// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/incremental-marking.h" #include "src/codegen/compilation-cache.h" #include "src/execution/vm-state-inl.h" #include "src/heap/array-buffer-sweeper.h" #include "src/heap/concurrent-marking.h" #include "src/heap/embedder-tracing.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/heap-inl.h" #include "src/heap/incremental-marking-inl.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/marking-barrier.h" #include "src/heap/marking-visitor-inl.h" #include "src/heap/marking-visitor.h" #include "src/heap/memory-chunk.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/safepoint.h" #include "src/heap/sweeper.h" #include "src/init/v8.h" #include "src/numbers/conversions.h" #include "src/objects/data-handler-inl.h" #include "src/objects/embedder-data-array-inl.h" #include "src/objects/hash-table-inl.h" #include "src/objects/slots-inl.h" #include "src/objects/transitions-inl.h" #include "src/objects/visitors.h" #include "src/tracing/trace-event.h" #include "src/utils/utils.h" namespace v8 { namespace internal { void IncrementalMarking::Observer::Step(int bytes_allocated, Address addr, size_t size) { Heap* heap = incremental_marking_->heap(); VMState state(heap->isolate()); RuntimeCallTimerScope runtime_timer( heap->isolate(), RuntimeCallCounterId::kGC_Custom_IncrementalMarkingObserver); incremental_marking_->AdvanceOnAllocation(); // AdvanceIncrementalMarkingOnAllocation can start incremental marking. incremental_marking_->EnsureBlackAllocated(addr, size); } IncrementalMarking::IncrementalMarking(Heap* heap, WeakObjects* weak_objects) : heap_(heap), collector_(heap->mark_compact_collector()), weak_objects_(weak_objects), new_generation_observer_(this, kYoungGenerationAllocatedThreshold), old_generation_observer_(this, kOldGenerationAllocatedThreshold) { SetState(STOPPED); } void IncrementalMarking::MarkBlackAndVisitObjectDueToLayoutChange( HeapObject obj) { TRACE_EVENT0("v8", "V8.GCIncrementalMarkingLayoutChange"); TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_LAYOUT_CHANGE); marking_state()->WhiteToGrey(obj); collector_->VisitObject(obj); } void IncrementalMarking::MarkBlackBackground(HeapObject obj, int object_size) { MarkBit mark_bit = atomic_marking_state()->MarkBitFrom(obj); Marking::MarkBlack(mark_bit); MemoryChunk* chunk = MemoryChunk::FromHeapObject(obj); IncrementLiveBytesBackground(chunk, static_cast(object_size)); } void IncrementalMarking::NotifyLeftTrimming(HeapObject from, HeapObject to) { DCHECK(IsMarking()); DCHECK(MemoryChunk::FromHeapObject(from)->SweepingDone()); DCHECK_EQ(MemoryChunk::FromHeapObject(from), MemoryChunk::FromHeapObject(to)); DCHECK_NE(from, to); MarkBit new_mark_bit = marking_state()->MarkBitFrom(to); if (black_allocation() && Marking::IsBlack(new_mark_bit)) { // Nothing to do if the object is in black area. return; } MarkBlackAndVisitObjectDueToLayoutChange(from); DCHECK(marking_state()->IsBlack(from)); // Mark the new address as black. if (from.address() + kTaggedSize == to.address()) { // The old and the new markbits overlap. The |to| object has the // grey color. To make it black, we need to set the second bit. DCHECK(new_mark_bit.Get()); new_mark_bit.Next().Set(); } else { bool success = Marking::WhiteToBlack(new_mark_bit); DCHECK(success); USE(success); } DCHECK(marking_state()->IsBlack(to)); } class IncrementalMarkingRootMarkingVisitor : public RootVisitor { public: explicit IncrementalMarkingRootMarkingVisitor( IncrementalMarking* incremental_marking) : heap_(incremental_marking->heap()) {} void VisitRootPointer(Root root, const char* description, FullObjectSlot p) override { MarkObjectByPointer(p); } void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { for (FullObjectSlot p = start; p < end; ++p) MarkObjectByPointer(p); } private: void MarkObjectByPointer(FullObjectSlot p) { Object obj = *p; if (!obj.IsHeapObject()) return; heap_->incremental_marking()->WhiteToGreyAndPush(HeapObject::cast(obj)); } Heap* heap_; }; bool