// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #ifndef V8_CODEGEN_ASSEMBLER_H_ #define V8_CODEGEN_ASSEMBLER_H_ #include #include #include #include "src/base/memory.h" #include "src/codegen/code-comments.h" #include "src/codegen/cpu-features.h" #include "src/codegen/external-reference.h" #include "src/codegen/reglist.h" #include "src/codegen/reloc-info.h" #include "src/common/globals.h" #include "src/deoptimizer/deoptimize-reason.h" #include "src/flags/flags.h" #include "src/handles/handles.h" #include "src/objects/objects.h" namespace v8 { // Forward declarations. class ApiFunction; namespace internal { using base::Memory; using base::ReadUnalignedValue; using base::WriteUnalignedValue; // Forward declarations. class EmbeddedData; class InstructionStream; class Isolate; class SCTableReference; class SourcePosition; class StatsCounter; class StringConstantBase; // ----------------------------------------------------------------------------- // Optimization for far-jmp like instructions that can be replaced by shorter. class JumpOptimizationInfo { public: bool is_collecting() const { return stage_ == kCollection; } bool is_optimizing() const { return stage_ == kOptimization; } void set_optimizing() { DCHECK(is_optimizable()); stage_ = kOptimization; } bool is_optimizable() const { return optimizable_; } void set_optimizable() { DCHECK(is_collecting()); optimizable_ = true; } // Used to verify the instruction sequence is always the same in two stages. size_t hash_code() const { return hash_code_; } void set_hash_code(size_t hash_code) { hash_code_ = hash_code; } std::vector& farjmp_bitmap() { return farjmp_bitmap_; } private: enum { kCollection, kOptimization } stage_ = kCollection; bool optimizable_ = false; std::vector farjmp_bitmap_; size_t hash_code_ = 0u; }; class HeapObjectRequest { public: explicit HeapObjectRequest(double heap_number, int offset = -1); explicit HeapObjectRequest(const StringConstantBase* string, int offset = -1); enum Kind { kHeapNumber, kStringConstant }; Kind kind() const { return kind_; } double heap_number() const { DCHECK_EQ(kind(), kHeapNumber); return value_.heap_number; } const StringConstantBase* string() const { DCHECK_EQ(kind(), kStringConstant); return value_.string; } // The code buffer offset at the time of the request. int offset() const { DCHECK_GE(offset_, 0); return offset_; } void set_offset(int offset) { DCHECK_LT(offset_, 0); offset_ = offset; DCHECK_GE(offset_, 0); } private: Kind kind_; union { double heap_number; const StringConstantBase* string; } value_; int offset_; }; // ----------------------------------------------------------------------------- // Platform independent assembler base class. enum class CodeObjectRequired { kNo, kYes }; struct V8_EXPORT_PRIVATE AssemblerOptions { // Recording reloc info for external references and off-heap targets is // needed whenever code is serialized, e.g. into the snapshot or as a Wasm // module. This flag allows this reloc info to be disabled for code that // will not survive process destruction. bool record_reloc_info_for_serialization = true; // Recording reloc info can be disabled wholesale. This is needed when the // assembler is used on existing code directly (e.g. JumpTableAssembler) // without any buffer to hold reloc information. bool disable_reloc_info_for_patching = false; // Enables access to exrefs by computing a delta from the root array. // Only valid if code will not survive the process. bool enable_root_array_delta_access = false; // Enables specific assembler sequences only used for the simulator. bool enable_simulator_code = false; // Enables use of isolate-independent constants, indirected through the // root array. // (macro assembler feature). bool isolate_independent_code = false; // Enables the use of isolate-independent builtins through an off-heap // trampoline. (macro assembler feature). bool inline_offheap_trampolines = true; // On some platforms, all code is within a given range in the process, // and the start of this range is configured here. Address code_range_start = 0; // Enable pc-relative calls/jumps on platforms that support it. When setting // this flag, the code range must be small enough to fit all offsets into // the instruction immediates. bool use_pc_relative_calls_and_jumps = false; // Enables the collection of information useful for the generation of unwind // info. This is useful in some platform (Win64) where the unwind info depends // on a function prologue/epilogue. bool collect_win64_unwind_info = false; // Whether to emit code comments. bool emit_code_comments = FLAG_code_comments; static AssemblerOptions Default(Isolate* isolate); static AssemblerOptions DefaultForOffHeapTrampoline(Isolate* isolate); }; class AssemblerBuffer { public: virtual ~AssemblerBuffer() = default; virtual byte* start() const = 0; virtual int size() const = 0; // Return a grown copy of this buffer. The contained data is uninitialized. // The data in {this} will still be read afterwards (until {this} is // destructed), but not written. virtual std::unique_ptr Grow(int new_size) V8_WARN_UNUSED_RESULT = 0; }; // Allocate an AssemblerBuffer which uses an existing buffer. This buffer cannot // grow, so it must be large enough for all code emitted by the Assembler. V8_EXPORT_PRIVATE std::unique_ptr ExternalAssemblerBuffer(void* buffer, int size); // Allocate a new growable AssemblerBuffer with a given initial size. V8_EXPORT_PRIVATE std::unique_ptr NewAssemblerBuffer(int size); class V8_EXPORT_PRIVATE AssemblerBase : public Malloced { public: AssemblerBase(const AssemblerOptions& options, std::unique_ptr); virtual ~AssemblerBase(); const AssemblerOptions& options() const { return options_; } bool emit_debug_code() const { return emit_debug_code_; } void set_emit_debug_code(bool value) { emit_debug_code_ = value; } bool predictable_code_size() const { return predictable_code_size_; } void set_predictable_code_size(bool value) { predictable_code_size_ = value; } uint64_t enabled_cpu_features() const { return enabled_cpu_features_; } void set_enabled_cpu_features(uint64_t features) { enabled_cpu_features_ = features; } // Features are usually enabled by CpuFeatureScope, which also asserts that // the features are supported before they are enabled. // IMPORTANT: IsEnabled() should only be used by DCHECKs. For real feature // detection, use IsSupported(). bool IsEnabled(CpuFeature f) { return (enabled_cpu_features_ & (static_cast(1) << f)) != 0; } void EnableCpuFeature(CpuFeature f) { enabled_cpu_features_ |= (static_cast(1) << f); } bool is_constant_pool_available() const { if (FLAG_enable_embedded_constant_pool) { // We need to disable constant pool here for embeded builtins // because the metadata section is not adjacent to instructions return constant_pool_available_ && !options().isolate_independent_code; } else { // Embedded constant pool not supported on this architecture. UNREACHABLE(); } } JumpOptimizationInfo* jump_optimization_info() { return jump_optimization_info_; } void set_jump_optimization_info(JumpOptimizationInfo* jump_opt) { jump_optimization_info_ = jump_opt; } void FinalizeJumpOptimizationInfo() {} // Overwrite a host NaN with a quiet target NaN. Used by mksnapshot for // cross-snapshotting. static void QuietNaN(HeapObject nan) {} int pc_offset() const { return static_cast(pc_ - buffer_start_); } int pc_offset_for_safepoint() { #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) // Mips needs it's own implementation to avoid trampoline's influence. UNREACHABLE(); #else return pc_offset(); #endif } byte* buffer_start() const { return buffer_->start(); } int buffer_size() const { return buffer_->size(); } int instruction_size() const { return pc_offset(); } // This function is called when code generation is aborted, so that // the assembler could clean up internal data structures. virtual void AbortedCodeGeneration() {} // Debugging void Print(Isolate* isolate); // Record an inline code comment that can be used by a disassembler. // Use --code-comments to enable. void RecordComment(const char* msg) { if (options().emit_code_comments) { code_comments_writer_.Add(pc_offset(), std::string(msg)); } } // The minimum buffer size. Should be at least two times the platform-specific // {Assembler::kGap}. static constexpr int kMinimalBufferSize = 128; // The default buffer size used if we do not know the final size of the // generated code. static constexpr int kDefaultBufferSize = 4 * KB; protected: // Add 'target' to the {code_targets_} vector, if necessary, and return the // offset at which it is stored. int AddCodeTarget(Handle target); Handle GetCodeTarget(intptr_t code_target_index) const; // Add 'object' to the {embedded_objects_} vector and return the index at // which it is stored. using EmbeddedObjectIndex = size_t; EmbeddedObjectIndex AddEmbeddedObject(Handle object); Handle GetEmbeddedObject(EmbeddedObjectIndex index) const; // The buffer into which code and relocation info are generated. std::unique_ptr buffer_; // Cached from {buffer_->start()}, for faster access. byte* buffer_start_; std::forward_list heap_object_requests_; // The program counter, which points into the buffer above and moves forward. // TODO(jkummerow): This should probably have type {Address}. byte* pc_; void set_constant_pool_available(bool available) { if (FLAG_enable_embedded_constant_pool) { constant_pool_available_ = available; } else { // Embedded constant pool not supported on this architecture. UNREACHABLE(); } } // {RequestHeapObject} records the need for a future heap number allocation, // code stub generation or string allocation. After code assembly, each // platform's {Assembler::AllocateAndInstallRequestedHeapObjects} will // allocate these objects and place them where they are expected (determined // by the pc offset associated with each request). void RequestHeapObject(HeapObjectRequest request); bool ShouldRecordRelocInfo(RelocInfo::Mode rmode) const { DCHECK(!RelocInfo::IsNone(rmode)); if (options().disable_reloc_info_for_patching) return false; if (RelocInfo::IsOnlyForSerializer(rmode) && !options().record_reloc_info_for_serialization && !emit_debug_code()) { return false; } return true; } CodeCommentsWriter code_comments_writer_; private: // Before we copy code into the code space, we sometimes cannot encode // call/jump code targets as we normally would, as the difference between the // instruction's location in the temporary buffer and the call target is not // guaranteed to fit in the instruction's offset field. We keep track of the // code handles we encounter in calls in this vector, and encode the index of // the code handle in the vector instead. std::vector> code_targets_; // If an assembler needs a small number to refer to a heap object handle // (for example, because there are only 32bit available on a 64bit arch), the // assembler adds the object into this vector using AddEmbeddedObject, and // may then refer to the heap object using the handle's index in this vector. std::vector> embedded_objects_; // Embedded objects are deduplicated based on handle location. This is a // compromise that is almost as effective as deduplication based on actual // heap object addresses maintains GC safety. std::unordered_map, EmbeddedObjectIndex, Handle::hash, Handle::equal_to> embedded_objects_map_; const AssemblerOptions options_; uint64_t enabled_cpu_features_; bool emit_debug_code_; bool predictable_code_size_; // Indicates whether the constant pool can be accessed, which is only possible // if the pp register points to the current code object's constant pool. bool constant_pool_available_; JumpOptimizationInfo* jump_optimization_info_; // Constant pool. friend class FrameAndConstantPoolScope; friend class ConstantPoolUnavailableScope; }; // Avoids emitting debug code during the lifetime of this scope object. class DontEmitDebugCodeScope { public: explicit DontEmitDebugCodeScope(AssemblerBase* assembler) : assembler_(assembler), old_value_(assembler->emit_debug_code()) { assembler_->set_emit_debug_code(false); } ~DontEmitDebugCodeScope() { assembler_->set_emit_debug_code(old_value_); } private: AssemblerBase* assembler_; bool old_value_; }; // Enable a specified feature within a scope. class V8_EXPORT_PRIVATE CpuFeatureScope { public: enum CheckPolicy { kCheckSupported, kDontCheckSupported, }; #ifdef DEBUG CpuFeatureScope(AssemblerBase* assembler, CpuFeature f, CheckPolicy check = kCheckSupported); ~CpuFeatureScope(); private: AssemblerBase* assembler_; uint64_t old_enabled_; #else CpuFeatureScope(AssemblerBase* assembler, CpuFeature f, CheckPolicy check = kCheckSupported) {} ~CpuFeatureScope() { // NOLINT (modernize-use-equals-default) // Define a destructor to avoid unused variable warnings. } #endif }; } // namespace internal } // namespace v8 #endif // V8_CODEGEN_ASSEMBLER_H_