// // Copyright 2002 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Texture.cpp: Implements the gl::Texture class. [OpenGL ES 2.0.24] section 3.7 page 63. #include "libANGLE/Texture.h" #include "common/mathutil.h" #include "common/utilities.h" #include "libANGLE/Config.h" #include "libANGLE/Context.h" #include "libANGLE/Image.h" #include "libANGLE/State.h" #include "libANGLE/Surface.h" #include "libANGLE/formatutils.h" #include "libANGLE/renderer/GLImplFactory.h" #include "libANGLE/renderer/TextureImpl.h" namespace gl { namespace { bool IsPointSampled(const SamplerState &samplerState) { return (samplerState.getMagFilter() == GL_NEAREST && (samplerState.getMinFilter() == GL_NEAREST || samplerState.getMinFilter() == GL_NEAREST_MIPMAP_NEAREST)); } size_t GetImageDescIndex(TextureTarget target, size_t level) { return IsCubeMapFaceTarget(target) ? (level * 6 + CubeMapTextureTargetToFaceIndex(target)) : level; } InitState DetermineInitState(const Context *context, Buffer *unpackBuffer, const uint8_t *pixels) { // Can happen in tests. if (!context || !context->isRobustResourceInitEnabled()) { return InitState::Initialized; } return (!pixels && !unpackBuffer) ? InitState::MayNeedInit : InitState::Initialized; } } // namespace bool IsMipmapFiltered(const SamplerState &samplerState) { switch (samplerState.getMinFilter()) { case GL_NEAREST: case GL_LINEAR: return false; case GL_NEAREST_MIPMAP_NEAREST: case GL_LINEAR_MIPMAP_NEAREST: case GL_NEAREST_MIPMAP_LINEAR: case GL_LINEAR_MIPMAP_LINEAR: return true; default: UNREACHABLE(); return false; } } SwizzleState::SwizzleState() : swizzleRed(GL_RED), swizzleGreen(GL_GREEN), swizzleBlue(GL_BLUE), swizzleAlpha(GL_ALPHA) {} SwizzleState::SwizzleState(GLenum red, GLenum green, GLenum blue, GLenum alpha) : swizzleRed(red), swizzleGreen(green), swizzleBlue(blue), swizzleAlpha(alpha) {} bool SwizzleState::swizzleRequired() const { return swizzleRed != GL_RED || swizzleGreen != GL_GREEN || swizzleBlue != GL_BLUE || swizzleAlpha != GL_ALPHA; } bool SwizzleState::operator==(const SwizzleState &other) const { return swizzleRed == other.swizzleRed && swizzleGreen == other.swizzleGreen && swizzleBlue == other.swizzleBlue && swizzleAlpha == other.swizzleAlpha; } bool SwizzleState::operator!=(const SwizzleState &other) const { return !(*this == other); } TextureState::TextureState(TextureType type) : mType(type), mSamplerState(SamplerState::CreateDefaultForTarget(type)), mBaseLevel(0), mMaxLevel(1000), mDepthStencilTextureMode(GL_DEPTH_COMPONENT), mImmutableFormat(false), mImmutableLevels(0), mUsage(GL_NONE), mImageDescs((IMPLEMENTATION_MAX_TEXTURE_LEVELS + 1) * (type == TextureType::CubeMap ? 6 : 1)), mCropRect(0, 0, 0, 0), mGenerateMipmapHint(GL_FALSE), mInitState(InitState::MayNeedInit), mCachedSamplerFormat(SamplerFormat::InvalidEnum), mCachedSamplerCompareMode(GL_NONE), mCachedSamplerFormatValid(false) {} TextureState::~TextureState() {} bool TextureState::swizzleRequired() const { return mSwizzleState.swizzleRequired(); } GLuint TextureState::getEffectiveBaseLevel() const { if (mImmutableFormat) { // GLES 3.0.4 section 3.8.10 return std::min(mBaseLevel, mImmutableLevels - 1); } // Some classes use the effective base level to index arrays with level data. By clamping the // effective base level to max levels these arrays need just one extra item to store properties // that should be returned for all out-of-range base level values, instead of needing special // handling for out-of-range base levels. return std::min(mBaseLevel, static_cast(IMPLEMENTATION_MAX_TEXTURE_LEVELS)); } GLuint TextureState::getEffectiveMaxLevel() const { if (mImmutableFormat) { // GLES 3.0.4 section 3.8.10 GLuint clampedMaxLevel = std::max(mMaxLevel, getEffectiveBaseLevel()); clampedMaxLevel = std::min(clampedMaxLevel, mImmutableLevels - 1); return clampedMaxLevel; } return mMaxLevel; } GLuint TextureState::getMipmapMaxLevel() const { const ImageDesc &baseImageDesc = getImageDesc(getBaseImageTarget(), getEffectiveBaseLevel()); GLuint expectedMipLevels = 0; if (mType == TextureType::_3D) { const int maxDim = std::max(std::max(baseImageDesc.size.width, baseImageDesc.size.height), baseImageDesc.size.depth); expectedMipLevels = static_cast(log2(maxDim)); } else { expectedMipLevels = static_cast( log2(std::max(baseImageDesc.size.width, baseImageDesc.size.height))); } return std::min(getEffectiveBaseLevel() + expectedMipLevels, getEffectiveMaxLevel()); } bool TextureState::setBaseLevel(GLuint baseLevel) { if (mBaseLevel != baseLevel) { mBaseLevel = baseLevel; return true; } return false; } bool TextureState::setMaxLevel(GLuint maxLevel) { if (mMaxLevel != maxLevel) { mMaxLevel = maxLevel; return true; } return false; } // Tests for cube texture completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81. // According to [OpenGL ES 3.0.5] section 3.8.13 Texture Completeness page 160 any // per-level checks begin at the base-level. // For OpenGL ES2 the base level is always zero. bool TextureState::isCubeComplete() const { ASSERT(mType == TextureType::CubeMap); angle::EnumIterator face = kCubeMapTextureTargetMin; const ImageDesc &baseImageDesc = getImageDesc(*face, getEffectiveBaseLevel()); if (baseImageDesc.size.width == 0 || baseImageDesc.size.width != baseImageDesc.size.height) { return false; } ++face; for (; face != kAfterCubeMapTextureTargetMax; ++face) { const ImageDesc &faceImageDesc = getImageDesc(*face, getEffectiveBaseLevel()); if (faceImageDesc.size.width != baseImageDesc.size.width || faceImageDesc.size.height != baseImageDesc.size.height || !Format::SameSized(faceImageDesc.format, baseImageDesc.format)) { return false; } } return true; } const ImageDesc &TextureState::getBaseLevelDesc() const { ASSERT(mType != TextureType::CubeMap || isCubeComplete()); return getImageDesc(getBaseImageTarget(), getEffectiveBaseLevel()); } void TextureState::setCrop(const Rectangle &rect) { mCropRect = rect; } const Rectangle &TextureState::getCrop() const { return mCropRect; } void TextureState::setGenerateMipmapHint(GLenum hint) { mGenerateMipmapHint = hint; } GLenum TextureState::getGenerateMipmapHint() const { return mGenerateMipmapHint; } SamplerFormat TextureState::computeRequiredSamplerFormat(const SamplerState &samplerState) const { const ImageDesc &baseImageDesc = getImageDesc(getBaseImageTarget(), getEffectiveBaseLevel()); if ((baseImageDesc.format.info->format == GL_DEPTH_COMPONENT || baseImageDesc.format.info->format == GL_DEPTH_STENCIL) && samplerState.getCompareMode() != GL_NONE) { return SamplerFormat::Shadow; } else { switch (baseImageDesc.format.info->componentType) { case GL_UNSIGNED_NORMALIZED: case GL_SIGNED_NORMALIZED: case GL_FLOAT: return SamplerFormat::Float; case GL_INT: return SamplerFormat::Signed; case GL_UNSIGNED_INT: return SamplerFormat::Unsigned; default: return