// Copyright (c) 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/fuzz/fuzzer_pass.h" #include "source/fuzz/fuzzer_util.h" #include "source/fuzz/instruction_descriptor.h" #include "source/fuzz/transformation_add_constant_boolean.h" #include "source/fuzz/transformation_add_constant_composite.h" #include "source/fuzz/transformation_add_constant_scalar.h" #include "source/fuzz/transformation_add_global_undef.h" #include "source/fuzz/transformation_add_type_boolean.h" #include "source/fuzz/transformation_add_type_float.h" #include "source/fuzz/transformation_add_type_int.h" #include "source/fuzz/transformation_add_type_matrix.h" #include "source/fuzz/transformation_add_type_pointer.h" #include "source/fuzz/transformation_add_type_vector.h" namespace spvtools { namespace fuzz { FuzzerPass::FuzzerPass(opt::IRContext* ir_context, FactManager* fact_manager, FuzzerContext* fuzzer_context, protobufs::TransformationSequence* transformations) : ir_context_(ir_context), fact_manager_(fact_manager), fuzzer_context_(fuzzer_context), transformations_(transformations) {} FuzzerPass::~FuzzerPass() = default; std::vector FuzzerPass::FindAvailableInstructions( opt::Function* function, opt::BasicBlock* block, const opt::BasicBlock::iterator& inst_it, std::function instruction_is_relevant) const { // TODO(afd) The following is (relatively) simple, but may end up being // prohibitively inefficient, as it walks the whole dominator tree for // every instruction that is considered. std::vector result; // Consider all global declarations for (auto& global : GetIRContext()->module()->types_values()) { if (instruction_is_relevant(GetIRContext(), &global)) { result.push_back(&global); } } // Consider all function parameters function->ForEachParam( [this, &instruction_is_relevant, &result](opt::Instruction* param) { if (instruction_is_relevant(GetIRContext(), param)) { result.push_back(param); } }); // Consider all previous instructions in this block for (auto prev_inst_it = block->begin(); prev_inst_it != inst_it; ++prev_inst_it) { if (instruction_is_relevant(GetIRContext(), &*prev_inst_it)) { result.push_back(&*prev_inst_it); } } // Walk the dominator tree to consider all instructions from dominating // blocks auto dominator_analysis = GetIRContext()->GetDominatorAnalysis(function); for (auto next_dominator = dominator_analysis->ImmediateDominator(block); next_dominator != nullptr; next_dominator = dominator_analysis->ImmediateDominator(next_dominator)) { for (auto& dominating_inst : *next_dominator) { if (instruction_is_relevant(GetIRContext(), &dominating_inst)) { result.push_back(&dominating_inst); } } } return result; } void FuzzerPass::MaybeAddTransformationBeforeEachInstruction( std::function< void(opt::Function* function, opt::BasicBlock* block, opt::BasicBlock::iterator inst_it, const protobufs::InstructionDescriptor& instruction_descriptor)> maybe_apply_transformation) { // Consider every block in every function. for (auto& function : *GetIRContext()->module()) { for (auto& block : function) { // We now consider every instruction in the block, randomly deciding // whether to apply a transformation before it. // In order for transformations to insert new instructions, they need to // be able to identify the instruction to insert before. We describe an // instruction via its opcode, 'opc', a base instruction 'base' that has a // result id, and the number of instructions with opcode 'opc' that we // should skip when searching from 'base' for the desired instruction. // (An instruction that has a result id is represented by its own opcode, // itself as 'base', and a skip-count of 0.) std::vector> base_opcode_skip_triples; // The initial base instruction is the block label. uint32_t base = block.id(); // Counts the number of times we have seen each opcode since we reset the // base instruction. std::map skip_count; // Consider every instruction in the block. The label is excluded: it is // only necessary to consider it as a base in case the first instruction // in the block does not have a result id. for (auto inst_it = block.begin(); inst_it != block.end(); ++inst_it) { if (inst_it->HasResultId()) { // In the case that the instruction has a result id, we use the // instruction as its own base, and clear the skip counts we have // collected. base = inst_it->result_id(); skip_count.clear(); } const SpvOp opcode = inst_it->opcode(); // Invoke the provided function, which might apply a transformation. maybe_apply_transformation( &function, &block, inst_it, MakeInstructionDescriptor( base, opcode, skip_count.count(opcode) ? skip_count.at(opcode) : 0)); if (!inst_it->HasResultId()) { skip_count[opcode] = skip_count.count(opcode) ? skip_count.at(opcode) + 1 : 1; } } } } } uint32_t FuzzerPass::FindOrCreateBoolType() { opt::analysis::Bool bool_type; auto existing_id = GetIRContext()->get_type_mgr()->GetId(&bool_type); if (existing_id) { return