/* * Copyright © 2009-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Chris Wilson * Tvrtko Ursulin * */ /** @file gem_userptr_blits.c * * This is a test of doing many blits using a mixture of normal system pages * and uncached linear buffers, with a working set larger than the * aperture size. * * The goal is to simply ensure the basics work. */ #include "igt.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm.h" #include "i915_drm.h" #include "intel_bufmgr.h" #include "eviction_common.c" #ifndef PAGE_SIZE #define PAGE_SIZE 4096 #endif #define LOCAL_EXEC_OBJECT_SUPPORTS_48B (1 << 3) static uint32_t userptr_flags = LOCAL_I915_USERPTR_UNSYNCHRONIZED; #define WIDTH 512 #define HEIGHT 512 static uint32_t linear[WIDTH*HEIGHT]; static void gem_userptr_test_unsynchronized(void) { userptr_flags = LOCAL_I915_USERPTR_UNSYNCHRONIZED; } static void gem_userptr_test_synchronized(void) { userptr_flags = 0; } static void gem_userptr_sync(int fd, uint32_t handle) { gem_set_domain(fd, handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); } static int copy(int fd, uint32_t dst, uint32_t src) { uint32_t batch[12]; struct drm_i915_gem_relocation_entry reloc[2]; struct drm_i915_gem_exec_object2 obj[3]; struct drm_i915_gem_execbuffer2 exec; uint32_t handle; int ret, i=0; batch[i++] = XY_SRC_COPY_BLT_CMD | XY_SRC_COPY_BLT_WRITE_ALPHA | XY_SRC_COPY_BLT_WRITE_RGB; if (intel_gen(intel_get_drm_devid(fd)) >= 8) batch[i - 1] |= 8; else batch[i - 1] |= 6; batch[i++] = (3 << 24) | /* 32 bits */ (0xcc << 16) | /* copy ROP */ WIDTH*4; batch[i++] = 0; /* dst x1,y1 */ batch[i++] = (HEIGHT << 16) | WIDTH; /* dst x2,y2 */ batch[i++] = 0; /* dst reloc */ if (intel_gen(intel_get_drm_devid(fd)) >= 8) batch[i++] = 0; batch[i++] = 0; /* src x1,y1 */ batch[i++] = WIDTH*4; batch[i++] = 0; /* src reloc */ if (intel_gen(intel_get_drm_devid(fd)) >= 8) batch[i++] = 0; batch[i++] = MI_BATCH_BUFFER_END; batch[i++] = MI_NOOP; handle = gem_create(fd, 4096); gem_write(fd, handle, 0, batch, sizeof(batch)); reloc[0].target_handle = dst; reloc[0].delta = 0; reloc[0].offset = 4 * sizeof(batch[0]); reloc[0].presumed_offset = 0; reloc[0].read_domains = I915_GEM_DOMAIN_RENDER; reloc[0].write_domain = I915_GEM_DOMAIN_RENDER; reloc[1].target_handle = src; reloc[1].delta = 0; reloc[1].offset = 7 * sizeof(batch[0]); if (intel_gen(intel_get_drm_devid(fd)) >= 8) reloc[1].offset += sizeof(batch[0]); reloc[1].presumed_offset = 0; reloc[1].read_domains = I915_GEM_DOMAIN_RENDER; reloc[1].write_domain = 0; memset(&exec, 0, sizeof(exec)); memset(obj, 0, sizeof(obj)); obj[exec.buffer_count].handle = dst; obj[exec.buffer_count].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B; exec.buffer_count++; if (src != dst) { obj[exec.buffer_count].handle = src; obj[exec.buffer_count].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B; exec.buffer_count++; } obj[exec.buffer_count].handle = handle; obj[exec.buffer_count].relocation_count = 2; obj[exec.buffer_count].relocs_ptr = to_user_pointer(reloc); obj[exec.buffer_count].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B; exec.buffer_count++; exec.buffers_ptr = to_user_pointer(obj); exec.flags = HAS_BLT_RING(intel_get_drm_devid(fd)) ? I915_EXEC_BLT : 0; ret = __gem_execbuf(fd, &exec); gem_close(fd, handle); return ret; } static int blit(int fd, uint32_t dst, uint32_t src, uint32_t *all_bo, int n_bo) { uint32_t batch[12]; struct drm_i915_gem_relocation_entry reloc[2]; struct drm_i915_gem_exec_object2 *obj; struct drm_i915_gem_execbuffer2 exec; uint32_t handle; int n, ret, i=0; batch[i++] = XY_SRC_COPY_BLT_CMD | XY_SRC_COPY_BLT_WRITE_ALPHA | XY_SRC_COPY_BLT_WRITE_RGB; if (intel_gen(intel_get_drm_devid(fd)) >= 8) batch[i - 1] |= 8; else batch[i - 1] |= 6; batch[i++] = (3 << 24) | /* 32 bits */ (0xcc << 16) | /* copy ROP */ WIDTH*4; batch[i++] = 0; /* dst x1,y1 */ batch[i++] = (HEIGHT << 16) | WIDTH; /* dst x2,y2 */ batch[i++] = 0; /* dst reloc */ if (intel_gen(intel_get_drm_devid(fd)) >= 8) batch[i++] = 0; batch[i++] = 0; /* src x1,y1 */ batch[i++] = WIDTH*4; batch[i++] = 0; /* src reloc */ if (intel_gen(intel_get_drm_devid(fd)) >= 8) batch[i++] = 0; batch[i++] = MI_BATCH_BUFFER_END; batch[i++] = MI_NOOP; handle = gem_create(fd, 4096); gem_write(fd, handle, 0, batch, sizeof(batch)); reloc[0].target_handle = dst; reloc[0].delta = 0; reloc[0].offset = 4 * sizeof(batch[0]); reloc[0].presumed_offset = 0; reloc[0].read_domains = I915_GEM_DOMAIN_RENDER; reloc[0].write_domain = I915_GEM_DOMAIN_RENDER; reloc[1].target_handle = src; reloc[1].delta = 0; reloc[1].offset = 7 * sizeof(batch[0]); if (intel_gen(intel_get_drm_devid(fd)) >= 8) reloc[1].offset += sizeof(batch[0]); reloc[1].presumed_offset = 0; reloc[1].read_domains = I915_GEM_DOMAIN_RENDER; reloc[1].write_domain = 0; memset(&exec, 0, sizeof(exec)); obj = calloc(n_bo + 1, sizeof(*obj)); for (n = 0; n < n_bo; n++) { obj[n].handle = all_bo[n]; obj[n].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B; } obj[n].handle = handle; obj[n].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B; obj[n].relocation_count = 2; obj[n].relocs_ptr = to_user_pointer(reloc); exec.buffers_ptr = to_user_pointer(obj); exec.buffer_count = n_bo + 1; exec.flags = HAS_BLT_RING(intel_get_drm_devid(fd)) ? I915_EXEC_BLT : 0; ret = __gem_execbuf(fd, &exec); gem_close(fd, handle); free(obj); return ret; } static void store_dword(int fd, uint32_t target, uint32_t offset, uint32_t value) { const int gen = intel_gen(intel_get_drm_devid(fd)); struct drm_i915_gem_exec_object2 obj[2]; struct drm_i915_gem_relocation_entry reloc; struct drm_i915_gem_execbuffer2 execbuf; uint32_t batch[16]; int i; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(obj); execbuf.buffer_count = ARRAY_SIZE(obj); execbuf.flags = 0; if (gen < 6) execbuf.flags |= I915_EXEC_SECURE; memset(obj, 0, sizeof(obj)); obj[0].handle = target; obj[1].handle = gem_create(fd, 4096); memset(&reloc, 0, sizeof(reloc)); reloc.target_handle = obj[0].handle; reloc.presumed_offset = 0; reloc.offset = sizeof(uint32_t); reloc.delta = offset; reloc.read_domains = I915_GEM_DOMAIN_RENDER; reloc.write_domain = I915_GEM_DOMAIN_RENDER; obj[1].relocs_ptr = to_user_pointer(&reloc); obj[1].relocation_count = 1; i = 0; batch[i] = MI_STORE_DWORD_IMM | (gen < 6 ? 