// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_COMPILER_LINKAGE_H_ #define V8_COMPILER_LINKAGE_H_ #include "src/base/compiler-specific.h" #include "src/base/flags.h" #include "src/codegen/interface-descriptors.h" #include "src/codegen/machine-type.h" #include "src/codegen/register-arch.h" #include "src/codegen/reglist.h" #include "src/codegen/signature.h" #include "src/common/globals.h" #include "src/compiler/frame.h" #include "src/compiler/operator.h" #include "src/runtime/runtime.h" #include "src/zone/zone.h" #if !defined(__clang__) && defined(_M_ARM64) // _M_ARM64 is an MSVC-specific macro that clang-cl emulates. #define NO_INLINE_FOR_ARM64_MSVC __declspec(noinline) #else #define NO_INLINE_FOR_ARM64_MSVC #endif namespace v8 { class CFunctionInfo; namespace internal { class CallInterfaceDescriptor; class OptimizedCompilationInfo; namespace compiler { const RegList kNoCalleeSaved = 0; class OsrHelper; // Describes the location for a parameter or a return value to a call. class LinkageLocation { public: bool operator==(const LinkageLocation& other) const { return bit_field_ == other.bit_field_ && machine_type_ == other.machine_type_; } bool operator!=(const LinkageLocation& other) const { return !(*this == other); } static bool IsSameLocation(const LinkageLocation& a, const LinkageLocation& b) { // Different MachineTypes may end up at the same physical location. With the // sub-type check we make sure that types like {AnyTagged} and // {TaggedPointer} which would end up with the same physical location are // considered equal here. return (a.bit_field_ == b.bit_field_) && (IsSubtype(a.machine_type_.representation(), b.machine_type_.representation()) || IsSubtype(b.machine_type_.representation(), a.machine_type_.representation())); } static LinkageLocation ForAnyRegister( MachineType type = MachineType::None()) { return LinkageLocation(REGISTER, ANY_REGISTER, type); } static LinkageLocation ForRegister(int32_t reg, MachineType type = MachineType::None()) { DCHECK_LE(0, reg); return LinkageLocation(REGISTER, reg, type); } static LinkageLocation ForCallerFrameSlot(int32_t slot, MachineType type) { DCHECK_GT(0, slot); return LinkageLocation(STACK_SLOT, slot, type); } static LinkageLocation ForCalleeFrameSlot(int32_t slot, MachineType type) { // TODO(titzer): bailout instead of crashing here. DCHECK(slot >= 0 && slot < LinkageLocation::MAX_STACK_SLOT); return LinkageLocation(STACK_SLOT, slot, type); } static LinkageLocation ForSavedCallerReturnAddress() { return ForCalleeFrameSlot((StandardFrameConstants::kCallerPCOffset - StandardFrameConstants::kCallerPCOffset) / kSystemPointerSize, MachineType::Pointer()); } static LinkageLocation ForSavedCallerFramePtr() { return ForCalleeFrameSlot((StandardFrameConstants::kCallerPCOffset - StandardFrameConstants::kCallerFPOffset) / kSystemPointerSize, MachineType::Pointer()); } static LinkageLocation ForSavedCallerConstantPool() { DCHECK(V8_EMBEDDED_CONSTANT_POOL); return ForCalleeFrameSlot((StandardFrameConstants::kCallerPCOffset - StandardFrameConstants::kConstantPoolOffset) / kSystemPointerSize, MachineType::AnyTagged()); } static LinkageLocation ForSavedCallerFunction() { return ForCalleeFrameSlot((StandardFrameConstants::kCallerPCOffset - StandardFrameConstants::kFunctionOffset) / kSystemPointerSize, MachineType::AnyTagged()); } static LinkageLocation ConvertToTailCallerLocation( LinkageLocation caller_location, int stack_param_delta) { if (!caller_location.IsRegister()) { return LinkageLocation(STACK_SLOT, caller_location.GetLocation() + stack_param_delta, caller_location.GetType()); } return caller_location; } MachineType GetType() const { return machine_type_; } int GetSize() const { return 1 << ElementSizeLog2Of(GetType().representation()); } int GetSizeInPointers() const { // Round up return (GetSize() + kSystemPointerSize - 1) / kSystemPointerSize; } int32_t