IncrementalMarking::WasActivated() { return was_activated_; } bool IncrementalMarking::CanBeActivated() { // Only start incremental marking in a safe state: 1) when incremental // marking is turned on, 2) when we are currently not in a GC, and // 3) when we are currently not serializing or deserializing the heap. return FLAG_incremental_marking && heap_->gc_state() == Heap::NOT_IN_GC && heap_->deserialization_complete() && !heap_->isolate()->serializer_enabled(); } bool IncrementalMarking::IsBelowActivationThresholds() const { return heap_->OldGenerationSizeOfObjects() <= kV8ActivationThreshold && heap_->GlobalSizeOfObjects() <= kGlobalActivationThreshold; } void IncrementalMarking::Start(GarbageCollectionReason gc_reason) { if (FLAG_trace_incremental_marking) { const size_t old_generation_size_mb = heap()->OldGenerationSizeOfObjects() / MB; const size_t old_generation_limit_mb = heap()->old_generation_allocation_limit() / MB; const size_t global_size_mb = heap()->GlobalSizeOfObjects() / MB; const size_t global_limit_mb = heap()->global_allocation_limit() / MB; heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start (%s): (size/limit/slack) v8: %zuMB / %zuMB " "/ %zuMB global: %zuMB / %zuMB / %zuMB\n", Heap::GarbageCollectionReasonToString(gc_reason), old_generation_size_mb, old_generation_limit_mb, old_generation_size_mb > old_generation_limit_mb ? 0 : old_generation_limit_mb - old_generation_size_mb, global_size_mb, global_limit_mb, global_size_mb > global_limit_mb ? 0 : global_limit_mb - global_size_mb); } DCHECK(FLAG_incremental_marking); DCHECK(state_ == STOPPED); DCHECK(heap_->gc_state() == Heap::NOT_IN_GC); DCHECK(!heap_->isolate()->serializer_enabled()); Counters* counters = heap_->isolate()->counters(); counters->incremental_marking_reason()->AddSample( static_cast(gc_reason)); HistogramTimerScope incremental_marking_scope( counters->gc_incremental_marking_start()); TRACE_EVENT0("v8", "V8.GCIncrementalMarkingStart"); TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_START); heap_->tracer()->NotifyIncrementalMarkingStart(); start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs(); time_to_force_completion_ = 0.0; initial_old_generation_size_ = heap_->OldGenerationSizeOfObjects(); old_generation_allocation_counter_ = heap_->OldGenerationAllocationCounter(); bytes_marked_ = 0; scheduled_bytes_to_mark_ = 0; schedule_update_time_ms_ = start_time_ms_; bytes_marked_concurrently_ = 0; was_activated_ = true; { TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_SWEEP_ARRAY_BUFFERS); heap_->array_buffer_sweeper()->EnsureFinished(); } if (!collector_->sweeping_in_progress()) { StartMarking(); } else { if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start sweeping.\n"); } SetState(SWEEPING); } heap_->AddAllocationObserversToAllSpaces(&old_generation_observer_, &new_generation_observer_); incremental_marking_job()->Start(heap_); } void IncrementalMarking::StartMarking() { if (heap_->isolate()->serializer_enabled()) { // Black allocation currently starts when we start incremental marking, // but we cannot enable black allocation while deserializing. Hence, we // have to delay the start of incremental marking in that case. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start delayed - serializer\n"); } return; } if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Start marking\n"); } heap_->InvokeIncrementalMarkingPrologueCallbacks(); is_compacting_ = !FLAG_never_compact && collector_->StartCompaction(); collector_->StartMarking(); SetState(MARKING); MarkingBarrier::ActivateAll(heap(), is_compacting_); heap_->isolate()->compilation_cache()->MarkCompactPrologue(); StartBlackAllocation(); MarkRoots(); if (FLAG_concurrent_marking && !heap_->IsTearingDown()) { heap_->concurrent_marking()->ScheduleJob(); } // Ready to start incremental marking. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Running\n"); } { // TracePrologue may call back into V8 in corner cases, requiring that // marking (including write barriers) is fully set up. TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_EMBEDDER_PROLOGUE); heap_->local_embedder_heap_tracer()->TracePrologue( heap_->flags_for_embedder_tracer()); } heap_->InvokeIncrementalMarkingEpilogueCallbacks(); } void IncrementalMarking::StartBlackAllocation() { DCHECK(!black_allocation_); DCHECK(IsMarking()); black_allocation_ = true; heap()->old_space()->MarkLinearAllocationAreaBlack(); heap()->map_space()->MarkLinearAllocationAreaBlack(); heap()->code_space()->MarkLinearAllocationAreaBlack(); if (FLAG_local_heaps) { heap()->safepoint()->IterateLocalHeaps([](LocalHeap* local_heap) { local_heap->MarkLinearAllocationAreaBlack(); }); } if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation started\n"); } } void IncrementalMarking::PauseBlackAllocation() { DCHECK(IsMarking()); heap()->old_space()->UnmarkLinearAllocationArea(); heap()->map_space()->UnmarkLinearAllocationArea(); heap()->code_space()->UnmarkLinearAllocationArea(); if (FLAG_local_heaps) { heap()->safepoint()->IterateLocalHeaps([](LocalHeap* local_heap) { local_heap->UnmarkLinearAllocationArea(); }); } if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation paused\n"); } black_allocation_ = false; } void IncrementalMarking::FinishBlackAllocation() { if (black_allocation_) { black_allocation_ = false; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Black allocation finished\n"); } } } void IncrementalMarking::EnsureBlackAllocated(Address allocated, size_t size) { if (black_allocation() && allocated != kNullAddress) { HeapObject object = HeapObject::FromAddress(allocated); if (marking_state()->IsWhite(object) && !Heap::InYoungGeneration(object)) { if (heap_->IsLargeObject(object)) { marking_state()->WhiteToBlack(object); } else { Page::FromAddress(allocated)->CreateBlackArea(allocated, allocated + size); } } } } void IncrementalMarking::MarkRoots() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateRoots( &visitor, base::EnumSet{SkipRoot::kStack, SkipRoot::kWeak}); } bool IncrementalMarking::ShouldRetainMap(Map map, int age) { if (age == 0) { // The map has aged. Do not retain this map. return false; } Object constructor = map.GetConstructor(); if (!constructor.IsHeapObject() || marking_state()->IsWhite(HeapObject::cast(constructor))) { // The constructor is dead, no new objects with this map can // be created. Do not retain this map. return false; } return true; } void IncrementalMarking::RetainMaps() { // Do not retain dead maps if flag disables it or there is // - memory pressure (reduce_memory_footprint_), // - GC is requested by tests or dev-tools (abort_incremental_marking_). bool map_retaining_is_disabled = heap()->ShouldReduceMemory() || FLAG_retain_maps_for_n_gc == 0; std::vector retained_maps_list = heap()->FindAllRetainedMaps(); for (WeakArrayList retained_maps : retained_maps_list) { int length = retained_maps.length(); for (int i = 0; i < length; i += 2) { MaybeObject value = retained_maps.Get(i); HeapObject map_heap_object; if (!value->GetHeapObjectIfWeak(&map_heap_object)) { continue; } int age = retained_maps.Get(i + 1).ToSmi().value(); int new_age; Map map = Map::cast(map_heap_object); if (!map_retaining_is_disabled && marking_state()->IsWhite(map)) { if (ShouldRetainMap(map, age)) { WhiteToGreyAndPush(map); } Object prototype = map.prototype(); if (age > 0 && prototype.IsHeapObject() && marking_state()->IsWhite(HeapObject::cast(prototype))) { // The prototype is not marked, age the map. new_age = age - 1; } else { // The prototype and the constructor are marked, this map keeps only // transition tree alive, not JSObjects. Do not age the map. new_age = age; } } else { new_age = FLAG_retain_maps_for_n_gc; } // Compact the array and update the age. if (new_age != age) { retained_maps.Set(i + 1, MaybeObject::FromSmi(Smi::FromInt(new_age))); } } } } void IncrementalMarking::FinalizeIncrementally() { TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE_BODY); DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); double