//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis member access expressions. // //===----------------------------------------------------------------------===// #include "clang/Sema/Overload.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaInternal.h" using namespace clang; using namespace sema; typedef llvm::SmallPtrSet BaseSet; /// Determines if the given class is provably not derived from all of /// the prospective base classes. static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, const BaseSet &Bases) { auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) { return !Bases.count(Base->getCanonicalDecl()); }; return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet); } enum IMAKind { /// The reference is definitely not an instance member access. IMA_Static, /// The reference may be an implicit instance member access. IMA_Mixed, /// The reference may be to an instance member, but it might be invalid if /// so, because the context is not an instance method. IMA_Mixed_StaticContext, /// The reference may be to an instance member, but it is invalid if /// so, because the context is from an unrelated class. IMA_Mixed_Unrelated, /// The reference is definitely an implicit instance member access. IMA_Instance, /// The reference may be to an unresolved using declaration. IMA_Unresolved, /// The reference is a contextually-permitted abstract member reference. IMA_Abstract, /// The reference may be to an unresolved using declaration and the /// context is not an instance method. IMA_Unresolved_StaticContext, // The reference refers to a field which is not a member of the containing // class, which is allowed because we're in C++11 mode and the context is // unevaluated. IMA_Field_Uneval_Context, /// All possible referrents are instance members and the current /// context is not an instance method. IMA_Error_StaticContext, /// All possible referrents are instance members of an unrelated /// class. IMA_Error_Unrelated }; /// The given lookup names class member(s) and is not being used for /// an address-of-member expression. Classify the type of access /// according to whether it's possible that this reference names an /// instance member. This is best-effort in dependent contexts; it is okay to /// conservatively answer "yes", in which case some errors will simply /// not be caught until template-instantiation. static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, const LookupResult &R) { assert(!R.empty() && (*R.begin())->isCXXClassMember()); DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() && (!isa(DC) || cast(DC)->isStatic()); if (R.isUnresolvableResult()) return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved; // Collect all the declaring classes of instance members we find. bool hasNonInstance = false; bool isField = false; BaseSet Classes; for (NamedDecl *D : R) { // Look through any using decls. D = D->getUnderlyingDecl(); if (D->isCXXInstanceMember()) { isField |= isa(D) || isa(D) || isa(D); CXXRecordDecl *R = cast(D->getDeclContext()); Classes.insert(R->getCanonicalDecl()); } else hasNonInstance = true; } // If we didn't find any instance members, it can't be an implicit // member reference. if (Classes.empty()) return IMA_Static; // C++11 [expr.prim.general]p12: // An id-expression that denotes a non-static data member or non-static // member function of a class can only be used: // (...) // - if that id-expression denotes a non-static data member and it // appears in an unevaluated operand. // // This rule is specific to C++11. However, we also permit this form // in unevaluated inline assembly operands, like the operand to a SIZE. IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false' assert(!AbstractInstanceResult); switch (SemaRef.ExprEvalContexts.back().Context) { case Sema::Unevaluated: if (isField && SemaRef.getLangOpts().CPlusPlus11) AbstractInstanceResult = IMA_Field_Uneval_Context; break; case Sema::UnevaluatedAbstract: AbstractInstanceResult = IMA_Abstract; break; case Sema::DiscardedStatement: case Sema::ConstantEvaluated: case Sema::PotentiallyEvaluated: case Sema::PotentiallyEvaluatedIfUsed: break; } // If the current context is not an instance method, it can't be // an implicit member reference. if (isStaticContext) { if (hasNonInstance) return IMA_Mixed_StaticContext; return AbstractInstanceResult ? AbstractInstanceResult : IMA_Error_StaticContext; } CXXRecordDecl *contextClass; if (CXXMethodDecl *MD = dyn_cast(DC)) contextClass = MD->getParent()->getCanonicalDecl(); else contextClass = cast(DC); // [class.mfct.non-static]p3: // ...is used in the body of a non-static member function of class X, // if name lookup (3.4.1) resolves the name in the id-expression to a // non-static non-type member of some class C [...] // ...if C is not X or a base class of X, the class member access expression // is ill-formed. if (R.getNamingClass() && contextClass->getCanonicalDecl() != R.getNamingClass()->getCanonicalDecl()) { // If the naming class is not the current context, this was a qualified // member name lookup, and it's sufficient to check that we have the naming // class as a base class. Classes.clear(); Classes.insert(R.getNamingClass()->getCanonicalDecl()); } // If we can prove that the current context is unrelated to all the // declaring classes, it can't be an implicit member reference (in // which case it's an error if any of those members are selected). if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes)) return hasNonInstance ? IMA_Mixed_Unrelated : AbstractInstanceResult ? AbstractInstanceResult : IMA_Error_Unrelated; return (hasNonInstance ? IMA_Mixed : IMA_Instance); } /// Diagnose a reference to a field with no object available. static void diagnoseInstanceReference(Sema &SemaRef, const CXXScopeSpec &SS, NamedDecl *Rep, const DeclarationNameInfo &nameInfo) { SourceLocation Loc = nameInfo.getLoc(); SourceRange Range(Loc); if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); // Look through using shadow decls and aliases. Rep = Rep->getUnderlyingDecl(); DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext(); CXXMethodDecl *Method = dyn_cast(FunctionLevelDC); CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr; CXXRecordDecl *RepClass = dyn_cast(Rep->getDeclContext()); bool InStaticMethod = Method && Method->isStatic(); bool IsField = isa(Rep) || isa(Rep); if (IsField && InStaticMethod) // "invalid use of member 'x' in static member function" SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method) << Range << nameInfo.getName(); else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod && !