLocation, TIntermTyped *initializer) { mDeferredNonEmptyDeclarationErrorCheck = false; declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier, identifierLocation); nonEmptyDeclarationErrorCheck(elementType, identifierLocation); checkIsValidTypeAndQualifierForArray(indexLocation, elementType); TType *arrayType = new TType(elementType); arrayType->makeArrays(arraySizes); TIntermDeclaration *declaration = new TIntermDeclaration(); declaration->setLine(identifierLocation); // initNode will correspond to the whole of "type b[n] = initializer". TIntermBinary *initNode = nullptr; if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) { if (initNode) { declaration->appendDeclarator(initNode); } } return declaration; } TIntermGlobalQualifierDeclaration *TParseContext::parseGlobalQualifierDeclaration( const TTypeQualifierBuilder &typeQualifierBuilder, const TSourceLoc &identifierLoc, const ImmutableString &identifier, const TSymbol *symbol) { TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); if (!typeQualifier.invariant && !typeQualifier.precise) { error(identifierLoc, "Expected invariant or precise", identifier); return nullptr; } if (typeQualifier.invariant && !checkIsAtGlobalLevel(identifierLoc, "invariant varying")) { return nullptr; } if (!symbol) { error(identifierLoc, "undeclared identifier declared as invariant or precise", identifier); return nullptr; } if (!IsQualifierUnspecified(typeQualifier.qualifier)) { error(identifierLoc, "invariant or precise declaration specifies qualifier", getQualifierString(typeQualifier.qualifier)); } if (typeQualifier.precision != EbpUndefined) { error(identifierLoc, "invariant or precise declaration specifies precision", getPrecisionString(typeQualifier.precision)); } if (!typeQualifier.layoutQualifier.isEmpty()) { error(identifierLoc, "invariant or precise declaration specifies layout", "'layout'"); } const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); if (!variable) { return nullptr; } const TType &type = variable->getType(); checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(), typeQualifier.line); checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); symbolTable.addInvariantVarying(*variable); TIntermSymbol *intermSymbol = new TIntermSymbol(variable); intermSymbol->setLine(identifierLoc); return new TIntermGlobalQualifierDeclaration(intermSymbol, typeQualifier.precise, identifierLoc); } void TParseContext::parseDeclarator(TPublicType &publicType, const TSourceLoc &identifierLocation, const ImmutableString &identifier, TIntermDeclaration *declarationOut) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredNonEmptyDeclarationErrorCheck) { nonEmptyDeclarationErrorCheck(publicType, identifierLocation); mDeferredNonEmptyDeclarationErrorCheck = false; } checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); TType *type = new TType(publicType); checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier, type); checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, type); if (IsAtomicCounter(type->getBasicType())) { checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, type); checkAtomicCounterOffsetAlignment(identifierLocation, *type); } TVariable *variable = nullptr; if (declareVariable(identifierLocation, identifier, type, &variable)) { TIntermSymbol *symbol = new TIntermSymbol(variable); symbol->setLine(identifierLocation); declarationOut->appendDeclarator(symbol); } } void TParseContext::parseArrayDeclarator(TPublicType &elementType, const TSourceLoc &identifierLocation, const ImmutableString &identifier, const TSourceLoc &arrayLocation, const TVector &arraySizes, TIntermDeclaration *declarationOut) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredNonEmptyDeclarationErrorCheck) { nonEmptyDeclarationErrorCheck(elementType, identifierLocation); mDeferredNonEmptyDeclarationErrorCheck = false; } checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType); if (checkIsValidTypeAndQualifierForArray(arrayLocation, elementType)) { TType *arrayType = new TType(elementType); arrayType->makeArrays(arraySizes); checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier, arrayType); checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, arrayType); if (IsAtomicCounter(arrayType->getBasicType())) { checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, arrayType); checkAtomicCounterOffsetAlignment(identifierLocation, *arrayType); } TVariable *variable = nullptr; if (declareVariable(identifierLocation, identifier, arrayType, &variable)) { TIntermSymbol *symbol = new TIntermSymbol(variable); symbol->setLine(identifierLocation); declarationOut->appendDeclarator(symbol); } } } void TParseContext::parseInitDeclarator(const TPublicType &publicType, const TSourceLoc &identifierLocation, const ImmutableString &identifier, const TSourceLoc &initLocation, TIntermTyped *initializer, TIntermDeclaration *declarationOut) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredNonEmptyDeclarationErrorCheck) { nonEmptyDeclarationErrorCheck(publicType, identifierLocation); mDeferredNonEmptyDeclarationErrorCheck = false; } checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); TIntermBinary *initNode = nullptr; TType *type = new TType(publicType); if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode)) { // // build the intermediate representation // if (initNode) { declarationOut->appendDeclarator(initNode); } } } void TParseContext::parseArrayInitDeclarator(const TPublicType &elementType, const TSourceLoc &identifierLocation, const ImmutableString &identifier, const TSourceLoc &indexLocation, const TVector &arraySizes, const TSourceLoc &initLocation, TIntermTyped *initializer, TIntermDeclaration *declarationOut) { // If the declaration starting this declarator list was empty (example: int,), some checks were // not performed. if (mDeferredNonEmptyDeclarationErrorCheck) { nonEmptyDeclarationErrorCheck(elementType, identifierLocation); mDeferredNonEmptyDeclarationErrorCheck = false; } checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType); checkIsValidTypeAndQualifierForArray(indexLocation, elementType); TType *arrayType = new TType(elementType); arrayType->makeArrays(arraySizes); // initNode will correspond to the whole of "b[n] = initializer". TIntermBinary *initNode = nullptr; if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) { if (initNode) { declarationOut->appendDeclarator(initNode); } } } TIntermNode *TParseContext::addEmptyStatement(const TSourceLoc &location) { // It's simpler to parse an empty statement as a constant expression rather than having a // different type of node just for empty statements, that will be pruned from the AST anyway. TIntermNode *node = CreateZeroNode(TType(EbtInt, EbpMedium)); node->setLine(location); return node; } void TParseContext::setAtomicCounterBindingDefaultOffset(const TPublicType &publicType, const TSourceLoc &location) { const TLayoutQualifier &layoutQualifier = publicType.layoutQualifier; checkAtomicCounterBindingIsValid(location, layoutQualifier.binding); if (layoutQualifier.binding == -1 || layoutQualifier.offset == -1) { error(location, "Requires both binding and offset", "layout"); return; } mAtomicCounterBindingStates[layoutQualifier.binding].setDefaultOffset(layoutQualifier.offset); } void TParseContext::parseDefaultPrecisionQualifier(const TPrecision precision, const TPublicType &type, const TSourceLoc &loc) { if ((precision == EbpHigh) && (getShaderType() == GL_FRAGMENT_SHADER) && !getFragmentPrecisionHigh()) { error(loc, "precision is not supported in fragment shader", "highp"); } if (!CanSetDefaultPrecisionOnType(type)) { error(loc, "illegal type argument for default precision qualifier", getBasicString(type.getBasicType())); return; } symbolTable.setDefaultPrecision(type.getBasicType(), precision); } bool TParseContext::checkPrimitiveTypeMatchesTypeQualifier(const TTypeQualifier &typeQualifier) { switch (typeQualifier.layoutQualifier.primitiveType) { case EptLines: case EptLinesAdjacency: case EptTriangles: case EptTrianglesAdjacency: return typeQualifier.qualifier == EvqGeometryIn; case EptLineStrip: case EptTriangleStrip: return typeQualifier.qualifier == EvqGeometryOut; case EptPoints: return true; default: UNREACHABLE(); return false; } } void TParseContext::setGeometryShaderInputArraySize(unsigned int inputArraySize, const TSourceLoc &line) { if (!symbolTable.setGlInArraySize(inputArraySize)) { error(line, "Array size or input primitive declaration doesn't match the size of earlier sized " "array inputs.", "layout"); } } bool TParseContext::parseGeometryShaderInputLayoutQualifier(const TTypeQualifier &typeQualifier) { ASSERT(typeQualifier.qualifier == EvqGeometryIn); const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier; if (layoutQualifier.maxVertices != -1) { error(typeQualifier.line, "max_vertices can only be declared in 'out' layout in a geometry shader", "layout"); return false; } // Set mGeometryInputPrimitiveType if exists if (layoutQualifier.primitiveType != EptUndefined) { if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier)) { error(typeQualifier.line, "invalid primitive type for 'in' layout", "layout"); return false; } if (mGeometryShaderInputPrimitiveType == EptUndefined) { mGeometryShaderInputPrimitiveType = layoutQualifier.primitiveType; setGeometryShaderInputArraySize( GetGeometryShaderInputArraySize(mGeometryShaderInputPrimitiveType), typeQualifier.line); } else if (mGeometryShaderInputPrimitiveType != layoutQualifier.primitiveType) { error(typeQualifier.line, "primitive doesn't match earlier input primitive declaration", "layout"); return false; } } // Set mGeometryInvocations if exists if (layoutQualifier.invocations > 0) { if (mGeometryShaderInvocations == 0) { mGeometryShaderInvocations = layoutQualifier.invocations; } else if (mGeometryShaderInvocations != layoutQualifier.invocations) { error(typeQualifier.line, "invocations contradicts to the earlier declaration", "layout"); return false; } } return true; } bool TParseContext::parseGeometryShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier) { ASSERT(typeQualifier.qualifier == EvqGeometryOut); const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier; if (layoutQualifier.invocations > 0) { error(typeQualifier.line, "invocations can only be declared in 'in' layout in a geometry shader", "layout"); return false; } // Set mGeometryOutputPrimitiveType if exists if (layoutQualifier.primitiveType != EptUndefined) { if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier)) { error(typeQualifier.line, "invalid primitive type for 'out' layout", "layout"); return false; } if (mGeometryShaderOutputPrimitiveType == EptUndefined) { mGeometryShaderOutputPrimitiveType = layoutQualifier.primitiveType; } else if (mGeometryShaderOutputPrimitiveType != layoutQualifier.primitiveType) { error(typeQualifier.line, "primitive doesn't match earlier output primitive declaration", "layout"); return false; } } // Set mGeometryMaxVertices if exists if (layoutQualifier.maxVertices > -1) { if (mGeometryShaderMaxVertices == -1) { mGeometryShaderMaxVertices = layoutQualifier.maxVertices; } else if (mGeometryShaderMaxVertices != layoutQualifier.maxVertices) { error(typeQualifier.line, "max_vertices contradicts to the earlier declaration", "layout"); return false; } } return true; } void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder) { TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier, typeQualifier.line); // It should never be the case, but some strange parser errors can send us here. if (layoutQualifier.isEmpty()) { error(typeQualifier.line, "Error during layout qualifier parsing.", "?"); return; } if (!layoutQualifier.isCombinationValid()) { error(typeQualifier.line, "invalid layout qualifier combination", "layout"); return; } checkIndexIsNotSpecified(typeQualifier.line, layoutQualifier.index); checkBindingIsNotSpecified(typeQualifier.line, layoutQualifier.binding); checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat); checkYuvIsNotSpecified(typeQualifier.line, layoutQualifier.yuv); checkOffsetIsNotSpecified(typeQualifier.line, layoutQualifier.offset); checkStd430IsForShaderStorageBlock(typeQualifier.line, layoutQualifier.blockStorage, typeQualifier.qualifier); if (typeQualifier.qualifier != EvqFragmentIn) { checkEarlyFragmentTestsIsNotSpecified(typeQualifier.line, layoutQualifier.earlyFragmentTests); } if (typeQualifier.qualifier == EvqComputeIn) { if (mComputeShaderLocalSizeDeclared && !