// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_LOGGING_COUNTERS_H_ #define V8_LOGGING_COUNTERS_H_ #include #include "include/v8.h" #include "src/base/atomic-utils.h" #include "src/base/optional.h" #include "src/base/platform/elapsed-timer.h" #include "src/base/platform/time.h" #include "src/common/globals.h" #include "src/debug/debug-interface.h" #include "src/execution/isolate.h" #include "src/init/heap-symbols.h" #include "src/logging/counters-definitions.h" #include "src/logging/tracing-flags.h" #include "src/objects/objects.h" #include "src/runtime/runtime.h" #include "src/tracing/trace-event.h" #include "src/tracing/traced-value.h" #include "src/tracing/tracing-category-observer.h" #include "src/utils/allocation.h" namespace v8 { namespace internal { // StatsCounters is an interface for plugging into external // counters for monitoring. Counters can be looked up and // manipulated by name. class Counters; class StatsTable { public: // Register an application-defined function for recording // subsequent counter statistics. void SetCounterFunction(CounterLookupCallback f); // Register an application-defined function to create histograms for // recording subsequent histogram samples. void SetCreateHistogramFunction(CreateHistogramCallback f) { create_histogram_function_ = f; } // Register an application-defined function to add a sample // to a histogram created with CreateHistogram function. void SetAddHistogramSampleFunction(AddHistogramSampleCallback f) { add_histogram_sample_function_ = f; } bool HasCounterFunction() const { return lookup_function_ != nullptr; } // Lookup the location of a counter by name. If the lookup // is successful, returns a non-nullptr pointer for writing the // value of the counter. Each thread calling this function // may receive a different location to store it's counter. // The return value must not be cached and re-used across // threads, although a single thread is free to cache it. int* FindLocation(const char* name) { if (!lookup_function_) return nullptr; return lookup_function_(name); } // Create a histogram by name. If the create is successful, // returns a non-nullptr pointer for use with AddHistogramSample // function. min and max define the expected minimum and maximum // sample values. buckets is the maximum number of buckets // that the samples will be grouped into. void* CreateHistogram(const char* name, int min, int max, size_t buckets) { if (!create_histogram_function_) return nullptr; return create_histogram_function_(name, min, max, buckets); } // Add a sample to a histogram created with the CreateHistogram // function. void AddHistogramSample(void* histogram, int sample) { if (!add_histogram_sample_function_) return; return add_histogram_sample_function_(histogram, sample); } private: friend class Counters; explicit StatsTable(Counters* counters); CounterLookupCallback lookup_function_; CreateHistogramCallback create_histogram_function_; AddHistogramSampleCallback add_histogram_sample_function_; DISALLOW_COPY_AND_ASSIGN(StatsTable); }; // Base class for stats counters. class StatsCounterBase { protected: Counters* counters_; const char* name_; int* ptr_; StatsCounterBase() = default; StatsCounterBase(Counters* counters, const char* name) : counters_(counters), name_(name), ptr_(nullptr) {} void SetLoc(int* loc, int value) { *loc = value; } void IncrementLoc(int* loc) { (*loc)++; } void IncrementLoc(int* loc, int value) { (*loc) += value; } void DecrementLoc(int* loc) { (*loc)--; } void DecrementLoc(int* loc, int value) { (*loc) -= value; } V8_EXPORT_PRIVATE int* FindLocationInStatsTable() const; }; // StatsCounters are dynamically created values which can be tracked in // the StatsTable. They are designed to be lightweight to create and // easy to use. // // Internally, a counter represents a value in a row of a StatsTable. // The row has a 32bit value for each process/thread in the table and also // a name (stored