1 << 22 : 0); if (gen >= 8) { batch[++i] = offset; batch[++i] = 0; } else if (gen >= 4) { batch[++i] = 0; batch[++i] = offset; reloc.offset += sizeof(uint32_t); } else { batch[i]--; batch[++i] = offset; } batch[++i] = value; batch[++i] = MI_BATCH_BUFFER_END; gem_write(fd, obj[1].handle, 0, batch, sizeof(batch)); gem_execbuf(fd, &execbuf); gem_close(fd, obj[1].handle); } static uint32_t create_userptr(int fd, uint32_t val, uint32_t *ptr) { uint32_t handle; int i; gem_userptr(fd, ptr, sizeof(linear), 0, userptr_flags, &handle); igt_assert(handle != 0); /* Fill the BO with dwords starting at val */ for (i = 0; i < WIDTH*HEIGHT; i++) ptr[i] = val++; return handle; } static void **handle_ptr_map; static unsigned *handle_size_map; static unsigned int num_handle_map; static void reset_handle_ptr(void) { if (num_handle_map == 0) return; free(handle_ptr_map); handle_ptr_map = NULL; free(handle_size_map); handle_size_map = NULL; num_handle_map = 0; } static void add_handle_ptr(uint32_t handle, void *ptr, int size) { if (handle >= num_handle_map) { int max = (4096 + handle) & -4096; handle_ptr_map = realloc(handle_ptr_map, max * sizeof(void*)); igt_assert(handle_ptr_map); memset(handle_ptr_map + num_handle_map, 0, (max - num_handle_map) * sizeof(void*)); handle_size_map = realloc(handle_size_map, max * sizeof(unsigned)); igt_assert(handle_size_map); memset(handle_ptr_map + num_handle_map, 0, (max - num_handle_map) * sizeof(unsigned)); num_handle_map = max; } handle_ptr_map[handle] = ptr; handle_size_map[handle] = size; } static void *get_handle_ptr(uint32_t handle) { igt_assert(handle < num_handle_map); return handle_ptr_map[handle]; } static void free_handle_ptr(uint32_t handle) { igt_assert(handle < num_handle_map); igt_assert(handle_ptr_map[handle]); munmap(handle_ptr_map[handle], handle_size_map[handle]); handle_ptr_map[handle] = NULL; } static uint32_t create_userptr_bo(int fd, uint64_t size) { void *ptr; uint32_t handle; ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0); igt_assert(ptr != MAP_FAILED); gem_userptr(fd, (uint32_t *)ptr, size, 0, userptr_flags, &handle); add_handle_ptr(handle, ptr, size); return handle; } static void flink_userptr_bo(uint32_t old_handle, uint32_t new_handle) { igt_assert(old_handle < num_handle_map); igt_assert(handle_ptr_map[old_handle]); add_handle_ptr(new_handle, handle_ptr_map[old_handle], handle_size_map[old_handle]); } static void clear(int fd, uint32_t handle, uint64_t size) { void *ptr = get_handle_ptr(handle); igt_assert(ptr != NULL); memset(ptr, 0, size); } static void free_userptr_bo(int fd, uint32_t handle) { gem_close(fd, handle); free_handle_ptr(handle); } static uint32_t create_bo(int fd, uint32_t val) { uint32_t handle; int i; handle = gem_create(fd, sizeof(linear)); /* Fill the BO with dwords starting at val */ for (i = 0; i < WIDTH*HEIGHT; i++) linear[i] = val++; gem_write(fd, handle, 0, linear, sizeof(linear)); return handle; } static void check_cpu(uint32_t *ptr, uint32_t val) { int i; for (i = 0; i < WIDTH*HEIGHT; i++) { igt_assert_f(ptr[i] == val, "Expected 0x%08x, found 0x%08x " "at offset 0x%08x\n", val, ptr[i], i * 4); val++; } } static void check_gpu(int fd, uint32_t handle, uint32_t val) { gem_read(fd, handle, 0, linear, sizeof(linear)); check_cpu(linear, val); } static int has_userptr(int fd) { uint32_t handle = 0; void *ptr; uint32_t oldflags; int ret; igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0); oldflags = userptr_flags; gem_userptr_test_unsynchronized(); ret = __gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle); userptr_flags = oldflags; if (ret != 0) { free(ptr); return 0; } gem_close(fd, handle); free(ptr); return handle != 0; } static int test_input_checking(int fd) { struct local_i915_gem_userptr userptr; int ret; /* Invalid flags. */ memset(&userptr, 0, sizeof(userptr)); userptr.user_ptr = 0; userptr.user_size = 0; userptr.flags = ~0; ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr); igt_assert_neq(ret, 0); /* Too big. */ memset(&userptr, 0, sizeof(userptr)); userptr.user_ptr = 0; userptr.user_size = ~0; userptr.flags = 0; ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr); igt_assert_neq(ret, 0); /* Both wrong. */ memset(&userptr, 0, sizeof(userptr)); userptr.user_ptr = 0; userptr.user_size = ~0; userptr.flags = ~0; ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr); igt_assert_neq(ret, 0); /* Zero user_size. */ memset(&userptr, 0, sizeof(userptr)); userptr.user_ptr = 0; userptr.user_size = 0; userptr.flags = 0; ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr); igt_assert_neq(ret, 0); return 0; } static int test_access_control(int fd) { /* CAP_SYS_ADMIN is needed for UNSYNCHRONIZED mappings. */ gem_userptr_test_unsynchronized(); igt_require(has_userptr(fd)); igt_fork(child, 1) { void *ptr; int ret; uint32_t handle; igt_drop_root(); igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0); ret = __gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle); if (ret == 0) gem_close(fd, handle); free(ptr); igt_assert_eq(ret, -EPERM); } igt_waitchildren(); return 0; } static int test_invalid_null_pointer(int fd) { uint32_t handle; /* NULL pointer. */ gem_userptr(fd, NULL, PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_neq(copy(fd, handle, handle), 0); /* QQQ Precise errno? */ gem_close(fd, handle); return 0; } static int test_invalid_gtt_mapping(int fd) { struct drm_i915_gem_mmap_gtt arg; uint32_t handle; char *gtt, *map; /* Anonymous mapping to find a hole */ map = mmap(NULL, sizeof(linear) + 2 * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); igt_assert(map != MAP_FAILED); gem_userptr(fd, map, sizeof(linear) + 2 * PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_eq(copy(fd, handle, handle), 0); gem_close(fd, handle); gem_userptr(fd, map, PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_eq(copy(fd, handle, handle), 