SamplerFormat::InvalidEnum; } } } bool TextureState::computeSamplerCompleteness(const SamplerState &samplerState, const State &state) const { if (mBaseLevel > mMaxLevel) { return false; } const ImageDesc &baseImageDesc = getImageDesc(getBaseImageTarget(), getEffectiveBaseLevel()); if (baseImageDesc.size.width == 0 || baseImageDesc.size.height == 0 || baseImageDesc.size.depth == 0) { return false; } // The cases where the texture is incomplete because base level is out of range should be // handled by the above condition. ASSERT(mBaseLevel < IMPLEMENTATION_MAX_TEXTURE_LEVELS || mImmutableFormat); if (mType == TextureType::CubeMap && baseImageDesc.size.width != baseImageDesc.size.height) { return false; } // According to es 3.1 spec, texture is justified as incomplete if sized internalformat is // unfilterable(table 20.11) and filter is not GL_NEAREST(8.16). The default value of minFilter // is NEAREST_MIPMAP_LINEAR and magFilter is LINEAR(table 20.11,). For multismaple texture, // filter state of multisample texture is ignored(11.1.3.3). So it shouldn't be judged as // incomplete texture. So, we ignore filtering for multisample texture completeness here. if (!IsMultisampled(mType) && !baseImageDesc.format.info->filterSupport(state.getClientVersion(), state.getExtensions()) && !IsPointSampled(samplerState)) { return false; } bool npotSupport = state.getExtensions().textureNPOTOES || state.getClientMajorVersion() >= 3; if (!npotSupport) { if ((samplerState.getWrapS() != GL_CLAMP_TO_EDGE && samplerState.getWrapS() != GL_CLAMP_TO_BORDER && !isPow2(baseImageDesc.size.width)) || (samplerState.getWrapT() != GL_CLAMP_TO_EDGE && samplerState.getWrapT() != GL_CLAMP_TO_BORDER && !isPow2(baseImageDesc.size.height))) { return false; } } if (mType != TextureType::_2DMultisample && IsMipmapFiltered(samplerState)) { if (!npotSupport) { if (!isPow2(baseImageDesc.size.width) || !isPow2(baseImageDesc.size.height)) { return false; } } if (!computeMipmapCompleteness()) { return false; } } else { if (mType == TextureType::CubeMap && !isCubeComplete()) { return false; } } // From GL_OES_EGL_image_external_essl3: If state is present in a sampler object bound to a // texture unit that would have been rejected by a call to TexParameter* for the texture bound // to that unit, the behavior of the implementation is as if the texture were incomplete. For // example, if TEXTURE_WRAP_S or TEXTURE_WRAP_T is set to anything but CLAMP_TO_EDGE on the // sampler object bound to a texture unit and the texture bound to that unit is an external // texture and EXT_EGL_image_external_wrap_modes is not enabled, the texture will be considered // incomplete. // Sampler object state which does not affect sampling for the type of texture bound // to a texture unit, such as TEXTURE_WRAP_R for an external texture, does not affect // completeness. if (mType == TextureType::External) { if (!state.getExtensions().eglImageExternalWrapModesEXT) { if (samplerState.getWrapS() != GL_CLAMP_TO_EDGE || samplerState.getWrapT() != GL_CLAMP_TO_EDGE) { return false; } } if (samplerState.getMinFilter() != GL_LINEAR && samplerState.getMinFilter() != GL_NEAREST) { return false; } } // OpenGLES 3.0.2 spec section 3.8.13 states that a texture is not mipmap complete if: // The internalformat specified for the texture arrays is a sized internal depth or // depth and stencil format (see table 3.13), the value of TEXTURE_COMPARE_- // MODE is NONE, and either the magnification filter is not NEAREST or the mini- // fication filter is neither NEAREST nor NEAREST_MIPMAP_NEAREST. if (!IsMultisampled(mType) && baseImageDesc.format.info->depthBits > 0 && state.getClientMajorVersion() >= 3) { // Note: we restrict this validation to sized types. For the OES_depth_textures // extension, due to some underspecification problems, we must allow linear filtering // for legacy compatibility with WebGL 1. // See http://crbug.com/649200 if (samplerState.getCompareMode() == GL_NONE && baseImageDesc.format.info->sized) { if ((samplerState.getMinFilter() != GL_NEAREST && samplerState.getMinFilter() != GL_NEAREST_MIPMAP_NEAREST) || samplerState.getMagFilter() != GL_NEAREST) { return false; } } } // OpenGLES 3.1 spec section 8.16 states that a texture is not mipmap complete if: // The internalformat specified for the texture is DEPTH_STENCIL format, the value of // DEPTH_STENCIL_TEXTURE_MODE is STENCIL_INDEX, and either the magnification filter is // not NEAREST or the minification filter is neither NEAREST nor NEAREST_MIPMAP_NEAREST. // However, the ES 3.1 spec differs from the statement above, because it is incorrect. // See the issue at https://github.com/KhronosGroup/OpenGL-API/issues/33. // For multismaple texture, filter state of multisample texture is ignored(11.1.3.3). // So it shouldn't be judged as incomplete texture. So, we ignore filtering for multisample // texture completeness here. if (!IsMultisampled(mType) && baseImageDesc.format.info->depthBits > 0 && mDepthStencilTextureMode == GL_STENCIL_INDEX) { if ((samplerState.getMinFilter() != GL_NEAREST && samplerState.getMinFilter() != GL_NEAREST_MIPMAP_NEAREST) || samplerState.getMagFilter() != GL_NEAREST) { return false; } } return true; } bool TextureState::computeMipmapCompleteness() const { const GLuint maxLevel = getMipmapMaxLevel(); for (GLuint level = getEffectiveBaseLevel(); level <= maxLevel; level++) { if (mType == TextureType::CubeMap) { for (TextureTarget face : AllCubeFaceTextureTargets()) { if (!computeLevelCompleteness(face, level)) { return false; } } } else { if (!computeLevelCompleteness(NonCubeTextureTypeToTarget(mType), level)) { return false; } } } return true; } bool TextureState::computeLevelCompleteness(TextureTarget target, size_t level) const { ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS); if (mImmutableFormat) { return true; } const ImageDesc &baseImageDesc = getImageDesc(getBaseImageTarget(), getEffectiveBaseLevel()); if (baseImageDesc.size.width == 0 || baseImageDesc.size.height == 0 || baseImageDesc.size.depth == 0) { return false; } const ImageDesc &levelImageDesc = getImageDesc(target, level); if (levelImageDesc.size.width == 0 || levelImageDesc.size.height == 0 || levelImageDesc.size.depth == 0) { return false; } if (!Format::SameSized(levelImageDesc.format, baseImageDesc.format)) { return false; } ASSERT(level >= getEffectiveBaseLevel()); const size_t relativeLevel = level - getEffectiveBaseLevel(); if (levelImageDesc.size.width != std::max(1, baseImageDesc.size.width >> relativeLevel)) { return false; } if (levelImageDesc.size.height != std::max(1, baseImageDesc.size.height >> relativeLevel)) { return false; } if (mType == TextureType::_3D) { if (levelImageDesc.size.depth != std::max(1, baseImageDesc.size.depth >> relativeLevel)) { return false; } } else if (mType == TextureType::_2DArray) { if (levelImageDesc.size.depth != baseImageDesc.size.depth) { return false; } } return true; } TextureTarget TextureState::getBaseImageTarget() const { return mType == TextureType::CubeMap ? kCubeMapTextureTargetMin : NonCubeTextureTypeToTarget(mType); } GLuint TextureState::getEnabledLevelCount() const { GLuint levelCount = 0; const GLuint baseLevel = getEffectiveBaseLevel(); const GLuint maxLevel = std::min(getEffectiveMaxLevel(), getMipmapMaxLevel()); // The mip chain will have either one or more sequential levels, or max levels, // but not a sparse one. for (size_t descIndex = baseLevel; descIndex < mImageDescs.size();) { if (!mImageDescs[descIndex].size.empty()) { levelCount++; } descIndex = (mType == TextureType::CubeMap) ? descIndex + 6 : descIndex + 1; } // The original image already takes account into the levelCount. levelCount = std::min(maxLevel - baseLevel + 1, levelCount); return levelCount; } ImageDesc::ImageDesc() : ImageDesc(Extents(0, 0, 0), Format::Invalid(), 0, GL_TRUE, InitState::MayNeedInit) {} ImageDesc::ImageDesc(const Extents &size, const Format &format, const InitState initState) : size(size), format(format), samples(0), fixedSampleLocations(GL_TRUE), initState(initState) {} ImageDesc::ImageDesc(const Extents &size, const Format &format, const GLsizei samples, const bool fixedSampleLocations, const InitState initState) : size(size), format(format), samples(samples), fixedSampleLocations(fixedSampleLocations), initState(initState) {} GLint ImageDesc::getMemorySize() const { // Assume allocated size is around width * height * depth * samples * pixelBytes angle::CheckedNumeric levelSize = 1; levelSize *= format.info->pixelBytes; levelSize *= size.width; levelSize *= size.height; levelSize *= size.depth; levelSize *= std::max(samples, 1); return levelSize.ValueOrDefault(std::numeric_limits::max()); } const ImageDesc &TextureState::getImageDesc(TextureTarget target, size_t level) const { size_t descIndex = GetImageDescIndex(target, level); ASSERT(descIndex < mImageDescs.size()); return mImageDescs[descIndex]; } void TextureState::setImageDesc(TextureTarget target, size_t level, const ImageDesc &desc) { size_t descIndex = GetImageDescIndex(target, level); ASSERT(descIndex < mImageDescs.size()); mImageDescs[descIndex] = desc; if (desc.initState == InitState::MayNeedInit) { mInitState = InitState::MayNeedInit; } } // Note that an ImageIndex that represents an entire level of a cube map corresponds to 6 // ImageDescs, so if the cube map is cube complete, we return the ImageDesc of the first cube // face, and we don't allow using this function when the cube map is not cube complete. const ImageDesc &TextureState::getImageDesc(const ImageIndex &imageIndex) const { if (imageIndex.isEntireLevelCubeMap()) { ASSERT(isCubeComplete()); const GLint levelIndex = imageIndex.getLevelIndex(); return getImageDesc(kCubeMapTextureTargetMin, levelIndex); } return getImageDesc(imageIndex.getTarget(), imageIndex.getLevelIndex()); } void TextureState::setImageDescChain(GLuint baseLevel, GLuint maxLevel, Extents baseSize, const Format &format, InitState initState) { for (GLuint level = baseLevel; level <= maxLevel; level++) { int relativeLevel = (level - baseLevel); Extents levelSize(std::max(baseSize.width >> relativeLevel, 1), std::max(baseSize.height >> relativeLevel, 1), (mType == TextureType::_2DArray) ? baseSize.depth : std::max(baseSize.depth >> relativeLevel, 1)); ImageDesc levelInfo(levelSize, format, initState); if (mType == TextureType::CubeMap) { for (TextureTarget face : AllCubeFaceTextureTargets()) { setImageDesc(face, level, levelInfo); } } else { setImageDesc(NonCubeTextureTypeToTarget(mType), level, levelInfo); } } } void TextureState::setImageDescChainMultisample(Extents baseSize, const Format &format, GLsizei samples, bool fixedSampleLocations, InitState initState) { ASSERT(mType == TextureType::_2DMultisample || mType == TextureType::_2DMultisampleArray); ImageDesc levelInfo(baseSize, format, samples, fixedSampleLocations, initState); setImageDesc(NonCubeTextureTypeToTarget(mType), 0, levelInfo); } void TextureState::clearImageDesc(TextureTarget target, size_t level) { setImageDesc(target, level, ImageDesc()); } void TextureState::clearImageDescs() { for (size_t descIndex = 0; descIndex < mImageDescs.size(); descIndex++) { mImageDescs[descIndex] = ImageDesc(); } } Texture::Texture(rx::GLImplFactory *factory, TextureID id, TextureType type) : RefCountObject(factory->generateSerial(), id), mState(type), mTexture(factory->createTexture(mState)), mImplObserver(this, rx::kTextureImageImplObserverMessageIndex), mLabel(), mBoundSurface(nullptr), mBoundStream(nullptr) { mImplObserver.bind(mTexture); // Initially assume the implementation is dirty. mDirtyBits.set(DIRTY_BIT_IMPLEMENTATION); } void Texture::onDestroy(const Context *context) { if (mBoundSurface) { ANGLE_SWALLOW_ERR(mBoundSurface->releaseTexImage(context, EGL_BACK_BUFFER)); mBoundSurface = nullptr; } if (mBoundStream) { mBoundStream->releaseTextures(); mBoundStream = nullptr; } (void)(orphanImages(context)); if (mTexture) { mTexture->onDestroy(context); } } Texture::~Texture() { SafeDelete(mTexture); } void Texture::setLabel(const Context *context, const std::string &label) { mLabel = label; signalDirtyState(DIRTY_BIT_LABEL); } const std::string &Texture::getLabel() const { return mLabel; } void Texture::setSwizzleRed(const Context *context, GLenum swizzleRed) { mState.mSwizzleState.swizzleRed = swizzleRed; signalDirtyState(DIRTY_BIT_SWIZZLE_RED); } GLenum Texture::getSwizzleRed() const { return mState.mSwizzleState.swizzleRed; } void Texture::setSwizzleGreen(const Context *context, GLenum swizzleGreen) { mState.mSwizzleState.swizzleGreen = swizzleGreen; signalDirtyState(DIRTY_BIT_SWIZZLE_GREEN); } GLenum Texture::getSwizzleGreen() const { return mState.mSwizzleState.swizzleGreen; } void Texture::setSwizzleBlue(const Context *context, GLenum swizzleBlue) { mState.mSwizzleState.swizzleBlue = swizzleBlue; signalDirtyState(DIRTY_BIT_SWIZZLE_BLUE); } GLenum Texture::getSwizzleBlue() const { return mState.mSwizzleState.swizzleBlue; } void Texture::setSwizzleAlpha(const Context *context, GLenum swizzleAlpha) { mState.mSwizzleState.swizzleAlpha = swizzleAlpha; signalDirtyState(DIRTY_BIT_SWIZZLE_ALPHA); } GLenum Texture::getSwizzleAlpha() const { return mState.mSwizzleState.swizzleAlpha; } void Texture::setMinFilter(const Context *context, GLenum minFilter) { mState.mSamplerState.setMinFilter(minFilter); signalDirtyState(DIRTY_BIT_MIN_FILTER); } GLenum Texture::getMinFilter() const { return mState.mSamplerState.getMinFilter(); } void Texture::setMagFilter(const Context *context, GLenum magFilter) { mState.mSamplerState.setMagFilter(magFilter); signalDirtyState(DIRTY_BIT_MAG_FILTER); } GLenum Texture::getMagFilter() const { return mState.mSamplerState.getMagFilter(); } void