in the table metadata). Since the storage location can be // thread-specific, this class cannot be shared across threads. Note: This // class is not thread safe. class StatsCounter : public StatsCounterBase { public: // Sets the counter to a specific value. void Set(int value) { if (int* loc = GetPtr()) SetLoc(loc, value); } // Increments the counter. void Increment() { if (int* loc = GetPtr()) IncrementLoc(loc); } void Increment(int value) { if (int* loc = GetPtr()) IncrementLoc(loc, value); } // Decrements the counter. void Decrement() { if (int* loc = GetPtr()) DecrementLoc(loc); } void Decrement(int value) { if (int* loc = GetPtr()) DecrementLoc(loc, value); } // Is this counter enabled? // Returns false if table is full. bool Enabled() { return GetPtr() != nullptr; } // Get the internal pointer to the counter. This is used // by the code generator to emit code that manipulates a // given counter without calling the runtime system. int* GetInternalPointer() { int* loc = GetPtr(); DCHECK_NOT_NULL(loc); return loc; } private: friend class Counters; StatsCounter() = default; StatsCounter(Counters* counters, const char* name) : StatsCounterBase(counters, name), lookup_done_(false) {} // Reset the cached internal pointer. void Reset() { lookup_done_ = false; } // Returns the cached address of this counter location. int* GetPtr() { if (lookup_done_) return ptr_; lookup_done_ = true; ptr_ = FindLocationInStatsTable(); return ptr_; } bool lookup_done_; }; // Thread safe version of StatsCounter. class V8_EXPORT_PRIVATE StatsCounterThreadSafe : public StatsCounterBase { public: void Set(int Value); void Increment(); void Increment(int value); void Decrement(); void Decrement(int value); bool Enabled() { return ptr_ != nullptr; } int* GetInternalPointer() { DCHECK_NOT_NULL(ptr_); return ptr_; } private: friend class Counters; StatsCounterThreadSafe(Counters* counters, const char* name); void Reset() { ptr_ = FindLocationInStatsTable(); } base::Mutex mutex_; DISALLOW_IMPLICIT_CONSTRUCTORS(StatsCounterThreadSafe); }; // A Histogram represents a dynamically created histogram in the // StatsTable. Note: This class is thread safe. class Histogram { public: // Add a single sample to this histogram. void AddSample(int sample); // Returns true if this histogram is enabled. bool Enabled() { return histogram_ != nullptr; } const char* name() { return name_; } int min() const { return min_; } int max() const { return max_; } int num_buckets() const { return num_buckets_; } // Asserts that |expected_counters| are the same as the Counters this // Histogram reports to. void AssertReportsToCounters(Counters* expected_counters) { DCHECK_EQ(counters_, expected_counters); } protected: Histogram() = default; Histogram(const char* name, int min, int max, int num_buckets, Counters* counters) : name_(name), min_(min), max_(max), num_buckets_(num_buckets), histogram_(nullptr), counters_(counters) { DCHECK(counters_); } Counters* counters() const { return counters_; } // Reset the cached internal pointer. void Reset() { histogram_ = CreateHistogram(); } private: friend class Counters; void* CreateHistogram() const; const char* name_; int min_; int max_; int num_buckets_; void* histogram_; Counters* counters_; }; enum class HistogramTimerResolution { MILLISECOND, MICROSECOND }; // A thread safe histogram timer. It also allows distributions of // nested timed results. class TimedHistogram : public Histogram { public: // Start the timer. Log if isolate non-null. V8_EXPORT_PRIVATE void Start(base::ElapsedTimer* timer, Isolate* isolate); // Stop the timer and record the results. Log if isolate non-null. V8_EXPORT_PRIVATE void Stop(base::ElapsedTimer* timer, Isolate* isolate); // Records a TimeDelta::Max() result. Useful to record percentage of tasks // that never got to run in a given scenario. Log if isolate non-null. void RecordAbandon(base::ElapsedTimer* timer, Isolate* isolate); // Add a single sample