existing_id; } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation(TransformationAddTypeBoolean(result)); return result; } uint32_t FuzzerPass::FindOrCreate32BitIntegerType(bool is_signed) { opt::analysis::Integer int_type(32, is_signed); auto existing_id = GetIRContext()->get_type_mgr()->GetId(&int_type); if (existing_id) { return existing_id; } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation(TransformationAddTypeInt(result, 32, is_signed)); return result; } uint32_t FuzzerPass::FindOrCreate32BitFloatType() { opt::analysis::Float float_type(32); auto existing_id = GetIRContext()->get_type_mgr()->GetId(&float_type); if (existing_id) { return existing_id; } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation(TransformationAddTypeFloat(result, 32)); return result; } uint32_t FuzzerPass::FindOrCreateVectorType(uint32_t component_type_id, uint32_t component_count) { assert(component_count >= 2 && component_count <= 4 && "Precondition: component count must be in range [2, 4]."); opt::analysis::Type* component_type = GetIRContext()->get_type_mgr()->GetType(component_type_id); assert(component_type && "Precondition: the component type must exist."); opt::analysis::Vector vector_type(component_type, component_count); auto existing_id = GetIRContext()->get_type_mgr()->GetId(&vector_type); if (existing_id) { return existing_id; } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation( TransformationAddTypeVector(result, component_type_id, component_count)); return result; } uint32_t FuzzerPass::FindOrCreateMatrixType(uint32_t column_count, uint32_t row_count) { assert(column_count >= 2 && column_count <= 4 && "Precondition: column count must be in range [2, 4]."); assert(row_count >= 2 && row_count <= 4 && "Precondition: row count must be in range [2, 4]."); uint32_t column_type_id = FindOrCreateVectorType(FindOrCreate32BitFloatType(), row_count); opt::analysis::Type* column_type = GetIRContext()->get_type_mgr()->GetType(column_type_id); opt::analysis::Matrix matrix_type(column_type, column_count); auto existing_id = GetIRContext()->get_type_mgr()->GetId(&matrix_type); if (existing_id) { return existing_id; } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation( TransformationAddTypeMatrix(result, column_type_id, column_count)); return result; } uint32_t FuzzerPass::FindOrCreatePointerType(uint32_t base_type_id, SpvStorageClass storage_class) { // We do not use the type manager here, due to problems related to isomorphic // but distinct structs not being regarded as different. auto existing_id = fuzzerutil::MaybeGetPointerType( GetIRContext(), base_type_id, storage_class); if (existing_id) { return existing_id; } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation( TransformationAddTypePointer(result, storage_class, base_type_id)); return result; } uint32_t FuzzerPass::FindOrCreatePointerTo32BitIntegerType( bool is_signed, SpvStorageClass storage_class) { return FindOrCreatePointerType(FindOrCreate32BitIntegerType(is_signed), storage_class); } uint32_t FuzzerPass::FindOrCreate32BitIntegerConstant(uint32_t word, bool is_signed) { auto uint32_type_id = FindOrCreate32BitIntegerType(is_signed); opt::analysis::IntConstant int_constant( GetIRContext()->get_type_mgr()->GetType(uint32_type_id)->AsInteger(), {word}); auto existing_constant = GetIRContext()->get_constant_mgr()->FindConstant(&int_constant); if (existing_constant) { return GetIRContext() ->get_constant_mgr() ->GetDefiningInstruction(existing_constant) ->result_id(); } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation( TransformationAddConstantScalar(result, uint32_type_id, {word})); return result; } uint32_t FuzzerPass::FindOrCreate32BitFloatConstant(uint32_t word) { auto float_type_id = FindOrCreate32BitFloatType(); opt::analysis::FloatConstant float_constant( GetIRContext()->get_type_mgr()->GetType(float_type_id)->AsFloat(), {word}); auto existing_constant = GetIRContext()->get_constant_mgr()->FindConstant(&float_constant); if (existing_constant) { return GetIRContext() ->get_constant_mgr() ->GetDefiningInstruction(existing_constant) ->result_id(); } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation( TransformationAddConstantScalar(result, float_type_id, {word})); return result; } uint32_t FuzzerPass::FindOrCreateBoolConstant(bool value) { auto bool_type_id = FindOrCreateBoolType(); opt::analysis::BoolConstant bool_constant( GetIRContext()->get_type_mgr()->GetType(bool_type_id)->AsBool(), value); auto existing_constant = GetIRContext()->get_constant_mgr()->FindConstant(&bool_constant); if (existing_constant) { return GetIRContext() ->get_constant_mgr() ->GetDefiningInstruction(existing_constant) ->result_id(); } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation(TransformationAddConstantBoolean(result, value)); return result; } uint32_t FuzzerPass::FindOrCreateGlobalUndef(uint32_t type_id) { for (auto& inst : GetIRContext()->types_values()) { if (inst.opcode() == SpvOpUndef && inst.type_id() == type_id) { return