GetLocation() const { // We can't use LocationField::decode here because it doesn't work for // negative values! return static_cast(bit_field_ & LocationField::kMask) >> LocationField::kShift; } NO_INLINE_FOR_ARM64_MSVC bool IsRegister() const { return TypeField::decode(bit_field_) == REGISTER; } bool IsAnyRegister() const { return IsRegister() && GetLocation() == ANY_REGISTER; } bool IsCallerFrameSlot() const { return !IsRegister() && GetLocation() < 0; } bool IsCalleeFrameSlot() const { return !IsRegister() && GetLocation() >= 0; } int32_t AsRegister() const { DCHECK(IsRegister()); return GetLocation(); } int32_t AsCallerFrameSlot() const { DCHECK(IsCallerFrameSlot()); return GetLocation(); } int32_t AsCalleeFrameSlot() const { DCHECK(IsCalleeFrameSlot()); return GetLocation(); } private: enum LocationType { REGISTER, STACK_SLOT }; using TypeField = base::BitField; using LocationField = TypeField::Next; static constexpr int32_t ANY_REGISTER = -1; static constexpr int32_t MAX_STACK_SLOT = 32767; LinkageLocation(LocationType type, int32_t location, MachineType machine_type) { bit_field_ = TypeField::encode(type) | // {location} can be -1 (ANY_REGISTER). ((static_cast(location) << LocationField::kShift) & LocationField::kMask); machine_type_ = machine_type; } int32_t bit_field_; MachineType machine_type_; }; using LocationSignature = Signature; // Describes a call to various parts of the compiler. Every call has the notion // of a "target", which is the first input to the call. class V8_EXPORT_PRIVATE CallDescriptor final : public NON_EXPORTED_BASE(ZoneObject) { public: // Describes the kind of this call, which determines the target. enum Kind { kCallCodeObject, // target is a Code object kCallJSFunction, // target is a JSFunction object kCallAddress, // target is a machine pointer kCallWasmCapiFunction, // target is a Wasm C API function kCallWasmFunction, // target is a wasm function kCallWasmImportWrapper, // target is a wasm import wrapper kCallBuiltinPointer, // target is a builtin pointer }; // NOTE: The lowest 10 bits of the Flags field are encoded in InstructionCode // (for use in the code generator). All higher bits are lost. static constexpr int kFlagsBitsEncodedInInstructionCode = 10; enum Flag { kNoFlags = 0u, kNeedsFrameState = 1u << 0, kHasExceptionHandler = 1u << 1, kCanUseRoots = 1u << 2, // Causes the code generator to initialize the root register. kInitializeRootRegister = 1u << 3, // Does not ever try to allocate space on our heap. kNoAllocate = 1u << 4, // Use retpoline for this call if indirect. kRetpoline = 1u << 5, // Use the kJavaScriptCallCodeStartRegister (fixed) register for the // indirect target address when calling. kFixedTargetRegister = 1u << 6, kCallerSavedRegisters = 1u << 7, // The kCallerSavedFPRegisters only matters (and set) when the more general // flag for kCallerSavedRegisters above is also set. kCallerSavedFPRegisters = 1u << 8, // Tail calls for tier up are special (in fact they are different enough // from normal tail calls to warrant a dedicated opcode; but they also have // enough similar aspects that reusing the TailCall opcode is pragmatic). // Specifically: // // 1. Caller and callee are both JS-linkage Code objects. // 2. JS runtime arguments are passed unchanged from caller to callee. // 3. JS runtime arguments are not attached as inputs to the TailCall node. // 4. Prior to the tail call, frame and register state is torn down to just // before the caller frame was constructed. // 5. Unlike normal tail calls, arguments adaptor frames (if present) are // *not* torn down. // // In other words, behavior is identical to a jmp instruction prior caller // frame construction. kIsTailCallForTierUp = 1u << 9, // Flags past here are *not* encoded in InstructionCode and are thus not // accessible from the code generator. See also // kFlagsBitsEncodedInInstructionCode. // AIX has a function descriptor by default but it can be disabled for a // certain CFunction call (only used for Kind::kCallAddress). kNoFunctionDescriptor = 1u << 10, }; using Flags = base::Flags; CallDescriptor(Kind kind, MachineType target_type, LinkageLocation target_loc, LocationSignature* location_sig, size_t stack_param_count, Operator::Properties properties, RegList callee_saved_registers, RegList callee_saved_fp_registers, Flags flags, const char* debug_name = "", StackArgumentOrder stack_order = StackArgumentOrder::kDefault, const RegList allocatable_registers = 0, size_t stack_return_count = 0) : kind_(kind), target_type_(target_type), target_loc_(target_loc), location_sig_(location_sig), stack_param_count_(stack_param_count), stack_return_count_(stack_return_count), properties_(properties), callee_saved_registers_(callee_saved_registers), callee_saved_fp_registers_(callee_saved_fp_registers), allocatable_registers_(allocatable_registers), flags_(flags), stack_order_(stack_order), debug_name_(debug_name) {} CallDescriptor(const CallDescriptor&) = delete; CallDescriptor& operator=(const CallDescriptor&) = delete; // Returns the kind of this call. Kind kind() const { return kind_; } // Returns {true} if this descriptor is a call to a C function. bool IsCFunctionCall() const { return kind_ == kCallAddress; } // Returns {true} if this descriptor is a call to a JSFunction. bool IsJSFunctionCall() const { return kind_ == kCallJSFunction; } // Returns {true} if this descriptor is a call to a WebAssembly function. bool IsWasmFunctionCall() const { return kind_ == kCallWasmFunction; } // Returns {true} if this descriptor is a call to a WebAssembly function. bool IsWasmImportWrapper() const { return kind_ == kCallWasmImportWrapper; } // Returns {true} if this descriptor is a call to a Wasm C API function. bool IsWasmCapiFunction() const { return kind_ == kCallWasmCapiFunction; } bool RequiresFrameAsIncoming() const { return IsCFunctionCall() || IsJSFunctionCall() || IsWasmFunctionCall(); } // The number of return values from this call. size_t ReturnCount() const { return location_sig_->return_count(); } // The number of C parameters to this call. size_t ParameterCount() const { return location_sig_->parameter_count(); } // The number of stack parameters to the call. size_t StackParameterCount() const { return stack_param_count_; } // The number of stack return values from the call. size_t StackReturnCount() const { return stack_return_count_; } // The number of parameters to the JS function call. size_t JSParameterCount() const { DCHECK(IsJSFunctionCall()); return stack_param_count_; } int GetStackIndexFromSlot(int slot_index) const { switch (GetStackArgumentOrder()) { case StackArgumentOrder::kDefault: return -slot_index - 1; case StackArgumentOrder::kJS: return slot_index + static_cast(StackParameterCount()); } } // The total number of inputs to this call, which includes the target, // receiver, context, etc. // TODO(titzer): this should input the framestate input too. size_t InputCount() const { return 1 + location_sig_->parameter_count(); } size_t FrameStateCount() const { return NeedsFrameState() ? 1 : 0; } Flags flags() const { return flags_; } bool NeedsFrameState() const { return flags() & kNeedsFrameState; } bool InitializeRootRegister() const { return flags() & kInitializeRootRegister; } bool NeedsCallerSavedRegisters() const { return flags() & kCallerSavedRegisters; } bool NeedsCallerSavedFPRegisters() const { return flags() & kCallerSavedFPRegisters; } bool IsTailCallForTierUp() const { return flags() & kIsTailCallForTierUp; } bool NoFunctionDescriptor() const { return flags() & kNoFunctionDescriptor; } LinkageLocation GetReturnLocation(size_t index) const { return location_sig_->GetReturn(index); } LinkageLocation GetInputLocation(size_t index) const { if (index == 0) return target_loc_; return location_sig_->GetParam(index - 1); } MachineSignature* GetMachineSignature(Zone* zone) const; MachineType GetReturnType(size_t index) const { return location_sig_->GetReturn(index).GetType(); } MachineType GetInputType(size_t index) const { if (index == 0) return target_type_; return location_sig_->GetParam(index - 1).GetType(); } MachineType GetParameterType(size_t index) const { return location_sig_->GetParam(index).GetType(); } StackArgumentOrder GetStackArgumentOrder() const { return stack_order_; } // Operator properties describe how this call can be optimized, if at all. Operator::Properties properties() const { return properties_; } // Get the callee-saved registers, if any, across this call. RegList CalleeSavedRegisters() const { return callee_saved_registers_; } // Get the callee-saved FP registers, if any, across this call. RegList CalleeSavedFPRegisters() const { return callee_saved_fp_registers_; } const char* debug_name() const { return debug_name_; } bool UsesOnlyRegisters() const; // Returns the first stack slot that is not used by the stack parameters. int GetFirstUnusedStackSlot() const; int GetStackParameterDelta(const CallDescriptor* tail_caller) const; int GetTaggedParameterSlots() const; bool CanTailCall(const CallDescriptor* callee) const; int CalculateFixedFrameSize(CodeKind code_kind) const; RegList AllocatableRegisters() const { return allocatable_registers_; } bool HasRestrictedAllocatableRegisters() const { return allocatable_registers_ != 0; } // Stores the signature information for a fast API call - C++ functions // that can be called directly from TurboFan. void SetCFunctionInfo(const CFunctionInfo* c_function_info) { c_function_info_ = c_function_info; } const CFunctionInfo* GetCFunctionInfo() const { return c_function_info_; } private: friend class Linkage; const Kind kind_; const MachineType target_type_; const LinkageLocation target_loc_; const LocationSignature* const location_sig_; const size_t stack_param_count_; const size_t stack_return_count_; const Operator::Properties properties_; const RegList callee_saved_registers_; const RegList callee_saved_fp_registers_; // Non-zero value means restricting the set of allocatable registers for // register allocator to use. const RegList allocatable_registers_; const Flags flags_; const StackArgumentOrder stack_order_; const char* const debug_name_; const CFunctionInfo* c_function_info_ = nullptr; }; DEFINE_OPERATORS_FOR_FLAGS(CallDescriptor::Flags) std::ostream& operator<<(std::ostream& os, const CallDescriptor& d); V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, const CallDescriptor::Kind& k); // Defines the linkage for a compilation, including the calling conventions // for incoming parameters and return value(s) as well as the outgoing calling // convention for any kind of call. Linkage is generally architecture-specific. // // Can be used to translate {arg_index} (i.e. index of the call node input) as // well as {param_index} (i.e. as stored in parameter nodes) into an operator // representing the architecture-specific location. The following call node // layouts are supported (where {n} is the number of value inputs): // // #0 #1 #2 [...] #n // Call[CodeStub] code, arg 1, arg 2, [...], context // Call[JSFunction] function, rcvr, arg 1, [...], new, #arg, context // Call[Runtime] CEntry, arg 1, arg 2, [...], fun, #arg, context // Call[BytecodeDispatch] address, arg 1, arg 2, [...] class V8_EXPORT_PRIVATE Linkage : public NON_EXPORTED_BASE(ZoneObject) { public: explicit Linkage(CallDescriptor* incoming) : incoming_(incoming) {} Linkage(const Linkage&) = delete; Linkage& operator=(const Linkage&) = delete; static CallDescriptor* ComputeIncoming(Zone* zone, OptimizedCompilationInfo* info); // The call descriptor for this compilation unit describes the locations // of