start = heap_->MonotonicallyIncreasingTimeInMs(); // After finishing incremental marking, we try to discover all unmarked // objects to reduce the marking load in the final pause. // 1) We scan and mark the roots again to find all changes to the root set. // 2) Age and retain maps embedded in optimized code. MarkRoots(); // Map retaining is needed for perfromance, not correctness, // so we can do it only once at the beginning of the finalization. RetainMaps(); MarkingBarrier::PublishAll(heap()); finalize_marking_completed_ = true; if (FLAG_trace_incremental_marking) { double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Finalize incrementally spent %.1f ms.\n", delta); } } void IncrementalMarking::UpdateMarkingWorklistAfterScavenge() { if (!IsMarking()) return; Map filler_map = ReadOnlyRoots(heap_).one_pointer_filler_map(); #ifdef ENABLE_MINOR_MC MinorMarkCompactCollector::MarkingState* minor_marking_state = heap()->minor_mark_compact_collector()->marking_state(); #endif // ENABLE_MINOR_MC collector_->local_marking_worklists()->Publish(); MarkingBarrier::PublishAll(heap()); collector_->marking_worklists()->Update( [ #ifdef DEBUG // this is referred inside DCHECK. this, #endif #ifdef ENABLE_MINOR_MC minor_marking_state, #endif filler_map](HeapObject obj, HeapObject* out) -> bool { DCHECK(obj.IsHeapObject()); // Only pointers to from space have to be updated. if (Heap::InFromPage(obj)) { MapWord map_word = obj.map_word(); if (!map_word.IsForwardingAddress()) { // There may be objects on the marking deque that do not exist // anymore, e.g. left trimmed objects or objects from the root set // (frames). If these object are dead at scavenging time, their // marking deque entries will not point to forwarding addresses. // Hence, we can discard them. return false; } HeapObject dest = map_word.ToForwardingAddress(); DCHECK_IMPLIES(marking_state()->IsWhite(obj), obj.IsFreeSpaceOrFiller()); *out = dest; return true; } else if (Heap::InToPage(obj)) { // The object may be on a large page or on a page that was moved in // new space. DCHECK(Heap::IsLargeObject(obj) || Page::FromHeapObject(obj)->IsFlagSet(Page::SWEEP_TO_ITERATE)); #ifdef ENABLE_MINOR_MC if (minor_marking_state->IsWhite(obj)) { return false; } #endif // ENABLE_MINOR_MC // Either a large object or an object marked by the minor // mark-compactor. *out = obj; return true; } else { // The object may be on a page that was moved from new to old space. // Only applicable during minor MC garbage collections. if (Page::FromHeapObject(obj)->IsFlagSet(Page::SWEEP_TO_ITERATE)) { #ifdef ENABLE_MINOR_MC if (minor_marking_state->IsWhite(obj)) { return false; } #endif // ENABLE_MINOR_MC *out = obj; return true; } DCHECK_IMPLIES(marking_state()->IsWhite(obj), obj.IsFreeSpaceOrFiller()); // Skip one word filler objects that appear on the // stack when we perform in place array shift. if (obj.map() != filler_map) { *out = obj; return true; } return false; } }); weak_objects_->UpdateAfterScavenge(); } void IncrementalMarking::UpdateMarkedBytesAfterScavenge( size_t dead_bytes_in_new_space) { if (!IsMarking()) return; bytes_marked_ -= Min(bytes_marked_, dead_bytes_in_new_space); } void IncrementalMarking::ProcessBlackAllocatedObject(HeapObject obj) { if (IsMarking() && marking_state()->IsBlack(obj)) { collector_->RevisitObject(obj); } } StepResult IncrementalMarking::EmbedderStep(double expected_duration_ms, double* duration_ms) { if (!ShouldDoEmbedderStep()) { *duration_ms = 0.0; return StepResult::kNoImmediateWork; } constexpr size_t kObjectsToProcessBeforeDeadlineCheck = 500; TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_INCREMENTAL_EMBEDDER_TRACING); LocalEmbedderHeapTracer* local_tracer = heap_->local_embedder_heap_tracer(); const double start = heap_->MonotonicallyIncreasingTimeInMs(); const double deadline = start + expected_duration_ms; bool empty_worklist; { LocalEmbedderHeapTracer::ProcessingScope scope(local_tracer); HeapObject object; size_t cnt = 0; empty_worklist = true; while (local_marking_worklists()->PopEmbedder(&object)) { scope.TracePossibleWrapper(JSObject::cast(object)); if (++cnt == kObjectsToProcessBeforeDeadlineCheck) { if (deadline <= heap_->MonotonicallyIncreasingTimeInMs()) { empty_worklist = false; break; } cnt = 0; } } } // |deadline - heap_->MonotonicallyIncreasingTimeInMs()| could be negative, // which means |local_tracer| won't do any actual tracing, so there is no // need to check for |deadline <= heap_->MonotonicallyIncreasingTimeInMs()|. bool remote_tracing_done = local_tracer->Trace(deadline - heap_->MonotonicallyIncreasingTimeInMs()); double current = heap_->MonotonicallyIncreasingTimeInMs(); local_tracer->SetEmbedderWorklistEmpty(empty_worklist); *duration_ms = current - start; return (empty_worklist && remote_tracing_done) ? StepResult::kNoImmediateWork : StepResult::kMoreWorkRemaining; } void IncrementalMarking::Hurry() { if (!local_marking_worklists()->IsEmpty()) { double start = 0.0; if (FLAG_trace_incremental_marking) { start = heap_->MonotonicallyIncreasingTimeInMs(); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp("[IncrementalMarking] Hurry\n"); } } collector_->ProcessMarkingWorklist(0); SetState(COMPLETE); if (FLAG_trace_incremental_marking) { double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Complete (hurry), spent %d ms.\n", static_cast(delta)); } } } } void IncrementalMarking::Stop() { if (IsStopped()) return; if (FLAG_trace_incremental_marking) { int old_generation_size_mb = static_cast(heap()->OldGenerationSizeOfObjects() / MB); int old_generation_limit_mb = static_cast(heap()->old_generation_allocation_limit() / MB); heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Stopping: old generation %dMB, limit %dMB, " "overshoot %dMB\n", old_generation_size_mb, old_generation_limit_mb, Max(0, old_generation_size_mb - old_generation_limit_mb)); } SpaceIterator it(heap_); while (it.HasNext()) { Space* space = it.Next(); if (space == heap_->new_space()) { space->RemoveAllocationObserver(&new_generation_observer_); } else { space->RemoveAllocationObserver(&old_generation_observer_); } } heap_->isolate()->stack_guard()->ClearGC(); SetState(STOPPED); is_compacting_ = false; FinishBlackAllocation(); if (FLAG_local_heaps) { // Merge live bytes counters of background threads for (auto pair : background_live_bytes_) { MemoryChunk* memory_chunk = pair.first; intptr_t live_bytes = pair.second; if (live_bytes) { marking_state()->IncrementLiveBytes(memory_chunk, live_bytes); } } background_live_bytes_.clear(); } } void IncrementalMarking::Finalize() { Hurry(); Stop(); } void IncrementalMarking::FinalizeMarking(CompletionAction action) { DCHECK(!finalize_marking_completed_); if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] requesting finalization of incremental " "marking.\n"); } request_type_ = FINALIZATION; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } double IncrementalMarking::CurrentTimeToMarkingTask() const { const double recorded_time_to_marking_task = heap_->tracer()->AverageTimeToIncrementalMarkingTask(); const double current_time_to_marking_task = incremental_marking_job_.CurrentTimeToTask(heap_); if (recorded_time_to_marking_task == 0.0) return 0.0; return Max(recorded_time_to_marking_task, current_time_to_marking_task); } void IncrementalMarking::MarkingComplete(CompletionAction action) { // Allowed overshoot percantage of incremental marking walltime. constexpr double kAllowedOvershoot = 0.1; // Minimum overshoot in ms. This is used to allow moving away from stack when // marking was fast. constexpr double kMinOvershootMs = 50; if (action == GC_VIA_STACK_GUARD) { if (time_to_force_completion_ == 0.0) { const double now = heap_->MonotonicallyIncreasingTimeInMs(); const double overshoot_ms = Max(kMinOvershootMs, (now - start_time_ms_) * kAllowedOvershoot); const double time_to_marking_task = CurrentTimeToMarkingTask(); if (time_to_marking_task == 0.0 || time_to_marking_task > overshoot_ms) { if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Not