# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for transpose.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_transpose_tests(options): """Make a set of tests to do transpose.""" # TODO(nupurgarg): Add test for uint8. test_parameters = [{ "dtype": [tf.int32, tf.int64, tf.float32], "input_shape": [[2, 2, 3]], "perm": [[0, 1, 2], [0, 2, 1]], "constant_perm": [True, False], "fully_quantize": [False], }, { "dtype": [tf.float32], "input_shape": [[1, 2, 3, 4]], "perm": [[0, 1, 2, 3], [3, 0, 1, 2]], "constant_perm": [True, False], "fully_quantize": [False], }, { "dtype": [tf.float32], "input_shape": [[1, 2, 3, 4, 5]], "perm": [[4, 3, 2, 1, 0]], "constant_perm": [True, False], "fully_quantize": [False], }, { "dtype": [tf.float32], "input_shape": [[2, 2, 3]], "perm": [[0, 1, 2], [0, 2, 1]], "constant_perm": [True], "fully_quantize": [True], }, { "dtype": [tf.float32], "input_shape": [[1, 2, 3, 4]], "perm": [[0, 1, 2, 3], [3, 0, 1, 2]], "constant_perm": [True], "fully_quantize": [True], }] def build_graph(parameters): """Build a transpose graph given `parameters`.""" input_tensor = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="input", shape=parameters["input_shape"]) if parameters["constant_perm"]: perm = parameters["perm"] input_tensors = [input_tensor] else: shape = [len(parameters["perm"]), 2] perm = tf.compat.v1.placeholder(dtype=tf.int32, name="perm", shape=shape) input_tensors = [input_tensor, perm] out = tf.transpose(input_tensor, perm=perm) return input_tensors, [out] def build_inputs(parameters, sess, inputs, outputs): values = [ create_tensor_data(parameters["dtype"], parameters["input_shape"], min_value=-1, max_value=1) ] if not parameters["constant_perm"]: values.append(np.array(parameters["perm"])) return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) make_zip_of_tests( options, test_parameters, build_graph, build_inputs, expected_tf_failures=9)