to this histogram. void AddTimedSample(base::TimeDelta sample); protected: friend class Counters; HistogramTimerResolution resolution_; TimedHistogram() = default; TimedHistogram(const char* name, int min, int max, HistogramTimerResolution resolution, int num_buckets, Counters* counters) : Histogram(name, min, max, num_buckets, counters), resolution_(resolution) {} void AddTimeSample(); }; // Helper class for scoping a TimedHistogram. class TimedHistogramScope { public: explicit TimedHistogramScope(TimedHistogram* histogram, Isolate* isolate = nullptr) : histogram_(histogram), isolate_(isolate) { histogram_->Start(&timer_, isolate); } ~TimedHistogramScope() { histogram_->Stop(&timer_, isolate_); } private: base::ElapsedTimer timer_; TimedHistogram* histogram_; Isolate* isolate_; DISALLOW_IMPLICIT_CONSTRUCTORS(TimedHistogramScope); }; enum class OptionalTimedHistogramScopeMode { TAKE_TIME, DONT_TAKE_TIME }; // Helper class for scoping a TimedHistogram. // It will not take time for mode = DONT_TAKE_TIME. class OptionalTimedHistogramScope { public: OptionalTimedHistogramScope(TimedHistogram* histogram, Isolate* isolate, OptionalTimedHistogramScopeMode mode) : histogram_(histogram), isolate_(isolate), mode_(mode) { if (mode == OptionalTimedHistogramScopeMode::TAKE_TIME) { histogram_->Start(&timer_, isolate); } } ~OptionalTimedHistogramScope() { if (mode_ == OptionalTimedHistogramScopeMode::TAKE_TIME) { histogram_->Stop(&timer_, isolate_); } } private: base::ElapsedTimer timer_; TimedHistogram* const histogram_; Isolate* const isolate_; const OptionalTimedHistogramScopeMode mode_; DISALLOW_IMPLICIT_CONSTRUCTORS(OptionalTimedHistogramScope); }; // Helper class for recording a TimedHistogram asynchronously with manual // controls (it will not generate a report if destroyed without explicitly // triggering a report). |async_counters| should be a shared_ptr to // |histogram->counters()|, making it is safe to report to an // AsyncTimedHistogram after the associated isolate has been destroyed. // AsyncTimedHistogram can be moved/copied to avoid computing Now() multiple // times when the times of multiple tasks are identical; each copy will generate // its own report. class AsyncTimedHistogram { public: explicit AsyncTimedHistogram(TimedHistogram* histogram, std::shared_ptr async_counters) : histogram_(histogram), async_counters_(std::move(async_counters)) { histogram_->AssertReportsToCounters(async_counters_.get()); histogram_->Start(&timer_, nullptr); } // Records the time elapsed to |histogram_| and stops |timer_|. void RecordDone() { histogram_->Stop(&timer_, nullptr); } // Records TimeDelta::Max() to |histogram_| and stops |timer_|. void RecordAbandon() { histogram_->RecordAbandon(&timer_, nullptr); } private: base::ElapsedTimer timer_; TimedHistogram* histogram_; std::shared_ptr async_counters_; }; // Helper class for scoping a TimedHistogram, where the histogram is selected at // stop time rather than start time. // TODO(leszeks): This is heavily reliant on TimedHistogram::Start() doing // nothing but starting the timer, and TimedHistogram::Stop() logging the sample // correctly even if Start() was not called. This happens to be true iff Stop() // is passed a null isolate, but that's an implementation detail of // TimedHistogram, and we shouldn't rely on it. class LazyTimedHistogramScope { public: LazyTimedHistogramScope() : histogram_(nullptr) { timer_.Start(); } ~LazyTimedHistogramScope() { // We should set the histogram before this scope exits. DCHECK_NOT_NULL(histogram_); histogram_->Stop(&timer_, nullptr); } void set_histogram(TimedHistogram* histogram) { histogram_ = histogram; } private: base::ElapsedTimer timer_; TimedHistogram* histogram_; }; // A HistogramTimer allows distributions of non-nested timed results // to be created. WARNING: This class is not thread safe and can only // be run on the foreground thread. class HistogramTimer : public TimedHistogram { public: // Note: public for testing purposes only. HistogramTimer(const char* name, int min, int max, HistogramTimerResolution resolution, int num_buckets, Counters* counters) : TimedHistogram(name, min, max, resolution, num_buckets, counters) {} inline void Start(); inline void Stop(); // Returns true if the timer is running. bool Running() { return Enabled() && timer_.IsStarted(); } // TODO(bmeurer): Remove this when HistogramTimerScope is fixed. #ifdef DEBUG base::ElapsedTimer* timer() { return &timer_; } #endif private: friend class Counters; base::ElapsedTimer timer_; HistogramTimer() = default; }; // Helper class for scoping a HistogramTimer. // TODO(bmeurer): The ifdeffery is an ugly hack around the fact that the // Parser is currently reentrant (when it throws an error, we call back // into JavaScript and all bets are off), but ElapsedTimer is not // reentry-safe. Fix this properly and remove |allow_nesting|. class HistogramTimerScope { public: explicit HistogramTimerScope(HistogramTimer* timer, bool allow_nesting = false) #ifdef DEBUG : timer_(timer), skipped_timer_start_(false) { if (timer_->timer()->IsStarted() && allow_nesting) { skipped_timer_start_ = true; } else { timer_->Start(); } } #else : timer_(timer) { timer_->Start(); } #endif ~HistogramTimerScope() { #ifdef DEBUG if (!skipped_timer_start_) { timer_->Stop(); } #else timer_->Stop(); #endif } private: HistogramTimer* timer_; #ifdef DEBUG bool skipped_timer_start_; #endif }; // A histogram timer that can aggregate events within a larger scope. // // Intended use of this timer is to have an outer (aggregating) and an inner // (to be aggregated) scope, where the inner scope measure the time of events, // and all those inner scope measurements will be summed up by the outer scope. // An example use might be to aggregate the time spent in lazy compilation // while running a script. // // Helpers: // - AggregatingHistogramTimerScope, the "outer" scope within which // times will be summed up. // - AggregatedHistogramTimerScope, the "inner" scope which defines the // events to be timed. class AggregatableHistogramTimer : public Histogram { public: // Start/stop the "outer" scope. void Start() { time_ = base::TimeDelta(); } void Stop() { if (time_ != base::TimeDelta()) { // Only add non-zero samples, since zero samples represent situations // where there were no aggregated samples added. AddSample(static_cast(time_.InMicroseconds())); } } // Add a time value ("inner" scope). void Add(base::TimeDelta other) { time_ += other; } private: friend class Counters; AggregatableHistogramTimer() = default; AggregatableHistogramTimer(const char* name, int min, int max, int num_buckets, Counters* counters) : Histogram(name, min, max, num_buckets, counters) {} base::TimeDelta time_; }; // A helper class for use with AggregatableHistogramTimer. This is the // // outer-most timer scope used with an AggregatableHistogramTimer. It will // // aggregate the information from the inner AggregatedHistogramTimerScope. class AggregatingHistogramTimerScope { public: explicit AggregatingHistogramTimerScope(AggregatableHistogramTimer* histogram) : histogram_(histogram) { histogram_->Start(); } ~AggregatingHistogramTimerScope() { histogram_->Stop(); } private: AggregatableHistogramTimer* histogram_; }; // A helper class for use with AggregatableHistogramTimer, the "inner" scope // // which defines the events to be timed. class AggregatedHistogramTimerScope { public: explicit AggregatedHistogramTimerScope(AggregatableHistogramTimer* histogram) : histogram_(histogram) { timer_.Start(); } ~AggregatedHistogramTimerScope() { histogram_->Add(timer_.Elapsed()); } private: base::ElapsedTimer timer_; AggregatableHistogramTimer* histogram_; }; // AggretatedMemoryHistogram collects (time, value) sample pairs and turns // them into time-uniform samples for the backing historgram, such that the // backing histogram receives one sample every T ms, where the T