inst.result_id(); } } auto result = GetFuzzerContext()->GetFreshId(); ApplyTransformation(TransformationAddGlobalUndef(result, type_id)); return result; } std::pair, std::map>> FuzzerPass::GetAvailableBaseTypesAndPointers( SpvStorageClass storage_class) const { // Records all of the base types available in the module. std::vector base_types; // For each base type, records all the associated pointer types that target // that base type and that have |storage_class| as their storage class. std::map> base_type_to_pointers; for (auto& inst : GetIRContext()->types_values()) { switch (inst.opcode()) { case SpvOpTypeArray: case SpvOpTypeBool: case SpvOpTypeFloat: case SpvOpTypeInt: case SpvOpTypeMatrix: case SpvOpTypeStruct: case SpvOpTypeVector: // These types are suitable as pointer base types. Record the type, // and the fact that we cannot yet have seen any pointers that use this // as its base type. base_types.push_back(inst.result_id()); base_type_to_pointers.insert({inst.result_id(), {}}); break; case SpvOpTypePointer: if (inst.GetSingleWordInOperand(0) == storage_class) { // The pointer has the desired storage class, so we are interested in // it. Associate it with its base type. base_type_to_pointers.at(inst.GetSingleWordInOperand(1)) .push_back(inst.result_id()); } break; default: break; } } return {base_types, base_type_to_pointers}; } uint32_t FuzzerPass::FindOrCreateZeroConstant( uint32_t scalar_or_composite_type_id) { auto type_instruction = GetIRContext()->get_def_use_mgr()->GetDef(scalar_or_composite_type_id); assert(type_instruction && "The type instruction must exist."); switch (type_instruction->opcode()) { case SpvOpTypeBool: return FindOrCreateBoolConstant(false); case SpvOpTypeFloat: return FindOrCreate32BitFloatConstant(0); case SpvOpTypeInt: return FindOrCreate32BitIntegerConstant( 0, type_instruction->GetSingleWordInOperand(1) != 0); case SpvOpTypeArray: { return GetZeroConstantForHomogeneousComposite( *type_instruction, type_instruction->GetSingleWordInOperand(0), fuzzerutil::GetArraySize(*type_instruction, GetIRContext())); } case SpvOpTypeMatrix: case SpvOpTypeVector: { return GetZeroConstantForHomogeneousComposite( *type_instruction, type_instruction->GetSingleWordInOperand(0), type_instruction->GetSingleWordInOperand(1)); } case SpvOpTypeStruct: { std::vector field_zero_constants; std::vector field_zero_ids; for (uint32_t index = 0; index < type_instruction->NumInOperands(); index++) { uint32_t field_constant_id = FindOrCreateZeroConstant( type_instruction->GetSingleWordInOperand(index)); field_zero_ids.push_back(field_constant_id); field_zero_constants.push_back( GetIRContext()->get_constant_mgr()->FindDeclaredConstant( field_constant_id)); } return FindOrCreateCompositeConstant( *type_instruction, field_zero_constants, field_zero_ids); } default: assert(false && "Unknown type."); return 0; } } uint32_t FuzzerPass::FindOrCreateCompositeConstant( const opt::Instruction& composite_type_instruction, const std::vector& constants, const std::vector& constant_ids) { assert(constants.size() == constant_ids.size() && "Precondition: |constants| and |constant_ids| must be in " "correspondence."); opt::analysis::Type* composite_type = GetIRContext()->get_type_mgr()->GetType( composite_type_instruction.result_id()); std::unique_ptr composite_constant; if (composite_type->AsArray()) { composite_constant = MakeUnique( composite_type->AsArray(), constants); } else if (composite_type->AsMatrix()) { composite_constant = MakeUnique( composite_type->AsMatrix(), constants); } else if (composite_type->AsStruct()) { composite_constant = MakeUnique( composite_type->AsStruct(), constants); } else if (composite_type->AsVector()) { composite_constant = MakeUnique( composite_type->AsVector(), constants); } else { assert(false && "Precondition: |composite_type| must declare a composite type."); return 0; } uint32_t existing_constant = GetIRContext()->get_constant_mgr()->FindDeclaredConstant( composite_constant.get(), composite_type_instruction.result_id()); if (existing_constant) { return existing_constant; } uint32_t result = GetFuzzerContext()->GetFreshId(); ApplyTransformation(TransformationAddConstantComposite( result, composite_type_instruction.result_id(), constant_ids)); return result; } uint32_t FuzzerPass::GetZeroConstantForHomogeneousComposite( const opt::Instruction& composite_type_instruction, uint32_t component_type_id, uint32_t num_components) { std::vector zero_constants; std::vector zero_ids; uint32_t zero_component = FindOrCreateZeroConstant(component_type_id); const opt::analysis::Constant* registered_zero_component = GetIRContext()->get_constant_mgr()->FindDeclaredConstant(zero_component); for (uint32_t i = 0; i < num_components; i++) { zero_constants.push_back(registered_zero_component); zero_ids.push_back(zero_component); } return FindOrCreateCompositeConstant(composite_type_instruction, zero_constants, zero_ids); } } // namespace fuzz } // namespace spvtools