delaying marking completion. time to " "task: %fms allowed overshoot: %fms\n", time_to_marking_task, overshoot_ms); } } else { time_to_force_completion_ = now + overshoot_ms; if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Delaying GC via stack guard. time to task: " "%fms " "allowed overshoot: %fms\n", time_to_marking_task, overshoot_ms); } incremental_marking_job_.ScheduleTask( heap(), IncrementalMarkingJob::TaskType::kNormal); return; } } if (heap()->MonotonicallyIncreasingTimeInMs() < time_to_force_completion_) { if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Delaying GC via stack guard. time left: " "%fms\n", time_to_force_completion_ - heap_->MonotonicallyIncreasingTimeInMs()); } return; } } SetState(COMPLETE); // We will set the stack guard to request a GC now. This will mean the rest // of the GC gets performed as soon as possible (we can't do a GC here in a // record-write context). If a few things get allocated between now and then // that shouldn't make us do a scavenge and keep being incremental. if (FLAG_trace_incremental_marking) { heap()->isolate()->PrintWithTimestamp( "[IncrementalMarking] Complete (normal).\n"); } request_type_ = COMPLETE_MARKING; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::Epilogue() { was_activated_ = false; finalize_marking_completed_ = false; } bool IncrementalMarking::ShouldDoEmbedderStep() { return state_ == MARKING && FLAG_incremental_marking_wrappers && heap_->local_embedder_heap_tracer()->InUse(); } void IncrementalMarking::FastForwardSchedule() { if (scheduled_bytes_to_mark_ < bytes_marked_) { scheduled_bytes_to_mark_ = bytes_marked_; if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Fast-forwarded schedule\n"); } } } void IncrementalMarking::FastForwardScheduleIfCloseToFinalization() { // Consider marking close to finalization if 75% of the initial old // generation was marked. if (bytes_marked_ > 3 * (initial_old_generation_size_ / 4)) { FastForwardSchedule(); } } void IncrementalMarking::ScheduleBytesToMarkBasedOnTime(double time_ms) { // Time interval that should be sufficient to complete incremental marking. constexpr double kTargetMarkingWallTimeInMs = 500; constexpr double kMinTimeBetweenScheduleInMs = 10; if (schedule_update_time_ms_ + kMinTimeBetweenScheduleInMs > time_ms) return; double delta_ms = Min(time_ms - schedule_update_time_ms_, kTargetMarkingWallTimeInMs); schedule_update_time_ms_ = time_ms; size_t bytes_to_mark = (delta_ms / kTargetMarkingWallTimeInMs) * initial_old_generation_size_; AddScheduledBytesToMark(bytes_to_mark); if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Scheduled %zuKB to mark based on time delta " "%.1fms\n", bytes_to_mark / KB, delta_ms); } } namespace { StepResult CombineStepResults(StepResult a, StepResult b) { DCHECK_NE(StepResult::kWaitingForFinalization, a); DCHECK_NE(StepResult::kWaitingForFinalization, b); if (a == StepResult::kMoreWorkRemaining || b == StepResult::kMoreWorkRemaining) return StepResult::kMoreWorkRemaining; return StepResult::kNoImmediateWork; } } // anonymous namespace StepResult IncrementalMarking::AdvanceWithDeadline( double deadline_in_ms, CompletionAction completion_action, StepOrigin step_origin) { HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking()); TRACE_EVENT0("v8", "V8.GCIncrementalMarking"); TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL); DCHECK(!IsStopped()); ScheduleBytesToMarkBasedOnTime(heap()->MonotonicallyIncreasingTimeInMs()); FastForwardScheduleIfCloseToFinalization(); return Step(kStepSizeInMs, completion_action, step_origin); } void IncrementalMarking::FinalizeSweeping() { DCHECK(state_ == SWEEPING); if (ContinueConcurrentSweeping()) { if (FLAG_stress_incremental_marking) { // To start concurrent marking a bit earlier, support concurrent sweepers // from main thread by sweeping some pages. SupportConcurrentSweeping(); } return; } SafepointScope scope(heap()); collector_->EnsureSweepingCompleted(); DCHECK(!collector_->sweeping_in_progress()); #ifdef