is controlled // by the FLAG_histogram_interval. // // More formally: let F be a real-valued function that maps time to sample // values. We define F as a linear interpolation between adjacent samples. For // each time interval [x; x + T) the backing histogram gets one sample value // that is the average of F(t) in the interval. template class AggregatedMemoryHistogram { public: // Note: public for testing purposes only. explicit AggregatedMemoryHistogram(Histogram* backing_histogram) : AggregatedMemoryHistogram() { backing_histogram_ = backing_histogram; } // Invariants that hold before and after AddSample if // is_initialized_ is true: // // 1) For we processed samples that came in before start_ms_ and sent the // corresponding aggregated samples to backing histogram. // 2) (last_ms_, last_value_) is the last received sample. // 3) last_ms_ < start_ms_ + FLAG_histogram_interval. // 4) aggregate_value_ is the average of the function that is constructed by // linearly interpolating samples received between start_ms_ and last_ms_. void AddSample(double current_ms, double current_value); private: friend class Counters; AggregatedMemoryHistogram() : is_initialized_(false), start_ms_(0.0), last_ms_(0.0), aggregate_value_(0.0), last_value_(0.0), backing_histogram_(nullptr) {} double Aggregate(double current_ms, double current_value); bool is_initialized_; double start_ms_; double last_ms_; double aggregate_value_; double last_value_; Histogram* backing_histogram_; }; template void AggregatedMemoryHistogram::AddSample(double current_ms, double current_value) { if (!is_initialized_) { aggregate_value_ = current_value; start_ms_ = current_ms; last_value_ = current_value; last_ms_ = current_ms; is_initialized_ = true; } else { const double kEpsilon = 1e-6; const int kMaxSamples = 1000; if (current_ms < last_ms_ + kEpsilon) { // Two samples have the same time, remember the last one. last_value_ = current_value; } else { double sample_interval_ms = FLAG_histogram_interval; double end_ms = start_ms_ + sample_interval_ms; if (end_ms <= current_ms + kEpsilon) { // Linearly interpolate between the last_ms_ and the current_ms. double slope = (current_value - last_value_) / (current_ms - last_ms_); int i; // Send aggregated samples to the backing histogram from the start_ms // to the current_ms. for (i = 0; i < kMaxSamples && end_ms <= current_ms + kEpsilon; i++) { double end_value = last_value_ + (end_ms - last_ms_) * slope; double sample_value; if (i == 0) { // Take aggregate_value_ into account. sample_value = Aggregate(end_ms, end_value); } else { // There is no aggregate_value_ for i > 0. sample_value = (last_value_ + end_value) / 2; } backing_histogram_->AddSample(static_cast(sample_value + 0.5)); last_value_ = end_value; last_ms_ = end_ms; end_ms += sample_interval_ms; } if (i == kMaxSamples) { // We hit the sample limit, ignore the remaining samples. aggregate_value_ = current_value; start_ms_ = current_ms; } else { aggregate_value_ = last_value_; start_ms_ = last_ms_; } } aggregate_value_ = current_ms > start_ms_ + kEpsilon ? Aggregate(current_ms, current_value) : aggregate_value_; last_value_ = current_value; last_ms_ = current_ms; } } } template double AggregatedMemoryHistogram::Aggregate(double current_ms, double current_value) { double interval_ms = current_ms - start_ms_; double value = (current_value + last_value_) / 2; // The aggregate_value_ is the average for [start_ms_; last_ms_]. // The value is the average for [last_ms_; current_ms]. // Return the weighted average of the aggregate_value_ and the value. return aggregate_value_ * ((last_ms_ - start_ms_) / interval_ms) + value * ((current_ms - last_ms_) / interval_ms); } class RuntimeCallCounter final { public: RuntimeCallCounter() : RuntimeCallCounter(nullptr) {} explicit RuntimeCallCounter(const char* name) : name_(name), count_(0), time_(0) {} V8_NOINLINE void Reset(); V8_NOINLINE void Dump(v8::tracing::TracedValue* value); void