// Copyright 2009 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include #include #include #include #include #include #include "src/d8/d8.h" namespace v8 { // If the buffer ends in the middle of a UTF-8 sequence then we return // the length of the string up to but not including the incomplete UTF-8 // sequence. If the buffer ends with a valid UTF-8 sequence then we // return the whole buffer. static int LengthWithoutIncompleteUtf8(char* buffer, int len) { int answer = len; // 1-byte encoding. static const int kUtf8SingleByteMask = 0x80; static const int kUtf8SingleByteValue = 0x00; // 2-byte encoding. static const int kUtf8TwoByteMask = 0xE0; static const int kUtf8TwoByteValue = 0xC0; // 3-byte encoding. static const int kUtf8ThreeByteMask = 0xF0; static const int kUtf8ThreeByteValue = 0xE0; // 4-byte encoding. static const int kUtf8FourByteMask = 0xF8; static const int kUtf8FourByteValue = 0xF0; // Subsequent bytes of a multi-byte encoding. static const int kMultiByteMask = 0xC0; static const int kMultiByteValue = 0x80; int multi_byte_bytes_seen = 0; while (answer > 0) { int c = buffer[answer - 1]; // Ends in valid single-byte sequence? if ((c & kUtf8SingleByteMask) == kUtf8SingleByteValue) return answer; // Ends in one or more subsequent bytes of a multi-byte value? if ((c & kMultiByteMask) == kMultiByteValue) { multi_byte_bytes_seen++; answer--; } else { if ((c & kUtf8TwoByteMask) == kUtf8TwoByteValue) { if (multi_byte_bytes_seen >= 1) { return answer + 2; } return answer - 1; } else if ((c & kUtf8ThreeByteMask) == kUtf8ThreeByteValue) { if (multi_byte_bytes_seen >= 2) { return answer + 3; } return answer - 1; } else if ((c & kUtf8FourByteMask) == kUtf8FourByteValue) { if (multi_byte_bytes_seen >= 3) { return answer + 4; } return answer - 1; } else { return answer; // Malformed UTF-8. } } } return 0; } // Suspends the thread until there is data available from the child process. // Returns false on timeout, true on data ready. static bool WaitOnFD(int fd, int read_timeout, int total_timeout, const struct timeval& start_time) { fd_set readfds, writefds, exceptfds; struct timeval timeout; int gone = 0; if (total_timeout != -1) { struct timeval time_now; gettimeofday(&time_now, nullptr); time_t seconds = time_now.tv_sec - start_time.tv_sec; gone = static_cast(seconds * 1000 + (time_now.tv_usec - start_time.tv_usec) / 1000); if (gone >= total_timeout) return false; } FD_ZERO(&readfds); FD_ZERO(&writefds); FD_ZERO(&exceptfds); FD_SET(fd, &readfds); FD_SET(fd, &exceptfds); if (read_timeout == -1 || (total_timeout != -1 && total_timeout - gone < read_timeout)) { read_timeout = total_timeout - gone; } timeout.tv_usec = (read_timeout % 1000) * 1000; timeout.tv_sec = read_timeout / 1000; int number_of_fds_ready = select(fd + 1, &readfds, &writefds, &exceptfds, read_timeout != -1 ? &timeout : nullptr); return number_of_fds_ready == 1; } // Checks whether we ran out of time on the timeout. Returns true if we ran out // of time, false if we still have time. static bool TimeIsOut(const struct timeval& start_time, const int& total_time) { if (total_time == -1) return false; struct timeval time_now; gettimeofday(&time_now, nullptr); // Careful about overflow. int seconds = static_cast(time_now.tv_sec - start_time.tv_sec); if (seconds > 100) { if (seconds * 1000 > total_time) return true; return false; } int useconds = static_cast(time_now.tv_usec - start_time.tv_usec); if (seconds * 1000000 + useconds > total_time * 1000) { return true; } return false; } // A utility class that does a non-hanging waitpid on the child process if we // bail out of the System() function early. If you don't ever do a waitpid on // a subprocess then it turns into one of those annoying 'zombie processes'. class ZombieProtector { public: explicit ZombieProtector(int