0); gem_close(fd, handle); gem_userptr(fd, map + sizeof(linear) + PAGE_SIZE, PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_eq(copy(fd, handle, handle), 0); gem_close(fd, handle); /* GTT mapping */ memset(&arg, 0, sizeof(arg)); arg.handle = create_bo(fd, 0); do_ioctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &arg); gtt = mmap(map + PAGE_SIZE, sizeof(linear), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, fd, arg.offset); igt_assert(gtt == map + PAGE_SIZE); gem_close(fd, arg.handle); igt_assert(((unsigned long)gtt & (PAGE_SIZE - 1)) == 0); igt_assert((sizeof(linear) & (PAGE_SIZE - 1)) == 0); gem_userptr(fd, gtt, sizeof(linear), 0, userptr_flags, &handle); igt_assert_eq(copy(fd, handle, handle), -EFAULT); gem_close(fd, handle); gem_userptr(fd, gtt, PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_eq(copy(fd, handle, handle), -EFAULT); gem_close(fd, handle); gem_userptr(fd, gtt + sizeof(linear) - PAGE_SIZE, PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_eq(copy(fd, handle, handle), -EFAULT); gem_close(fd, handle); /* boundaries */ gem_userptr(fd, map, 2*PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_eq(copy(fd, handle, handle), -EFAULT); gem_close(fd, handle); gem_userptr(fd, map + sizeof(linear), 2*PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_eq(copy(fd, handle, handle), -EFAULT); gem_close(fd, handle); munmap(map, sizeof(linear) + 2*PAGE_SIZE); return 0; } #define PE_GTT_MAP 0x1 #define PE_BUSY 0x2 static void test_process_exit(int fd, int flags) { if (flags & PE_GTT_MAP) igt_require(gem_has_llc(fd)); igt_fork(child, 1) { uint32_t handle; handle = create_userptr_bo(fd, sizeof(linear)); if (flags & PE_GTT_MAP) { uint32_t *ptr = __gem_mmap__gtt(fd, handle, sizeof(linear), PROT_READ | PROT_WRITE); if (ptr) *ptr = 0; } if (flags & PE_BUSY) igt_assert_eq(copy(fd, handle, handle), 0); } igt_waitchildren(); } static void test_forked_access(int fd) { uint32_t handle1 = 0, handle2 = 0; void *ptr1 = NULL, *ptr2 = NULL; int ret; ret = posix_memalign(&ptr1, PAGE_SIZE, sizeof(linear)); #ifdef MADV_DONTFORK ret |= madvise(ptr1, sizeof(linear), MADV_DONTFORK); #endif gem_userptr(fd, ptr1, sizeof(linear), 0, userptr_flags, &handle1); igt_assert(ptr1); igt_assert(handle1); ret = posix_memalign(&ptr2, PAGE_SIZE, sizeof(linear)); #ifdef MADV_DONTFORK ret |= madvise(ptr2, sizeof(linear), MADV_DONTFORK); #endif gem_userptr(fd, ptr2, sizeof(linear), 0, userptr_flags, &handle2); igt_assert(ptr2); igt_assert(handle2); memset(ptr1, 0x1, sizeof(linear)); memset(ptr2, 0x2, sizeof(linear)); igt_fork(child, 1) igt_assert_eq(copy(fd, handle1, handle2), 0); igt_waitchildren(); gem_userptr_sync(fd, handle1); gem_userptr_sync(fd, handle2); gem_close(fd, handle1); gem_close(fd, handle2); igt_assert(memcmp(ptr1, ptr2, sizeof(linear)) == 0); #ifdef MADV_DOFORK ret = madvise(ptr1, sizeof(linear), MADV_DOFORK); igt_assert_eq(ret, 0); #endif free(ptr1); #ifdef MADV_DOFORK ret = madvise(ptr2, sizeof(linear), MADV_DOFORK); igt_assert_eq(ret, 0); #endif free(ptr2); } #define MAP_FIXED_INVALIDATE_OVERLAP (1<<0) #define MAP_FIXED_INVALIDATE_BUSY (1<<1) #define MAP_FIXED_INVALIDATE_GET_PAGES (1<<2) #define ALL_MAP_FIXED_INVALIDATE (MAP_FIXED_INVALIDATE_OVERLAP | \ MAP_FIXED_INVALIDATE_BUSY | \ MAP_FIXED_INVALIDATE_GET_PAGES) static int test_map_fixed_invalidate(int fd, uint32_t flags) { const size_t ptr_size = sizeof(linear) + 2*PAGE_SIZE; const int num_handles = (flags & MAP_FIXED_INVALIDATE_OVERLAP) ? 2 : 1; uint32_t handle[num_handles]; uint32_t *ptr; ptr = mmap(NULL, ptr_size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); igt_assert(ptr != MAP_FAILED); for (int i = 0; i < num_handles; i++) handle[i] = create_userptr(fd, 0, ptr + PAGE_SIZE/sizeof(*ptr)); for (char *fixed = (char *)ptr, *end = fixed + ptr_size; fixed + 2*PAGE_SIZE <= end; fixed += PAGE_SIZE) { struct drm_i915_gem_mmap_gtt mmap_gtt; uint32_t *map; map = mmap(ptr, ptr_size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); igt_assert(map != MAP_FAILED); igt_assert(map == ptr); memset(&mmap_gtt, 0, sizeof(mmap_gtt)); mmap_gtt.handle = gem_create(fd, 2*PAGE_SIZE); do_ioctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_gtt); if (flags & MAP_FIXED_INVALIDATE_GET_PAGES) igt_assert_eq(__gem_set_domain(fd, handle[0], I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT), 0); if (flags & MAP_FIXED_INVALIDATE_BUSY) igt_assert_eq(copy(fd, handle[0], handle[num_handles-1]), 0); map = mmap(fixed, 2*PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, fd, mmap_gtt.offset); igt_assert(map != MAP_FAILED); igt_assert(map == (uint32_t *)fixed); gem_set_tiling(fd, mmap_gtt.handle, I915_TILING_NONE, 0); *map = 0xdead; if (flags & MAP_FIXED_INVALIDATE_GET_PAGES) { igt_assert_eq(__gem_set_domain(fd, handle[0], I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT), -EFAULT); /* Errors are permanent, so we have to recreate */ gem_close(fd, handle[0]); handle[0] = create_userptr(fd, 0, ptr + PAGE_SIZE/sizeof(*ptr)); } gem_set_tiling(fd, mmap_gtt.handle, I915_TILING_Y, 512 * 4); *(uint32_t*)map = 0xbeef; gem_close(fd, mmap_gtt.handle); } for (int i = 0; i < num_handles; i++) gem_close(fd, handle[i]); munmap(ptr, ptr_size); return 0; } static int test_forbidden_ops(int fd) { struct drm_i915_gem_pread gem_pread; struct drm_i915_gem_pwrite gem_pwrite; uint32_t handle; void *ptr; igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0); gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle); /* pread/pwrite are not always forbidden, but when they * are they should fail with EINVAL. */ memset(&gem_pread, 0, sizeof(gem_pread)); gem_pread.handle = handle; gem_pread.offset = 0; gem_pread.size = PAGE_SIZE; gem_pread.data_ptr = to_user_pointer(ptr); if (drmIoctl(fd, DRM_IOCTL_I915_GEM_PREAD, &gem_pread)) igt_assert_eq(errno, EINVAL); memset(&gem_pwrite, 0, sizeof(gem_pwrite)); gem_pwrite.handle = handle; gem_pwrite.offset = 0; gem_pwrite.size = PAGE_SIZE; gem_pwrite.data_ptr = to_user_pointer(ptr); if (drmIoctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &gem_pwrite)) igt_assert_eq(errno, EINVAL); gem_close(fd, handle); free(ptr); return 0; } static void test_relocations(int fd) { struct drm_i915_gem_relocation_entry *reloc; struct drm_i915_gem_exec_object2 obj; struct drm_i915_gem_execbuffer2 exec; unsigned size; void *ptr; int i; size = PAGE_SIZE + ALIGN(sizeof(*reloc)*256, PAGE_SIZE); memset(&obj, 0, sizeof(obj)); igt_assert(posix_memalign(&ptr, PAGE_SIZE, size) == 0); gem_userptr(fd, ptr, size, 0, userptr_flags, &obj.handle); if (!gem_has_llc(fd)) gem_set_caching(fd, obj.handle, 0); *(uint32_t *)ptr = MI_BATCH_BUFFER_END; reloc = (typeof(reloc))((char *)ptr + PAGE_SIZE); obj.relocs_ptr = to_user_pointer(reloc); obj.relocation_count = 256; memset(reloc, 0, 256*sizeof(*reloc)); for (i = 0; i < 256; i++) { reloc[i].offset = 2048 - 4*i; reloc[i].target_handle = obj.handle; reloc[i].read_domains = I915_GEM_DOMAIN_INSTRUCTION; } memset(&exec, 0, sizeof(exec)); exec.buffers_ptr = to_user_pointer(&obj); exec.buffer_count = 1; gem_execbuf(fd, &exec); gem_sync(fd, obj.handle); gem_close(fd, obj.handle); free(ptr); } static unsigned char counter; static void (* volatile orig_sigbus)(int sig, siginfo_t *info, void *param); static volatile unsigned long sigbus_start; static volatile long sigbus_cnt = -1; static void *umap(int fd, uint32_t handle) { void *ptr; if (gem_has_llc(fd)) { ptr = gem_mmap__gtt(fd, handle, sizeof(linear), PROT_READ | PROT_WRITE); } else { uint32_t tmp = gem_create(fd, sizeof(linear)); igt_assert_eq(copy(fd, tmp, handle), 0); ptr = gem_mmap__cpu(fd, tmp, 0, sizeof(linear), PROT_READ); gem_close(fd, tmp); } return ptr; } static void check_bo(int fd1, uint32_t handle1, int is_userptr, int fd2, uint32_t handle2) { unsigned char *ptr1, *ptr2; unsigned long size = sizeof(linear); ptr2 = umap(fd2, handle2); if (is_userptr) ptr1 = is_userptr > 0 ? get_handle_ptr(handle1) : ptr2; else ptr1 = umap(fd1, handle1); igt_assert(ptr1); igt_assert(ptr2); sigbus_start = (unsigned long)ptr2; igt_assert(memcmp(ptr1, ptr2, sizeof(linear)) == 0); if (gem_has_llc(fd1)) { counter++; memset(ptr1, counter, size); memset(ptr2, counter, size); } if (!is_userptr) munmap(ptr1, sizeof(linear)); munmap(ptr2, sizeof(linear)); } static int export_handle(int fd, uint32_t handle, int *outfd) { struct drm_prime_handle args; int ret; args.handle = handle; args.flags = DRM_CLOEXEC; args.fd = -1; ret = drmIoctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args); if (ret) ret = errno; *outfd = args.fd; return ret; } static void sigbus(int sig, siginfo_t *info, void *param) { unsigned long ptr = (unsigned long)info->si_addr; void *addr; if (ptr >= sigbus_start && ptr < sigbus_start + sizeof(linear)) { /* replace mapping to allow progress */ munmap((void *)sigbus_start, sizeof(linear)); addr = mmap((void *)sigbus_start, sizeof(linear), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); igt_assert((unsigned long)addr == sigbus_start); memset(addr, counter, sizeof(linear)); sigbus_cnt++; return; } if (orig_sigbus) orig_sigbus(sig, info, param); igt_assert(0); } static int test_dmabuf(void) { int fd1, fd2; uint32_t handle, handle_import; int dma_buf_fd = -1; int ret; fd1 = drm_open_driver(DRIVER_INTEL); handle = create_userptr_bo(fd1, sizeof(linear)); memset(get_handle_ptr(handle), counter, sizeof(linear)); ret = export_handle(fd1, handle, &dma_buf_fd); if (userptr_flags & LOCAL_I915_USERPTR_UNSYNCHRONIZED && ret) { igt_assert(ret == EINVAL || ret == ENODEV); free_userptr_bo(fd1, handle); close(fd1); return 0; } else { igt_assert_eq(ret, 0); igt_assert_lte(0, dma_buf_fd); } fd2 = drm_open_driver(DRIVER_INTEL); handle_import = prime_fd_to_handle(fd2, dma_buf_fd); check_bo(fd1, handle, 1, fd2, handle_import); /* close dma_buf, check whether nothing disappears. */ close(dma_buf_fd); check_bo(fd1, handle, 1, fd2, handle_import); /* destroy userptr object and expect SIGBUS */ free_userptr_bo(fd1, handle); close(fd1); if (gem_has_llc(fd2)) { struct sigaction sigact, orig_sigact; memset(&sigact, 0, sizeof(sigact)); sigact.sa_sigaction = sigbus; sigact.sa_flags = SA_SIGINFO; ret = sigaction(SIGBUS, &sigact, &orig_sigact); igt_assert_eq(ret, 0); orig_sigbus = orig_sigact.sa_sigaction; sigbus_cnt = 0; check_bo(fd2, handle_import, -1, fd2, handle_import); igt_assert(sigbus_cnt > 0); ret = sigaction(SIGBUS, &orig_sigact, NULL); igt_assert_eq(ret, 0); } close(fd2); reset_handle_ptr(); return 0; } static void store_dword_rand(int i915, unsigned int engine, uint32_t target, uint64_t sz, int count) { const int gen = intel_gen(intel_get_drm_devid(i915)); struct drm_i915_gem_relocation_entry *reloc; struct drm_i915_gem_exec_object2 obj[2]; struct drm_i915_gem_execbuffer2 exec; unsigned int batchsz; uint32_t *batch; int i; batchsz = count * 16 + 4; batchsz = ALIGN(batchsz, 4096); reloc = calloc(sizeof(*reloc), count); memset(obj, 0, sizeof(obj)); obj[0].handle = target; obj[0].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B; obj[1].handle = gem_create(i915, batchsz); obj[1].relocation_count = count; obj[1].relocs_ptr = to_user_pointer(reloc); batch = gem_mmap__wc(i915, obj[1].handle, 0, batchsz, PROT_WRITE); memset(&exec, 0, sizeof(exec)); exec.buffer_count = 2; exec.buffers_ptr = to_user_pointer(obj); exec.flags = engine; if (gen < 6) exec.flags |= I915_EXEC_SECURE; i = 0; for (int n = 0; n < count; n++) { uint64_t offset; reloc[n].target_handle = obj[0].handle; reloc[n].delta = rand() % (sz / 4) * 4; reloc[n].offset = (i + 1) * sizeof(uint32_t); reloc[n].presumed_offset = obj[0].offset; reloc[n].read_domains = I915_GEM_DOMAIN_RENDER; reloc[n].write_domain = I915_GEM_DOMAIN_RENDER; offset = reloc[n].presumed_offset + reloc[n].delta; batch[i] = MI_STORE_DWORD_IMM | (gen < 6 ? 