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass)) // Unqualified lookup in a non-static member function found a member of an // enclosing class. SemaRef.Diag(Loc, diag::err_nested_non_static_member_use) << IsField << RepClass << nameInfo.getName() << ContextClass << Range; else if (IsField) SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) << nameInfo.getName() << Range; else SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range; } /// Builds an expression which might be an implicit member expression. ExprResult Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, const Scope *S) { switch (ClassifyImplicitMemberAccess(*this, R)) { case IMA_Instance: return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S); case IMA_Mixed: case IMA_Mixed_Unrelated: case IMA_Unresolved: return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false, S); case IMA_Field_Uneval_Context: Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use) << R.getLookupNameInfo().getName(); // Fall through. case IMA_Static: case IMA_Abstract: case IMA_Mixed_StaticContext: case IMA_Unresolved_StaticContext: if (TemplateArgs || TemplateKWLoc.isValid()) return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs); return BuildDeclarationNameExpr(SS, R, false); case IMA_Error_StaticContext: case IMA_Error_Unrelated: diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), R.getLookupNameInfo()); return ExprError(); } llvm_unreachable("unexpected instance member access kind"); } /// Determine whether input char is from rgba component set. static bool IsRGBA(char c) { switch (c) { case 'r': case 'g': case 'b': case 'a': return true; default: return false; } } /// Check an ext-vector component access expression. /// /// VK should be set in advance to the value kind of the base /// expression. static QualType CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, SourceLocation OpLoc, const IdentifierInfo *CompName, SourceLocation CompLoc) { // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, // see FIXME there. // // FIXME: This logic can be greatly simplified by splitting it along // halving/not halving and reworking the component checking. const ExtVectorType *vecType = baseType->getAs(); // The vector accessor can't exceed the number of elements. const char *compStr = CompName->getNameStart(); // This flag determines whether or not the component is one of the four // special names that indicate a subset of exactly half the elements are // to be selected. bool HalvingSwizzle = false; // This flag determines whether or not CompName has an 's' char prefix, // indicating that it is a string of hex values to be used as vector indices. bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1]; bool HasRepeated = false; bool HasIndex[16] = {}; int Idx; // Check that we've found one of the special components, or that the component // names must come from the same set. if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { HalvingSwizzle = true; } else if (!HexSwizzle && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { bool HasRGBA = IsRGBA(*compStr); do { // Ensure that xyzw and rgba components don't intermingle. if (HasRGBA != IsRGBA(*compStr)) break; if (HasIndex[Idx]) HasRepeated = true; HasIndex[Idx] = true; compStr++; } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); // Emit a warning if an rgba selector is used earlier than OpenCL 2.2 if (HasRGBA || (*compStr && IsRGBA(*compStr))) { if (S.getLangOpts().OpenCL && S.getLangOpts().OpenCLVersion < 220) { const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr; S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector) << StringRef(DiagBegin, 1) << S.getLangOpts().OpenCLVersion << SourceRange(CompLoc); } } } else { if (HexSwizzle) compStr++; while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { if (HasIndex[Idx]) HasRepeated = true; HasIndex[Idx] = true; compStr++; } } if (!HalvingSwizzle && *compStr) { // We didn't get to the end of the string. This means the component names // didn't come from the same set *or* we encountered an illegal name. S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) << StringRef(compStr, 1) << SourceRange(CompLoc); return QualType(); } // Ensure no component accessor exceeds the width of the vector type it // operates on. if (!HalvingSwizzle) { compStr = CompName->getNameStart(); if (HexSwizzle) compStr++; while (*compStr) { if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) { S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) << baseType << SourceRange(CompLoc); return QualType(); } } } // The component accessor looks fine - now we need to compute the actual type. // The vector type is implied by the component accessor. For example, // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. // vec4.s0 is a float, vec4.s23 is a vec3, etc. // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 : CompName->getLength(); if (HexSwizzle) CompSize--; if (CompSize == 1) return vecType->getElementType(); if (HasRepeated) VK = VK_RValue; QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); // Now look up the TypeDefDecl from the vector type. Without this, // diagostics look bad. We want extended vector types to appear built-in. for (Sema::ExtVectorDeclsType::iterator I = S.ExtVectorDecls.begin(S.getExternalSource()), E = S.ExtVectorDecls.end(); I != E; ++I) { if ((*I)->getUnderlyingType() == VT) return S.Context.getTypedefType(*I); } return VT; // should never get here (a typedef type should always be found). } static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, IdentifierInfo *Member, const Selector &Sel, ASTContext &Context) { if (Member) if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration( Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) return PD; if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) return OMD; for (const auto *I : PDecl->protocols()) { if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context)) return D; } return nullptr; } static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, IdentifierInfo *Member, const Selector &Sel, ASTContext &Context) { // Check protocols on qualified interfaces. Decl *GDecl = nullptr; for (const auto *I : QIdTy->quals()) { if (Member) if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { GDecl = PD; break; } // Also must look for a getter or setter name which uses property syntax. if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) { GDecl = OMD; break; } } if (!GDecl) { for (const auto *I : QIdTy->quals()) { // Search in the protocol-qualifier list of current protocol. GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context); if (GDecl) return GDecl; } } return GDecl; } ExprResult Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs) { // Even in dependent contexts, try to diagnose base expressions with // obviously wrong types, e.g.: // // T* t; // t.f; // // In Obj-C++, however, the above expression is valid, since it could be // accessing the 'f' property if T is an Obj-C interface. The extra check // allows this, while still reporting an error if T is a struct pointer. if (!IsArrow) { const PointerType *PT = BaseType->getAs(); if (PT && (!getLangOpts().ObjC1 || PT->getPointeeType()->isRecordType())) { assert(BaseExpr && "cannot happen with implicit member