pid) : pid_(pid) {} ~ZombieProtector() { if (pid_ != 0) waitpid(pid_, nullptr, 0); } void ChildIsDeadNow() { pid_ = 0; } private: int pid_; }; // A utility class that closes a file descriptor when it goes out of scope. class OpenFDCloser { public: explicit OpenFDCloser(int fd) : fd_(fd) {} ~OpenFDCloser() { close(fd_); } private: int fd_; }; // A utility class that takes the array of command arguments and puts then in an // array of new[]ed UTF-8 C strings. Deallocates them again when it goes out of // scope. class ExecArgs { public: ExecArgs() { exec_args_[0] = nullptr; } bool Init(Isolate* isolate, Local arg0, Local command_args) { String::Utf8Value prog(isolate, arg0); if (*prog == nullptr) { isolate->ThrowException(String::NewFromUtf8Literal( isolate, "os.system(): String conversion of program name failed")); return false; } int len = prog.length() + 3; char* c_arg = new char[len]; snprintf(c_arg, len, "%s", *prog); exec_args_[0] = c_arg; int i = 1; for (unsigned j = 0; j < command_args->Length(); i++, j++) { Local arg( command_args ->Get(isolate->GetCurrentContext(), Integer::New(isolate, j)) .ToLocalChecked()); String::Utf8Value utf8_arg(isolate, arg); if (*utf8_arg == nullptr) { exec_args_[i] = nullptr; // Consistent state for destructor. isolate->ThrowException(String::NewFromUtf8Literal( isolate, "os.system(): String conversion of argument failed.")); return false; } int len = utf8_arg.length() + 1; char* c_arg = new char[len]; snprintf(c_arg, len, "%s", *utf8_arg); exec_args_[i] = c_arg; } exec_args_[i] = nullptr; return true; } ~ExecArgs() { for (unsigned i = 0; i < kMaxArgs; i++) { if (exec_args_[i] == nullptr) { return; } delete[] exec_args_[i]; exec_args_[i] = nullptr; } } static const unsigned kMaxArgs = 1000; char* const* arg_array() const { return exec_args_; } const char* arg0() const { return exec_args_[0]; } private: char* exec_args_[kMaxArgs + 1]; }; // Gets the optional timeouts from the arguments to the system() call. static bool GetTimeouts(const v8::FunctionCallbackInfo& args, int* read_timeout, int* total_timeout) { if (args.Length() > 3) { if (args[3]->IsNumber()) { *total_timeout = args[3] ->Int32Value(args.GetIsolate()->GetCurrentContext()) .FromJust(); } else { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "system: Argument 4 must be a number")); return false; } } if (args.Length() > 2) { if (args[2]->IsNumber()) { *read_timeout = args[2] ->Int32Value(args.GetIsolate()->GetCurrentContext()) .FromJust(); } else { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "system: Argument 3 must be a number")); return false; } } return true; } static const int kReadFD = 0; static const int kWriteFD = 1; // This is run in the child process after fork() but before exec(). It normally // ends with the child process being replaced with the desired child program. // It only returns if an error occurred. static void ExecSubprocess(int* exec_error_fds, int* stdout_fds, const ExecArgs& exec_args) { close(exec_error_fds[kReadFD]); // Don't need this in the child. close(stdout_fds[kReadFD]); // Don't need this in the child. close(1); // Close stdout. dup2(stdout_fds[kWriteFD], 1); // Dup pipe fd to stdout. close(stdout_fds[kWriteFD]); // Don't need the original fd now. fcntl(exec_error_fds[kWriteFD], F_SETFD, FD_CLOEXEC); execvp(exec_args.arg0(), exec_args.arg_array()); // Only get here if the exec failed. Write errno to the parent to tell // them it went wrong. If it went well the pipe is closed. int err = errno; ssize_t bytes_written; do { bytes_written = write(exec_error_fds[kWriteFD], &err, sizeof(err)); } while (bytes_written == -1 && errno == EINTR); // Return (and exit child process). } // Runs in the parent process. Checks that the child was able to exec (closing // the file desriptor), or