1 << 22 : 0); if (gen >= 8) { batch[++i] = offset; batch[++i] = offset >> 32; } else if (gen >= 4) { batch[++i] = 0; batch[++i] = offset; reloc[n].offset += sizeof(uint32_t); } else { batch[i]--; batch[++i] = offset; } batch[++i] = rand(); i++; } batch[i] = MI_BATCH_BUFFER_END; igt_assert(i * sizeof(uint32_t) < batchsz); munmap(batch, batchsz); gem_execbuf(i915, &exec); gem_close(i915, obj[1].handle); free(reloc); } static void test_readonly(int i915) { uint64_t aperture_size; uint32_t whandle, rhandle; size_t sz, total; void *pages, *space; int memfd; /* * A small batch of pages; small enough to cheaply check for stray * writes but large enough that we don't create too many VMA pointing * back to this set from the large arena. The limit on total number * of VMA for a process is 65,536 (at least on this kernel). * * We then write from the GPU through the large arena into the smaller * backing storage, which we can cheaply check to see if those writes * have landed (using a SHA1sum). Repeating the same random GPU writes * though a read-only handle to confirm that this time the writes are * discarded and the backing store unchanged. */ sz = 16 << 12; memfd = memfd_create("pages", 0); igt_require(memfd != -1); igt_require(ftruncate(memfd, sz) == 0); pages = mmap(NULL, sz, PROT_WRITE, MAP_SHARED, memfd, 0); igt_assert(pages != MAP_FAILED); igt_require(__gem_userptr(i915, pages, sz, true, userptr_flags, &rhandle) == 0); gem_close(i915, rhandle); gem_userptr(i915, pages, sz, false, userptr_flags, &whandle); /* * We have only a 31bit delta which we use for generating * the target address for MI_STORE_DWORD_IMM, so our maximum * usable object size is only 2GiB. For now. */ total = 2048ull << 20; aperture_size = gem_aperture_size(i915) / 2; if (aperture_size < total) total = aperture_size; total = total / sz * sz; igt_info("Using a %'zuB (%'zu pages) arena onto %zu pages\n", total, total >> 12, sz >> 12); /* Create an arena all pointing to the same set of pages */ space = mmap(NULL, total, PROT_READ, MAP_ANON | MAP_SHARED, -1, 0); igt_require(space != MAP_FAILED); for (size_t offset = 0; offset < total; offset += sz) { igt_assert(mmap(space + offset, sz, PROT_WRITE, MAP_SHARED | MAP_FIXED, memfd, 0) != MAP_FAILED); *(uint32_t *)(space + offset) = offset; } igt_assert_eq_u32(*(uint32_t *)pages, (uint32_t)(total - sz)); igt_assert(mlock(pages, sz) == 0); close(memfd); /* Check we can create a normal userptr bo wrapping the wrapper */ gem_userptr(i915, space, total, false, userptr_flags, &rhandle); gem_set_domain(i915, rhandle, I915_GEM_DOMAIN_CPU, 0); for (size_t offset = 0; offset < total; offset += sz) store_dword(i915, rhandle, offset + 4, offset / sz); gem_sync(i915, rhandle); igt_assert_eq_u32(*(uint32_t *)(pages + 0), (uint32_t)(total - sz)); igt_assert_eq_u32(*(uint32_t *)(pages + 4), (uint32_t)(total / sz - 1)); gem_close(i915, rhandle); /* Now enforce read-only henceforth */ igt_assert(mprotect(space, total, PROT_READ) == 0); igt_fork(child, 1) { unsigned int engine; char *orig; orig = g_compute_checksum_for_data(G_CHECKSUM_SHA1, pages, sz); gem_userptr(i915, space, total, true, userptr_flags, &rhandle); for_each_engine(i915, engine) { char *ref, *result; /* First tweak the backing store through the write */ store_dword_rand(i915, engine, whandle, sz, 1024); gem_sync(i915, whandle); ref = g_compute_checksum_for_data(G_CHECKSUM_SHA1, pages, sz); /* Check some writes did land */ igt_assert(strcmp(ref, orig)); /* Now try the same through the read-only handle */ store_dword_rand(i915, engine, rhandle, total, 1024); gem_sync(i915, rhandle); result = g_compute_checksum_for_data(G_CHECKSUM_SHA1, pages, sz); /* * As the writes into the read-only GPU bo should fail, * the SHA1 hash of the backing store should be * unaffected. */ igt_assert(strcmp(ref, result) == 0); g_free(result); g_free(orig); orig = ref; } gem_close(i915, rhandle); g_free(orig); } igt_waitchildren(); munlock(pages, sz); munmap(space, total); munmap(pages, sz); } static jmp_buf sigjmp; static void sigjmp_handler(int sig) { siglongjmp(sigjmp, sig); } static void test_readonly_mmap(int i915) { char *original, *result; uint32_t handle; uint32_t sz; void *pages; void *ptr; int sig; /* * A quick check to ensure that we cannot circumvent the * read-only nature of our memory by creating a GTT mmap into * the pages. Imagine receiving a readonly SHM segment from * another process, or a readonly file mmap, it must remain readonly * on the GPU as well. */ igt_require(igt_setup_clflush()); sz = 16 << 12; pages = mmap(NULL, sz, PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); igt_assert(pages != MAP_FAILED); igt_require(__gem_userptr(i915, pages, sz, true, userptr_flags, &handle) == 0); gem_set_caching(i915, handle, 0); memset(pages, 0xa5, sz); igt_clflush_range(pages, sz); original = g_compute_checksum_for_data(G_CHECKSUM_SHA1, pages, sz); ptr = __gem_mmap__gtt(i915, handle, sz, PROT_WRITE); igt_assert(ptr == NULL); ptr = gem_mmap__gtt(i915, handle, sz, PROT_READ); gem_close(i915, handle); /* Check that a write into the GTT readonly map fails */ if (!(sig = sigsetjmp(sigjmp, 1))) { signal(SIGBUS, sigjmp_handler); signal(SIGSEGV, sigjmp_handler); memset(ptr, 0x5a, sz); igt_assert(0); } igt_assert_eq(sig, SIGSEGV); /* Check that we disallow removing the readonly protection */ igt_assert(mprotect(ptr, sz, PROT_WRITE)); if (!