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize)) { error(typeQualifier.line, "Work group size does not match the previous declaration", "layout"); return; } if (mShaderVersion < 310) { error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); return; } if (!layoutQualifier.localSize.isAnyValueSet()) { error(typeQualifier.line, "No local work group size specified", "layout"); return; } const TVariable *maxComputeWorkGroupSize = static_cast( symbolTable.findBuiltIn(ImmutableString("gl_MaxComputeWorkGroupSize"), mShaderVersion)); const TConstantUnion *maxComputeWorkGroupSizeData = maxComputeWorkGroupSize->getConstPointer(); for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i) { if (layoutQualifier.localSize[i] != -1) { mComputeShaderLocalSize[i] = layoutQualifier.localSize[i]; const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst(); if (mComputeShaderLocalSize[i] < 1 || mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue) { std::stringstream reasonStream = sh::InitializeStream(); reasonStream << "invalid value: Value must be at least 1 and no greater than " << maxComputeWorkGroupSizeValue; const std::string &reason = reasonStream.str(); error(typeQualifier.line, reason.c_str(), getWorkGroupSizeString(i)); return; } } } mComputeShaderLocalSizeDeclared = true; } else if (typeQualifier.qualifier == EvqGeometryIn) { if (mShaderVersion < 310) { error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); return; } if (!parseGeometryShaderInputLayoutQualifier(typeQualifier)) { return; } } else if (typeQualifier.qualifier == EvqGeometryOut) { if (mShaderVersion < 310) { error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 only", "layout"); return; } if (!parseGeometryShaderOutputLayoutQualifier(typeQualifier)) { return; } } else if (anyMultiviewExtensionAvailable() && typeQualifier.qualifier == EvqVertexIn) { // This error is only specified in WebGL, but tightens unspecified behavior in the native // specification. if (mNumViews != -1 && layoutQualifier.numViews != mNumViews) { error(typeQualifier.line, "Number of views does not match the previous declaration", "layout"); return; } if (layoutQualifier.numViews == -1) { error(typeQualifier.line, "No num_views specified", "layout"); return; } if (layoutQualifier.numViews > mMaxNumViews) { error(typeQualifier.line, "num_views greater than the value of GL_MAX_VIEWS_OVR", "layout"); return; } mNumViews = layoutQualifier.numViews; } else if (typeQualifier.qualifier == EvqFragmentIn) { if (mShaderVersion < 310) { error(typeQualifier.line, "in type qualifier without variable declaration supported in GLSL ES 3.10 only", "layout"); return; } if (!layoutQualifier.earlyFragmentTests) { error(typeQualifier.line, "only early_fragment_tests is allowed as layout qualifier when not declaring a " "variable", "layout"); return; } mEarlyFragmentTestsSpecified = true; } else { if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, layoutQualifier)) { return; } if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer) { error(typeQualifier.line, "invalid qualifier: global layout can only be set for blocks", getQualifierString(typeQualifier.qualifier)); return; } if (mShaderVersion < 300) { error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above", "layout"); return; } checkLocationIsNotSpecified(typeQualifier.line, layoutQualifier); if (layoutQualifier.matrixPacking != EmpUnspecified) { if (typeQualifier.qualifier == EvqUniform) { mDefaultUniformMatrixPacking = layoutQualifier.matrixPacking; } else if (typeQualifier.qualifier == EvqBuffer) { mDefaultBufferMatrixPacking = layoutQualifier.matrixPacking; } } if (layoutQualifier.blockStorage != EbsUnspecified) { if (typeQualifier.qualifier == EvqUniform) { mDefaultUniformBlockStorage = layoutQualifier.blockStorage; } else if (typeQualifier.qualifier == EvqBuffer) { mDefaultBufferBlockStorage = layoutQualifier.blockStorage; } } } } TIntermFunctionPrototype *TParseContext::createPrototypeNodeFromFunction( const TFunction &function, const TSourceLoc &location, bool insertParametersToSymbolTable) { checkIsNotReserved(location, function.name()); TIntermFunctionPrototype *prototype = new TIntermFunctionPrototype(&function); prototype->setLine(location); for (size_t i = 0; i < function.getParamCount(); i++) { const TVariable *param = function.getParam(i); // If the parameter has no name, it's not an error, just don't add it to symbol table (could // be used for unused args). if (param->symbolType() != SymbolType::Empty) { if (insertParametersToSymbolTable) { if (!symbolTable.declare(const_cast(param))) { error(location, "redefinition", param->name()); } } // Unsized type of a named parameter should have already been checked and sanitized. ASSERT(!param->getType().isUnsizedArray()); } else { if (param->getType().isUnsizedArray()) { error(location, "function parameter array must be sized at compile time", "[]"); // We don't need to size the arrays since the parameter is unnamed and hence // inaccessible. } } } return prototype; } TIntermFunctionPrototype *TParseContext::addFunctionPrototypeDeclaration( const TFunction &parsedFunction, const TSourceLoc &location) { // Note: function found from the symbol table could be the same as parsedFunction if this is the // first declaration. Either way the instance in the symbol table is used to track whether the // function is declared multiple times. bool hadPrototypeDeclaration = false; const TFunction *function = symbolTable.markFunctionHasPrototypeDeclaration( parsedFunction.getMangledName(), &hadPrototypeDeclaration); if (hadPrototypeDeclaration && mShaderVersion == 100) { // ESSL 1.00.17 section 4.2.7. // Doesn't apply to ESSL 3.00.4: see section 4.2.3. error(location, "duplicate function prototype declarations are not allowed", "function"); } TIntermFunctionPrototype *prototype = createPrototypeNodeFromFunction(*function, location, false); symbolTable.pop(); if (!symbolTable.atGlobalLevel()) { // ESSL 3.00.4 section 4.2.4. error(location, "local function prototype declarations are not allowed", "function"); } return prototype; } TIntermFunctionDefinition *TParseContext::addFunctionDefinition( TIntermFunctionPrototype *functionPrototype, TIntermBlock *functionBody, const TSourceLoc &location) { // Undo push at end of parseFunctionDefinitionHeader() below for ESSL1.00 case if (mFunctionBodyNewScope) { mFunctionBodyNewScope = false; symbolTable.pop(); } // Check that non-void functions have at least one return statement. if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) { error(location, "function does not return a value:", functionPrototype->getFunction()->name()); } if (functionBody == nullptr) { functionBody = new TIntermBlock(); functionBody->setLine(location); } TIntermFunctionDefinition *functionNode = new TIntermFunctionDefinition(functionPrototype, functionBody); functionNode->setLine(location); symbolTable.pop(); return functionNode; } void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location, const TFunction *function, TIntermFunctionPrototype **prototypeOut) { ASSERT(function); bool wasDefined = false; function = symbolTable.setFunctionParameterNamesFromDefinition(function, &wasDefined); if (wasDefined) { error(location, "function already has a body", function->name()); } // Remember the return type for later checking for return statements. mCurrentFunctionType = &(function->getReturnType()); mFunctionReturnsValue = false; *prototypeOut = createPrototypeNodeFromFunction(*function, location, true); setLoopNestingLevel(0); // ESSL 1.00 spec allows for variable in function body to redefine parameter if (IsSpecWithFunctionBodyNewScope(mShaderSpec, mShaderVersion)) { mFunctionBodyNewScope = true; symbolTable.push(); } } TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) { // // We don't know at this point whether this is a function definition or a prototype. // The definition production code will check for redefinitions. // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. // for (size_t i = 0u; i < function->getParamCount(); ++i) { const TVariable *param = function->getParam(i); if (param->getType().isStructSpecifier()) { // ESSL 3.00.6 section 12.10. error(location, "Function parameter type cannot be a structure definition", function->name()); } } if (getShaderVersion() >= 300) { if (symbolTable.isUnmangledBuiltInName(function->name(), getShaderVersion(), extensionBehavior())) { // With ESSL 3.00 and above, names of built-in functions cannot be redeclared as // functions. Therefore overloading or redefining builtin functions is an error. error(location, "Name of a built-in function cannot be redeclared as function", function->name()); } } else { // ESSL 1.00.17 section 4.2.6: built-ins can be overloaded but not redefined. We assume that // this applies to redeclarations as well. const TSymbol *builtIn = symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion()); if (builtIn) { error(location, "built-in functions cannot be redefined", function->name()); } } // Return types and parameter qualifiers must match in all redeclarations, so those are checked // here. const TFunction *prevDec = static_cast(symbolTable.findGlobal(function->getMangledName())); if (prevDec) { if (prevDec->getReturnType() != function->getReturnType()) { error(location, "function must have the same return type in all of its declarations", function->getReturnType().getBasicString()); } for (size_t i = 0; i < prevDec->getParamCount(); ++i) { if (prevDec->getParam(i)->getType().getQualifier() != function->getParam(i)->getType().getQualifier()) { error(location, "function must have the same parameter qualifiers in all of its declarations", function->getParam(i)->getType().getQualifierString()); } } } // Check for previously declared variables using the same name. const TSymbol *prevSym = symbolTable.find(function->name(), getShaderVersion()); bool insertUnmangledName = true; if (prevSym) { if (!prevSym->isFunction()) { error(location, "redefinition of a function", function->name()); } insertUnmangledName = false; } // Parsing is at the inner scope level of the function's arguments and body statement at this // point, but declareUserDefinedFunction takes care of declaring the function at the global // scope. symbolTable.declareUserDefinedFunction(function, insertUnmangledName); // Raise error message if main function takes any parameters or return anything other than void if (function->isMain()) { if (function->getParamCount() > 0) { error(location, "function cannot take any parameter(s)", "main"); } if (function->getReturnType().getBasicType() != EbtVoid) { error(location, "main function cannot return a value", function->getReturnType().getBasicString()); } } // // If this is a redeclaration, it could also be a definition, in which case, we want to use the // variable names from this one, and not the one that's // being redeclared. So, pass back up this declaration, not the one in the symbol table. // return function; } TFunction *TParseContext::parseFunctionHeader(const TPublicType &type, const ImmutableString &name, const TSourceLoc &location) { if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary) { error(location, "no qualifiers allowed for function return", getQualifierString(type.qualifier)); } if (!type.layoutQualifier.isEmpty()) { error(location, "no qualifiers allowed for function return", "layout"); } // make sure an opaque type is not involved as well... std::string reason(getBasicString(type.getBasicType())); reason += "s can't be function return values"; checkIsNotOpaqueType(location, type.typeSpecifierNonArray, reason.c_str()); if (mShaderVersion < 300) { // Array return values are forbidden, but there's also no valid syntax for declaring array // return values in ESSL 1.00. ASSERT(!type.isArray() || mDiagnostics->numErrors() > 0); if (type.isStructureContainingArrays()) { // ESSL 1.00.17 section 6.1 Function