accesses"); Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange(); return ExprError(); } } assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() || isDependentScopeSpecifier(SS)); // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr // must have pointer type, and the accessed type is the pointee. return CXXDependentScopeMemberExpr::Create( Context, BaseExpr, BaseType, IsArrow, OpLoc, SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope, NameInfo, TemplateArgs); } /// We know that the given qualified member reference points only to /// declarations which do not belong to the static type of the base /// expression. Diagnose the problem. static void DiagnoseQualifiedMemberReference(Sema &SemaRef, Expr *BaseExpr, QualType BaseType, const CXXScopeSpec &SS, NamedDecl *rep, const DeclarationNameInfo &nameInfo) { // If this is an implicit member access, use a different set of // diagnostics. if (!BaseExpr) return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo); SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) << SS.getRange() << rep << BaseType; } // Check whether the declarations we found through a nested-name // specifier in a member expression are actually members of the base // type. The restriction here is: // // C++ [expr.ref]p2: // ... In these cases, the id-expression shall name a // member of the class or of one of its base classes. // // So it's perfectly legitimate for the nested-name specifier to name // an unrelated class, and for us to find an overload set including // decls from classes which are not superclasses, as long as the decl // we actually pick through overload resolution is from a superclass. bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType, const CXXScopeSpec &SS, const LookupResult &R) { CXXRecordDecl *BaseRecord = cast_or_null(computeDeclContext(BaseType)); if (!BaseRecord) { // We can't check this yet because the base type is still // dependent. assert(BaseType->isDependentType()); return false; } for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { // If this is an implicit member reference and we find a // non-instance member, it's not an error. if (!BaseExpr && !(*I)->isCXXInstanceMember()) return false; // Note that we use the DC of the decl, not the underlying decl. DeclContext *DC = (*I)->getDeclContext(); while (DC->isTransparentContext()) DC = DC->getParent(); if (!DC->isRecord()) continue; CXXRecordDecl *MemberRecord = cast(DC)->getCanonicalDecl(); if (BaseRecord->getCanonicalDecl() == MemberRecord || !BaseRecord->isProvablyNotDerivedFrom(MemberRecord)) return false; } DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R.getRepresentativeDecl(), R.getLookupNameInfo()); return true; } namespace { // Callback to only accept typo corrections that are either a ValueDecl or a // FunctionTemplateDecl and are declared in the current record or, for a C++ // classes, one of its base classes. class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback { public: explicit RecordMemberExprValidatorCCC(const RecordType *RTy) : Record(RTy->getDecl()) { // Don't add bare keywords to the consumer since they will always fail // validation by virtue of not being associated with any decls. WantTypeSpecifiers = false; WantExpressionKeywords = false; WantCXXNamedCasts = false; WantFunctionLikeCasts = false; WantRemainingKeywords = false; } bool ValidateCandidate(const TypoCorrection &candidate) override { NamedDecl *ND = candidate.getCorrectionDecl(); // Don't accept candidates that cannot be member functions, constants, // variables, or templates. if (!ND || !(isa(ND) || isa(ND))) return false; // Accept candidates that occur in the current record. if (Record->containsDecl(ND)) return true; if (const CXXRecordDecl *RD = dyn_cast(Record)) { // Accept candidates that occur in any of the current class' base classes. for (const auto &BS : RD->bases()) { if (const RecordType *BSTy = dyn_cast_or_null(BS.getType().getTypePtrOrNull())) { if (BSTy->getDecl()->containsDecl(ND)) return true; } } } return false; } private: const RecordDecl *const Record; }; } static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, Expr *BaseExpr, const RecordType *RTy, SourceLocation OpLoc, bool IsArrow, CXXScopeSpec &SS, bool HasTemplateArgs, TypoExpr *&TE) { SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange(); RecordDecl *RDecl = RTy->getDecl(); if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) && SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), diag::err_typecheck_incomplete_tag, BaseRange)) return true; if (HasTemplateArgs) { // LookupTemplateName doesn't expect these both to exist simultaneously. QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); bool MOUS; SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS); return false; } DeclContext *DC = RDecl; if (SS.isSet()) { // If the member name was a qualified-id, look into the // nested-name-specifier. DC = SemaRef.computeDeclContext(SS, false); if (SemaRef.RequireCompleteDeclContext(SS, DC)) { SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) << SS.getRange() << DC; return true; } assert(DC && "Cannot handle non-computable dependent contexts in lookup"); if (!isa(DC)) { SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) << DC << SS.getRange(); return true; } } // The record definition is complete, now look up the member. SemaRef.LookupQualifiedName(R, DC, SS); if (!R.empty()) return false; DeclarationName Typo = R.getLookupName(); SourceLocation TypoLoc = R.getNameLoc(); struct QueryState { Sema &SemaRef; DeclarationNameInfo NameInfo; Sema::LookupNameKind LookupKind; Sema::RedeclarationKind Redecl; }; QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(), R.isForRedeclaration() ? Sema::ForRedeclaration : Sema::NotForRedeclaration}; TE = SemaRef.CorrectTypoDelayed( R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, llvm::make_unique(RTy), [=, &SemaRef](const TypoCorrection &TC) { if (TC) { assert(!TC.isKeyword() && "Got a keyword as a correction for a member!"); bool DroppedSpecifier = TC.WillReplaceSpecifier() && Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts()); SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) << Typo << DC << DroppedSpecifier << SS.getRange()); } else { SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange; } }, [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable { LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl); R.clear(); // Ensure there's no decls lingering in the shared state. R.suppressDiagnostics(); R.setLookupName(TC.getCorrection()); for (NamedDecl *ND : TC) R.addDecl(ND); R.resolveKind(); return SemaRef.BuildMemberReferenceExpr( BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(), nullptr, R, nullptr, nullptr); }, Sema::CTK_ErrorRecovery, DC); return false; } static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, ExprResult &BaseExpr, bool &IsArrow, SourceLocation OpLoc, CXXScopeSpec &SS, Decl *ObjCImpDecl, bool