(sig = sigsetjmp(sigjmp, 1))) { signal(SIGBUS, sigjmp_handler); signal(SIGSEGV, sigjmp_handler); memset(ptr, 0x5a, sz); igt_assert(0); } igt_assert_eq(sig, SIGSEGV); /* A single read from the GTT pointer to prove that works */ igt_assert_eq_u32(*(uint8_t *)ptr, 0xa5); munmap(ptr, sz); /* Double check that the kernel did indeed not let any writes through */ igt_clflush_range(pages, sz); result = g_compute_checksum_for_data(G_CHECKSUM_SHA1, pages, sz); igt_assert(!strcmp(original, result)); g_free(original); g_free(result); munmap(pages, sz); } static void test_readonly_pwrite(int i915) { char *original, *result; uint32_t handle; uint32_t sz; void *pages; /* * Same as for GTT mmapings, we cannot alone ourselves to * circumvent readonly protection on a piece of memory via the * pwrite ioctl. */ igt_require(igt_setup_clflush()); sz = 16 << 12; pages = mmap(NULL, sz, PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); igt_assert(pages != MAP_FAILED); igt_require(__gem_userptr(i915, pages, sz, true, userptr_flags, &handle) == 0); memset(pages, 0xa5, sz); original = g_compute_checksum_for_data(G_CHECKSUM_SHA1, pages, sz); for (int page = 0; page < 16; page++) { char data[4096]; memset(data, page, sizeof(data)); igt_assert_eq(__gem_write(i915, handle, page << 12, data, sizeof(data)), -EINVAL); } gem_close(i915, handle); result = g_compute_checksum_for_data(G_CHECKSUM_SHA1, pages, sz); igt_assert(!strcmp(original, result)); g_free(original); g_free(result); munmap(pages, sz); } static int test_usage_restrictions(int fd) { void *ptr; int ret; uint32_t handle; igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE * 2) == 0); /* Address not aligned. */ ret = __gem_userptr(fd, (char *)ptr + 1, PAGE_SIZE, 0, userptr_flags, &handle); igt_assert_neq(ret, 0); /* Size not rounded to page size. */ ret = __gem_userptr(fd, ptr, PAGE_SIZE - 1, 0, userptr_flags, &handle); igt_assert_neq(ret, 0); /* Both wrong. */ ret = __gem_userptr(fd, (char *)ptr + 1, PAGE_SIZE - 1, 0, userptr_flags, &handle); igt_assert_neq(ret, 0); free(ptr); return 0; } static int test_create_destroy(int fd, int time) { struct timespec start, now; uint32_t handle; void *ptr; int n; igt_fork_signal_helper(); clock_gettime(CLOCK_MONOTONIC, &start); do { for (n = 0; n < 1000; n++) { igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0); gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle); gem_close(fd, handle); free(ptr); } clock_gettime(CLOCK_MONOTONIC, &now); now.tv_sec -= time; } while (now.tv_sec < start.tv_sec || (now.tv_sec == start.tv_sec && now.tv_nsec < start.tv_nsec)); igt_stop_signal_helper(); return 0; } static int test_coherency(int fd, int count) { uint32_t *memory; uint32_t *cpu, *cpu_val; uint32_t *gpu, *gpu_val; uint32_t start = 0; int i, ret; igt_info("Using 2x%d 1MiB buffers\n", count); intel_require_memory(2*count, sizeof(linear), CHECK_RAM); ret = posix_memalign((void **)&memory, PAGE_SIZE, count*sizeof(linear)); igt_assert(ret == 0 && memory); gpu = malloc(sizeof(uint32_t)*count*4); gpu_val = gpu + count; cpu = gpu_val + count; cpu_val = cpu + count; for (i = 0; i < count; i++) { gpu[i] = create_bo(fd, start); gpu_val[i] = start; start += WIDTH*HEIGHT; } for (i = 0; i < count; i++) { cpu[i] = create_userptr(fd, start, memory+i*WIDTH*HEIGHT); cpu_val[i] = start; start += WIDTH*HEIGHT; } igt_info("Verifying initialisation...\n"); for (i = 0; i < count; i++) { check_gpu(fd, gpu[i], gpu_val[i]); check_cpu(memory+i*WIDTH*HEIGHT, cpu_val[i]); } igt_info("Cyclic blits cpu->gpu, forward...\n"); for (i = 0; i < count * 4; i++) { int src = i % count; int dst = (i + 1) % count; igt_assert_eq(copy(fd, gpu[dst], cpu[src]), 0); gpu_val[dst] = cpu_val[src]; } for (i = 0; i < count; i++) check_gpu(fd, gpu[i], gpu_val[i]); igt_info("Cyclic blits gpu->cpu, backward...\n"); for (i = 0; i < count * 4; i++) { int src = (i + 1) % count; int dst = i % count; igt_assert_eq(copy(fd, cpu[dst], gpu[src]), 0); cpu_val[dst] = gpu_val[src]; } for (i = 0; i < count; i++) { gem_userptr_sync(fd, cpu[i]); check_cpu(memory+i*WIDTH*HEIGHT, cpu_val[i]); } igt_info("Random blits...\n"); for (i = 0; i < count * 4; i++) { int src = random() % count; int dst = random() % count; if (random() & 1) { igt_assert_eq(copy(fd, gpu[dst], cpu[src]), 0); gpu_val[dst] = cpu_val[src]; } else { igt_assert_eq(copy(fd, cpu[dst], gpu[src]), 0); cpu_val[dst] = gpu_val[src]; } } for (i = 0; i < count; i++) { check_gpu(fd, gpu[i], gpu_val[i]); gem_close(fd, gpu[i]); gem_userptr_sync(fd, cpu[i]); check_cpu(memory+i*WIDTH*HEIGHT, cpu_val[i]); gem_close(fd, cpu[i]); } free(gpu); free(memory); return 0; } static struct igt_eviction_test_ops fault_ops = { .create = create_userptr_bo, .flink = flink_userptr_bo, .close = free_userptr_bo, .copy = blit, .clear = clear, }; static int can_swap(void) { unsigned long as, ram; /* Cannot swap if not enough address space */ /* FIXME: Improve check criteria. */ if (sizeof(void*) < 8) as = 3 * 1024; else as = 256 * 1024; /* Just a big number */ ram = intel_get_total_ram_mb(); if ((as - 128) < (ram - 256)) return 0; return 1; } static void test_forking_evictions(int fd, int size, int count, unsigned flags) { int trash_count; int num_threads; trash_count = intel_get_total_ram_mb() * 11 / 10; /* Use the fact test will spawn a number of child * processes meaning swapping will be triggered system * wide even if one process on it's own can't do it. */ num_threads = min(sysconf(_SC_NPROCESSORS_ONLN) * 4, 12); trash_count /= num_threads; if (count > trash_count) count = trash_count; forking_evictions(fd, &fault_ops, size, count, trash_count, flags); reset_handle_ptr(); } static void test_mlocked_evictions(int fd, int size, int count) { count = min(256, count/2); mlocked_evictions(fd, &fault_ops, size, count); reset_handle_ptr(); } static void test_swapping_evictions(int fd, int size, int count) { int trash_count; igt_skip_on_f(!can_swap(), "Not enough process address space for swapping tests.\n"); trash_count = intel_get_total_ram_mb() * 11 / 10; swapping_evictions(fd, &fault_ops, size, count, trash_count); reset_handle_ptr(); } static void test_minor_evictions(int fd, int size, int count) { minor_evictions(fd, &fault_ops, size, count); reset_handle_ptr(); } static void test_major_evictions(int fd, int size, int count) { major_evictions(fd, &fault_ops, size, count); reset_handle_ptr(); } static void test_overlap(int fd, int expected) { char *ptr; int ret; uint32_t handle, handle2; igt_assert(posix_memalign((void *)&ptr, PAGE_SIZE, PAGE_SIZE * 3) == 0); gem_userptr(fd, ptr + PAGE_SIZE, PAGE_SIZE, 0, userptr_flags, &handle); /* before, no overlap */ ret = __gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle2); if (ret == 0) gem_close(fd, handle2); igt_assert_eq(ret, 0); /* after, no overlap */ ret = __gem_userptr(fd, ptr + PAGE_SIZE * 2, PAGE_SIZE, 0, userptr_flags, &handle2); if (ret == 0) gem_close(fd, handle2); igt_assert_eq(ret, 