incoming parameters and the outgoing return value(s). CallDescriptor* GetIncomingDescriptor() const { return incoming_; } static CallDescriptor* GetJSCallDescriptor(Zone* zone, bool is_osr, int parameter_count, CallDescriptor::Flags flags); static CallDescriptor* GetRuntimeCallDescriptor( Zone* zone, Runtime::FunctionId function, int js_parameter_count, Operator::Properties properties, CallDescriptor::Flags flags); static CallDescriptor* GetCEntryStubCallDescriptor( Zone* zone, int return_count, int js_parameter_count, const char* debug_name, Operator::Properties properties, CallDescriptor::Flags flags, StackArgumentOrder stack_order = StackArgumentOrder::kDefault); static CallDescriptor* GetStubCallDescriptor( Zone* zone, const CallInterfaceDescriptor& descriptor, int stack_parameter_count, CallDescriptor::Flags flags, Operator::Properties properties = Operator::kNoProperties, StubCallMode stub_mode = StubCallMode::kCallCodeObject); static CallDescriptor* GetBytecodeDispatchCallDescriptor( Zone* zone, const CallInterfaceDescriptor& descriptor, int stack_parameter_count); // Creates a call descriptor for simplified C calls that is appropriate // for the host platform. This simplified calling convention only supports // integers and pointers of one word size each, i.e. no floating point, // structs, pointers to members, etc. static CallDescriptor* GetSimplifiedCDescriptor( Zone* zone, const MachineSignature* sig, CallDescriptor::Flags flags = CallDescriptor::kNoFlags); // Get the location of an (incoming) parameter to this function. LinkageLocation GetParameterLocation(int index) const { return incoming_->GetInputLocation(index + 1); // + 1 to skip target. } // Get the machine type of an (incoming) parameter to this function. MachineType GetParameterType(int index) const { return incoming_->GetInputType(index + 1); // + 1 to skip target. } // Get the location where this function should place its return value. LinkageLocation GetReturnLocation(size_t index = 0) const { return incoming_->GetReturnLocation(index); } // Get the machine type of this function's return value. MachineType GetReturnType(size_t index = 0) const { return incoming_->GetReturnType(index); } bool ParameterHasSecondaryLocation(int index) const; LinkageLocation GetParameterSecondaryLocation(int index) const; static bool NeedsFrameStateInput(Runtime::FunctionId function); // Get the location where an incoming OSR value is stored. LinkageLocation GetOsrValueLocation(int index) const; // A special {Parameter} index for Stub Calls that represents context. static int GetStubCallContextParamIndex(int parameter_count) { return parameter_count + 0; // Parameter (arity + 0) is special. } // A special {Parameter} index for JSCalls that represents the new target. static constexpr int GetJSCallNewTargetParamIndex(int parameter_count) { return parameter_count + 0; // Parameter (arity + 0) is special. } // A special {Parameter} index for JSCalls that represents the argument count. static constexpr int GetJSCallArgCountParamIndex(int parameter_count) { return parameter_count + 1; // Parameter (arity + 1) is special. } // A special {Parameter} index for JSCalls that represents the context. static constexpr int GetJSCallContextParamIndex(int parameter_count) { return parameter_count + 2; // Parameter (arity + 2) is special. } // A special {Parameter} index for JSCalls that represents the closure. static constexpr int kJSCallClosureParamIndex = -1; // A special {OsrValue} index to indicate the context spill slot. static const int kOsrContextSpillSlotIndex = -1; // A special {OsrValue} index to indicate the accumulator register. static const int kOsrAccumulatorRegisterIndex = -1; private: CallDescriptor* const incoming_; }; } // namespace compiler } // namespace internal } // namespace v8 #undef NO_INLINE_FOR_ARM64_MSVC #endif // V8_COMPILER_LINKAGE_H_