reports an error if it failed. static bool ChildLaunchedOK(Isolate* isolate, int* exec_error_fds) { ssize_t bytes_read; int err; do { bytes_read = read(exec_error_fds[kReadFD], &err, sizeof(err)); } while (bytes_read == -1 && errno == EINTR); if (bytes_read != 0) { isolate->ThrowException( String::NewFromUtf8(isolate, strerror(err)).ToLocalChecked()); return false; } return true; } // Accumulates the output from the child in a string handle. Returns true if it // succeeded or false if an exception was thrown. static Local GetStdout(Isolate* isolate, int child_fd, const struct timeval& start_time, int read_timeout, int total_timeout) { Local accumulator = String::Empty(isolate); int fullness = 0; static const int kStdoutReadBufferSize = 4096; char buffer[kStdoutReadBufferSize]; if (fcntl(child_fd, F_SETFL, O_NONBLOCK) != 0) { return isolate->ThrowException( String::NewFromUtf8(isolate, strerror(errno)).ToLocalChecked()); } int bytes_read; do { bytes_read = static_cast( read(child_fd, buffer + fullness, kStdoutReadBufferSize - fullness)); if (bytes_read == -1) { if (errno == EAGAIN) { if (!WaitOnFD(child_fd, read_timeout, total_timeout, start_time) || (TimeIsOut(start_time, total_timeout))) { return isolate->ThrowException(String::NewFromUtf8Literal( isolate, "Timed out waiting for output")); } continue; } else if (errno == EINTR) { continue; } else { break; } } if (bytes_read + fullness > 0) { int length = bytes_read == 0 ? bytes_read + fullness : LengthWithoutIncompleteUtf8( buffer, bytes_read + fullness); Local addition = String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length) .ToLocalChecked(); accumulator = String::Concat(isolate, accumulator, addition); fullness = bytes_read + fullness - length; memcpy(buffer, buffer + length, fullness); } } while (bytes_read != 0); return accumulator; } // Modern Linux has the waitid call, which is like waitpid, but more useful // if you want a timeout. If we don't have waitid we can't limit the time // waiting for the process to exit without losing the information about // whether it exited normally. In the common case this doesn't matter because // we don't get here before the child has closed stdout and most programs don't // do that before they exit. // // We're disabling usage of waitid in Mac OS X because it doesn't work for us: // a parent process hangs on waiting while a child process is already a zombie. // See http://code.google.com/p/v8/issues/detail?id=401. #if defined(WNOWAIT) && !defined(ANDROID) && !defined(__APPLE__) && \ !defined(__NetBSD__) && !defined(__Fuchsia__) #if !defined(__FreeBSD__) #define HAS_WAITID 1 #endif #endif // Get exit status of child. static bool WaitForChild(Isolate* isolate, int pid, ZombieProtector& child_waiter, // NOLINT const struct timeval& start_time, int read_timeout, int total_timeout) { #ifdef HAS_WAITID siginfo_t child_info; child_info.si_pid = 0; int useconds = 1; // Wait for child to exit. while (child_info.si_pid == 0) { waitid(P_PID, pid, &child_info, WEXITED | WNOHANG | WNOWAIT); usleep(useconds); if (useconds < 1000000) useconds <<= 1; if ((read_timeout != -1 && useconds / 1000 > read_timeout) || (TimeIsOut(start_time, total_timeout))) { isolate->ThrowException(String::NewFromUtf8Literal( isolate, "Timed out waiting for process to terminate")); kill(pid, SIGINT); return false; } } if (child_info.si_code == CLD_KILLED) { char message[999]; snprintf(message, sizeof(message), "Child killed by signal %d", child_info.si_status); isolate->ThrowException( String::NewFromUtf8(isolate, message).ToLocalChecked()); return false; } if (child_info.si_code == CLD_EXITED && child_info.si_status != 0) { char message[999]; snprintf(message, sizeof(message), "Child exited with status %d", child_info.si_status); isolate->ThrowException( String::NewFromUtf8(isolate, message).ToLocalChecked()); return