Definitions TInfoSinkBase typeString; typeString << TType(type); error(location, "structures containing arrays can't be function return values", typeString.c_str()); } } // Add the function as a prototype after parsing it (we do not support recursion) return new TFunction(&symbolTable, name, SymbolType::UserDefined, new TType(type), false); } TFunctionLookup *TParseContext::addNonConstructorFunc(const ImmutableString &name, const TSymbol *symbol) { return TFunctionLookup::CreateFunctionCall(name, symbol); } TFunctionLookup *TParseContext::addConstructorFunc(const TPublicType &publicType) { if (mShaderVersion < 300 && publicType.isArray()) { error(publicType.getLine(), "array constructor supported in GLSL ES 3.00 and above only", "[]"); } if (publicType.isStructSpecifier()) { error(publicType.getLine(), "constructor can't be a structure definition", getBasicString(publicType.getBasicType())); } TType *type = new TType(publicType); if (!type->canBeConstructed()) { error(publicType.getLine(), "cannot construct this type", getBasicString(publicType.getBasicType())); type->setBasicType(EbtFloat); } return TFunctionLookup::CreateConstructor(type); } void TParseContext::checkIsNotUnsizedArray(const TSourceLoc &line, const char *errorMessage, const ImmutableString &token, TType *arrayType) { if (arrayType->isUnsizedArray()) { error(line, errorMessage, token); arrayType->sizeUnsizedArrays(TSpan()); } } TParameter TParseContext::parseParameterDeclarator(TType *type, const ImmutableString &name, const TSourceLoc &nameLoc) { ASSERT(type); checkIsNotUnsizedArray(nameLoc, "function parameter array must specify a size", name, type); if (type->getBasicType() == EbtVoid) { error(nameLoc, "illegal use of type 'void'", name); } checkIsNotReserved(nameLoc, name); TParameter param = {name.data(), type}; return param; } TParameter TParseContext::parseParameterDeclarator(const TPublicType &publicType, const ImmutableString &name, const TSourceLoc &nameLoc) { TType *type = new TType(publicType); return parseParameterDeclarator(type, name, nameLoc); } TParameter TParseContext::parseParameterArrayDeclarator(const ImmutableString &name, const TSourceLoc &nameLoc, const TVector &arraySizes, const TSourceLoc &arrayLoc, TPublicType *elementType) { checkArrayElementIsNotArray(arrayLoc, *elementType); TType *arrayType = new TType(*elementType); arrayType->makeArrays(arraySizes); return parseParameterDeclarator(arrayType, name, nameLoc); } bool TParseContext::checkUnsizedArrayConstructorArgumentDimensionality( const TIntermSequence &arguments, TType type, const TSourceLoc &line) { if (arguments.empty()) { error(line, "implicitly sized array constructor must have at least one argument", "[]"); return false; } for (TIntermNode *arg : arguments) { const TIntermTyped *element = arg->getAsTyped(); ASSERT(element); size_t dimensionalityFromElement = element->getType().getNumArraySizes() + 1u; if (dimensionalityFromElement > type.getNumArraySizes()) { error(line, "constructing from a non-dereferenced array", "constructor"); return false; } else if (dimensionalityFromElement < type.getNumArraySizes()) { if (dimensionalityFromElement == 1u) { error(line, "implicitly sized array of arrays constructor argument is not an array", "constructor"); } else { error(line, "implicitly sized array of arrays constructor argument dimensionality is too " "low", "constructor"); } return false; } } return true; } // This function is used to test for the correctness of the parameters passed to various constructor // functions and also convert them to the right datatype if it is allowed and required. // // Returns a node to add to the tree regardless of if an error was generated or not. // TIntermTyped *TParseContext::addConstructor(TFunctionLookup *fnCall, const TSourceLoc &line) { TType type = fnCall->constructorType(); TIntermSequence &arguments = fnCall->arguments(); if (type.isUnsizedArray()) { if (!checkUnsizedArrayConstructorArgumentDimensionality(arguments, type, line)) { type.sizeUnsizedArrays(TSpan()); return CreateZeroNode(type); } TIntermTyped *firstElement = arguments.at(0)->getAsTyped(); ASSERT(firstElement); if (type.getOutermostArraySize() == 0u) { type.sizeOutermostUnsizedArray(static_cast(arguments.size())); } for (size_t i = 0; i < firstElement->getType().getNumArraySizes(); ++i) { if (type.getArraySizes()[i] == 0u) { type.setArraySize(i, firstElement->getType().getArraySizes()[i]); } } ASSERT(!type.isUnsizedArray()); } if (!checkConstructorArguments(line, arguments, type)) { return CreateZeroNode(type); } TIntermAggregate *constructorNode = TIntermAggregate::CreateConstructor(type, &arguments); constructorNode->setLine(line); return constructorNode->fold(mDiagnostics); } // // Interface/uniform blocks // TODO(jiawei.shao@intel.com): implement GL_EXT_shader_io_blocks. // TIntermDeclaration *TParseContext::addInterfaceBlock( const TTypeQualifierBuilder &typeQualifierBuilder, const TSourceLoc &nameLine, const ImmutableString &blockName, TFieldList *fieldList, const ImmutableString &instanceName, const TSourceLoc &instanceLine, TIntermTyped *arrayIndex, const TSourceLoc &arrayIndexLine) { checkIsNotReserved(nameLine, blockName); TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); if (mShaderVersion < 310 && typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier: interface blocks must be uniform in version lower than GLSL ES " "3.10", getQualifierString(typeQualifier.qualifier)); } else if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer) { error(typeQualifier.line, "invalid qualifier: interface blocks must be uniform or buffer", getQualifierString(typeQualifier.qualifier)); } if (typeQualifier.invariant) { error(typeQualifier.line, "invalid qualifier on interface block member", "invariant"); } if (typeQualifier.qualifier != EvqBuffer) { checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); } // add array index unsigned int arraySize = 0; if (arrayIndex != nullptr) { arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex); } checkIndexIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.index); if (mShaderVersion < 310) { checkBindingIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.binding); } else { checkBlockBindingIsValid(typeQualifier.line, typeQualifier.qualifier, typeQualifier.layoutQualifier.binding, arraySize); } checkYuvIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.yuv); checkEarlyFragmentTestsIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.earlyFragmentTests); TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier); checkStd430IsForShaderStorageBlock(typeQualifier.line, blockLayoutQualifier.blockStorage, typeQualifier.qualifier); if (blockLayoutQualifier.matrixPacking == EmpUnspecified) { if (typeQualifier.qualifier == EvqUniform) { blockLayoutQualifier.matrixPacking = mDefaultUniformMatrixPacking; } else if (typeQualifier.qualifier == EvqBuffer) { blockLayoutQualifier.matrixPacking = mDefaultBufferMatrixPacking; } } if (blockLayoutQualifier.blockStorage == EbsUnspecified) { if (typeQualifier.qualifier == EvqUniform) { blockLayoutQualifier.blockStorage = mDefaultUniformBlockStorage; } else if (typeQualifier.qualifier == EvqBuffer) { blockLayoutQualifier.blockStorage = mDefaultBufferBlockStorage; } } checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier); checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat); // check for sampler types and apply layout qualifiers for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField *field = (*fieldList)[memberIndex]; TType *fieldType = field->type(); if (IsOpaqueType(fieldType->getBasicType())) { std::string reason("unsupported type - "); reason += fieldType->getBasicString(); reason += " types are not allowed in interface blocks"; error(field->line(), reason.c_str(), fieldType->getBasicString()); } const TQualifier qualifier = fieldType->getQualifier(); switch (qualifier) { case EvqGlobal: break; case EvqUniform: if (typeQualifier.qualifier == EvqBuffer) { error(field->line(), "invalid qualifier on shader storage block member", getQualifierString(qualifier)); } break; case EvqBuffer: if (typeQualifier.qualifier == EvqUniform) { error(field->line(), "invalid qualifier on uniform block member", getQualifierString(qualifier)); } break; default: error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier)); break; } if (fieldType->isInvariant()) { error(field->line(), "invalid qualifier on interface block member", "invariant"); } // check layout qualifiers TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier); checkIndexIsNotSpecified(field->line(), fieldLayoutQualifier.index); checkBindingIsNotSpecified(field->line(), fieldLayoutQualifier.binding); if (fieldLayoutQualifier.blockStorage != EbsUnspecified) { error(field->line(), "invalid layout qualifier: cannot be used here", getBlockStorageString(fieldLayoutQualifier.blockStorage)); } if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) { fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; } else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct) { warning(field->line(), "extraneous layout qualifier: only has an effect on matrix types", getMatrixPackingString(fieldLayoutQualifier.matrixPacking)); } fieldType->setLayoutQualifier(fieldLayoutQualifier); if (mShaderVersion < 310 || memberIndex != fieldList->size() - 1u || typeQualifier.qualifier != EvqBuffer) { // ESSL 3.10 spec section 4.1.9 allows for runtime-sized arrays. checkIsNotUnsizedArray(field->line(), "array members of interface blocks must specify a size", field->name(), field->type()); } if (typeQualifier.qualifier == EvqBuffer) { // set memory qualifiers // GLSL ES 3.10 session 4.9 [Memory Access Qualifiers]. When a block declaration is // qualified with a memory qualifier, it is as if all of its members were declared with // the same memory qualifier. const TMemoryQualifier &blockMemoryQualifier = typeQualifier.memoryQualifier; TMemoryQualifier fieldMemoryQualifier = fieldType->getMemoryQualifier(); fieldMemoryQualifier.readonly |= blockMemoryQualifier.readonly; fieldMemoryQualifier.writeonly |= blockMemoryQualifier.writeonly; fieldMemoryQualifier.coherent |= blockMemoryQualifier.coherent; fieldMemoryQualifier.restrictQualifier |= blockMemoryQualifier.restrictQualifier; fieldMemoryQualifier.volatileQualifier |= blockMemoryQualifier.volatileQualifier; // TODO(jiajia.qin@intel.com): Decide whether if readonly and writeonly buffer variable // is legal. See bug https://github.com/KhronosGroup/OpenGL-API/issues/7 fieldType->setMemoryQualifier(fieldMemoryQualifier); } } TInterfaceBlock *interfaceBlock = new TInterfaceBlock( &symbolTable, blockName, fieldList, blockLayoutQualifier, SymbolType::UserDefined); if (!symbolTable.declare(interfaceBlock)) { error(nameLine, "redefinition of an interface block name", blockName); } TType *interfaceBlockType = new TType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier); if (arrayIndex != nullptr) { interfaceBlockType->makeArray(arraySize); } // The instance variable gets created to refer to the interface block type from the AST // regardless of if there's an instance name. It's created as an empty symbol if there is no // instance name. TVariable *instanceVariable = new TVariable(&symbolTable, instanceName, interfaceBlockType, instanceName.empty() ? SymbolType::Empty : SymbolType::UserDefined); if (instanceVariable->symbolType() == SymbolType::Empty) { // define symbols for the members of the interface block for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField *field = (*fieldList)[memberIndex]; TType *fieldType = new TType(*field->type()); // set parent pointer of the field variable fieldType->setInterfaceBlock(interfaceBlock); fieldType->setQualifier(typeQualifier.qualifier); TVariable *fieldVariable = new TVariable(&symbolTable, field->name(), fieldType, SymbolType::UserDefined); if (!symbolTable.declare(fieldVariable)) { error(field->line(), "redefinition of an interface block member name", field->name()); } } } else { checkIsNotReserved(instanceLine, instanceName); // add a symbol for this interface block if (!symbolTable.declare(instanceVariable)) { error(instanceLine, "redefinition of an interface block