Texture::setWrapS(const Context *context, GLenum wrapS) { mState.mSamplerState.setWrapS(wrapS); signalDirtyState(DIRTY_BIT_WRAP_S); } GLenum Texture::getWrapS() const { return mState.mSamplerState.getWrapS(); } void Texture::setWrapT(const Context *context, GLenum wrapT) { mState.mSamplerState.setWrapT(wrapT); signalDirtyState(DIRTY_BIT_WRAP_T); } GLenum Texture::getWrapT() const { return mState.mSamplerState.getWrapT(); } void Texture::setWrapR(const Context *context, GLenum wrapR) { mState.mSamplerState.setWrapR(wrapR); signalDirtyState(DIRTY_BIT_WRAP_R); } GLenum Texture::getWrapR() const { return mState.mSamplerState.getWrapR(); } void Texture::setMaxAnisotropy(const Context *context, float maxAnisotropy) { mState.mSamplerState.setMaxAnisotropy(maxAnisotropy); signalDirtyState(DIRTY_BIT_MAX_ANISOTROPY); } float Texture::getMaxAnisotropy() const { return mState.mSamplerState.getMaxAnisotropy(); } void Texture::setMinLod(const Context *context, GLfloat minLod) { mState.mSamplerState.setMinLod(minLod); signalDirtyState(DIRTY_BIT_MIN_LOD); } GLfloat Texture::getMinLod() const { return mState.mSamplerState.getMinLod(); } void Texture::setMaxLod(const Context *context, GLfloat maxLod) { mState.mSamplerState.setMaxLod(maxLod); signalDirtyState(DIRTY_BIT_MAX_LOD); } GLfloat Texture::getMaxLod() const { return mState.mSamplerState.getMaxLod(); } void Texture::setCompareMode(const Context *context, GLenum compareMode) { mState.mSamplerState.setCompareMode(compareMode); signalDirtyState(DIRTY_BIT_COMPARE_MODE); } GLenum Texture::getCompareMode() const { return mState.mSamplerState.getCompareMode(); } void Texture::setCompareFunc(const Context *context, GLenum compareFunc) { mState.mSamplerState.setCompareFunc(compareFunc); signalDirtyState(DIRTY_BIT_COMPARE_FUNC); } GLenum Texture::getCompareFunc() const { return mState.mSamplerState.getCompareFunc(); } void Texture::setSRGBDecode(const Context *context, GLenum sRGBDecode) { mState.mSamplerState.setSRGBDecode(sRGBDecode); signalDirtyState(DIRTY_BIT_SRGB_DECODE); } GLenum Texture::getSRGBDecode() const { return mState.mSamplerState.getSRGBDecode(); } const SamplerState &Texture::getSamplerState() const { return mState.mSamplerState; } angle::Result Texture::setBaseLevel(const Context *context, GLuint baseLevel) { if (mState.setBaseLevel(baseLevel)) { ANGLE_TRY(mTexture->setBaseLevel(context, mState.getEffectiveBaseLevel())); signalDirtyState(DIRTY_BIT_BASE_LEVEL); } return angle::Result::Continue; } GLuint Texture::getBaseLevel() const { return mState.mBaseLevel; } void Texture::setMaxLevel(const Context *context, GLuint maxLevel) { if (mState.setMaxLevel(maxLevel)) { signalDirtyState(DIRTY_BIT_MAX_LEVEL); } } GLuint Texture::getMaxLevel() const { return mState.mMaxLevel; } void Texture::setDepthStencilTextureMode(const Context *context, GLenum mode) { if (mState.mDepthStencilTextureMode != mode) { mState.mDepthStencilTextureMode = mode; signalDirtyState(DIRTY_BIT_DEPTH_STENCIL_TEXTURE_MODE); } } GLenum Texture::getDepthStencilTextureMode() const { return mState.mDepthStencilTextureMode; } bool Texture::getImmutableFormat() const { return mState.mImmutableFormat; } GLuint Texture::getImmutableLevels() const { return mState.mImmutableLevels; } void Texture::setUsage(const Context *context, GLenum usage) { mState.mUsage = usage; signalDirtyState(DIRTY_BIT_USAGE); } GLenum Texture::getUsage() const { return mState.mUsage; } const TextureState &Texture::getTextureState() const { return mState; } const Extents &Texture::getExtents(TextureTarget target, size_t level) const { ASSERT(TextureTargetToType(target) == mState.mType); return mState.getImageDesc(target, level).size; } size_t Texture::getWidth(TextureTarget target, size_t level) const { ASSERT(TextureTargetToType(target) == mState.mType); return mState.getImageDesc(target, level).size.width; } size_t Texture::getHeight(TextureTarget target, size_t level) const { ASSERT(TextureTargetToType(target) == mState.mType); return mState.getImageDesc(target, level).size.height; } size_t Texture::getDepth(TextureTarget target, size_t level) const { ASSERT(TextureTargetToType(target) == mState.mType); return mState.getImageDesc(target, level).size.depth; } const Format &Texture::getFormat(TextureTarget target, size_t level) const { ASSERT(TextureTargetToType(target) == mState.mType); return mState.getImageDesc(target, level).format; } GLsizei Texture::getSamples(TextureTarget target, size_t level) const { ASSERT(TextureTargetToType(target) == mState.mType); return mState.getImageDesc(target, level).samples; } bool Texture::getFixedSampleLocations(TextureTarget target, size_t level) const { ASSERT(TextureTargetToType(target) == mState.mType); return mState.getImageDesc(target, level).fixedSampleLocations; } GLuint Texture::getMipmapMaxLevel() const { return mState.getMipmapMaxLevel(); } bool Texture::isMipmapComplete() const { return mState.computeMipmapCompleteness(); } egl::Surface *Texture::getBoundSurface() const { return mBoundSurface; } egl::Stream *Texture::getBoundStream() const { return mBoundStream; } GLint Texture::getMemorySize() const { GLint implSize = mTexture->getMemorySize(); if (implSize > 0) { return implSize; } angle::CheckedNumeric size = 0; for (const ImageDesc &imageDesc : mState.mImageDescs) { size += imageDesc.getMemorySize(); } return size.ValueOrDefault(std::numeric_limits::max()); } GLint Texture::getLevelMemorySize(TextureTarget target, GLint level) const { GLint implSize = mTexture->getLevelMemorySize(target, level); if (implSize > 0) { return implSize; } return mState.getImageDesc(target, level).getMemorySize(); } void Texture::signalDirtyStorage(InitState initState) { mState.mInitState = initState; invalidateCompletenessCache(); mState.mCachedSamplerFormatValid = false; onStateChange(angle::SubjectMessage::SubjectChanged); } void Texture::signalDirtyState(size_t dirtyBit) { mDirtyBits.set(dirtyBit); invalidateCompletenessCache(); mState.mCachedSamplerFormatValid = false; onStateChange(angle::SubjectMessage::DirtyBitsFlagged); } angle::Result Texture::setImage(Context *context, const PixelUnpackState &unpackState, Buffer *unpackBuffer, TextureTarget target, GLint level, GLenum internalFormat, const Extents &size, GLenum format, GLenum type, const uint8_t *pixels) { ASSERT(TextureTargetToType(target) == mState.mType); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ImageIndex index = ImageIndex::MakeFromTarget(target, level, size.depth); ANGLE_TRY(mTexture->setImage(context, index, internalFormat, size, format, type, unpackState, unpackBuffer, pixels)); InitState initState = DetermineInitState(context, unpackBuffer, pixels); mState.setImageDesc(target, level, ImageDesc(size, Format(internalFormat, type), initState)); ANGLE_TRY(handleMipmapGenerationHint(context, level)); signalDirtyStorage(initState); return