false; } #else // No waitid call. int child_status; waitpid(pid, &child_status, 0); // We hang here if the child doesn't exit. child_waiter.ChildIsDeadNow(); if (WIFSIGNALED(child_status)) { char message[999]; snprintf(message, sizeof(message), "Child killed by signal %d", WTERMSIG(child_status)); isolate->ThrowException( String::NewFromUtf8(isolate, message).ToLocalChecked()); return false; } if (WEXITSTATUS(child_status) != 0) { char message[999]; int exit_status = WEXITSTATUS(child_status); snprintf(message, sizeof(message), "Child exited with status %d", exit_status); isolate->ThrowException( String::NewFromUtf8(isolate, message).ToLocalChecked()); return false; } #endif // No waitid call. return true; } #undef HAS_WAITID // Implementation of the system() function (see d8.h for details). void Shell::System(const v8::FunctionCallbackInfo& args) { HandleScope scope(args.GetIsolate()); int read_timeout = -1; int total_timeout = -1; if (!GetTimeouts(args, &read_timeout, &total_timeout)) return; Local command_args; if (args.Length() > 1) { if (!args[1]->IsArray()) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "system: Argument 2 must be an array")); return; } command_args = Local::Cast(args[1]); } else { command_args = Array::New(args.GetIsolate(), 0); } if (command_args->Length() > ExecArgs::kMaxArgs) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "Too many arguments to system()")); return; } if (args.Length() < 1) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "Too few arguments to system()")); return; } struct timeval start_time; gettimeofday(&start_time, nullptr); ExecArgs exec_args; if (!exec_args.Init(args.GetIsolate(), args[0], command_args)) { return; } int exec_error_fds[2]; int stdout_fds[2]; if (pipe(exec_error_fds) != 0) { args.GetIsolate()->ThrowException( String::NewFromUtf8Literal(args.GetIsolate(), "pipe syscall failed.")); return; } if (pipe(stdout_fds) != 0) { args.GetIsolate()->ThrowException( String::NewFromUtf8Literal(args.GetIsolate(), "pipe syscall failed.")); return; } pid_t pid = fork(); if (pid == 0) { // Child process. ExecSubprocess(exec_error_fds, stdout_fds, exec_args); exit(1); } // Parent process. Ensure that we clean up if we exit this function early. ZombieProtector child_waiter(pid); close(exec_error_fds[kWriteFD]); close(stdout_fds[kWriteFD]); OpenFDCloser error_read_closer(exec_error_fds[kReadFD]); OpenFDCloser stdout_read_closer(stdout_fds[kReadFD]); Isolate* isolate = args.GetIsolate(); if (!ChildLaunchedOK(isolate, exec_error_fds)) return; Local accumulator = GetStdout(isolate, stdout_fds[kReadFD], start_time, read_timeout, total_timeout); if (accumulator->IsUndefined()) { kill(pid, SIGINT); // On timeout, kill the subprocess. args.GetReturnValue().Set(accumulator); return; } if (!WaitForChild(isolate, pid, child_waiter, start_time, read_timeout, total_timeout)) { return; } args.GetReturnValue().Set(accumulator); } void Shell::ChangeDirectory(const v8::FunctionCallbackInfo& args) { if (args.Length() != 1) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "chdir() takes one argument")); return; } String::Utf8Value directory(args.GetIsolate(), args[0]); if (*directory == nullptr) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "os.chdir(): String conversion of argument failed.")); return; } if (chdir(*directory) != 0) { args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), strerror(errno)) .ToLocalChecked()); return; } } void Shell::SetUMask(const v8::FunctionCallbackInfo& args) { if (args.Length() != 1) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "umask() takes one argument")); return; } if (args[0]->IsNumber()) { int previous = umask( args[0]->Int32Value(args.GetIsolate()->GetCurrentContext()).FromJust()); args.GetReturnValue().Set(previous); return; } else { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "umask() argument must be numeric")); return; } } static bool CheckItsADirectory(Isolate* isolate, char* directory) { struct stat stat_buf; int stat_result = stat(directory, &stat_buf); if (stat_result != 0) { isolate->ThrowException( String::NewFromUtf8(isolate, strerror(errno)).ToLocalChecked()); return false; } if ((stat_buf.st_mode & S_IFDIR) != 0) return true; isolate->ThrowException( String::NewFromUtf8(isolate, strerror(EEXIST)).ToLocalChecked()); return false; } // Returns true for success. Creates intermediate directories as needed. No // error if the directory exists already. static bool mkdirp(Isolate* isolate, char* directory, mode_t mask) { int result = mkdir(directory, mask); if (result == 0) return true; if (errno == EEXIST) { return CheckItsADirectory(isolate, directory); } else if (errno == ENOENT) { // Intermediate path element is missing. char* last_slash = strrchr(directory, '/'); if (last_slash == nullptr) { isolate->ThrowException( String::NewFromUtf8(isolate, strerror(errno)).ToLocalChecked()); return false; } *last_slash = 0; if (!mkdirp(isolate, directory, mask)) return false; *last_slash = '/'; result = mkdir(directory, mask); if (result == 0) return true; if (errno == EEXIST) { return CheckItsADirectory(isolate, directory); } isolate->ThrowException( String::NewFromUtf8(isolate, strerror(errno)).ToLocalChecked()); return false; } else { isolate->ThrowException( String::NewFromUtf8(isolate, strerror(errno)).ToLocalChecked()); return false; } } void Shell::MakeDirectory(const v8::FunctionCallbackInfo& args) { mode_t mask = 0777; if (args.Length() == 2) { if (args[1]->IsNumber()) { mask = args[1] ->Int32Value(args.GetIsolate()->GetCurrentContext()) .FromJust(); } else { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "mkdirp() second argument must be numeric")); return; } } else if (args.Length() != 1) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "mkdirp() takes one or two arguments")); return; } String::Utf8Value directory(args.GetIsolate(), args[0]); if (*directory == nullptr) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "os.mkdirp(): String conversion of argument failed.")); return; } mkdirp(args.GetIsolate(), *directory, mask); } void Shell::RemoveDirectory(const v8::FunctionCallbackInfo& args) { if (args.Length() != 1) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "rmdir() takes one or two arguments")); return; } String::Utf8Value directory(args.GetIsolate(), args[0]); if (*directory == nullptr) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "os.rmdir(): String conversion of argument failed.")); return; } rmdir(*directory); } void Shell::SetEnvironment(const v8::FunctionCallbackInfo& args) { if (args.Length() != 2) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "setenv() takes two arguments")); return; } String::Utf8Value var(args.GetIsolate(), args[0]); String::Utf8Value value(args.GetIsolate(), args[1]); if (*var == nullptr) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "os.setenv(): String conversion of variable name failed.")); return; } if (*value == nullptr) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "os.setenv(): String conversion of variable contents failed.")); return; } setenv(*var, *value, 1); } void Shell::UnsetEnvironment(const v8::FunctionCallbackInfo& args) { if (args.Length() != 1) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "unsetenv() takes one argument")); return; } String::Utf8Value var(args.GetIsolate(), args[0]); if (*var == nullptr) { args.GetIsolate()->ThrowException(String::NewFromUtf8Literal( args.GetIsolate(), "os.setenv(): String conversion of variable name failed.")); return; } unsetenv(*var); } char* Shell::ReadCharsFromTcpPort(const