instance name", instanceName); } } TIntermSymbol *blockSymbol = new TIntermSymbol(instanceVariable); blockSymbol->setLine(typeQualifier.line); TIntermDeclaration *declaration = new TIntermDeclaration(); declaration->appendDeclarator(blockSymbol); declaration->setLine(nameLine); exitStructDeclaration(); return declaration; } void TParseContext::enterStructDeclaration(const TSourceLoc &line, const ImmutableString &identifier) { ++mStructNestingLevel; // Embedded structure definitions are not supported per GLSL ES spec. // ESSL 1.00.17 section 10.9. ESSL 3.00.6 section 12.11. if (mStructNestingLevel > 1) { error(line, "Embedded struct definitions are not allowed", "struct"); } } void TParseContext::exitStructDeclaration() { --mStructNestingLevel; } void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field) { if (!sh::IsWebGLBasedSpec(mShaderSpec)) { return; } if (field.type()->getBasicType() != EbtStruct) { return; } // We're already inside a structure definition at this point, so add // one to the field's struct nesting. if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) { std::stringstream reasonStream = sh::InitializeStream(); if (field.type()->getStruct()->symbolType() == SymbolType::Empty) { // This may happen in case there are nested struct definitions. While they are also // invalid GLSL, they don't cause a syntax error. reasonStream << "Struct nesting"; } else { reasonStream << "Reference of struct type " << field.type()->getStruct()->name(); } reasonStream << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; std::string reason = reasonStream.str(); error(line, reason.c_str(), field.name()); return; } } // // Parse an array index expression // TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc &location, TIntermTyped *indexExpression) { if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) { if (baseExpression->getAsSymbolNode()) { error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getName()); } else { error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); } return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); } if (baseExpression->getQualifier() == EvqPerVertexIn) { ASSERT(mShaderType == GL_GEOMETRY_SHADER_EXT); if (mGeometryShaderInputPrimitiveType == EptUndefined) { error(location, "missing input primitive declaration before indexing gl_in.", "["); return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); } } TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); // ES3.2 or ES3.1's EXT_gpu_shader5 allow dynamically uniform expressions to be used as indices // of opaque types (samplers and atomic counters) as well as UBOs, but not SSBOs and images. bool allowUniformIndices = mShaderVersion >= 320 || isExtensionEnabled(TExtension::EXT_gpu_shader5); // ANGLE should be able to fold any constant expressions resulting in an integer - but to be // safe we don't treat "EvqConst" that's evaluated according to the spec as being sufficient // for constness. Some interpretations of the spec have allowed constant expressions with side // effects - like array length() method on a non-constant array. if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr) { if (baseExpression->isInterfaceBlock()) { // TODO(jiawei.shao@intel.com): implement GL_EXT_shader_io_blocks. switch (baseExpression->getQualifier()) { case EvqPerVertexIn: break; case EvqUniform: if (!allowUniformIndices) { error(location, "array indexes for uniform block arrays must be constant integral " "expressions", "["); } break; case EvqBuffer: error(location, "array indexes for shader storage block arrays must be constant integral " "expressions", "["); break; default: // We can reach here only in error cases. ASSERT(mDiagnostics->numErrors() > 0); break; } } else if (baseExpression->getQualifier() == EvqFragmentOut) { error(location, "array indexes for fragment outputs must be constant integral expressions", "["); } else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData) { error(location, "array index for gl_FragData must be constant zero", "["); } else if (baseExpression->isArray()) { TBasicType elementType = baseExpression->getType().getBasicType(); // Note: In Section 12.30 of the ESSL 3.00 spec on p143-144: // // Indexing of arrays of samplers by constant-index-expressions is // supported in GLSL ES 1.00. A constant-index-expression is an // expression formed from constant-expressions and certain loop indices, // defined for a subset of loop constructs. Should this functionality be // included in GLSL ES 3.00? // // RESOLUTION: No. Arrays of samplers may only be indexed by constant- // integral-expressions. if (IsSampler(elementType) && !allowUniformIndices && mShaderVersion > 100) { error(location, "array index for samplers must be constant integral expressions", "["); } else if (IsImage(elementType)) { error(location, "array indexes for image arrays must be constant integral expressions", "["); } } } if (indexConstantUnion) { // If an out-of-range index is not qualified as constant, the behavior in the spec is // undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may // constant fold expressions that are not constant expressions). The most compatible way to // handle this case is to report a warning instead of an error and force the index to be in // the correct range. bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst; int index = 0; if (indexConstantUnion->getBasicType() == EbtInt) { index = indexConstantUnion->getIConst(0); } else if (indexConstantUnion->getBasicType() == EbtUInt) { index = static_cast(indexConstantUnion->getUConst(0)); } int safeIndex = -1; if (index < 0) { outOfRangeError(outOfRangeIndexIsError, location, "index expression is negative", "[]"); safeIndex = 0; } if (!baseExpression->getType().isUnsizedArray()) { if (baseExpression->isArray()) { if (baseExpression->getQualifier() == EvqFragData && index > 0) { if (!isExtensionEnabled(TExtension::EXT_draw_buffers)) { outOfRangeError(outOfRangeIndexIsError, location, "array index for gl_FragData must be zero when " "GL_EXT_draw_buffers is disabled", "[]"); safeIndex = 0; } } } // Only do generic out-of-range check if similar error hasn't already been reported. if (safeIndex < 0) { if (baseExpression->isArray()) { safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, baseExpression->getOutermostArraySize(), "array index out of range"); } else if (baseExpression->isMatrix()) { safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, baseExpression->getType().getCols(), "matrix field selection out of range"); } else { ASSERT(baseExpression->isVector()); safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, baseExpression->getType().getNominalSize(), "vector field selection out of range"); } } ASSERT(safeIndex >= 0); // Data of constant unions can't be changed, because it may be shared with other // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new // sanitized object. if (safeIndex != index || indexConstantUnion->getBasicType() != EbtInt) { TConstantUnion *safeConstantUnion = new TConstantUnion(); safeConstantUnion->setIConst(safeIndex); indexExpression = new TIntermConstantUnion( safeConstantUnion, TType(EbtInt, indexExpression->getPrecision(), indexExpression->getQualifier())); } TIntermBinary *node = new TIntermBinary(EOpIndexDirect, baseExpression, indexExpression); node->setLine(location); return expressionOrFoldedResult(node); } } markStaticReadIfSymbol(indexExpression); TIntermBinary *node = new TIntermBinary(EOpIndexIndirect, baseExpression, indexExpression); node->setLine(location); // Indirect indexing can never be constant folded. return node; } int TParseContext::checkIndexLessThan(bool outOfRangeIndexIsError, const TSourceLoc &location, int index, int arraySize, const char *reason) { // Should not reach here with an unsized / runtime-sized array. ASSERT(arraySize > 0); // A negative index should already have been checked. ASSERT(index >= 0); if (index >= arraySize) { std::stringstream reasonStream = sh::InitializeStream(); reasonStream << reason << " '" << index << "'"; std::string token = reasonStream.str(); outOfRangeError(outOfRangeIndexIsError, location, reason, "[]"); return arraySize - 1; } return index; } TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc &dotLocation, const ImmutableString &fieldString, const TSourceLoc &fieldLocation) { if (baseExpression->isArray()) { error(fieldLocation, "cannot apply dot operator to an array", "."); return baseExpression; } if (baseExpression->isVector()) { TVector fieldOffsets; if (!parseVectorFields(fieldLocation, fieldString, baseExpression->getNominalSize(), &fieldOffsets)) { fieldOffsets.resize(1); fieldOffsets[0] = 0; } TIntermSwizzle *node = new TIntermSwizzle(baseExpression, fieldOffsets); node->setLine(dotLocation); return node->fold(mDiagnostics); } else if (baseExpression->getBasicType() == EbtStruct) { const TFieldList &fields = baseExpression->getType().getStruct()->fields(); if (fields.empty()) { error(dotLocation, "structure has no fields", "Internal Error"); return baseExpression; } else { bool fieldFound = false; unsigned int i; for (i = 0; i < fields.size(); ++i) { if (fields[i]->name() == fieldString) { fieldFound = true; break; } } if (fieldFound) { TIntermTyped *index = CreateIndexNode(i); index->setLine(fieldLocation); TIntermBinary *node = new TIntermBinary(EOpIndexDirectStruct, baseExpression, index); node->setLine(dotLocation); return expressionOrFoldedResult(node); } else { error(dotLocation, " no such field in structure", fieldString); return baseExpression; } } } else if (baseExpression->isInterfaceBlock()) { const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); if (fields.empty()) { error(dotLocation, "interface block has no fields", "Internal Error"); return baseExpression; } else { bool fieldFound = false; unsigned int i; for (i = 0; i < fields.size(); ++i) { if (fields[i]->name() == fieldString) { fieldFound = true; break; } } if (fieldFound) { TIntermTyped *index = CreateIndexNode(i); index->setLine(fieldLocation); TIntermBinary *node = new TIntermBinary(EOpIndexDirectInterfaceBlock, baseExpression, index); node->setLine(dotLocation); // Indexing interface blocks can never be constant folded. return node; } else { error(dotLocation, " no such field in interface block", fieldString); return baseExpression; } } } else { if (mShaderVersion < 300) { error(dotLocation, " field selection requires structure or vector on left hand side", fieldString); } else { error(dotLocation, " field selection requires structure, vector, or interface block on left hand " "side", fieldString); } return baseExpression; } } TLayoutQualifier TParseContext::parseLayoutQualifier(const ImmutableString &qualifierType, const TSourceLoc &qualifierTypeLine) { TLayoutQualifier qualifier = TLayoutQualifier::Create(); if (qualifierType == "shared") { if (sh::IsWebGLBasedSpec(mShaderSpec)) { error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared"); } qualifier.blockStorage = EbsShared; } else if (qualifierType == "packed") { if (sh::IsWebGLBasedSpec(mShaderSpec)) { error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed"); } qualifier.blockStorage = EbsPacked; } else if (qualifierType == "std430") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.blockStorage = EbsStd430; } else if (qualifierType == "std140") { qualifier.blockStorage = EbsStd140; } else if (qualifierType == "row_major") { qualifier.matrixPacking = EmpRowMajor; } else if (qualifierType == "column_major") { qualifier.matrixPacking = EmpColumnMajor; } else if (qualifierType == "location") { error(qualifierTypeLine, "invalid layout qualifier: location requires an argument", qualifierType); } else if (qualifierType == "yuv" && mShaderType == GL_FRAGMENT_SHADER) { if (checkCanUseExtension(qualifierTypeLine, TExtension::EXT_YUV_target)) { qualifier.yuv = true; } } else if (qualifierType == "early_fragment_tests") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.earlyFragmentTests = true; } else if (qualifierType == "rgba32f") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA32F; } else if (qualifierType == "rgba16f") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA16F; } else if (qualifierType == "r32f") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifR32F; } else if (qualifierType == "rgba8") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA8; } else if (qualifierType == "rgba8_snorm") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA8_SNORM; } else if (qualifierType == "rgba32i") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA32I; } else if (qualifierType == "rgba16i") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA16I; } else if (qualifierType == "rgba8i") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA8I; } else if (qualifierType == "r32i") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifR32I; } else if (qualifierType == "rgba32ui") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA32UI; } else if (qualifierType == "rgba16ui") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA16UI; } else if (qualifierType == "rgba8ui") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifRGBA8UI; } else if (qualifierType == "r32ui") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.imageInternalFormat = EiifR32UI; } else if (qualifierType == "points" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.primitiveType = EptPoints; } else if (qualifierType == "lines" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.primitiveType = EptLines; } else if (qualifierType == "lines_adjacency" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.primitiveType = EptLinesAdjacency; } else if (qualifierType == "triangles" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.primitiveType = EptTriangles; } else if (qualifierType == "triangles_adjacency" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.primitiveType = EptTrianglesAdjacency; } else if (qualifierType == "line_strip" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.primitiveType = EptLineStrip; } else if (qualifierType == "triangle_strip" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); qualifier.primitiveType = EptTriangleStrip; } else { error(qualifierTypeLine, "invalid layout qualifier", qualifierType); } return qualifier; } void TParseContext::parseLocalSize(const ImmutableString &qualifierType, const TSourceLoc &qualifierTypeLine, int intValue, const TSourceLoc &intValueLine, const std::string &intValueString, size_t index, sh::WorkGroupSize *localSize) { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); if (intValue < 1) { std::stringstream reasonStream = sh::InitializeStream(); reasonStream << "out of range: " << getWorkGroupSizeString(index) << " must be positive"; std::string reason = reasonStream.str(); error(intValueLine, reason.c_str(), intValueString.c_str()); } (*localSize)[index] = intValue; } void TParseContext::parseNumViews(int intValue, const TSourceLoc &intValueLine, const std::string &intValueString, int *numViews) { // This error is only specified in WebGL, but tightens unspecified behavior in the native // specification. if (intValue < 1) { error(intValueLine, "out of range: num_views must be positive", intValueString.c_str()); } *numViews = intValue; } void TParseContext::parseInvocations(int intValue, const TSourceLoc &intValueLine, const std::string &intValueString, int *numInvocations) { // Although SPEC isn't clear whether invocations can be less than 1, we add this limit because // it doesn't make sense to accept invocations <= 0. if (intValue < 1 || intValue > mMaxGeometryShaderInvocations) { error(intValueLine, "out of range: invocations must be in the range of [1, " "MAX_GEOMETRY_SHADER_INVOCATIONS_OES]", intValueString.c_str()); } else { *numInvocations = intValue; } } void TParseContext::parseMaxVertices(int intValue, const TSourceLoc &intValueLine, const std::string &intValueString, int *maxVertices) { // Although SPEC isn't clear whether max_vertices can be less than 0, we add this limit because // it doesn't make sense to accept max_vertices < 0. if (intValue < 0 || intValue > mMaxGeometryShaderMaxVertices) { error( intValueLine, "out of range: max_vertices must be in the range of [0, gl_MaxGeometryOutputVertices]", intValueString.c_str()); } else { *maxVertices = intValue; } } void TParseContext::parseIndexLayoutQualifier(int intValue, const TSourceLoc &intValueLine, const std::string &intValueString, int *index) { // EXT_blend_func_extended specifies that most validation should happen at link time, but since // we're validating output variable locations at compile time, it makes sense to validate that // index is 0 or 1 also at compile time. Also since we use "-1" as a placeholder for unspecified // index, we can't accept it here. if (intValue < 0 || intValue > 1) { error(intValueLine, "out of range: index layout qualifier can only be 0 or 1", intValueString.c_str()); } else { *index = intValue; } } TLayoutQualifier TParseContext::parseLayoutQualifier(const ImmutableString &qualifierType, const TSourceLoc &qualifierTypeLine, int intValue, const TSourceLoc &intValueLine) { TLayoutQualifier qualifier = TLayoutQualifier::Create(); std::string intValueString = Str(intValue); if (qualifierType == "location") { // must check that location is non-negative if (intValue < 0) { error(intValueLine, "out of range: location must be non-negative", intValueString.c_str()); } else { qualifier.location = intValue; qualifier.locationsSpecified = 1; } } else if (qualifierType == "binding") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); if (intValue < 0) { error(intValueLine, "out of range: binding must be non-negative", intValueString.c_str()); } else { qualifier.binding = intValue; } } else if (qualifierType == "offset") { checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); if (intValue < 0) { error(intValueLine, "out of range: offset must be non-negative", intValueString.c_str()); } else { qualifier.offset = intValue; } } else if (qualifierType == "local_size_x") { parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u, &qualifier.localSize); } else if (qualifierType == "local_size_y") { parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u, &qualifier.localSize); } else if (qualifierType == "local_size_z") { parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u, &qualifier.localSize); } else if (qualifierType == "num_views" && mShaderType == GL_VERTEX_SHADER) { if (checkCanUseOneOfExtensions( qualifierTypeLine, std::array{ {TExtension::OVR_multiview, TExtension::OVR_multiview2}})) { parseNumViews(intValue, intValueLine, intValueString, &qualifier.numViews); } } else if (qualifierType == "invocations" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { parseInvocations(intValue, intValueLine, intValueString, &qualifier.invocations); } else if (qualifierType == "max_vertices" && mShaderType == GL_GEOMETRY_SHADER_EXT && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_geometry_shader)) { parseMaxVertices(intValue, intValueLine, intValueString, &qualifier.maxVertices); } else if (qualifierType == "index" && mShaderType == GL_FRAGMENT_SHADER && checkCanUseExtension(qualifierTypeLine, TExtension::EXT_blend_func_extended)) { parseIndexLayoutQualifier(intValue, intValueLine, intValueString, &qualifier.index); } else { error(qualifierTypeLine, "invalid layout qualifier", qualifierType); } return qualifier; } TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc) { return new TTypeQualifierBuilder( new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc), mShaderVersion); } TStorageQualifierWrapper *TParseContext::parseGlobalStorageQualifier(TQualifier qualifier, const TSourceLoc &loc) { checkIsAtGlobalLevel(loc, getQualifierString(qualifier)); return new TStorageQualifierWrapper(qualifier, loc); } TStorageQualifierWrapper *TParseContext::parseVaryingQualifier(const TSourceLoc &loc) { if (getShaderType() == GL_VERTEX_SHADER) { return parseGlobalStorageQualifier(EvqVaryingOut, loc); } return parseGlobalStorageQualifier(EvqVaryingIn, loc); } TStorageQualifierWrapper *TParseContext::parseInQualifier(const TSourceLoc &loc) { if (declaringFunction()) { return new TStorageQualifierWrapper(EvqIn, loc); } switch (getShaderType()) { case GL_VERTEX_SHADER: { if (mShaderVersion < 300 && !anyMultiviewExtensionAvailable() && !IsDesktopGLSpec(mShaderSpec)) { error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); } return new TStorageQualifierWrapper(EvqVertexIn, loc); } case GL_FRAGMENT_SHADER: { if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec)) { error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); } return new TStorageQualifierWrapper(EvqFragmentIn, loc); } case GL_COMPUTE_SHADER: { return new TStorageQualifierWrapper(EvqComputeIn, loc); } case GL_GEOMETRY_SHADER_EXT: { return new TStorageQualifierWrapper(EvqGeometryIn, loc); } default: { UNREACHABLE(); return new TStorageQualifierWrapper(EvqLast, loc); } } } TStorageQualifierWrapper *TParseContext::parseOutQualifier(const TSourceLoc &loc) { if (declaringFunction()) { return new TStorageQualifierWrapper(EvqOut, loc); } switch (getShaderType()) { case GL_VERTEX_SHADER: { if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec)) { error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out"); } return new TStorageQualifierWrapper(EvqVertexOut, loc); } case GL_FRAGMENT_SHADER: { if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec)) { error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out"); } return new TStorageQualifierWrapper(EvqFragmentOut, loc); } case GL_COMPUTE_SHADER: { error(loc, "storage qualifier isn't supported in compute shaders", "out"); return new TStorageQualifierWrapper(EvqOut, loc); } case GL_GEOMETRY_SHADER_EXT: { return new TStorageQualifierWrapper(EvqGeometryOut, loc); } default: { UNREACHABLE(); return new TStorageQualifierWrapper(EvqLast, loc); } } } TStorageQualifierWrapper *TParseContext::parseInOutQualifier(const TSourceLoc &loc) { if (!declaringFunction()) { error(loc, "invalid qualifier: can be only used with function parameters", "inout"); } return new TStorageQualifierWrapper(EvqInOut, loc); } TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier, const TSourceLoc &rightQualifierLocation) { return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation, mDiagnostics); } TDeclarator *TParseContext::parseStructDeclarator(const ImmutableString &identifier, const TSourceLoc &loc) { checkIsNotReserved(loc, identifier); return new TDeclarator(identifier, loc); } TDeclarator *TParseContext::parseStructArrayDeclarator(const ImmutableString &identifier, const TSourceLoc &loc, const TVector *arraySizes) { checkIsNotReserved(loc, identifier); return new TDeclarator(identifier, arraySizes, loc); } void TParseContext::checkDoesNotHaveDuplicateFieldName(const TFieldList::const_iterator begin, const TFieldList::const_iterator end, const ImmutableString &name, const TSourceLoc &location) { for (auto fieldIter = begin; fieldIter != end; ++fieldIter) { if ((*fieldIter)->name() == name) { error(location, "duplicate field name in structure", name); } } } TFieldList *TParseContext::addStructFieldList(TFieldList *fields, const TSourceLoc &location) { for (TFieldList::const_iterator fieldIter = fields->begin(); fieldIter != fields->end(); ++fieldIter) { checkDoesNotHaveDuplicateFieldName(fields->begin(), fieldIter, (*fieldIter)->name(), location); } return fields; } TFieldList *TParseContext::combineStructFieldLists(TFieldList *processedFields, const TFieldList *newlyAddedFields, const TSourceLoc &location) { for (TField *field : *newlyAddedFields) { checkDoesNotHaveDuplicateFieldName(processedFields->begin(), processedFields->end(), field->name(), location); processedFields->push_back(field); } return processedFields; } TFieldList *TParseContext::addStructDeclaratorListWithQualifiers( const TTypeQualifierBuilder &typeQualifierBuilder, TPublicType *typeSpecifier, const TDeclaratorList *declaratorList) { TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); typeSpecifier->qualifier = typeQualifier.qualifier; typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier; typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier; typeSpecifier->invariant = typeQualifier.invariant; typeSpecifier->precise = typeQualifier.precise; if (typeQualifier.precision != EbpUndefined) { typeSpecifier->precision = typeQualifier.precision; } return addStructDeclaratorList(*typeSpecifier, declaratorList); } TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, const TDeclaratorList *declaratorList) { checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision, typeSpecifier.getBasicType()); checkIsNonVoid(typeSpecifier.getLine(), (*declaratorList)[0]->name(), typeSpecifier.getBasicType()); checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier); checkEarlyFragmentTestsIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier.earlyFragmentTests); TFieldList *fieldList = new TFieldList(); for (const TDeclarator *declarator : *declaratorList) { TType *type = new TType(typeSpecifier); if (declarator->isArray()) { // Don't allow arrays of arrays in ESSL < 3.10. checkArrayElementIsNotArray(typeSpecifier.getLine(), typeSpecifier); type->makeArrays(*declarator->arraySizes()); } TField *field = new TField(type, declarator->name(), declarator->line(), SymbolType::UserDefined); checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *field); fieldList->push_back(field); } return fieldList; } TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine, const TSourceLoc &nameLine, const ImmutableString &structName, TFieldList *fieldList) { SymbolType structSymbolType = SymbolType::UserDefined; if (structName.empty()) { structSymbolType = SymbolType::Empty; } TStructure *structure = new TStructure(&symbolTable, structName, fieldList, structSymbolType); // Store a bool in the struct if we're at global scope, to allow us to // skip the local struct scoping workaround in HLSL. structure->setAtGlobalScope(symbolTable.atGlobalLevel()); if (structSymbolType != SymbolType::Empty) { checkIsNotReserved(nameLine, structName); if (!symbolTable.declare(structure)) { error(nameLine, "redefinition of a struct", structName); } } // ensure we do not specify any storage qualifiers on the struct members for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) { TField &field = *(*fieldList)[typeListIndex]; const TQualifier qualifier = field.type()->getQualifier(); switch (qualifier) { case EvqGlobal: case EvqTemporary: break; default: error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier)); break; } if (field.type()->isInvariant()) { error(field.line(), "invalid qualifier on struct member", "invariant"); } // ESSL 3.10 section 4.1.8 -- atomic_uint or images are not allowed as structure member. if (IsImage(field.type()->getBasicType()) || IsAtomicCounter(field.type()->getBasicType())) { error(field.line(), "disallowed type in struct", field.type()->getBasicString()); } checkIsNotUnsizedArray(field.line(), "array members of structs must specify a size", field.name(), field.type()); checkMemoryQualifierIsNotSpecified(field.type()->getMemoryQualifier(), field.line()); checkIndexIsNotSpecified(field.line(), field.type()->getLayoutQualifier().index); checkBindingIsNotSpecified(field.line(), field.type()->getLayoutQualifier().binding); checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier()); } TTypeSpecifierNonArray typeSpecifierNonArray; typeSpecifierNonArray.initializeStruct(structure, true, structLine); exitStructDeclaration(); return typeSpecifierNonArray; } TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermBlock *statementList, const TSourceLoc &loc) { TBasicType switchType = init->getBasicType(); if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || init->isVector()) { error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch"); return nullptr; } ASSERT(statementList); if (!ValidateSwitchStatementList(switchType, mDiagnostics, statementList, loc)) { ASSERT(mDiagnostics->numErrors() > 0); return nullptr; } markStaticReadIfSymbol(init); TIntermSwitch *node = new TIntermSwitch(init, statementList); node->setLine(loc); return node; } TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) { if (mSwitchNestingLevel == 0) { error(loc, "case labels need to be inside switch statements", "case"); return nullptr; } if (condition == nullptr) { error(loc, "case label must have a condition", "case"); return nullptr; } if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || condition->isMatrix() || condition->isArray() || condition->isVector()) { error(condition->getLine(), "case label must be a scalar integer", "case"); } TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); // ANGLE should be able to fold any EvqConst expressions resulting in an integer - but to be // safe against corner cases we still check for conditionConst. Some interpretations of the // spec have allowed constant expressions with side effects - like array length() method on a // non-constant array. if (condition->getQualifier() != EvqConst || conditionConst == nullptr) { error(condition->getLine(), "case label must be constant", "case"); } TIntermCase *node = new TIntermCase(condition); node->setLine(loc); return node; } TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) { if (mSwitchNestingLevel == 0) { error(loc, "default labels need to be inside switch statements", "default"); return nullptr; } TIntermCase *node = new TIntermCase(nullptr); node->setLine(loc); return node; } TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TFunction *func) { ASSERT(child != nullptr); switch (op) { case EOpLogicalNot: if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || child->isVector()) { unaryOpError(loc, GetOperatorString(op), child->getType()); return nullptr; } break; case EOpBitwiseNot: if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || child->isMatrix() || child->isArray()) { unaryOpError(loc, GetOperatorString(op), child->getType()); return nullptr; } break; case EOpPostIncrement: case EOpPreIncrement: case EOpPostDecrement: case EOpPreDecrement: case EOpNegative: case EOpPositive: if (child->getBasicType() == EbtStruct || child->isInterfaceBlock() || child->getBasicType() == EbtBool || child->isArray() || child->getBasicType() == EbtVoid || IsOpaqueType(child->getBasicType())) { unaryOpError(loc, GetOperatorString(op), child->getType()); return nullptr; } break; // Operators for built-ins are already type checked against their prototype. default: break; } if (child->getMemoryQualifier().writeonly) { unaryOpError(loc, GetOperatorString(op), child->getType()); return nullptr; } markStaticReadIfSymbol(child); TIntermUnary *node = new TIntermUnary(op, child, func); node->setLine(loc); return node->fold(mDiagnostics); } TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { ASSERT(op != EOpNull); TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); if (node == nullptr) { return child; } return node; } TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { checkCanBeLValue(loc, GetOperatorString(op), child); return addUnaryMath(op, child, loc); } TIntermTyped *TParseContext::expressionOrFoldedResult(TIntermTyped *expression) { // If we can, we should return the folded version of the expression for subsequent parsing. This // enables folding the containing expression during parsing as well, instead of the separate // FoldExpressions() step where folding nested expressions requires multiple full AST // traversals. // Even if folding fails the fold() functions return some node representing the expression, // typically the original node. So "folded" can be assumed to be non-null. TIntermTyped *folded = expression->fold(mDiagnostics); ASSERT(folded != nullptr); if (folded->getQualifier() == expression->getQualifier()) { // We need this expression to have the correct qualifier when validating the consuming // expression. So we can only return the folded node from here in case it has the same // qualifier as the original expression. In this kind of a cases the qualifier of the folded // node is EvqConst, whereas the qualifier of the expression is EvqTemporary: // 1. (true ? 1.0 : non_constant) // 2. (non_constant, 1.0) return folded; } return expression; } bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { // Check opaque types are not allowed to be operands in expressions other than array indexing // and structure member selection. if (IsOpaqueType(left->getBasicType()) || IsOpaqueType(right->getBasicType())) { switch (op) { case EOpIndexDirect: case EOpIndexIndirect: break; default: ASSERT(op != EOpIndexDirectStruct); error(loc, "Invalid operation for variables with an opaque type", GetOperatorString(op)); return false; } } if (right->getMemoryQualifier().writeonly) { error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op)); return false; } if (left->getMemoryQualifier().writeonly) { switch (op) { case EOpAssign: case EOpInitialize: case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: break; default: error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op)); return false; } } if (left->getType().getStruct() || right->getType().getStruct()) { switch (op) { case EOpIndexDirectStruct: ASSERT(left->getType().getStruct()); break; case EOpEqual: case EOpNotEqual: case EOpAssign: case EOpInitialize: if (left->getType() != right->getType()) { return false; } break; default: error(loc, "Invalid operation for structs", GetOperatorString(op)); return false; } } if (left->isInterfaceBlock() || right->isInterfaceBlock()) { switch (op) { case EOpIndexDirectInterfaceBlock: ASSERT(left->getType().getInterfaceBlock()); break; default: error(loc, "Invalid operation for interface blocks", GetOperatorString(op)); return false; } } if (left->isArray() != right->isArray()) { error(loc, "array / non-array mismatch", GetOperatorString(op)); return false; } if (left->isArray()) { ASSERT(right->isArray()); if (mShaderVersion < 300) { error(loc, "Invalid operation for arrays", GetOperatorString(op)); return false; } switch (op) { case EOpEqual: case EOpNotEqual: case EOpAssign: case EOpInitialize: break; default: error(loc, "Invalid operation for arrays", GetOperatorString(op)); return false; } // At this point, size of implicitly sized arrays should be resolved. if (left->getType().getArraySizes() != right->getType().getArraySizes()) { error(loc, "array size mismatch", GetOperatorString(op)); return false; } } // Check ops which require integer / ivec parameters bool isBitShift = false; switch (op) { case EOpBitShiftLeft: case EOpBitShiftRight: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: // Unsigned can be bit-shifted by signed and vice versa, but we need to // check that the basic type is an integer type. isBitShift = true; if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) { return false; } break; case EOpBitwiseAnd: case EOpBitwiseXor: case EOpBitwiseOr: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: // It is enough to check the type of only one operand, since later it // is checked that the operand types match. if (!IsInteger(left->getBasicType())) { return false; } break; default: break; } ImplicitTypeConversion conversion = GetConversion(left->getBasicType(), right->getBasicType()); // Implicit type casting only supported for GL shaders if (!isBitShift && conversion != ImplicitTypeConversion::Same && (!IsDesktopGLSpec(mShaderSpec) || !IsValidImplicitConversion(conversion, op))) { return false; } // Check that: // 1. Type sizes match exactly on ops that require that. // 2. Restrictions for structs that contain arrays or samplers are respected. // 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected. switch (op) { case EOpAssign: case EOpInitialize: case EOpEqual: case EOpNotEqual: // ESSL 1.00 sections 5.7, 5.8, 5.9 if (mShaderVersion < 300 && left->getType().isStructureContainingArrays()) { error(loc, "undefined operation for structs containing arrays", GetOperatorString(op)); return false; } // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, // we interpret the spec so that this extends to structs containing samplers, // similarly to ESSL 1.00 spec. if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && left->getType().isStructureContainingSamplers()) { error(loc, "undefined operation for structs containing samplers", GetOperatorString(op)); return false; } if ((left->getNominalSize() != right->getNominalSize()) || (left->getSecondarySize() != right->getSecondarySize())) { error(loc, "dimension mismatch", GetOperatorString(op)); return