DEBUG heap_->VerifyCountersAfterSweeping(); #endif StartMarking(); } bool IncrementalMarking::ContinueConcurrentSweeping() { if (!collector_->sweeping_in_progress()) return false; return FLAG_concurrent_sweeping && collector_->sweeper()->AreSweeperTasksRunning(); } void IncrementalMarking::SupportConcurrentSweeping() { collector_->sweeper()->SupportConcurrentSweeping(); } size_t IncrementalMarking::StepSizeToKeepUpWithAllocations() { // Update bytes_allocated_ based on the allocation counter. size_t current_counter = heap_->OldGenerationAllocationCounter(); size_t result = current_counter - old_generation_allocation_counter_; old_generation_allocation_counter_ = current_counter; return result; } size_t IncrementalMarking::StepSizeToMakeProgress() { const size_t kTargetStepCount = 256; const size_t kTargetStepCountAtOOM = 32; const size_t kMaxStepSizeInByte = 256 * KB; size_t oom_slack = heap()->new_space()->Capacity() + 64 * MB; if (!heap()->CanExpandOldGeneration(oom_slack)) { return heap()->OldGenerationSizeOfObjects() / kTargetStepCountAtOOM; } return Min(Max(initial_old_generation_size_ / kTargetStepCount, IncrementalMarking::kMinStepSizeInBytes), kMaxStepSizeInByte); } void IncrementalMarking::AddScheduledBytesToMark(size_t bytes_to_mark) { if (scheduled_bytes_to_mark_ + bytes_to_mark < scheduled_bytes_to_mark_) { // The overflow case. scheduled_bytes_to_mark_ = std::numeric_limits::max(); } else { scheduled_bytes_to_mark_ += bytes_to_mark; } } void IncrementalMarking::ScheduleBytesToMarkBasedOnAllocation() { size_t progress_bytes = StepSizeToMakeProgress(); size_t allocation_bytes = StepSizeToKeepUpWithAllocations(); size_t bytes_to_mark = progress_bytes + allocation_bytes; AddScheduledBytesToMark(bytes_to_mark); if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Scheduled %zuKB to mark based on allocation " "(progress=%zuKB, allocation=%zuKB)\n", bytes_to_mark / KB, progress_bytes / KB, allocation_bytes / KB); } } void IncrementalMarking::FetchBytesMarkedConcurrently() { if (FLAG_concurrent_marking) { size_t current_bytes_marked_concurrently = heap()->concurrent_marking()->TotalMarkedBytes(); // The concurrent_marking()->TotalMarkedBytes() is not monothonic for a // short period of time when a concurrent marking task is finishing. if (current_bytes_marked_concurrently > bytes_marked_concurrently_) { bytes_marked_ += current_bytes_marked_concurrently - bytes_marked_concurrently_; bytes_marked_concurrently_ = current_bytes_marked_concurrently; } if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Marked %zuKB on background threads\n", heap_->concurrent_marking()->TotalMarkedBytes() / KB); } } } size_t IncrementalMarking::ComputeStepSizeInBytes(StepOrigin step_origin) { FetchBytesMarkedConcurrently(); if (FLAG_trace_incremental_marking) { if (scheduled_bytes_to_mark_ > bytes_marked_) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Marker is %zuKB behind schedule\n", (scheduled_bytes_to_mark_ - bytes_marked_) / KB); } else { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Marker is %zuKB ahead of schedule\n", (bytes_marked_ - scheduled_bytes_to_mark_) / KB); } } // Allow steps on allocation to get behind the schedule by small ammount. // This gives higher priority to steps in tasks. size_t kScheduleMarginInBytes = step_origin == StepOrigin::kV8 ? 1 * MB : 0; if (bytes_marked_ + kScheduleMarginInBytes > scheduled_bytes_to_mark_) return 0; return scheduled_bytes_to_mark_ - bytes_marked_ - kScheduleMarginInBytes; } void IncrementalMarking::AdvanceOnAllocation() { // Code using an AlwaysAllocateScope assumes that the GC state does not // change; that implies that no marking steps must be performed. if (heap_->gc_state() != Heap::NOT_IN_GC || !FLAG_incremental_marking || (state_ != SWEEPING && state_ != MARKING) || heap_->always_allocate()) { return; } HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking()); TRACE_EVENT0("v8", "V8.GCIncrementalMarking"); TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL); ScheduleBytesToMarkBasedOnAllocation(); Step(kMaxStepSizeInMs, GC_VIA_STACK_GUARD, StepOrigin::kV8); } StepResult