0); /* exactly overlapping */ ret = __gem_userptr(fd, ptr + PAGE_SIZE, PAGE_SIZE, 0, userptr_flags, &handle2); if (ret == 0) gem_close(fd, handle2); igt_assert(ret == 0 || ret == expected); /* start overlaps */ ret = __gem_userptr(fd, ptr, PAGE_SIZE * 2, 0, userptr_flags, &handle2); if (ret == 0) gem_close(fd, handle2); igt_assert(ret == 0 || ret == expected); /* end overlaps */ ret = __gem_userptr(fd, ptr + PAGE_SIZE, PAGE_SIZE * 2, 0, userptr_flags, &handle2); if (ret == 0) gem_close(fd, handle2); igt_assert(ret == 0 || ret == expected); /* subsumes */ ret = __gem_userptr(fd, ptr, PAGE_SIZE * 3, 0, userptr_flags, &handle2); if (ret == 0) gem_close(fd, handle2); igt_assert(ret == 0 || ret == expected); gem_close(fd, handle); free(ptr); } static void test_unmap(int fd, int expected) { char *ptr, *bo_ptr; const unsigned int num_obj = 3; unsigned int i; uint32_t bo[num_obj + 1]; size_t map_size = sizeof(linear) * num_obj + (PAGE_SIZE - 1); int ret; ptr = mmap(NULL, map_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); igt_assert(ptr != MAP_FAILED); bo_ptr = (char *)ALIGN((unsigned long)ptr, PAGE_SIZE); for (i = 0; i < num_obj; i++, bo_ptr += sizeof(linear)) { gem_userptr(fd, bo_ptr, sizeof(linear), 0, userptr_flags, &bo[i]); } bo[num_obj] = create_bo(fd, 0); for (i = 0; i < num_obj; i++) igt_assert_eq(copy(fd, bo[num_obj], bo[i]), 0); ret = munmap(ptr, map_size); igt_assert_eq(ret, 0); for (i = 0; i < num_obj; i++) igt_assert_eq(copy(fd, bo[num_obj], bo[i]), -expected); for (i = 0; i < (num_obj + 1); i++) gem_close(fd, bo[i]); } static void test_unmap_after_close(int fd) { char *ptr, *bo_ptr; const unsigned int num_obj = 3; unsigned int i; uint32_t bo[num_obj + 1]; size_t map_size = sizeof(linear) * num_obj + (PAGE_SIZE - 1); int ret; ptr = mmap(NULL, map_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); igt_assert(ptr != MAP_FAILED); bo_ptr = (char *)ALIGN((unsigned long)ptr, PAGE_SIZE); for (i = 0; i < num_obj; i++, bo_ptr += sizeof(linear)) { gem_userptr(fd, bo_ptr, sizeof(linear), 0, userptr_flags, &bo[i]); } bo[num_obj] = create_bo(fd, 0); for (i = 0; i < num_obj; i++) igt_assert_eq(copy(fd, bo[num_obj], bo[i]), 0); for (i = 0; i < (num_obj + 1); i++) gem_close(fd, bo[i]); ret = munmap(ptr, map_size); igt_assert_eq(ret, 0); } static void test_unmap_cycles(int fd, int expected) { int i; for (i = 0; i < 1000; i++) test_unmap(fd, expected); } #define MM_STRESS_LOOPS 100000 struct stress_thread_data { unsigned int stop; int exit_code; }; static void *mm_stress_thread(void *data) { struct stress_thread_data *stdata = (struct stress_thread_data *)data; const size_t sz = 2 << 20; void *ptr; while (!stdata->stop) { ptr = mmap(NULL, sz, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (ptr == MAP_FAILED) { stdata->exit_code = -EFAULT; break; } madvise(ptr, sz, MADV_HUGEPAGE); for (size_t page = 0; page < sz; page += PAGE_SIZE) *(volatile uint32_t *)((unsigned char *)ptr + page) = 0; if (munmap(ptr, sz)) { stdata->exit_code = errno; break; } } return NULL; } static void test_stress_mm(int fd) { int ret; pthread_t t; unsigned int loops = MM_STRESS_LOOPS; uint32_t handle; void *ptr; struct stress_thread_data stdata; memset(&stdata, 0, sizeof(stdata)); igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0); ret = pthread_create(&t, NULL, mm_stress_thread, &stdata); igt_assert_eq(ret, 0); while (loops--) { gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle); gem_close(fd, handle); } free(ptr); stdata.stop = 1; ret = pthread_join(t, NULL); igt_assert_eq(ret, 0); igt_assert_eq(stdata.exit_code, 0); } static void test_stress_purge(int fd) { struct stress_thread_data stdata; uint32_t handle; pthread_t t; void *ptr; memset(&stdata, 0, sizeof(stdata)); igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0); igt_assert(!pthread_create(&t, NULL, mm_stress_thread, &stdata)); igt_until_timeout(150) { gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle); gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); intel_purge_vm_caches(fd); gem_close(fd, handle); } free(ptr); stdata.stop = 1; igt_assert(!pthread_join(t, NULL)); igt_assert_eq(stdata.exit_code, 0); } struct userptr_close_thread_data { int fd; void *ptr; bool overlap; bool stop; pthread_mutex_t mutex; }; static void *mm_userptr_close_thread(void *data) { struct userptr_close_thread_data *t = (struct userptr_close_thread_data *)data; int num_handles = t->overlap ? 2 : 1; uint32_t handle[num_handles]; /* Be pedantic and enforce the required memory barriers */ pthread_mutex_lock(&t->mutex); while (!t->stop) { pthread_mutex_unlock(&t->mutex); for (int i = 0; i < num_handles; i++) gem_userptr(t->fd, t->ptr, PAGE_SIZE, 0, userptr_flags, &handle[i]); for (int i = 0; i < num_handles; i++) gem_close(t->fd, handle[i]); pthread_mutex_lock(&t->mutex); } pthread_mutex_unlock(&t->mutex); return NULL; } static void test_invalidate_close_race(int fd, bool overlap) { pthread_t t; unsigned int loops = MM_STRESS_LOOPS; struct userptr_close_thread_data t_data; memset(&t_data, 0, sizeof(t_data)); t_data.fd = fd; t_data.overlap = overlap; igt_assert(posix_memalign(&t_data.ptr, PAGE_SIZE, PAGE_SIZE) == 0); pthread_mutex_init(&t_data.mutex, NULL); igt_assert(pthread_create(&t, NULL, mm_userptr_close_thread, &t_data) == 0); while (loops--) { mprotect(t_data.ptr, PAGE_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC); mprotect(t_data.ptr, PAGE_SIZE, PROT_READ | PROT_WRITE); } pthread_mutex_lock(&t_data.mutex); t_data.stop = 1; pthread_mutex_unlock(&t_data.mutex); pthread_join(t, NULL); pthread_mutex_destroy(&t_data.mutex); free(t_data.ptr); } uint64_t total_ram; uint64_t aperture_size; int fd, count; static int opt_handler(int opt, int opt_index, void *data) { switch (opt) { case 'c': count = atoi(optarg); break; default: return IGT_OPT_HANDLER_ERROR; } return IGT_OPT_HANDLER_SUCCESS; } const char *help_str = " -c\tBuffer count\n"; igt_main_args("c:", NULL, help_str, opt_handler, NULL) { int size = sizeof(linear); igt_fixture { fd = drm_open_driver(DRIVER_INTEL); igt_assert(fd >= 0); igt_require_gem(fd); size = sizeof(linear); aperture_size = gem_aperture_size(fd); igt_info("Aperture size is %lu MiB\n", (long)(aperture_size / (1024*1024))); if (count == 0) count = 2 * aperture_size / (1024*1024) / 3; total_ram = intel_get_total_ram_mb(); igt_info("Total RAM is %'llu MiB\n", (long long)total_ram); if (count > total_ram * 3 / 4) { count = intel_get_total_ram_mb() * 3 / 4; igt_info("Not enough RAM to run test, reducing buffer count.