// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been modified // significantly by Google Inc. // Copyright 2014 the V8 project authors. All rights reserved. #ifndef V8_CODEGEN_PPC_ASSEMBLER_PPC_INL_H_ #define V8_CODEGEN_PPC_ASSEMBLER_PPC_INL_H_ #include "src/codegen/ppc/assembler-ppc.h" #include "src/codegen/assembler.h" #include "src/debug/debug.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsOptimizer() { return true; } bool CpuFeatures::SupportsWasmSimd128() { return false; } void RelocInfo::apply(intptr_t delta) { // absolute code pointer inside code object moves with the code object. if (IsInternalReference(rmode_)) { // Jump table entry Address target = Memory
(pc_); Memory
(pc_) = target + delta; } else { // mov sequence DCHECK(IsInternalReferenceEncoded(rmode_)); Address target = Assembler::target_address_at(pc_, constant_pool_); Assembler::set_target_address_at(pc_, constant_pool_, target + delta, SKIP_ICACHE_FLUSH); } } Address RelocInfo::target_internal_reference() { if (IsInternalReference(rmode_)) { // Jump table entry return Memory
(pc_); } else { // mov sequence DCHECK(IsInternalReferenceEncoded(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } } Address RelocInfo::target_internal_reference_address() { DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); return pc_; } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } Address RelocInfo::target_address_address() { DCHECK(HasTargetAddressAddress()); if (FLAG_enable_embedded_constant_pool && Assembler::IsConstantPoolLoadStart(pc_)) { // We return the PC for embedded constant pool since this function is used // by the serializer and expects the address to reside within the code // object. return pc_; } // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like LIS/ORI where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. return pc_; } Address RelocInfo::constant_pool_entry_address() { if (FLAG_enable_embedded_constant_pool) { DCHECK(constant_pool_); ConstantPoolEntry::Access access; if (Assembler::IsConstantPoolLoadStart(pc_, &access)) return Assembler::target_constant_pool_address_at( pc_, constant_pool_, access, ConstantPoolEntry::INTPTR); } UNREACHABLE(); } void Assembler::set_target_compressed_address_at( Address pc, Address constant_pool, Tagged_t target, ICacheFlushMode icache_flush_mode) { Assembler::set_target_address_at( pc, constant_pool, static_cast
(target), icache_flush_mode); } int RelocInfo::target_address_size() { if (IsCodedSpecially()) { return Assembler::kSpecialTargetSize; } else { return kSystemPointerSize; } } Tagged_t Assembler::target_compressed_address_at(Address pc, Address constant_pool) { return static_cast(target_address_at(pc, constant_pool)); } Handle Assembler::code_target_object_handle_at(Address pc, Address constant_pool) { int index = static_cast(target_address_at(pc, constant_pool)) & 0xFFFFFFFF; return GetCodeTarget(index); } HeapObject RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { return HeapObject::cast(Object(DecompressTaggedAny( host_.address(), Assembler::target_compressed_address_at(pc_, constant_pool_)))); } else { return HeapObject::cast( Object(Assembler::target_address_at(pc_, constant_pool_))); } } HeapObject RelocInfo::target_object_no_host(Isolate* isolate) { if (IsCompressedEmbeddedObject(rmode_)) { return HeapObject::cast(Object(DecompressTaggedAny( isolate, Assembler::target_compressed_address_at(pc_, constant_pool_)))); } else { return target_object(); } } Handle Assembler::compressed_embedded_object_handle_at( Address pc, Address const_pool) { return GetEmbeddedObject(target_compressed_address_at(pc, const_pool)); } Handle RelocInfo::target_object_handle(Assembler* origin) { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCodeTarget(rmode_)) { return Handle::cast( origin->code_target_object_handle_at(pc_, constant_pool_)); } else { if (IsCompressedEmbeddedObject(rmode_)) { return origin->compressed_embedded_object_handle_at(pc_, constant_pool_); } return Handle(reinterpret_cast( Assembler::target_address_at(pc_, constant_pool_))); } } void RelocInfo::set_target_object(Heap* heap, HeapObject target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { Assembler::set_target_compressed_address_at( pc_, constant_pool_, CompressTagged(target.ptr()), icache_flush_mode); } else { DCHECK(IsFullEmbeddedObject(rmode_)); Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(), icache_flush_mode); } if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() && !FLAG_disable_write_barriers) { WriteBarrierForCode(host(), this, target); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::set_target_external_reference( Address target, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); Assembler::set_target_address_at(pc_, constant_pool_, target, icache_flush_mode); } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return target_address(); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) set_target_address(target, write_barrier_mode, icache_flush_mode); } Address RelocInfo::target_off_heap_target() { DCHECK(IsOffHeapTarget(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::WipeOut() { DCHECK(IsEmbeddedObjectMode(rmode_) || IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)); if (IsInternalReference(rmode_)) { // Jump table entry Memory
(pc_) = kNullAddress; } else if (IsCompressedEmbeddedObject(rmode_)) { Assembler::set_target_compressed_address_at(pc_, constant_pool_, kNullAddress); } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) { // mov sequence // Currently used only by deserializer, no need to flush. Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress, SKIP_ICACHE_FLUSH); } else { Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); } } Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {} void Assembler::UntrackBranch() { DCHECK(!trampoline_emitted_); DCHECK_GT(tracked_branch_count_, 0); int count = --tracked_branch_count_; if (count == 0) { // Reset next_trampoline_check_ = kMaxInt; } else { next_trampoline_check_ += kTrampolineSlotsSize; } } // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori Address Assembler::target_address_at(Address pc, Address constant_pool) { if (FLAG_enable_embedded_constant_pool && constant_pool) { ConstantPoolEntry::Access access; if (IsConstantPoolLoadStart(pc, &access)) return Memory
(target_constant_pool_address_at( pc, constant_pool, access, ConstantPoolEntry::INTPTR)); } Instr instr1 = instr_at(pc); Instr instr2 = instr_at(pc + kInstrSize); // Interpret 2 instructions generated by lis/ori if (IsLis(instr1) && IsOri(instr2)) { #if V8_TARGET_ARCH_PPC64 Instr instr4 = instr_at(pc + (3 * kInstrSize)); Instr instr5 = instr_at(pc + (4 * kInstrSize)); // Assemble the 64 bit value. uint64_t hi = (static_cast((instr1 & kImm16Mask) << 16) | static_cast(instr2 & kImm16Mask)); uint64_t lo = (static_cast((instr4 & kImm16Mask) << 16) | static_cast(instr5 & kImm16Mask)); return static_cast
((hi << 32) | lo); #else // Assemble the 32 bit value. return static_cast
(((instr1 & kImm16Mask) << 16) | (instr2 & kImm16Mask)); #endif } UNREACHABLE(); } #if V8_TARGET_ARCH_PPC64 const uint32_t kLoadIntptrOpcode = LD; #else const uint32_t kLoadIntptrOpcode = LWZ; #endif // Constant pool load sequence detection: // 1) REGULAR access: // load , kConstantPoolRegister + // // 2) OVERFLOWED access: // addis , kConstantPoolRegister, // load , + bool Assembler::IsConstantPoolLoadStart(Address pc, ConstantPoolEntry::Access* access) { Instr instr = instr_at(pc); uint32_t opcode = instr & kOpcodeMask; if (GetRA(instr) != kConstantPoolRegister) return false; bool overflowed = (opcode == ADDIS); #ifdef DEBUG if (overflowed) { opcode = instr_at(pc + kInstrSize) & kOpcodeMask; } DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD); #endif if (access) { *access = (overflowed ? ConstantPoolEntry::OVERFLOWED : ConstantPoolEntry::REGULAR); } return true; } bool Assembler::IsConstantPoolLoadEnd(Address pc, ConstantPoolEntry::Access* access) { Instr instr = instr_at(pc); uint32_t opcode = instr & kOpcodeMask; bool overflowed = false; if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false; if (GetRA(instr) != kConstantPoolRegister) { instr = instr_at(pc - kInstrSize); opcode = instr & kOpcodeMask; if ((opcode != ADDIS) || GetRA(instr) != kConstantPoolRegister) { return false; } overflowed = true; } if (access) { *access = (overflowed ? ConstantPoolEntry::OVERFLOWED : ConstantPoolEntry::REGULAR); } return true; } int Assembler::GetConstantPoolOffset(Address pc, ConstantPoolEntry::Access access, ConstantPoolEntry::Type type) { bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); #ifdef DEBUG ConstantPoolEntry::Access access_check = static_cast(-1); DCHECK(IsConstantPoolLoadStart(pc, &access_check)); DCHECK(access_check == access); #endif int offset; if (overflowed) { offset = (instr_at(pc) & kImm16Mask) << 16; offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask); DCHECK(!is_int16(offset)); } else { offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask)); } return offset; } void Assembler::PatchConstantPoolAccessInstruction( int pc_offset, int offset, ConstantPoolEntry::Access access, ConstantPoolEntry::Type type) { Address pc = reinterpret_cast