HasTemplateArgs); ExprResult Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, ActOnMemberAccessExtraArgs *ExtraArgs) { if (BaseType->isDependentType() || (SS.isSet() && isDependentScopeSpecifier(SS))) return ActOnDependentMemberExpr(Base, BaseType, IsArrow, OpLoc, SS, TemplateKWLoc, FirstQualifierInScope, NameInfo, TemplateArgs); LookupResult R(*this, NameInfo, LookupMemberName); // Implicit member accesses. if (!Base) { TypoExpr *TE = nullptr; QualType RecordTy = BaseType; if (IsArrow) RecordTy = RecordTy->getAs()->getPointeeType(); if (LookupMemberExprInRecord(*this, R, nullptr, RecordTy->getAs(), OpLoc, IsArrow, SS, TemplateArgs != nullptr, TE)) return ExprError(); if (TE) return TE; // Explicit member accesses. } else { ExprResult BaseResult = Base; ExprResult Result = LookupMemberExpr( *this, R, BaseResult, IsArrow, OpLoc, SS, ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr, TemplateArgs != nullptr); if (BaseResult.isInvalid()) return ExprError(); Base = BaseResult.get(); if (Result.isInvalid()) return ExprError(); if (Result.get()) return Result; // LookupMemberExpr can modify Base, and thus change BaseType BaseType = Base->getType(); } return BuildMemberReferenceExpr(Base, BaseType, OpLoc, IsArrow, SS, TemplateKWLoc, FirstQualifierInScope, R, TemplateArgs, S, false, ExtraArgs); } static ExprResult BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, FieldDecl *Field, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo); ExprResult Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, SourceLocation loc, IndirectFieldDecl *indirectField, DeclAccessPair foundDecl, Expr *baseObjectExpr, SourceLocation opLoc) { // First, build the expression that refers to the base object. bool baseObjectIsPointer = false; Qualifiers baseQuals; // Case 1: the base of the indirect field is not a field. VarDecl *baseVariable = indirectField->getVarDecl(); CXXScopeSpec EmptySS; if (baseVariable) { assert(baseVariable->getType()->isRecordType()); // In principle we could have a member access expression that // accesses an anonymous struct/union that's a static member of // the base object's class. However, under the current standard, // static data members cannot be anonymous structs or unions. // Supporting this is as easy as building a MemberExpr here. assert(!baseObjectExpr && "anonymous struct/union is static data member?"); DeclarationNameInfo baseNameInfo(DeclarationName(), loc); ExprResult result = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); if (result.isInvalid()) return ExprError(); baseObjectExpr = result.get(); baseObjectIsPointer = false; baseQuals = baseObjectExpr->getType().getQualifiers(); // Case 2: the base of the indirect field is a field and the user // wrote a member expression. } else if (baseObjectExpr) { // The caller provided the base object expression. Determine // whether its a pointer and whether it adds any qualifiers to the // anonymous struct/union fields we're looking into. QualType objectType = baseObjectExpr->getType(); if (const PointerType *ptr = objectType->getAs()) { baseObjectIsPointer = true; objectType = ptr->getPointeeType(); } else { baseObjectIsPointer = false; } baseQuals = objectType.getQualifiers(); // Case 3: the base of the indirect field is a field and we should // build an implicit member access. } else { // We've found a member of an anonymous struct/union that is // inside a non-anonymous struct/union, so in a well-formed // program our base object expression is "this". QualType ThisTy = getCurrentThisType(); if (ThisTy.isNull()) { Diag(loc, diag::err_invalid_member_use_in_static_method) << indirectField->getDeclName(); return ExprError(); } // Our base object expression is "this". CheckCXXThisCapture(loc); baseObjectExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true); baseObjectIsPointer = true; baseQuals = ThisTy->castAs()->getPointeeType().getQualifiers(); } // Build the implicit member references to the field of the // anonymous struct/union. Expr *result = baseObjectExpr; IndirectFieldDecl::chain_iterator FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); // Build the first member access in the chain with full information. if (!baseVariable) { FieldDecl *field = cast(*FI); // Make a nameInfo that properly uses the anonymous name. DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer, SourceLocation(), EmptySS, field, foundDecl, memberNameInfo).get(); if (!result) return ExprError(); // FIXME: check qualified member access } // In all cases, we should now skip the first declaration in the chain. ++FI; while (FI != FEnd) { FieldDecl *field = cast(*FI++); // FIXME: these are somewhat meaningless DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); DeclAccessPair fakeFoundDecl = DeclAccessPair::make(field, field->getAccess()); result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false, SourceLocation(), (FI == FEnd ? SS : EmptySS), field, fakeFoundDecl, memberNameInfo).get(); } return result; } static ExprResult BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow, const CXXScopeSpec &SS, MSPropertyDecl *PD, const DeclarationNameInfo &NameInfo) { // Property names are always simple identifiers and therefore never // require any interesting additional storage. return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow, S.Context.PseudoObjectTy, VK_LValue, SS.getWithLocInContext(S.Context), NameInfo.getLoc()); } /// \brief Build a MemberExpr AST node. static MemberExpr *BuildMemberExpr( Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK, ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr) { assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue"); MemberExpr *E = MemberExpr::Create( C, Base, isArrow, OpLoc, SS.getWithLocInContext(C), TemplateKWLoc, Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty, VK, OK); SemaRef.MarkMemberReferenced(E); return E; } /// \brief Determine if the given scope is within a function-try-block handler. static bool IsInFnTryBlockHandler(const Scope *S) { // Walk the scope stack until finding a FnTryCatchScope, or leave the // function scope. If a FnTryCatchScope is found, check whether the TryScope // flag is set. If it is not, it's a function-try-block handler. for (; S != S->getFnParent(); S = S->getParent()) { if (S->getFlags() & Scope::FnTryCatchScope) return (S->getFlags() & Scope::TryScope) != Scope::TryScope; } return false; } static VarDecl * getVarTemplateSpecialization(Sema &S, VarTemplateDecl *VarTempl, const TemplateArgumentListInfo *TemplateArgs, const DeclarationNameInfo &MemberNameInfo, SourceLocation TemplateKWLoc) { if (!TemplateArgs) { S.Diag(MemberNameInfo.getBeginLoc(), diag::err_template_decl_ref) << /*Variable template*/ 1 << MemberNameInfo.getName() << MemberNameInfo.getSourceRange(); S.Diag(VarTempl->getLocation(), diag::note_template_decl_here); return nullptr; } DeclResult VDecl = S.CheckVarTemplateId( VarTempl, TemplateKWLoc, MemberNameInfo.getLoc(), *TemplateArgs); if (VDecl.isInvalid()) return nullptr; VarDecl *Var = cast(VDecl.get()); if (!Var->getTemplateSpecializationKind()) Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberNameInfo.getLoc()); return Var; } ExprResult Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, SourceLocation OpLoc, bool IsArrow, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, bool SuppressQualifierCheck, ActOnMemberAccessExtraArgs *ExtraArgs) { QualType BaseType = BaseExprType; if (IsArrow) { assert(BaseType->isPointerType()); BaseType = BaseType->castAs()->getPointeeType(); } R.setBaseObjectType(BaseType); LambdaScopeInfo *const CurLSI = getCurLambda(); // If this is an implicit member reference and the overloaded // name refers to both static and non-static member functions // (i.e. BaseExpr is null) and if we are currently processing a lambda, // check if we should/can capture 'this'... // Keep this example in mind: // struct X { // void f(int) { } // static void f(double) { } // // int g() { // auto L = [=](auto a) { // return [](int i) { // return [=](auto b) { // f(b); // //f(decltype(a){}); // }; // }; // }; // auto M = L(0.0); // auto N = M(3); // N(5.32); // OK, must not error. // return 0; // } // }; // if (!BaseExpr && CurLSI) { SourceLocation Loc = R.getNameLoc(); if (SS.getRange().isValid()) Loc = SS.getRange().getBegin(); DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent(); // If the enclosing function is not dependent, then this lambda is // capture ready, so if we can capture this, do so. if (!EnclosingFunctionCtx->isDependentContext()) { // If the current lambda and all enclosing lambdas can capture 'this' - // then go ahead and capture 'this' (since our unresolved overload set // contains both static and non-static member functions). if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false)) CheckCXXThisCapture(Loc); } else if (CurContext->isDependentContext()) { // ... since this is an implicit member reference, that might potentially // involve a 'this' capture, mark 'this' for potential capture in // enclosing lambdas. if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) CurLSI->addPotentialThisCapture(Loc); } } const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); DeclarationName MemberName = MemberNameInfo.getName(); SourceLocation MemberLoc = MemberNameInfo.getLoc(); if (R.isAmbiguous()) return ExprError(); // [except.handle]p10: Referring to any non-static member or base class of an // object in the handler for a function-try-block of a constructor or // destructor for that object results in undefined behavior. const auto *FD = getCurFunctionDecl(); if (S && BaseExpr && FD && (isa(FD) || isa(FD)) && isa(BaseExpr->IgnoreImpCasts()) && IsInFnTryBlockHandler(S)) Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr) << isa(FD); if (R.empty()) { // Rederive where we looked up. DeclContext *DC = (SS.isSet() ? computeDeclContext(SS, false) : BaseType->getAs()->getDecl()); if (ExtraArgs) { ExprResult RetryExpr; if (!IsArrow && BaseExpr) { SFINAETrap Trap(*this, true); ParsedType ObjectType; bool MayBePseudoDestructor = false; RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr, OpLoc, tok::arrow, ObjectType, MayBePseudoDestructor); if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) { CXXScopeSpec TempSS(SS); RetryExpr = ActOnMemberAccessExpr( ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS, TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl); } if (Trap.hasErrorOccurred()) RetryExpr = ExprError(); } if (RetryExpr.isUsable()) { Diag(OpLoc, diag::err_no_member_overloaded_arrow) << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->"); return RetryExpr; } } Diag(R.getNameLoc(), diag::err_no_member) << MemberName << DC << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); return ExprError(); } // Diagnose lookups that find only declarations from a non-base // type. This is possible for either qualified lookups (which may // have been qualified with an unrelated type) or implicit member // expressions (which were found with unqualified lookup and thus // may have come from an enclosing scope). Note that it's okay for // lookup to find declarations from a non-base type as long as those // aren't the ones picked by overload resolution. if ((SS.isSet() || !BaseExpr || (isa(BaseExpr) && cast(BaseExpr)->isImplicit())) && !SuppressQualifierCheck && CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) return ExprError(); // Construct an unresolved result if we in fact got an unresolved // result. if (R.isOverloadedResult() || R.isUnresolvableResult()) { // Suppress any lookup-related diagnostics; we'll do these when we // pick a member. R.suppressDiagnostics(); UnresolvedMemberExpr *MemExpr = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), BaseExpr, BaseExprType, IsArrow, OpLoc, SS.getWithLocInContext(Context), TemplateKWLoc, MemberNameInfo, TemplateArgs, R.begin(), R.end()); return MemExpr; } assert(R.isSingleResult()); DeclAccessPair FoundDecl = R.begin().getPair(); NamedDecl *MemberDecl = R.getFoundDecl(); // FIXME: diagnose the presence of template arguments now. // If the decl being referenced had an error, return an error for this // sub-expr without emitting another error, in order to avoid cascading // error cases. if (MemberDecl->isInvalidDecl()) return ExprError(); // Handle the implicit-member-access case. if (!BaseExpr) { // If this is not an instance member, convert to a non-member access. if (!MemberDecl->isCXXInstanceMember()) { // If this is a variable template, get the instantiated variable // declaration corresponding to the supplied template arguments // (while emitting diagnostics as necessary) that will be referenced // by this expression. assert((!TemplateArgs || isa(MemberDecl)) && "How did we get template arguments here sans a variable template"); if (isa(MemberDecl)) { MemberDecl = getVarTemplateSpecialization( *this, cast(MemberDecl), TemplateArgs, R.getLookupNameInfo(), TemplateKWLoc); if (!MemberDecl) return ExprError(); } return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl, FoundDecl, TemplateArgs); } SourceLocation Loc = R.getNameLoc(); if (SS.getRange().isValid()) Loc = SS.getRange().getBegin(); CheckCXXThisCapture(Loc); BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true); } // Check the use of this member. if (DiagnoseUseOfDecl(MemberDecl, MemberLoc)) return ExprError(); if (FieldDecl *FD = dyn_cast(MemberDecl)) return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl, MemberNameInfo); if (MSPropertyDecl *PD = dyn_cast(MemberDecl)) return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD, MemberNameInfo); if (IndirectFieldDecl *FD = dyn_cast(MemberDecl)) // We may have found a field within an anonymous union or struct // (C++ [class.union]). return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, FoundDecl, BaseExpr, OpLoc); if (VarDecl *Var = dyn_cast(MemberDecl)) { return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS, TemplateKWLoc, Var, FoundDecl, MemberNameInfo, Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary); } if (CXXMethodDecl *MemberFn = dyn_cast(MemberDecl)) { ExprValueKind valueKind; QualType type; if (MemberFn->isInstance()) { valueKind = VK_RValue; type = Context.BoundMemberTy; } else { valueKind = VK_LValue; type = MemberFn->getType(); } return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS, TemplateKWLoc, MemberFn, FoundDecl, MemberNameInfo, type, valueKind, OK_Ordinary); } assert(!isa(MemberDecl) && "member function not C++ method?"); if (EnumConstantDecl *Enum = dyn_cast(MemberDecl)) { return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS, TemplateKWLoc, Enum, FoundDecl, MemberNameInfo, Enum->getType(), VK_RValue, OK_Ordinary); } if (VarTemplateDecl *VarTempl = dyn_cast(MemberDecl)) { if (VarDecl *Var = getVarTemplateSpecialization( *this, VarTempl, TemplateArgs, MemberNameInfo, TemplateKWLoc)) return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS, TemplateKWLoc, Var, FoundDecl, MemberNameInfo, Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary); return ExprError(); } // We found something that we didn't expect. Complain. if (isa(MemberDecl)) Diag(MemberLoc, diag::err_typecheck_member_reference_type) << MemberName << BaseType << int(IsArrow); else Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) << MemberName << BaseType << int(IsArrow); Diag(MemberDecl->getLocation(), diag::note_member_declared_here) << MemberName; R.suppressDiagnostics(); return ExprError(); } /// Given that normal member access failed on the given expression, /// and given that the expression's type involves builtin-id or /// builtin-Class, decide whether substituting in the redefinition /// types would be profitable. The redefinition type is whatever /// this translation unit tried to typedef to id/Class; we store /// it to the side and then re-use it in places like this. static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { const ObjCObjectPointerType *opty = base.get()->getType()->getAs(); if (!opty) return false; const ObjCObjectType *ty = opty->getObjectType(); QualType redef; if (ty->isObjCId()) { redef = S.Context.getObjCIdRedefinitionType(); } else if (ty->isObjCClass()) { redef = S.Context.getObjCClassRedefinitionType(); } else { return false; } // Do the substitution as long as the redefinition type isn't just a // possibly-qualified pointer to builtin-id or builtin-Class again. opty = redef->getAs(); if (opty && !opty->getObjectType()->getInterface()) return false; base = S.ImpCastExprToType(base.get(), redef, CK_BitCast); return true; } static bool isRecordType(QualType T) { return T->isRecordType(); } static bool isPointerToRecordType(QualType T) { if (const PointerType *PT = T->getAs()) return PT->getPointeeType()->isRecordType(); return false; } /// Perform conversions on the LHS of a member access expression. ExprResult Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) { if (IsArrow && !Base->getType()->isFunctionType()) return DefaultFunctionArrayLvalueConversion(Base); return CheckPlaceholderExpr(Base); } /// Look up the given member of the given non-type-dependent /// expression. This can return in one of two ways: /// * If it returns a sentinel null-but-valid result, the caller will /// assume that lookup was performed and the results written into /// the provided structure. It will take over from there. /// * Otherwise, the returned expression will be produced in place of /// an ordinary member expression. /// /// The ObjCImpDecl bit is a gross hack that will need to be properly /// fixed for ObjC++. static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, ExprResult &BaseExpr, bool &IsArrow, SourceLocation OpLoc, CXXScopeSpec &SS, Decl *ObjCImpDecl, bool HasTemplateArgs) { assert(BaseExpr.get() && "no base expression"); // Perform default conversions. BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow); if (BaseExpr.isInvalid()) return ExprError(); QualType BaseType = BaseExpr.get()->getType(); assert(!BaseType->isDependentType()); DeclarationName MemberName = R.getLookupName(); SourceLocation MemberLoc = R.getNameLoc(); // For later type-checking purposes, turn arrow accesses into dot // accesses. The only access type we support that doesn't follow // the C equivalence "a->b === (*a).b" is ObjC property accesses, // and those never use arrows, so this is unaffected. if (IsArrow) { if (const PointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); else if (const ObjCObjectPointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); else if (BaseType->isRecordType()) { // Recover from arrow accesses to records, e.g.: // struct MyRecord foo; // foo->bar // This is actually well-formed in C++ if MyRecord has an // overloaded operator->, but that should have been dealt with // by now--or a diagnostic message already issued if a problem // was encountered while looking for the overloaded operator->. if (!S.getLangOpts().CPlusPlus) { S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() << FixItHint::CreateReplacement(OpLoc, "."); } IsArrow = false; } else if (BaseType->isFunctionType()) { goto fail; } else { S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) << BaseType << BaseExpr.get()->getSourceRange(); return ExprError(); } } // Handle field access to simple records. if (const RecordType *RTy = BaseType->getAs()) { TypoExpr *TE = nullptr; if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS, HasTemplateArgs, TE)) return ExprError(); // Returning valid-but-null is how we indicate to the caller that // the lookup result was filled in. If typo correction was attempted and // failed, the lookup result will have been cleared--that combined with the // valid-but-null ExprResult will trigger the appropriate diagnostics. return ExprResult(TE); } // Handle ivar access to Objective-C objects. if (const ObjCObjectType *OTy = BaseType->getAs()) { if (!SS.isEmpty() && !SS.isInvalid()) { S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) << 1 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange()); SS.clear(); } IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); // There are three cases for the base type: // - builtin id (qualified or unqualified) // - builtin Class (qualified or unqualified) // - an interface ObjCInterfaceDecl *IDecl = OTy->getInterface(); if (!IDecl) { if (S.getLangOpts().ObjCAutoRefCount && (OTy->isObjCId() || OTy->isObjCClass())) goto fail; // There's an implicit 'isa' ivar on all objects. // But we only actually find it this way on objects of type 'id', // apparently. if (OTy->isObjCId() && Member->isStr("isa")) return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc, OpLoc, S.Context.getObjCClassType()); if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); goto fail; } if (S.RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag, BaseExpr.get())) return ExprError(); ObjCInterfaceDecl *ClassDeclared = nullptr; ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); if (!IV) { // Attempt to correct for typos in ivar