angle::Result::Continue; } angle::Result Texture::setSubImage(Context *context, const PixelUnpackState &unpackState, Buffer *unpackBuffer, TextureTarget target, GLint level, const Box &area, GLenum format, GLenum type, const uint8_t *pixels) { ASSERT(TextureTargetToType(target) == mState.mType); ImageIndex index = ImageIndex::MakeFromTarget(target, level, area.depth); ANGLE_TRY(ensureSubImageInitialized(context, index, area)); ANGLE_TRY(mTexture->setSubImage(context, index, area, format, type, unpackState, unpackBuffer, pixels)); ANGLE_TRY(handleMipmapGenerationHint(context, level)); onStateChange(angle::SubjectMessage::ContentsChanged); return angle::Result::Continue; } angle::Result Texture::setCompressedImage(Context *context, const PixelUnpackState &unpackState, TextureTarget target, GLint level, GLenum internalFormat, const Extents &size, size_t imageSize, const uint8_t *pixels) { ASSERT(TextureTargetToType(target) == mState.mType); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ImageIndex index = ImageIndex::MakeFromTarget(target, level, size.depth); ANGLE_TRY(mTexture->setCompressedImage(context, index, internalFormat, size, unpackState, imageSize, pixels)); Buffer *unpackBuffer = context->getState().getTargetBuffer(BufferBinding::PixelUnpack); InitState initState = DetermineInitState(context, unpackBuffer, pixels); mState.setImageDesc(target, level, ImageDesc(size, Format(internalFormat), initState)); signalDirtyStorage(initState); return angle::Result::Continue; } angle::Result Texture::setCompressedSubImage(const Context *context, const PixelUnpackState &unpackState, TextureTarget target, GLint level, const Box &area, GLenum format, size_t imageSize, const uint8_t *pixels) { ASSERT(TextureTargetToType(target) == mState.mType); ImageIndex index = ImageIndex::MakeFromTarget(target, level, area.depth); ANGLE_TRY(ensureSubImageInitialized(context, index, area)); ANGLE_TRY(mTexture->setCompressedSubImage(context, index, area, format, unpackState, imageSize, pixels)); onStateChange(angle::SubjectMessage::ContentsChanged); return angle::Result::Continue; } angle::Result Texture::copyImage(Context *context, TextureTarget target, GLint level, const Rectangle &sourceArea, GLenum internalFormat, Framebuffer *source) { ASSERT(TextureTargetToType(target) == mState.mType); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ImageIndex index = ImageIndex::MakeFromTarget(target, level, 1); const InternalFormat &internalFormatInfo = GetInternalFormatInfo(internalFormat, GL_UNSIGNED_BYTE); // Most if not all renderers clip these copies to the size of the source framebuffer, leaving // other pixels untouched. For safety in robust resource initialization, assume that that // clipping is going to occur when computing the region for which to ensure initialization. If // the copy lies entirely off the source framebuffer, initialize as though a zero-size box is // going to be set during the copy operation. Box destBox; if (context->isRobustResourceInitEnabled()) { Extents fbSize = source->getReadColorAttachment()->getSize(); Rectangle clippedArea; if (ClipRectangle(sourceArea, Rectangle(0, 0, fbSize.width, fbSize.height), &clippedArea)) { const Offset clippedOffset(clippedArea.x - sourceArea.x, clippedArea.y - sourceArea.y, 0); destBox = Box(clippedOffset.x, clippedOffset.y, clippedOffset.z, clippedArea.width, clippedArea.height, 1); } } // If we need to initialize the destination texture we split the call into a create call, // an initializeContents call, and then a copySubImage call. This ensures the destination // texture exists before we try to clear it. Extents size(sourceArea.width, sourceArea.height, 1); if (doesSubImageNeedInit(context, index, destBox)) { ANGLE_TRY(mTexture->setImage(context, index, internalFormat, size, internalFormatInfo.format, internalFormatInfo.type, PixelUnpackState(), nullptr, nullptr)); mState.setImageDesc(target, level, ImageDesc(size, Format(internalFormatInfo), InitState::MayNeedInit)); ANGLE_TRY(ensureSubImageInitialized(context, index, destBox)); ANGLE_TRY(mTexture->copySubImage(context, index, Offset(), sourceArea, source)); } else { ANGLE_TRY(mTexture->copyImage(context, index, sourceArea, internalFormat, source)); } mState.setImageDesc(target, level, ImageDesc(size, Format(internalFormatInfo), InitState::Initialized)); ANGLE_TRY(handleMipmapGenerationHint(context, level)); // Because this could affect the texture storage we might need to init other layers/levels. signalDirtyStorage(InitState::MayNeedInit); return angle::Result::Continue; } angle::Result Texture::copySubImage(Context *context, const ImageIndex &index, const Offset &destOffset, const Rectangle &sourceArea, Framebuffer *source) { ASSERT(TextureTargetToType(index.getTarget()) == mState.mType); // Most if not all renderers clip these copies to the size of the source framebuffer, leaving // other pixels untouched. For safety in robust resource initialization, assume that that // clipping is going to occur when computing the region for which to ensure initialization. If // the copy lies entirely off the source framebuffer, initialize as though a zero-size box is // going to be set during the copy operation. Note that this assumes that // ensureSubImageInitialized ensures initialization of the entire destination texture, and not // just a sub-region. Box destBox; if (context->isRobustResourceInitEnabled()) { Extents fbSize = source->getReadColorAttachment()->getSize(); Rectangle clippedArea; if (ClipRectangle(sourceArea, Rectangle(0, 0, fbSize.width, fbSize.height), &clippedArea)) { const Offset clippedOffset(destOffset.x + clippedArea.x - sourceArea.x, destOffset.y + clippedArea.y - sourceArea.y, 0); destBox = Box(clippedOffset.x, clippedOffset.y, clippedOffset.z, clippedArea.width, clippedArea.height, 1); } } ANGLE_TRY(ensureSubImageInitialized(context, index, destBox)); ANGLE_TRY(mTexture->copySubImage(context, index, destOffset, sourceArea, source)); ANGLE_TRY(handleMipmapGenerationHint(context, index.getLevelIndex())); onStateChange(angle::SubjectMessage::ContentsChanged); return angle::Result::Continue; } angle::Result Texture::copyTexture(Context *context, TextureTarget target, GLint level, GLenum internalFormat, GLenum type, GLint sourceLevel, bool unpackFlipY, bool unpackPremultiplyAlpha, bool unpackUnmultiplyAlpha, Texture *source) { ASSERT(TextureTargetToType(target) == mState.mType); ASSERT(source->getType() != TextureType::CubeMap); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); // Initialize source texture. // Note: we don't have a way to notify which portions of the image changed currently. ANGLE_TRY(source->ensureInitialized(context)); ImageIndex index = ImageIndex::MakeFromTarget(target, level, ImageIndex::kEntireLevel); ANGLE_TRY(mTexture->copyTexture(context, index, internalFormat, type, sourceLevel, unpackFlipY, unpackPremultiplyAlpha, unpackUnmultiplyAlpha, source)); const