false; } break; case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: if (!left->isScalar() || !right->isScalar()) { error(loc, "comparison operator only defined for scalars", GetOperatorString(op)); return false; } break; case EOpAdd: case EOpSub: case EOpDiv: case EOpIMod: case EOpBitShiftLeft: case EOpBitShiftRight: case EOpBitwiseAnd: case EOpBitwiseXor: case EOpBitwiseOr: case EOpAddAssign: case EOpSubAssign: case EOpDivAssign: case EOpIModAssign: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix())) { return false; } // Are the sizes compatible? if (left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize()) { // If the nominal sizes of operands do not match: // One of them must be a scalar. if (!left->isScalar() && !right->isScalar()) return false; // In the case of compound assignment other than multiply-assign, // the right side needs to be a scalar. Otherwise a vector/matrix // would be assigned to a scalar. A scalar can't be shifted by a // vector either. if (!right->isScalar() && (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight)) return false; } break; default: break; } return true; } bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op, const TType &left, const TType &right) { switch (op) { case EOpMul: case EOpMulAssign: return left.getNominalSize() == right.getNominalSize() && left.getSecondarySize() == right.getSecondarySize(); case EOpVectorTimesScalar: return true; case EOpVectorTimesScalarAssign: ASSERT(!left.isMatrix() && !right.isMatrix()); return left.isVector() && !right.isVector(); case EOpVectorTimesMatrix: return left.getNominalSize() == right.getRows(); case EOpVectorTimesMatrixAssign: ASSERT(!left.isMatrix() && right.isMatrix()); return left.isVector() && left.getNominalSize() == right.getRows() && left.getNominalSize() == right.getCols(); case EOpMatrixTimesVector: return left.getCols() == right.getNominalSize(); case EOpMatrixTimesScalar: return true; case EOpMatrixTimesScalarAssign: ASSERT(left.isMatrix() && !right.isMatrix()); return !right.isVector(); case EOpMatrixTimesMatrix: return left.getCols() == right.getRows(); case EOpMatrixTimesMatrixAssign: ASSERT(left.isMatrix() && right.isMatrix()); // We need to check two things: // 1. The matrix multiplication step is valid. // 2. The result will have the same number of columns as the lvalue. return left.getCols() == right.getRows() && left.getCols() == right.getCols(); default: UNREACHABLE(); return false; } } TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if (!binaryOpCommonCheck(op, left, right, loc)) return nullptr; switch (op) { case EOpEqual: case EOpNotEqual: case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: break; case EOpLogicalOr: case EOpLogicalXor: case EOpLogicalAnd: ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && !right->getType().getStruct()); if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar()) { return nullptr; } // Basic types matching should have been already checked. ASSERT(right->getBasicType() == EbtBool); break; case EOpAdd: case EOpSub: case EOpDiv: case EOpMul: ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && !right->getType().getStruct()); if (left->getBasicType() == EbtBool) { return nullptr; } break; case EOpIMod: ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && !right->getType().getStruct()); // Note that this is only for the % operator, not for mod() if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) { return nullptr; } break; default: break; } if (op == EOpMul) { op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType()); if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) { return nullptr; } } TIntermBinary *node = new TIntermBinary(op, left, right); ASSERT(op != EOpAssign); markStaticReadIfSymbol(left); markStaticReadIfSymbol(right); node->setLine(loc); return expressionOrFoldedResult(node); } TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if (node == 0) { binaryOpError(loc, GetOperatorString(op), left->getType(), right->getType()); return left; } return node; } TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if (node == nullptr) { binaryOpError(loc, GetOperatorString(op), left->getType(), right->getType()); node = CreateBoolNode(false); node->setLine(loc); } return node; } TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { checkCanBeLValue(loc, "assign", left); TIntermBinary *node = nullptr; if (binaryOpCommonCheck(op, left, right, loc)) { if (op == EOpMulAssign) { op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType()); if (isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) { node = new TIntermBinary(op, left, right); } } else { node = new TIntermBinary(op, left, right); } } if (node == nullptr) { assignError(loc, "assign", left->getType(), right->getType()); return left; } if (op != EOpAssign) { markStaticReadIfSymbol(left); } markStaticReadIfSymbol(right); node->setLine(loc); return node; } TIntermTyped *TParseContext::addComma(TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { // WebGL2 section 5.26, the following results in an error: // "Sequence operator applied to void, arrays, or structs containing arrays" if (mShaderSpec == SH_WEBGL2_SPEC && (left->isArray() || left->getBasicType() == EbtVoid || left->getType().isStructureContainingArrays() || right->isArray() || right->getBasicType() == EbtVoid || right->getType().isStructureContainingArrays())) { error(loc, "sequence operator is not allowed for void, arrays, or structs containing arrays", ","); } TIntermBinary *commaNode = TIntermBinary::CreateComma(left, right, mShaderVersion); markStaticReadIfSymbol(left); markStaticReadIfSymbol(right); commaNode->setLine(loc); return expressionOrFoldedResult(commaNode); } TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) { switch (op) { case EOpContinue: if (mLoopNestingLevel <= 0) { error(loc, "continue statement only allowed in loops", ""); } break; case EOpBreak: if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) { error(loc, "break statement only allowed in loops and switch statements", ""); } break; case EOpReturn: if (mCurrentFunctionType->getBasicType() != EbtVoid) { error(loc, "non-void function must return a value", "return"); } break; case EOpKill: if (mShaderType != GL_FRAGMENT_SHADER) { error(loc, "discard supported in fragment shaders only", "discard"); } break; default: UNREACHABLE(); break; } return addBranch(op, nullptr, loc); } TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *expression, const TSourceLoc &loc) { if (expression != nullptr) { markStaticReadIfSymbol(expression); ASSERT(op == EOpReturn); mFunctionReturnsValue = true; if (mCurrentFunctionType->getBasicType() == EbtVoid) { error(loc, "void function cannot return a value", "return"); } else if (*mCurrentFunctionType != expression->getType()) { error(loc, "function return is not matching type:", "return"); } } TIntermBranch *node = new TIntermBranch(op, expression); node->setLine(loc); return node; } void TParseContext::appendStatement(TIntermBlock *block, TIntermNode *statement) { if (statement != nullptr) { markStaticReadIfSymbol(statement); block->appendStatement(statement); } } void TParseContext::checkTextureGather(TIntermAggregate *functionCall) { ASSERT(functionCall->getOp() == EOpCallBuiltInFunction); const TFunction *func = functionCall->getFunction(); if (BuiltInGroup::isTextureGather(func)) { bool isTextureGatherOffsetOrOffsets = BuiltInGroup::isTextureGatherOffset(func) || BuiltInGroup::isTextureGatherOffsets(func); TIntermNode *componentNode = nullptr; TIntermSequence *arguments = functionCall->getSequence(); ASSERT(arguments->size() >= 2u && arguments->size() <= 4u); const TIntermTyped *sampler = arguments->front()->getAsTyped(); ASSERT(sampler != nullptr); switch (sampler->getBasicType()) { case EbtSampler2D: case EbtISampler2D: case EbtUSampler2D: case EbtSampler2DArray: case EbtISampler2DArray: case EbtUSampler2DArray: if ((!isTextureGatherOffsetOrOffsets && arguments->size() == 3u) || (isTextureGatherOffsetOrOffsets && arguments->size() == 4u)) { componentNode = arguments->back(); } break; case EbtSamplerCube: case EbtISamplerCube: case EbtUSamplerCube: ASSERT(!isTextureGatherOffsetOrOffsets); if (arguments->size() == 3u) { componentNode = arguments->back(); } break; case EbtSampler2DShadow: case EbtSampler2DArrayShadow: case EbtSamplerCubeShadow: break; default: UNREACHABLE(); break; } if (componentNode) { const TIntermConstantUnion *componentConstantUnion = componentNode->getAsConstantUnion(); if (componentNode->getAsTyped()->getQualifier() != EvqConst || !componentConstantUnion) { error(functionCall->getLine(), "Texture component must be a constant expression", func->name()); } else { int component = componentConstantUnion->getIConst(0); if (component < 0 || component > 3) { error(functionCall->getLine(), "Component must be in the range [0;3]", func->name()); } } } } } void TParseContext::checkTextureOffset(TIntermAggregate *functionCall) { ASSERT(functionCall->getOp() == EOpCallBuiltInFunction); const TFunction *func = functionCall->getFunction(); TIntermNode *offset = nullptr; TIntermSequence *arguments = functionCall->getSequence(); if (BuiltInGroup::isTextureOffsetNoBias(func) || BuiltInGroup::isTextureGatherOffsetNoComp(func) || BuiltInGroup::isTextureGatherOffsetsNoComp(func)) { offset = arguments->back(); } else if (BuiltInGroup::isTextureOffsetBias(func) || BuiltInGroup::isTextureGatherOffsetComp(func) || BuiltInGroup::isTextureGatherOffsetsComp(func)) { // A bias or comp parameter follows the offset parameter. ASSERT(arguments->size() >= 3); offset = (*arguments)[2]; } // If not one of the above built-ins, there's nothing to do here. if (offset == nullptr) { return; } bool isTextureGatherOffset = BuiltInGroup::isTextureGatherOffset(func); bool isTextureGatherOffsets = BuiltInGroup::isTextureGatherOffsets(func); bool useTextureGatherOffsetConstraints = isTextureGatherOffset || isTextureGatherOffsets; int minOffsetValue = useTextureGatherOffsetConstraints ? mMinProgramTextureGatherOffset : mMinProgramTexelOffset; int maxOffsetValue = useTextureGatherOffsetConstraints ? mMaxProgramTextureGatherOffset : mMaxProgramTexelOffset; if (isTextureGatherOffsets) { // If textureGatherOffsets, the offsets parameter is an array, which is expected as an // aggregate constructor node. TIntermAggregate *offsetAggregate = offset->getAsAggregate(); const TConstantUnion *offsetValues = offsetAggregate ? offsetAggregate->getConstantValue() : nullptr; if (offsetValues == nullptr) { error(functionCall->getLine(), "Texture offsets must be a constant expression", func->name()); return; } constexpr unsigned int kOffsetsCount = 4; const TType &offsetAggregateType = offsetAggregate->getType(); if (offsetAggregateType.getNumArraySizes() != 1 || offsetAggregateType.getArraySizes()[0] != kOffsetsCount) { error(functionCall->getLine(), "Texture offsets must be an array of 4 elements", func->name()); return; } TIntermNode *firstOffset = offsetAggregate->getSequence()->front(); size_t size = firstOffset->getAsTyped()->getType().getObjectSize(); for (unsigned int i = 0; i < kOffsetsCount; ++i) { checkSingleTextureOffset(offset->getLine(), &offsetValues[i * size], size, minOffsetValue, maxOffsetValue); } } else { // If textureOffset or textureGatherOffset, the offset is expected to be found as a constant // union. TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion(); // ES3.2 or ES3.1's EXT_gpu_shader5 allow non-const offsets to be passed to // textureGatherOffset. bool textureGatherOffsetMustBeConst = mShaderVersion <= 310 && !isExtensionEnabled(TExtension::EXT_gpu_shader5); bool isOffsetConst = offset->getAsTyped()->getQualifier() == EvqConst && offsetConstantUnion != nullptr; bool offsetMustBeConst = !isTextureGatherOffset || textureGatherOffsetMustBeConst; if (!isOffsetConst && offsetMustBeConst) { error(functionCall->getLine(), "Texture offset must be a constant expression", func->name()); return; } // We cannot verify non-constant offsets to textureGatherOffset. if (offsetConstantUnion == nullptr) { ASSERT(!offsetMustBeConst); return; } size_t size = offsetConstantUnion->getType().getObjectSize(); const TConstantUnion *values = offsetConstantUnion->getConstantValue(); checkSingleTextureOffset(offset->getLine(), values, size, minOffsetValue, maxOffsetValue); } } void TParseContext::checkSingleTextureOffset(const TSourceLoc &line, const TConstantUnion *values, size_t size, int minOffsetValue, int maxOffsetValue) { for (size_t i = 0u; i < size; ++i) { ASSERT(values[i].getType() == EbtInt); int offsetValue = values[i].getIConst(); if (offsetValue > maxOffsetValue || offsetValue < minOffsetValue) { std::stringstream tokenStream = sh::InitializeStream(); tokenStream << offsetValue; std::string token = tokenStream.str(); error(line, "Texture offset value out of valid range", token.c_str()); } } } void TParseContext::checkAtomicMemoryBuiltinFunctions(TIntermAggregate *functionCall) { const TFunction *func = functionCall->getFunction(); if (BuiltInGroup::isAtomicMemory(func)) { ASSERT(IsAtomicFunction(functionCall->getOp())); TIntermSequence *arguments = functionCall->getSequence(); TIntermTyped *memNode = (*arguments)[0]->getAsTyped(); if (IsBufferOrSharedVariable(memNode)) { return; } while (memNode->getAsBinaryNode() || memNode->getAsSwizzleNode()) { // Child 0 is "left" if binary, and the expression being swizzled if swizzle. // Note: we don't need to check that the binary operation is one of EOp*Index*, as any // other operation will result in a temp value which cannot be passed to this // out/inout parameter anyway. memNode = memNode->getChildNode(0)->getAsTyped(); if (IsBufferOrSharedVariable(memNode)) { return; } } error(memNode->getLine(), "The value passed to the mem argument of an atomic memory function does not " "correspond to a buffer or shared variable.", func->name()); } } // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall) { ASSERT(functionCall->getOp() == EOpCallBuiltInFunction); const TFunction *func = functionCall->getFunction(); if (BuiltInGroup::isImage(func)) { TIntermSequence *arguments = functionCall->getSequence(); TIntermTyped *imageNode = (*arguments)[0]->getAsTyped(); const TMemoryQualifier &memoryQualifier = imageNode->getMemoryQualifier(); if (BuiltInGroup::isImageStore(func)) { if (memoryQualifier.readonly) { error(imageNode->getLine(), "'imageStore' cannot be used with images qualified as 'readonly'", GetImageArgumentToken(imageNode)); } } else if (BuiltInGroup::isImageLoad(func)) { if (memoryQualifier.writeonly) { error(imageNode->getLine(), "'imageLoad' cannot be used with images qualified as 'writeonly'", GetImageArgumentToken(imageNode)); } } } } // GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters void TParseContext::checkImageMemoryAccessForUserDefinedFunctions( const TFunction *functionDefinition, const TIntermAggregate *functionCall) { ASSERT(functionCall->getOp() == EOpCallFunctionInAST); const TIntermSequence &arguments = *functionCall->getSequence(); ASSERT(functionDefinition->getParamCount() == arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) { TIntermTyped *typedArgument = arguments[i]->getAsTyped(); const TType &functionArgumentType = typedArgument->getType(); const TType &functionParameterType = functionDefinition->getParam(i)->getType(); ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType()); if (IsImage(functionArgumentType.getBasicType())) { const TMemoryQualifier &functionArgumentMemoryQualifier = functionArgumentType.getMemoryQualifier(); const TMemoryQualifier &functionParameterMemoryQualifier = functionParameterType.getMemoryQualifier(); if (functionArgumentMemoryQualifier.readonly && !functionParameterMemoryQualifier.readonly) { error(functionCall->getLine(), "Function call discards the 'readonly' qualifier from image", GetImageArgumentToken(typedArgument)); } if (functionArgumentMemoryQualifier.writeonly && !functionParameterMemoryQualifier.writeonly) { error(functionCall->getLine(), "Function call discards the 'writeonly' qualifier from image", GetImageArgumentToken(typedArgument)); } if (functionArgumentMemoryQualifier.coherent && !functionParameterMemoryQualifier.coherent) { error(functionCall->getLine(), "Function call discards the 'coherent' qualifier from image", GetImageArgumentToken(typedArgument)); } if (functionArgumentMemoryQualifier.volatileQualifier && !functionParameterMemoryQualifier.volatileQualifier) { error(functionCall->getLine(), "Function call discards the 'volatile' qualifier from image", GetImageArgumentToken(typedArgument)); } } } } TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunctionLookup *fnCall, const TSourceLoc &loc) { if (fnCall->thisNode() != nullptr) { return addMethod(fnCall, loc); } if (fnCall->isConstructor()) { return addConstructor(fnCall, loc); } return addNonConstructorFunctionCall(fnCall, loc); } TIntermTyped *TParseContext::addMethod(TFunctionLookup *fnCall, const TSourceLoc &loc) { TIntermTyped *thisNode = fnCall->thisNode(); // It's possible for the name pointer in the TFunction to be null in case it gets parsed as // a constructor. But such a TFunction can't reach here, since the lexer goes into FIELDS // mode after a dot, which makes type identifiers to be parsed as FIELD_SELECTION instead. // So accessing fnCall->name() below is safe. if (fnCall->name() != "length") { error(loc, "invalid method", fnCall->name()); } else if (!fnCall->arguments().empty()) { error(loc, "method takes no parameters", "length"); } else if (!thisNode->isArray()) { error(loc, "length can only be called on arrays", "length"); } else if (thisNode->getQualifier() == EvqPerVertexIn && mGeometryShaderInputPrimitiveType == EptUndefined) { ASSERT(mShaderType == GL_GEOMETRY_SHADER_EXT); error(loc, "missing input primitive declaration before calling length on gl_in", "length"); } else { TIntermUnary *node = new TIntermUnary(EOpArrayLength, thisNode, nullptr); markStaticReadIfSymbol(thisNode); node->setLine(loc); return node->fold(mDiagnostics); } return CreateZeroNode(TType(EbtInt, EbpUndefined, EvqConst)); } TIntermTyped *TParseContext::addNonConstructorFunctionCall(TFunctionLookup *fnCall, const TSourceLoc &loc) { // First check whether the function has been hidden by a variable name or struct typename by // using the symbol looked up in the lexical phase. If the function is not hidden, look for one // with a matching argument list. if (fnCall->symbol() != nullptr && !fnCall->symbol()->isFunction()) { error(loc, "function name expected", fnCall->name()); } else { // There are no inner functions, so it's enough to look for user-defined functions in the // global scope. const TSymbol *symbol = symbolTable.findGlobal(fnCall->getMangledName()); if (symbol == nullptr && IsDesktopGLSpec(mShaderSpec)) { // If using Desktop GL spec, need to check for implicit conversion symbol = symbolTable.findGlobalWithConversion( fnCall->getMangledNamesForImplicitConversions()); } if (symbol != nullptr) { // A user-defined function - could be an overloaded built-in as well. ASSERT(symbol->symbolType() == SymbolType::UserDefined); const TFunction *fnCandidate = static_cast(symbol); TIntermAggregate *callNode = TIntermAggregate::CreateFunctionCall(*fnCandidate, &fnCall->arguments()); callNode->setLine(loc); checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, callNode); functionCallRValueLValueErrorCheck(fnCandidate, callNode); return callNode; } symbol = symbolTable.findBuiltIn(fnCall->getMangledName(), mShaderVersion); if (symbol == nullptr && IsDesktopGLSpec(mShaderSpec)) { // If using Desktop GL spec, need to check for implicit conversion symbol = symbolTable.findBuiltInWithConversion( fnCall->getMangledNamesForImplicitConversions(), mShaderVersion); } if (symbol != nullptr) { // A built-in function. ASSERT(symbol->symbolType() == SymbolType::BuiltIn); const TFunction *fnCandidate = static_cast(symbol); if (fnCandidate->extension() != TExtension::UNDEFINED) { checkCanUseExtension(loc, fnCandidate->extension()); } TOperator op = fnCandidate->getBuiltInOp(); if (op != EOpCallBuiltInFunction) { // A function call mapped to a built-in operation. if (fnCandidate->getParamCount() == 1) { // Treat it like a built-in unary operator. TIntermNode *unaryParamNode = fnCall->arguments().front(); TIntermTyped *callNode = createUnaryMath(op, unaryParamNode->getAsTyped(), loc, fnCandidate); ASSERT(callNode != nullptr); return callNode; } TIntermAggregate *callNode = TIntermAggregate::CreateBuiltInFunctionCall(*fnCandidate, &fnCall->arguments()); callNode->setLine(loc); checkAtomicMemoryBuiltinFunctions(callNode); // Some built-in functions have out parameters too. functionCallRValueLValueErrorCheck(fnCandidate, callNode); // See if we can constant fold a built-in. Note that this may be possible // even if it is not const-qualified. return callNode->fold(mDiagnostics); } // This is a built-in function with no op associated with it. TIntermAggregate *callNode = TIntermAggregate::CreateBuiltInFunctionCall(*fnCandidate, &fnCall->arguments()); callNode->setLine(loc); checkTextureOffset(callNode); checkTextureGather(callNode); checkImageMemoryAccessForBuiltinFunctions(callNode); functionCallRValueLValueErrorCheck(fnCandidate, callNode); return callNode; } else { error(loc, "no matching overloaded function found", fnCall->name()); } } // Error message was already written. Put on a dummy node for error recovery. return CreateZeroNode(TType(EbtFloat, EbpMedium, EvqConst)); } TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, TIntermTyped *trueExpression, TIntermTyped *falseExpression, const TSourceLoc &loc) { if (!checkIsScalarBool(loc, cond)) { return falseExpression; } if (trueExpression->getType() != falseExpression->getType()) { TInfoSinkBase reasonStream; reasonStream << "mismatching ternary operator operand types '" << trueExpression->getType() << " and '" << falseExpression->getType() << "'"; error(loc, reasonStream.c_str(), "?:"); return falseExpression; } if (IsOpaqueType(trueExpression->getBasicType())) { // ESSL 1.00 section 4.1.7 // ESSL 3.00.6 section 4.1.7 // Opaque/sampler types are not allowed in most types of expressions, including ternary. // Note that structs containing opaque types don't need to be checked as structs are // forbidden below. error(loc, "ternary operator is not allowed for opaque types", "?:"); return falseExpression; } if (cond->getMemoryQualifier().writeonly || trueExpression->getMemoryQualifier().writeonly || falseExpression->getMemoryQualifier().writeonly) { error(loc, "ternary operator is not allowed for variables with writeonly", "?:"); return falseExpression; } // ESSL 1.00.17 sections 5.2 and 5.7: // Ternary operator is not among the operators allowed for structures/arrays. // ESSL 3.00.6 section 5.7: // Ternary operator support is optional for arrays. No certainty that it works across all // devices with struct either, so we err on the side of caution here. TODO (oetuaho@nvidia.com): // Would be nice to make the spec and implementation agree completely here. if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct) { error(loc, "ternary operator is not allowed for structures or arrays", "?:"); return falseExpression; } if (trueExpression->getBasicType() == EbtInterfaceBlock) { error(loc, "ternary operator is not allowed for interface blocks", "?:"); return falseExpression; } // WebGL2 section 5.26, the following results in an error: // "Ternary operator applied to void, arrays, or structs containing arrays" if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid) { error(loc, "ternary operator is not allowed for void", "?:"); return falseExpression; } TIntermTernary *node = new TIntermTernary(cond, trueExpression, falseExpression); markStaticReadIfSymbol(cond); markStaticReadIfSymbol(trueExpression); markStaticReadIfSymbol(falseExpression); node->setLine(loc); return expressionOrFoldedResult(node); } // // Parse an array of strings using yyparse. // // Returns 0 for success. // int PaParseStrings(size_t count, const char *const string[], const int length[], TParseContext *context) { if ((count == 0) || (string == nullptr)) return 1; if (glslang_initialize(context)) return 1; int error = glslang_scan(count, string, length, context); if (!error) error = glslang_parse(context); glslang_finalize(context); return (error == 0) && (context->numErrors() == 0) ? 0 : 1; } } // namespace sh