char* name, int* size_out) { DCHECK_GE(Shell::options.read_from_tcp_port, 0); int sockfd = socket(PF_INET, SOCK_STREAM, 0); if (sockfd < 0) { fprintf(stderr, "Failed to create IPv4 socket\n"); return nullptr; } // Create an address for localhost:PORT where PORT is specified by the shell // option --read-from-tcp-port. sockaddr_in serv_addr; memset(&serv_addr, 0, sizeof(sockaddr_in)); serv_addr.sin_family = AF_INET; serv_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); serv_addr.sin_port = htons(Shell::options.read_from_tcp_port); if (connect(sockfd, reinterpret_cast(&serv_addr), sizeof(serv_addr)) < 0) { fprintf(stderr, "Failed to connect to localhost:%d\n", Shell::options.read_from_tcp_port.get()); close(sockfd); return nullptr; } // The file server follows the simple protocol for requesting and receiving // a file with a given filename: // // REQUEST client -> server: {filename}"\0" // RESPONSE server -> client: {4-byte file-length}{file contents} // // i.e. the request sends the filename with a null terminator, and response // sends the file contents by sending the length (as a 4-byte big-endian // value) and the contents. // If the file length is <0, there was an error sending the file, and the // rest of the response is undefined (and may, in the future, contain an error // message). The socket should be closed to avoid trying to interpret the // undefined data. // REQUEST // Send the filename. size_t sent_len = 0; size_t name_len = strlen(name) + 1; // Includes the null terminator while (sent_len < name_len) { ssize_t sent_now = send(sockfd, name + sent_len, name_len - sent_len, 0); if (sent_now < 0) { fprintf(stderr, "Failed to send %s to localhost:%d\n", name, Shell::options.read_from_tcp_port.get()); close(sockfd); return nullptr; } sent_len += sent_now; } // RESPONSE // Receive the file. ssize_t received = 0; // First, read the (zero-terminated) file length. uint32_t big_endian_file_length; received = recv(sockfd, &big_endian_file_length, 4, 0); // We need those 4 bytes to read off the file length. if (received < 4) { fprintf(stderr, "Failed to receive %s's length from localhost:%d\n", name, Shell::options.read_from_tcp_port.get()); close(sockfd); return nullptr; } // Reinterpretet the received file length as a signed big-endian integer. int32_t file_length = bit_cast(htonl(big_endian_file_length)); if (file_length < 0) { fprintf(stderr, "Received length %d for %s from localhost:%d\n", file_length, name, Shell::options.read_from_tcp_port.get()); close(sockfd); return nullptr; } // Allocate the output array. char* chars = new char[file_length]; // Now keep receiving and copying until the whole file is received. ssize_t total_received = 0; while (total_received < file_length) { received = recv(sockfd, chars + total_received, file_length - total_received, 0); if (received < 0) { fprintf(stderr, "Failed to receive %s from localhost:%d\n", name, Shell::options.read_from_tcp_port.get()); close(sockfd); delete[] chars; return nullptr; } total_received += received; } close(sockfd); *size_out = file_length; return chars; } void Shell::AddOSMethods(Isolate* isolate, Local os_templ) { if (options.enable_os_system) { os_templ->Set(isolate, "system", FunctionTemplate::New(isolate, System)); } os_templ->Set(isolate, "chdir", FunctionTemplate::New(isolate, ChangeDirectory)); os_templ->Set(isolate, "setenv", FunctionTemplate::New(isolate, SetEnvironment)); os_templ->Set(isolate, "unsetenv", FunctionTemplate::New(isolate, UnsetEnvironment)); os_templ->Set(isolate, "umask", FunctionTemplate::New(isolate, SetUMask)); os_templ->Set(isolate, "mkdirp", FunctionTemplate::New(isolate, MakeDirectory)); os_templ->Set(isolate, "rmdir", FunctionTemplate::New(isolate, RemoveDirectory)); } } // namespace v8