\n"); } } igt_subtest_group { igt_fixture { igt_require(has_userptr(fd)); } igt_subtest("input-checking") test_input_checking(fd); igt_subtest("usage-restrictions") test_usage_restrictions(fd); igt_subtest("invalid-null-pointer") test_invalid_null_pointer(fd); igt_subtest("invalid-gtt-mapping") test_invalid_gtt_mapping(fd); igt_subtest("forked-access") test_forked_access(fd); igt_subtest("forbidden-operations") test_forbidden_ops(fd); igt_subtest("relocations") test_relocations(fd); } igt_subtest_group { gem_userptr_test_unsynchronized(); igt_fixture { igt_require(has_userptr(fd)); } igt_subtest("create-destroy-unsync") test_create_destroy(fd, 5); igt_subtest("unsync-overlap") test_overlap(fd, 0); igt_subtest("unsync-unmap") test_unmap(fd, 0); igt_subtest("unsync-unmap-cycles") test_unmap_cycles(fd, 0); igt_subtest("unsync-unmap-after-close") test_unmap_after_close(fd); igt_subtest("coherency-unsync") test_coherency(fd, count); igt_subtest("dmabuf-unsync") test_dmabuf(); igt_subtest("readonly-unsync") test_readonly(fd); igt_subtest("readonly-mmap-unsync") test_readonly_mmap(fd); igt_subtest("readonly-pwrite-unsync") test_readonly_pwrite(fd); for (unsigned flags = 0; flags < ALL_FORKING_EVICTIONS + 1; flags++) { igt_subtest_f("forked-unsync%s%s%s-%s", flags & FORKING_EVICTIONS_SWAPPING ? "-swapping" : "", flags & FORKING_EVICTIONS_DUP_DRMFD ? "-multifd" : "", flags & FORKING_EVICTIONS_MEMORY_PRESSURE ? "-mempressure" : "", flags & FORKING_EVICTIONS_INTERRUPTIBLE ? "interruptible" : "normal") { test_forking_evictions(fd, size, count, flags); } } igt_subtest("mlocked-unsync-normal") test_mlocked_evictions(fd, size, count); igt_subtest("swapping-unsync-normal") test_swapping_evictions(fd, size, count); igt_subtest("minor-unsync-normal") test_minor_evictions(fd, size, count); igt_subtest("major-unsync-normal") { size = 200 * 1024 * 1024; count = (gem_aperture_size(fd) / size) + 2; test_major_evictions(fd, size, count); } igt_fixture { size = sizeof(linear); count = 2 * gem_aperture_size(fd) / (1024*1024) / 3; if (count > total_ram * 3 / 4) count = intel_get_total_ram_mb() * 3 / 4; } igt_fork_signal_helper(); igt_subtest("mlocked-unsync-interruptible") test_mlocked_evictions(fd, size, count); igt_subtest("swapping-unsync-interruptible") test_swapping_evictions(fd, size, count); igt_subtest("minor-unsync-interruptible") test_minor_evictions(fd, size, count); igt_subtest("major-unsync-interruptible") { size = 200 * 1024 * 1024; count = (gem_aperture_size(fd) / size) + 2; test_major_evictions(fd, size, count); } igt_stop_signal_helper(); } igt_subtest_group { gem_userptr_test_synchronized(); igt_fixture { igt_require(has_userptr(fd)); size = sizeof(linear); count = 2 * gem_aperture_size(fd) / (1024*1024) / 3; if (count > total_ram * 3 / 4) count = intel_get_total_ram_mb() * 3 / 4; } igt_subtest("process-exit") test_process_exit(fd, 0); igt_subtest("process-exit-gtt") test_process_exit(fd, PE_GTT_MAP); igt_subtest("process-exit-busy") test_process_exit(fd, PE_BUSY); igt_subtest("process-exit-gtt-busy") test_process_exit(fd, PE_GTT_MAP | PE_BUSY); igt_subtest("create-destroy-sync") test_create_destroy(fd, 5); igt_subtest("sync-overlap") test_overlap(fd, EINVAL); igt_subtest("sync-unmap") test_unmap(fd, EFAULT); igt_subtest("sync-unmap-cycles") test_unmap_cycles(fd, EFAULT); igt_subtest("sync-unmap-after-close") test_unmap_after_close(fd); igt_subtest("stress-mm") test_stress_mm(fd); igt_subtest("stress-purge") test_stress_purge(fd); igt_subtest("stress-mm-invalidate-close") test_invalidate_close_race(fd, false); igt_subtest("stress-mm-invalidate-close-overlap") test_invalidate_close_race(fd, true); for (unsigned flags = 0; flags < ALL_MAP_FIXED_INVALIDATE + 1; flags++) { igt_subtest_f("map-fixed-invalidate%s%s%s", flags & MAP_FIXED_INVALIDATE_OVERLAP ? "-overlap" : "", flags & MAP_FIXED_INVALIDATE_BUSY ? "-busy" : "", flags & MAP_FIXED_INVALIDATE_GET_PAGES ? "-gup" : "") { test_map_fixed_invalidate(fd, flags); } } igt_subtest("coherency-sync") test_coherency(fd, count); igt_subtest("dmabuf-sync") test_dmabuf(); for (unsigned flags = 0; flags < ALL_FORKING_EVICTIONS + 1; flags++) { igt_subtest_f("forked-sync%s%s%s-%s", flags & FORKING_EVICTIONS_SWAPPING ? "-swapping" : "", flags & FORKING_EVICTIONS_DUP_DRMFD ? "-multifd" : "", flags & FORKING_EVICTIONS_MEMORY_PRESSURE ? "-mempressure" : "", flags & FORKING_EVICTIONS_INTERRUPTIBLE ? "interruptible" : "normal") { test_forking_evictions(fd, size, count, flags); } } igt_subtest("mlocked-normal-sync") test_mlocked_evictions(fd, size, count); igt_subtest("swapping-normal-sync") test_swapping_evictions(fd, size, count); igt_subtest("minor-normal-sync") test_minor_evictions(fd, size, count); igt_subtest("major-normal-sync") { size = 200 * 1024 * 1024; count = (gem_aperture_size(fd) / size) + 2; test_major_evictions(fd, size, count); } igt_fixture { size = 1024 * 1024; count = 2 * gem_aperture_size(fd) / (1024*1024) / 3; if (count > total_ram * 3 / 4) count = intel_get_total_ram_mb() * 3 / 4; } igt_fork_signal_helper(); igt_subtest("mlocked-sync-interruptible") test_mlocked_evictions(fd, size, count); igt_subtest("swapping-sync-interruptible") test_swapping_evictions(fd, size, count); igt_subtest("minor-sync-interruptible") test_minor_evictions(fd, size, count); igt_subtest("major-sync-interruptible") { size = 200 * 1024 * 1024; count = (gem_aperture_size(fd) / size) + 2; test_major_evictions(fd, size, count); } igt_stop_signal_helper(); } igt_subtest("access-control") test_access_control(fd); }