auto &sourceDesc = source->mState.getImageDesc(NonCubeTextureTypeToTarget(source->getType()), 0); const InternalFormat &internalFormatInfo = GetInternalFormatInfo(internalFormat, type); mState.setImageDesc( target, level, ImageDesc(sourceDesc.size, Format(internalFormatInfo), InitState::Initialized)); signalDirtyStorage(InitState::Initialized); return angle::Result::Continue; } angle::Result Texture::copySubTexture(const Context *context, TextureTarget target, GLint level, const Offset &destOffset, GLint sourceLevel, const Box &sourceBox, bool unpackFlipY, bool unpackPremultiplyAlpha, bool unpackUnmultiplyAlpha, Texture *source) { ASSERT(TextureTargetToType(target) == mState.mType); // Ensure source is initialized. ANGLE_TRY(source->ensureInitialized(context)); Box destBox(destOffset.x, destOffset.y, destOffset.z, sourceBox.width, sourceBox.height, sourceBox.depth); ImageIndex index = ImageIndex::MakeFromTarget(target, level, sourceBox.depth); ANGLE_TRY(ensureSubImageInitialized(context, index, destBox)); ANGLE_TRY(mTexture->copySubTexture(context, index, destOffset, sourceLevel, sourceBox, unpackFlipY, unpackPremultiplyAlpha, unpackUnmultiplyAlpha, source)); onStateChange(angle::SubjectMessage::ContentsChanged); return angle::Result::Continue; } angle::Result Texture::copyCompressedTexture(Context *context, const Texture *source) { // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->copyCompressedTexture(context, source)); ASSERT(source->getType() != TextureType::CubeMap && getType() != TextureType::CubeMap); const auto &sourceDesc = source->mState.getImageDesc(NonCubeTextureTypeToTarget(source->getType()), 0); mState.setImageDesc(NonCubeTextureTypeToTarget(getType()), 0, sourceDesc); return angle::Result::Continue; } angle::Result Texture::setStorage(Context *context, TextureType type, GLsizei levels, GLenum internalFormat, const Extents &size) { ASSERT(type == mState.mType); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); mState.mImmutableFormat = true; mState.mImmutableLevels = static_cast(levels); ANGLE_TRY(mTexture->setStorage(context, type, levels, internalFormat, size)); mState.clearImageDescs(); mState.setImageDescChain(0, static_cast(levels - 1), size, Format(internalFormat), InitState::MayNeedInit); // Changing the texture to immutable can trigger a change in the base and max levels: // GLES 3.0.4 section 3.8.10 pg 158: // "For immutable-format textures, levelbase is clamped to the range[0;levels],levelmax is then // clamped to the range[levelbase;levels]. mDirtyBits.set(DIRTY_BIT_BASE_LEVEL); mDirtyBits.set(DIRTY_BIT_MAX_LEVEL); signalDirtyStorage(InitState::MayNeedInit); return angle::Result::Continue; } angle::Result Texture::setImageExternal(Context *context, TextureTarget target, GLint level, GLenum internalFormat, const Extents &size, GLenum format, GLenum type) { ASSERT(TextureTargetToType(target) == mState.mType); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ImageIndex index = ImageIndex::MakeFromTarget(target, level, size.depth); ANGLE_TRY(mTexture->setImageExternal(context, index, internalFormat, size, format, type)); InitState initState = InitState::Initialized; mState.setImageDesc(target, level, ImageDesc(size, Format(internalFormat, type), initState)); ANGLE_TRY(handleMipmapGenerationHint(context, level)); signalDirtyStorage(initState); return angle::Result::Continue; } angle::Result Texture::setStorageMultisample(Context *context, TextureType type, GLsizei samples, GLint internalFormat, const Extents &size, bool fixedSampleLocations) { ASSERT(type == mState.mType); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); // Potentially adjust "samples" to a supported value const TextureCaps &formatCaps = context->getTextureCaps().get(internalFormat); samples = formatCaps.getNearestSamples(samples); ANGLE_TRY(mTexture->setStorageMultisample(context, type, samples, internalFormat, size, fixedSampleLocations)); mState.mImmutableFormat = true; mState.mImmutableLevels = static_cast(1); mState.clearImageDescs(); mState.setImageDescChainMultisample(size, Format(internalFormat), samples, fixedSampleLocations, InitState::MayNeedInit); signalDirtyStorage(InitState::MayNeedInit); return angle::Result::Continue; } angle::Result Texture::setStorageExternalMemory(Context *context, TextureType type, GLsizei levels, GLenum internalFormat, const Extents &size, MemoryObject *memoryObject, GLuint64 offset) { ASSERT(type == mState.mType); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->setStorageExternalMemory(context, type, levels, internalFormat, size, memoryObject, offset)); mState.mImmutableFormat = true; mState.mImmutableLevels = static_cast(levels); mState.clearImageDescs(); mState.setImageDescChain(0, static_cast(levels - 1), size, Format(internalFormat), InitState::MayNeedInit); // Changing the texture to immutable can trigger a change in the base and max levels: // GLES 3.0.4 section 3.8.10 pg 158: // "For immutable-format textures, levelbase is clamped to the range[0;levels],levelmax is then // clamped to the range[levelbase;levels]. mDirtyBits.set(DIRTY_BIT_BASE_LEVEL); mDirtyBits.set(DIRTY_BIT_MAX_LEVEL); signalDirtyStorage(InitState::Initialized); return angle::Result::Continue; } angle::Result Texture::generateMipmap(Context *context) { // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); // EGL_KHR_gl_image states that images are only orphaned when generating mipmaps if the texture // is not mip complete. if (!isMipmapComplete()) { ANGLE_TRY(orphanImages(context)); } const GLuint baseLevel = mState.getEffectiveBaseLevel(); const GLuint maxLevel = mState.getMipmapMaxLevel(); if (maxLevel <= baseLevel) { return angle::Result::Continue; } if (hasAnyDirtyBit()) { ANGLE_TRY(syncState(context)); } // Clear the base image(s) immediately if needed if (context->isRobustResourceInitEnabled()) { ImageIndexIterator it = ImageIndexIterator::MakeGeneric(mState.mType, baseLevel, baseLevel + 1, ImageIndex::kEntireLevel, ImageIndex::kEntireLevel); while (it.hasNext()) { const ImageIndex index = it.next(); const ImageDesc &desc = mState.getImageDesc(index.getTarget(), index.getLevelIndex()); if (desc.initState == InitState::MayNeedInit) { ANGLE_TRY(initializeContents(context, index)); } } } ANGLE_TRY(mTexture->generateMipmap(context)); // Propagate the format and size of the bsae mip to the smaller ones. Cube maps are guaranteed // to have faces of the same size and format so any faces can be picked. const ImageDesc &baseImageInfo = mState.getImageDesc(mState.getBaseImageTarget(), baseLevel); mState.setImageDescChain(baseLevel, maxLevel, baseImageInfo.size, baseImageInfo.format, InitState::Initialized); signalDirtyStorage(InitState::Initialized); return