(buffer_start_) + pc_offset; bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); CHECK(overflowed != is_int16(offset)); #ifdef DEBUG ConstantPoolEntry::Access access_check = static_cast(-1); DCHECK(IsConstantPoolLoadStart(pc, &access_check)); DCHECK(access_check == access); #endif if (overflowed) { int hi_word = static_cast(offset >> 16); int lo_word = static_cast(offset & 0xffff); if (lo_word & 0x8000) hi_word++; Instr instr1 = instr_at(pc); Instr instr2 = instr_at(pc + kInstrSize); instr1 &= ~kImm16Mask; instr1 |= (hi_word & kImm16Mask); instr2 &= ~kImm16Mask; instr2 |= (lo_word & kImm16Mask); instr_at_put(pc, instr1); instr_at_put(pc + kInstrSize, instr2); } else { Instr instr = instr_at(pc); instr &= ~kImm16Mask; instr |= (offset & kImm16Mask); instr_at_put(pc, instr); } } Address Assembler::target_constant_pool_address_at( Address pc, Address constant_pool, ConstantPoolEntry::Access access, ConstantPoolEntry::Type type) { Address addr = constant_pool; DCHECK(addr); addr += GetConstantPoolOffset(pc, access, type); return addr; } // This sets the branch destination (which gets loaded at the call address). // This is for calls and branches within generated code. The serializer // has already deserialized the mov instructions etc. // There is a FIXED_SEQUENCE assumption here void Assembler::deserialization_set_special_target_at( Address instruction_payload, Code code, Address target) { set_target_address_at(instruction_payload, !code.is_null() ? code.constant_pool() : kNullAddress, target); } int Assembler::deserialization_special_target_size( Address instruction_payload) { return kSpecialTargetSize; } void Assembler::deserialization_set_target_internal_reference_at( Address pc, Address target, RelocInfo::Mode mode) { if (RelocInfo::IsInternalReferenceEncoded(mode)) { set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH); } else { Memory
(pc) = target; } } // This code assumes the FIXED_SEQUENCE of lis/ori void Assembler::set_target_address_at(Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode) { if (FLAG_enable_embedded_constant_pool && constant_pool) { ConstantPoolEntry::Access access; if (IsConstantPoolLoadStart(pc, &access)) { Memory
(target_constant_pool_address_at( pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target; return; } } Instr instr1 = instr_at(pc); Instr instr2 = instr_at(pc + kInstrSize); // Interpret 2 instructions generated by lis/ori if (IsLis(instr1) && IsOri(instr2)) { #if V8_TARGET_ARCH_PPC64 Instr instr4 = instr_at(pc + (3 * kInstrSize)); Instr instr5 = instr_at(pc + (4 * kInstrSize)); // Needs to be fixed up when mov changes to handle 64-bit values. uint32_t* p = reinterpret_cast(pc); uintptr_t itarget = static_cast(target); instr5 &= ~kImm16Mask; instr5 |= itarget & kImm16Mask; itarget = itarget >> 16; instr4 &= ~kImm16Mask; instr4 |= itarget & kImm16Mask; itarget = itarget >> 16; instr2 &= ~kImm16Mask; instr2 |= itarget & kImm16Mask; itarget = itarget >> 16; instr1 &= ~kImm16Mask; instr1 |= itarget & kImm16Mask; itarget = itarget >> 16; *p = instr1; *(p + 1) = instr2; *(p + 3) = instr4; *(p + 4) = instr5; if (icache_flush_mode != SKIP_ICACHE_FLUSH) { FlushInstructionCache(p, 5 * kInstrSize); } #else uint32_t* p = reinterpret_cast(pc); uint32_t itarget = static_cast(target); int lo_word = itarget & kImm16Mask; int hi_word = itarget >> 16; instr1 &= ~kImm16Mask; instr1 |= hi_word; instr2 &= ~kImm16Mask; instr2 |= lo_word; *p = instr1; *(p + 1) = instr2; if (icache_flush_mode != SKIP_ICACHE_FLUSH) { FlushInstructionCache(p, 2 * kInstrSize); } #endif return; } UNREACHABLE(); } } // namespace internal } // namespace v8 #endif // V8_CODEGEN_PPC_ASSEMBLER_PPC_INL_H_