names. auto Validator = llvm::make_unique>(); Validator->IsObjCIvarLookup = IsArrow; if (TypoCorrection Corrected = S.CorrectTypo( R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr, std::move(Validator), Sema::CTK_ErrorRecovery, IDecl)) { IV = Corrected.getCorrectionDeclAs(); S.diagnoseTypo( Corrected, S.PDiag(diag::err_typecheck_member_reference_ivar_suggest) << IDecl->getDeclName() << MemberName); // Figure out the class that declares the ivar. assert(!ClassDeclared); Decl *D = cast(IV->getDeclContext()); if (ObjCCategoryDecl *CAT = dyn_cast(D)) D = CAT->getClassInterface(); ClassDeclared = cast(D); } else { if (IsArrow && IDecl->FindPropertyDeclaration( Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { S.Diag(MemberLoc, diag::err_property_found_suggest) << Member << BaseExpr.get()->getType() << FixItHint::CreateReplacement(OpLoc, "."); return ExprError(); } S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) << IDecl->getDeclName() << MemberName << BaseExpr.get()->getSourceRange(); return ExprError(); } } assert(ClassDeclared); // If the decl being referenced had an error, return an error for this // sub-expr without emitting another error, in order to avoid cascading // error cases. if (IV->isInvalidDecl()) return ExprError(); // Check whether we can reference this field. if (S.DiagnoseUseOfDecl(IV, MemberLoc)) return ExprError(); if (IV->getAccessControl() != ObjCIvarDecl::Public && IV->getAccessControl() != ObjCIvarDecl::Package) { ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; if (ObjCMethodDecl *MD = S.getCurMethodDecl()) ClassOfMethodDecl = MD->getClassInterface(); else if (ObjCImpDecl && S.getCurFunctionDecl()) { // Case of a c-function declared inside an objc implementation. // FIXME: For a c-style function nested inside an objc implementation // class, there is no implementation context available, so we pass // down the context as argument to this routine. Ideally, this context // need be passed down in the AST node and somehow calculated from the // AST for a function decl. if (ObjCImplementationDecl *IMPD = dyn_cast(ObjCImpDecl)) ClassOfMethodDecl = IMPD->getClassInterface(); else if (ObjCCategoryImplDecl* CatImplClass = dyn_cast(ObjCImpDecl)) ClassOfMethodDecl = CatImplClass->getClassInterface(); } if (!S.getLangOpts().DebuggerSupport) { if (IV->getAccessControl() == ObjCIvarDecl::Private) { if (!declaresSameEntity(ClassDeclared, IDecl) || !declaresSameEntity(ClassOfMethodDecl, ClassDeclared)) S.Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName(); } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) // @protected S.Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName(); } } bool warn = true; if (S.getLangOpts().ObjCAutoRefCount) { Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts(); if (UnaryOperator *UO = dyn_cast(BaseExp)) if (UO->getOpcode() == UO_Deref) BaseExp = UO->getSubExpr()->IgnoreParenCasts(); if (DeclRefExpr *DE = dyn_cast(BaseExp)) if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access); warn = false; } } if (warn) { if (ObjCMethodDecl *MD = S.getCurMethodDecl()) { ObjCMethodFamily MF = MD->getMethodFamily(); warn = (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV)); } if (warn) S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName(); } ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr( IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(), IsArrow); if (S.getLangOpts().ObjCAutoRefCount) { if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc)) S.recordUseOfEvaluatedWeak(Result); } } return Result; } // Objective-C property access. const ObjCObjectPointerType *OPT; if (!IsArrow && (OPT = BaseType->getAs())) { if (!SS.isEmpty() && !SS.isInvalid()) { S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange()); SS.clear(); } // This actually uses the base as an r-value. BaseExpr = S.DefaultLvalueConversion(BaseExpr.get()); if (BaseExpr.isInvalid()) return ExprError(); assert(S.Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType())); IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); const ObjCObjectType *OT = OPT->getObjectType(); // id, with and without qualifiers. if (OT->isObjCId()) { // Check protocols on qualified interfaces. Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) { if (ObjCPropertyDecl *PD = dyn_cast(PMDecl)) { // Check the use of this declaration if (S.DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); return new (S.Context) ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr.get()); } if (ObjCMethodDecl *OMD = dyn_cast(PMDecl)) { // Check the use of this method. if (S.DiagnoseUseOfDecl(OMD, MemberLoc)) return ExprError(); Selector SetterSel = SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), S.PP.getSelectorTable(), Member); ObjCMethodDecl *SMD = nullptr; if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/ nullptr, SetterSel, S.Context)) SMD = dyn_cast(SDecl); return new (S.Context) ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr.get()); } } // Use of id.member can only be for a property reference. Do not // use the 'id' redefinition in this case. if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr)) return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) << MemberName << BaseType); } // 'Class', unqualified only. if (OT->isObjCClass()) { // Only works in a method declaration (??!). ObjCMethodDecl *MD = S.getCurMethodDecl(); if (!MD) { if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); goto fail; } // Also must look for a getter name which uses property syntax. Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); ObjCInterfaceDecl *IFace = MD->getClassInterface(); ObjCMethodDecl *Getter; if ((Getter = IFace->lookupClassMethod(Sel))) { // Check the use of this method. if (S.DiagnoseUseOfDecl(Getter, MemberLoc)) return ExprError(); } else Getter = IFace->lookupPrivateMethod(Sel, false); // If we found a getter then this may be a valid dot-reference, we // will look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), S.PP.getSelectorTable(), Member); ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. Setter = IFace->lookupPrivateMethod(SetterSel, false); } if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc)) return ExprError(); if (Getter || Setter) { return new (S.Context) ObjCPropertyRefExpr( Getter, Setter, S.Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr.get()); } if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) << MemberName << BaseType); } // Normal property access. return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName, MemberLoc, SourceLocation(), QualType(), false); } // Handle 'field access' to vectors, such as 'V.xx'. if (BaseType->isExtVectorType()) { // FIXME: this expr should store IsArrow. IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); ExprValueKind VK; if (IsArrow) VK = VK_LValue; else { if (PseudoObjectExpr *POE = dyn_cast(BaseExpr.get())) VK = POE->getSyntacticForm()->getValueKind(); else VK = BaseExpr.get()->getValueKind(); } QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc, Member, MemberLoc); if (ret.isNull()) return ExprError(); return new (S.Context) ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc); } // Adjust builtin-sel to the appropriate redefinition type if that's // not just a pointer to builtin-sel again. if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) { BaseExpr = S.ImpCastExprToType( BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast); return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); } // Failure cases. fail: // Recover from dot accesses to pointers, e.g.: // type *foo; // foo.bar // This is actually well-formed in two cases: // - 'type' is an Objective C type // - 'bar' is a pseudo-destructor name which happens to refer to // the appropriate pointer type if (const PointerType *Ptr = BaseType->getAs()) { if (!IsArrow && Ptr->getPointeeType()->isRecordType() && MemberName.getNameKind() != DeclarationName::CXXDestructorName) { S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() << FixItHint::CreateReplacement(OpLoc, "->"); // Recurse as an -> access. IsArrow = true; return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); } } // If the user is trying to apply -> or . to a function name, it's probably // because they forgot parentheses to call that function. if (S.tryToRecoverWithCall( BaseExpr, S.PDiag(diag::err_member_reference_needs_call), /*complain*/ false, IsArrow ? &isPointerToRecordType : &isRecordType)) { if (BaseExpr.isInvalid()) return ExprError(); BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get()); return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); } S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc; return ExprError(); } /// The main callback when the parser finds something like /// expression . [nested-name-specifier] identifier /// expression -> [nested-name-specifier] identifier /// where 'identifier' encompasses a fairly broad spectrum of /// possibilities, including destructor and operator references. /// /// \param OpKind either tok::arrow or tok::period /// \param ObjCImpDecl the current Objective-C \@implementation /// decl; this is an ugly hack around the fact that Objective-C /// \@implementations aren't properly put in the context chain ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, Decl *ObjCImpDecl) { if (SS.isSet() && SS.isInvalid()) return ExprError(); // Warn about the explicit constructor calls Microsoft extension. if (getLangOpts().MicrosoftExt && Id.getKind() == UnqualifiedId::IK_ConstructorName) Diag(Id.getSourceRange().getBegin(), diag::ext_ms_explicit_constructor_call); TemplateArgumentListInfo TemplateArgsBuffer; // Decompose the name into its component parts. DeclarationNameInfo NameInfo; const TemplateArgumentListInfo *TemplateArgs; DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); DeclarationName Name = NameInfo.getName(); bool IsArrow = (OpKind == tok::arrow); NamedDecl *FirstQualifierInScope = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep())); // This is a postfix expression, so get rid of ParenListExprs. ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); if (Result.isInvalid()) return ExprError(); Base = Result.get(); if (Base->getType()->isDependentType() || Name.isDependentName() || isDependentScopeSpecifier(SS)) { return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS, TemplateKWLoc, FirstQualifierInScope, NameInfo, TemplateArgs); } ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl}; return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc, FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs); } static ExprResult BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, FieldDecl *Field, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo) { // x.a is an l-value if 'a' has a reference type. Otherwise: // x.a is an l-value/x-value/pr-value if the base is (and note // that *x is always an l-value), except that if the base isn't // an ordinary object then we must have an rvalue. ExprValueKind VK = VK_LValue; ExprObjectKind OK = OK_Ordinary; if (!IsArrow) { if (BaseExpr->getObjectKind() == OK_Ordinary) VK = BaseExpr->getValueKind(); else VK = VK_RValue; } if (VK != VK_RValue && Field->isBitField()) OK = OK_BitField; // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] QualType MemberType = Field->getType(); if (const ReferenceType *Ref = MemberType->getAs()) { MemberType = Ref->getPointeeType(); VK = VK_LValue; } else { QualType BaseType = BaseExpr->getType(); if (IsArrow) BaseType = BaseType->getAs()->getPointeeType(); Qualifiers BaseQuals = BaseType.getQualifiers(); // GC attributes are never picked up by members. BaseQuals.removeObjCGCAttr(); // CVR attributes from the base are picked up by members, // except that 'mutable' members don't pick up 'const'. if (Field->isMutable()) BaseQuals.removeConst(); Qualifiers MemberQuals = S.Context.getCanonicalType(MemberType).getQualifiers(); assert(!MemberQuals.hasAddressSpace()); Qualifiers Combined = BaseQuals + MemberQuals; if (Combined != MemberQuals) MemberType = S.Context.getQualifiedType(MemberType, Combined); } S.UnusedPrivateFields.remove(Field); ExprResult Base = S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), FoundDecl, Field); if (Base.isInvalid()) return ExprError(); MemberExpr *ME = BuildMemberExpr(S, S.Context, Base.get(), IsArrow, OpLoc, SS, /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl, MemberNameInfo, MemberType, VK, OK); // Build a reference to a private copy for non-static data members in // non-static member functions, privatized by OpenMP constructs. if (S.getLangOpts().OpenMP && IsArrow && !S.CurContext->isDependentContext() && isa(Base.get()->IgnoreParenImpCasts())) { if (auto *PrivateCopy = S.IsOpenMPCapturedDecl(Field)) return S.getOpenMPCapturedExpr(PrivateCopy, VK, OK, OpLoc); } return ME; } /// Builds an implicit member access expression. The current context /// is known to be an instance method, and the given unqualified lookup /// set is known to contain only instance members, at least one of which /// is from an appropriate type. ExprResult Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, bool IsKnownInstance, const Scope *S) { assert(!R.empty() && !R.isAmbiguous()); SourceLocation loc = R.getNameLoc(); // If this is known to be an instance access, go ahead and build an // implicit 'this' expression now. // 'this' expression now. QualType ThisTy = getCurrentThisType(); assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'"); Expr *baseExpr = nullptr; // null signifies implicit access if (IsKnownInstance) { SourceLocation Loc = R.getNameLoc(); if (SS.getRange().isValid()) Loc = SS.getRange().getBegin(); CheckCXXThisCapture(Loc); baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true); } return BuildMemberReferenceExpr(baseExpr, ThisTy, /*OpLoc*/ SourceLocation(), /*IsArrow*/ true, SS, TemplateKWLoc, /*FirstQualifierInScope*/ nullptr, R, TemplateArgs, S); }