IncrementalMarking::Step(double max_step_size_in_ms, CompletionAction action, StepOrigin step_origin) { double start = heap_->MonotonicallyIncreasingTimeInMs(); if (state_ == SWEEPING) { TRACE_GC(heap_->tracer(), GCTracer::Scope::MC_INCREMENTAL_SWEEPING); FinalizeSweeping(); } StepResult combined_result = StepResult::kMoreWorkRemaining; size_t bytes_to_process = 0; size_t v8_bytes_processed = 0; double embedder_duration = 0.0; double embedder_deadline = 0.0; if (state_ == MARKING) { if (FLAG_concurrent_marking) { // It is safe to merge back all objects that were on hold to the shared // work list at Step because we are at a safepoint where all objects // are properly initialized. local_marking_worklists()->MergeOnHold(); } // Only print marking worklist in debug mode to save ~40KB of code size. #ifdef DEBUG if (FLAG_trace_incremental_marking && FLAG_trace_concurrent_marking && FLAG_trace_gc_verbose) { collector_->marking_worklists()->Print(); } #endif if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Marking speed %.fKB/ms\n", heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); } // The first step after Scavenge will see many allocated bytes. // Cap the step size to distribute the marking work more uniformly. const double marking_speed = heap()->tracer()->IncrementalMarkingSpeedInBytesPerMillisecond(); size_t max_step_size = GCIdleTimeHandler::EstimateMarkingStepSize( max_step_size_in_ms, marking_speed); bytes_to_process = Min(ComputeStepSizeInBytes(step_origin), max_step_size); bytes_to_process = Max(bytes_to_process, kMinStepSizeInBytes); // Perform a single V8 and a single embedder step. In case both have been // observed as empty back to back, we can finalize. // // This ignores that case where the embedder finds new V8-side objects. The // assumption is that large graphs are well connected and can mostly be // processed on their own. For small graphs, helping is not necessary. v8_bytes_processed = collector_->ProcessMarkingWorklist(bytes_to_process); StepResult v8_result = local_marking_worklists()->IsEmpty() ? StepResult::kNoImmediateWork : StepResult::kMoreWorkRemaining; StepResult embedder_result = StepResult::kNoImmediateWork; if (heap_->local_embedder_heap_tracer()->InUse()) { embedder_deadline = Min(max_step_size_in_ms, static_cast(bytes_to_process) / marking_speed); // TODO(chromium:1056170): Replace embedder_deadline with bytes_to_process // after migrating blink to the cppgc library and after v8 can directly // push objects to Oilpan. embedder_result = EmbedderStep(embedder_deadline, &embedder_duration); } bytes_marked_ += v8_bytes_processed; combined_result = CombineStepResults(v8_result, embedder_result); if (combined_result == StepResult::kNoImmediateWork) { if (!finalize_marking_completed_) { FinalizeMarking(action); FastForwardSchedule(); combined_result = StepResult::kWaitingForFinalization; incremental_marking_job()->Start(heap_); } else { MarkingComplete(action); combined_result = StepResult::kWaitingForFinalization; } } if (FLAG_concurrent_marking) { local_marking_worklists()->ShareWork(); heap_->concurrent_marking()->RescheduleJobIfNeeded(); } } if (state_ == MARKING) { // Note that we do not report any marked by in case of finishing sweeping as // we did not process the marking worklist. const double v8_duration = heap_->MonotonicallyIncreasingTimeInMs() - start - embedder_duration; heap_->tracer()->AddIncrementalMarkingStep(v8_duration, v8_bytes_processed); } if (FLAG_trace_incremental_marking) { heap_->isolate()->PrintWithTimestamp( "[IncrementalMarking] Step %s V8: %zuKB (%zuKB), embedder: %fms (%fms) " "in %.1f\n", step_origin == StepOrigin::kV8 ? "in v8" : "in task", v8_bytes_processed / KB, bytes_to_process / KB, embedder_duration, embedder_deadline, heap_->MonotonicallyIncreasingTimeInMs() - start); } return combined_result; } } // namespace internal } // namespace v8