angle::Result::Continue; } angle::Result Texture::bindTexImageFromSurface(Context *context, egl::Surface *surface) { ASSERT(surface); if (mBoundSurface) { ANGLE_TRY(releaseTexImageFromSurface(context)); } ANGLE_TRY(mTexture->bindTexImage(context, surface)); mBoundSurface = surface; // Set the image info to the size and format of the surface ASSERT(mState.mType == TextureType::_2D || mState.mType == TextureType::Rectangle); Extents size(surface->getWidth(), surface->getHeight(), 1); ImageDesc desc(size, surface->getBindTexImageFormat(), InitState::Initialized); mState.setImageDesc(NonCubeTextureTypeToTarget(mState.mType), 0, desc); signalDirtyStorage(InitState::Initialized); return angle::Result::Continue; } angle::Result Texture::releaseTexImageFromSurface(const Context *context) { ASSERT(mBoundSurface); mBoundSurface = nullptr; ANGLE_TRY(mTexture->releaseTexImage(context)); // Erase the image info for level 0 ASSERT(mState.mType == TextureType::_2D || mState.mType == TextureType::Rectangle); mState.clearImageDesc(NonCubeTextureTypeToTarget(mState.mType), 0); signalDirtyStorage(InitState::Initialized); return angle::Result::Continue; } void Texture::bindStream(egl::Stream *stream) { ASSERT(stream); // It should not be possible to bind a texture already bound to another stream ASSERT(mBoundStream == nullptr); mBoundStream = stream; ASSERT(mState.mType == TextureType::External); } void Texture::releaseStream() { ASSERT(mBoundStream); mBoundStream = nullptr; } angle::Result Texture::acquireImageFromStream(const Context *context, const egl::Stream::GLTextureDescription &desc) { ASSERT(mBoundStream != nullptr); ANGLE_TRY(mTexture->setImageExternal(context, mState.mType, mBoundStream, desc)); Extents size(desc.width, desc.height, 1); mState.setImageDesc(NonCubeTextureTypeToTarget(mState.mType), 0, ImageDesc(size, Format(desc.internalFormat), InitState::Initialized)); signalDirtyStorage(InitState::Initialized); return angle::Result::Continue; } angle::Result Texture::releaseImageFromStream(const Context *context) { ASSERT(mBoundStream != nullptr); ANGLE_TRY(mTexture->setImageExternal(context, mState.mType, nullptr, egl::Stream::GLTextureDescription())); // Set to incomplete mState.clearImageDesc(NonCubeTextureTypeToTarget(mState.mType), 0); signalDirtyStorage(InitState::Initialized); return angle::Result::Continue; } angle::Result Texture::releaseTexImageInternal(Context *context) { if (mBoundSurface) { // Notify the surface egl::Error eglErr = mBoundSurface->releaseTexImageFromTexture(context); // TODO(jmadill): Remove this once refactor is complete. http://anglebug.com/3041 if (eglErr.isError()) { context->handleError(GL_INVALID_OPERATION, "Error releasing tex image from texture", __FILE__, ANGLE_FUNCTION, __LINE__); } // Then, call the same method as from the surface ANGLE_TRY(releaseTexImageFromSurface(context)); } return angle::Result::Continue; } angle::Result Texture::setEGLImageTarget(Context *context, TextureType type, egl::Image *imageTarget) { ASSERT(type == mState.mType); ASSERT(type == TextureType::_2D || type == TextureType::External); // Release from previous calls to eglBindTexImage, to avoid calling the Impl after ANGLE_TRY(releaseTexImageInternal(context)); ANGLE_TRY(orphanImages(context)); ANGLE_TRY(mTexture->setEGLImageTarget(context, type, imageTarget)); setTargetImage(context, imageTarget); Extents size(static_cast(imageTarget->getWidth()), static_cast(imageTarget->getHeight()), 1); auto initState = imageTarget->sourceInitState(); mState.clearImageDescs(); mState.setImageDesc(NonCubeTextureTypeToTarget(type), 0, ImageDesc(size, imageTarget->getFormat(), initState)); signalDirtyStorage(initState); return angle::Result::Continue; } Extents Texture::getAttachmentSize(const ImageIndex &imageIndex) const { // As an ImageIndex that represents an entire level of a cube map corresponds to 6 ImageDescs, // we only allow querying ImageDesc on a complete cube map, and this ImageDesc is exactly the // one that belongs to the first face of the cube map. if (imageIndex.isEntireLevelCubeMap()) { // A cube map texture is cube complete if the following conditions all hold true: // - The levelbase arrays of each of the six texture images making up the cube map have // identical, positive, and square dimensions. if (!mState.isCubeComplete()) { return Extents(); } } return mState.getImageDesc(imageIndex).size; } Format Texture::getAttachmentFormat(GLenum /*binding*/, const ImageIndex &imageIndex) const { // As an ImageIndex that represents an entire level of a cube map corresponds to 6 ImageDescs, // we only allow querying ImageDesc on a complete cube map, and this ImageDesc is exactly the // one that belongs to the first face of the cube map. if (imageIndex.isEntireLevelCubeMap()) { // A cube map texture is cube complete if the following conditions all hold true: // - The levelbase arrays were each specified with the same effective internal format. if (!mState.isCubeComplete()) { return Format::Invalid(); } } return mState.getImageDesc(imageIndex).format; } GLsizei Texture::getAttachmentSamples(const ImageIndex &imageIndex) const { // We do not allow querying TextureTarget by an ImageIndex that represents an entire level of a // cube map (See comments in function TextureTypeToTarget() in ImageIndex.cpp). if (imageIndex.isEntireLevelCubeMap()) { return 0; } return getSamples(imageIndex.getTarget(), imageIndex.getLevelIndex()); } bool Texture::isRenderable(const Context *context, GLenum binding, const ImageIndex &imageIndex) const { if (isEGLImageTarget()) { return ImageSibling::isRenderable(context, binding, imageIndex); } return getAttachmentFormat(binding, imageIndex) .info->textureAttachmentSupport(context->getClientVersion(), context->getExtensions()); } bool Texture::getAttachmentFixedSampleLocations(const ImageIndex &imageIndex) const { // We do not allow querying TextureTarget by an ImageIndex that represents an entire level of a // cube map (See comments in function TextureTypeToTarget() in ImageIndex.cpp). if (imageIndex.isEntireLevelCubeMap()) { return true; } // ES3.1 (section 9.4) requires that the value of TEXTURE_FIXED_SAMPLE_LOCATIONS should be // the same for all attached textures. return getFixedSampleLocations(imageIndex.getTarget(), imageIndex.getLevelIndex()); } void Texture::setBorderColor(const Context *context, const ColorGeneric &color) { mState.mSamplerState.setBorderColor(color); signalDirtyState(DIRTY_BIT_BORDER_COLOR); } const ColorGeneric &Texture::getBorderColor() const { return mState.mSamplerState.getBorderColor(); } void Texture::setCrop(const Rectangle &rect) { mState.setCrop(rect); } const Rectangle &Texture::getCrop() const { return mState.getCrop(); } void Texture::setGenerateMipmapHint(GLenum hint) { mState.setGenerateMipmapHint(hint); } GLenum Texture::getGenerateMipmapHint() const { return mState.getGenerateMipmapHint(); } void Texture::onAttach(const Context *context) { addRef(); } void Texture::onDetach(const Context *context) { release(context); } GLuint Texture::getId() const { return id().value; } GLuint Texture::getNativeID() const { return mTexture->getNativeID(); } angle::Result Texture::syncState(const Context *context) { ASSERT(hasAnyDirtyBit()); ANGLE_TRY(mTexture->syncState(context, mDirtyBits)); mDirtyBits.reset(); return angle::Result::Continue; } rx::FramebufferAttachmentObjectImpl *Texture::getAttachmentImpl() const { return mTexture; } bool Texture::isSamplerComplete(const Context *context, const Sampler *optionalSampler) { const auto &samplerState = optionalSampler ? optionalSampler->getSamplerState() : mState.mSamplerState; const auto &contextState = context->getState(); if (contextState.getContextID() != mCompletenessCache.context || !mCompletenessCache.samplerState.sameCompleteness(samplerState)) { mCompletenessCache.context = context->getState().getContextID(); mCompletenessCache.samplerState = samplerState; mCompletenessCache.samplerComplete = mState.computeSamplerCompleteness(samplerState, contextState); } return mCompletenessCache.samplerComplete; } Texture::SamplerCompletenessCache::SamplerCompletenessCache() : context(0), samplerState(), samplerComplete(false) {} void Texture::invalidateCompletenessCache() const { mCompletenessCache.context = 0; } angle::Result Texture::ensureInitialized(const Context *context) { if (!context->isRobustResourceInitEnabled() || mState.mInitState == InitState::Initialized) { return angle::Result::Continue; } bool anyDirty = false; ImageIndexIterator it = ImageIndexIterator::MakeGeneric(mState.mType, 0, IMPLEMENTATION_MAX_TEXTURE_LEVELS + 1, ImageIndex::kEntireLevel, ImageIndex::kEntireLevel); while (it.hasNext()) { const ImageIndex index = it.next(); ImageDesc &desc = mState.mImageDescs[GetImageDescIndex(index.getTarget(), index.getLevelIndex())]; if (desc.initState == InitState::MayNeedInit && !desc.size.empty()) { ASSERT(mState.mInitState == InitState::MayNeedInit); ANGLE_TRY(initializeContents(context, index)); desc.initState = InitState::Initialized; anyDirty = true; } } if (anyDirty) { signalDirtyStorage(InitState::Initialized); } mState.mInitState = InitState::Initialized; return angle::Result::Continue; } InitState Texture::initState(const ImageIndex &imageIndex) const { // As an ImageIndex that represents an entire level of a cube map corresponds to 6 ImageDescs, // we need to check all the related ImageDescs. if (imageIndex.isEntireLevelCubeMap()) { const GLint levelIndex = imageIndex.getLevelIndex(); for (TextureTarget cubeFaceTarget : AllCubeFaceTextureTargets()) { if (mState.getImageDesc(cubeFaceTarget, levelIndex).initState == InitState::MayNeedInit) { return InitState::MayNeedInit; } } return InitState::Initialized; } return mState.getImageDesc(imageIndex).initState; } void Texture::setInitState(const ImageIndex &imageIndex, InitState initState) { // As an ImageIndex that represents an entire level of a cube map corresponds to 6 ImageDescs, // we need to update all the related ImageDescs. if (imageIndex.isEntireLevelCubeMap()) { const GLint levelIndex = imageIndex.getLevelIndex(); for (TextureTarget cubeFaceTarget : AllCubeFaceTextureTargets()) { setInitState(ImageIndex::MakeCubeMapFace(cubeFaceTarget, levelIndex), initState); } } else { ImageDesc newDesc = mState.getImageDesc(imageIndex); newDesc.initState = initState; mState.setImageDesc(imageIndex.getTarget(), imageIndex.getLevelIndex(), newDesc); } } bool Texture::doesSubImageNeedInit(const Context *context, const ImageIndex &imageIndex, const Box &area) const { if (!context->isRobustResourceInitEnabled() || mState.mInitState == InitState::Initialized) { return false; } // Pre-initialize the texture contents if necessary. const ImageDesc &desc = mState.getImageDesc(imageIndex); if (desc.initState != InitState::MayNeedInit) { return false; } ASSERT(mState.mInitState == InitState::MayNeedInit); bool coversWholeImage = area.x == 0 && area.y == 0 && area.z == 0 && area.width == desc.size.width && area.height == desc.size.height && area.depth == desc.size.depth; return !coversWholeImage; } angle::Result Texture::ensureSubImageInitialized(const Context *context, const ImageIndex &imageIndex, const Box &area) { if (doesSubImageNeedInit(context, imageIndex, area)) { // NOTE: do not optimize this to only initialize the passed area of the texture, or the // initialization logic in copySubImage will be incorrect. ANGLE_TRY(initializeContents(context, imageIndex)); } setInitState(imageIndex, InitState::Initialized); return angle::Result::Continue; } angle::Result Texture::handleMipmapGenerationHint(Context *context, int level) { if (getGenerateMipmapHint() == GL_TRUE && level == 0) { ANGLE_TRY(generateMipmap(context)); } return angle::Result::Continue; } void Texture::onSubjectStateChange(angle::SubjectIndex index, angle::SubjectMessage message) { switch (message) { case angle::SubjectMessage::ContentsChanged: // ContentsChange is originates from TextureStorage11::resolveAndReleaseTexture // which resolves the underlying multisampled texture if it exists and so // Texture will signal dirty storage to invalidate its own cache and the // attached framebuffer's cache. signalDirtyStorage(InitState::Initialized); break; case angle::SubjectMessage::DirtyBitsFlagged: signalDirtyState(DIRTY_BIT_IMPLEMENTATION); // Notify siblings that we are dirty. if (index == rx::kTextureImageImplObserverMessageIndex) { notifySiblings(message); } break; case angle::SubjectMessage::SubjectChanged: mState.mInitState = InitState::MayNeedInit; signalDirtyState(DIRTY_BIT_IMPLEMENTATION); onStateChange(angle::SubjectMessage::ContentsChanged); // Notify siblings that we are dirty. if (index == rx::kTextureImageImplObserverMessageIndex) { notifySiblings(message); } break; default: UNREACHABLE(); break; } } GLenum Texture::getImplementationColorReadFormat(const Context *context) const { return mTexture->getColorReadFormat(context); } GLenum Texture::getImplementationColorReadType(const Context *context) const { return mTexture->getColorReadType(context); } angle::Result Texture::getTexImage(const Context *context, const PixelPackState &packState, Buffer *packBuffer, TextureTarget target, GLint level, GLenum format, GLenum type, void *pixels) const { return mTexture->getTexImage(context, packState, packBuffer, target, level, format, type, pixels); } void Texture::onBindAsImageTexture(ContextID contextID) { ContextBindingCount &bindingCount = mState.getBindingCount(contextID); ASSERT(bindingCount.imageBindingCount < std::numeric_limits::max()); mState.getBindingCount(contextID).imageBindingCount++; if (bindingCount.imageBindingCount == 1) { mDirtyBits.set(DIRTY_BIT_BOUND_AS_IMAGE); } } } // namespace gl