Add(RuntimeCallCounter* other); const char* name() const { return name_; } int64_t count() const { return count_; } base::TimeDelta time() const { return base::TimeDelta::FromMicroseconds(time_); } void Increment() { count_++; } void Add(base::TimeDelta delta) { time_ += delta.InMicroseconds(); } private: friend class RuntimeCallStats; const char* name_; int64_t count_; // Stored as int64_t so that its initialization can be deferred. int64_t time_; }; // RuntimeCallTimer is used to keep track of the stack of currently active // timers used for properly measuring the own time of a RuntimeCallCounter. class RuntimeCallTimer final { public: RuntimeCallCounter* counter() { return counter_; } void set_counter(RuntimeCallCounter* counter) { counter_ = counter; } RuntimeCallTimer* parent() const { return parent_.Value(); } void set_parent(RuntimeCallTimer* timer) { parent_.SetValue(timer); } const char* name() const { return counter_->name(); } inline bool IsStarted(); inline void Start(RuntimeCallCounter* counter, RuntimeCallTimer* parent); void Snapshot(); inline RuntimeCallTimer* Stop(); // Make the time source configurable for testing purposes. V8_EXPORT_PRIVATE static base::TimeTicks (*Now)(); // Helper to switch over to CPU time. static base::TimeTicks NowCPUTime(); private: inline void Pause(base::TimeTicks now); inline void Resume(base::TimeTicks now); inline void CommitTimeToCounter(); RuntimeCallCounter* counter_ = nullptr; base::AtomicValue parent_; base::TimeTicks start_ticks_; base::TimeDelta elapsed_; }; #define FOR_EACH_GC_COUNTER(V) \ TRACER_SCOPES(V) \ TRACER_BACKGROUND_SCOPES(V) #define FOR_EACH_API_COUNTER(V) \ V(AccessorPair_New) \ V(ArrayBuffer_Cast) \ V(ArrayBuffer_Detach) \ V(ArrayBuffer_New) \ V(ArrayBuffer_NewBackingStore) \ V(ArrayBuffer_BackingStore_Reallocate) \ V(Array_CloneElementAt) \ V(Array_New) \ V(BigInt64Array_New) \ V(BigInt_NewFromWords) \ V(BigIntObject_BigIntValue) \ V(BigIntObject_New) \ V(BigUint64Array_New) \ V(BooleanObject_BooleanValue) \ V(BooleanObject_New) \ V(Context_New) \ V(Context_NewRemoteContext) \ V(DataView_New) \ V(Date_New) \ V(Date_NumberValue) \ V(Debug_Call) \ V(debug_GetPrivateMembers) \ V(Error_New) \ V(External_New) \ V(Float32Array_New) \ V(Float64Array_New) \ V(Function_Call) \ V(Function_New) \ V(Function_FunctionProtoToString) \ V(Function_NewInstance) \ V(FunctionTemplate_GetFunction) \ V(FunctionTemplate_New) \ V(FunctionTemplate_NewRemoteInstance) \ V(FunctionTemplate_NewWithCache) \ V(FunctionTemplate_NewWithFastHandler) \ V(Int16Array_New) \ V(Int32Array_New) \ V(Int8Array_New) \ V(Isolate_DateTimeConfigurationChangeNotification) \ V(Isolate_LocaleConfigurationChangeNotification) \ V(JSON_Parse) \ V(JSON_Stringify) \ V(Map_AsArray) \ V(Map_Clear) \ V(Map_Delete) \ V(Map_Get) \ V(Map_Has) \ V(Map_New) \ V(Map_Set) \ V(Message_GetEndColumn) \ V(Message_GetLineNumber) \ V(Message_GetSourceLine) \ V(Message_GetStartColumn) \ V(Module_Evaluate) \ V(Module_InstantiateModule) \ V(Module_SetSyntheticModuleExport) \ V(NumberObject_New) \ V(NumberObject_NumberValue) \ V(Object_CallAsConstructor) \ V(Object_CallAsFunction) \ V(Object_CreateDataProperty) \ V(Object_DefineOwnProperty) \ V(Object_DefineProperty) \ V(Object_Delete) \ V(Object_DeleteProperty) \ V(Object_ForceSet) \ V(Object_Get) \ V(Object_GetOwnPropertyDescriptor) \ V(Object_GetOwnPropertyNames) \ V(Object_GetPropertyAttributes) \ V(Object_GetPropertyNames) \ V(Object_GetRealNamedProperty) \ V(Object_GetRealNamedPropertyAttributes) \ V(Object_GetRealNamedPropertyAttributesInPrototypeChain) \ V(Object_GetRealNamedPropertyInPrototypeChain) \ V(Object_Has) \ V(Object_HasOwnProperty) \ V(Object_HasRealIndexedProperty) \ V(Object_HasRealNamedCallbackProperty) \ V(Object_HasRealNamedProperty) \ V(Object_IsCodeLike) \ V(Object_New) \ V(Object_ObjectProtoToString) \ V(Object_Set) \ V(Object_SetAccessor) \ V(Object_SetIntegrityLevel) \ V(Object_SetPrivate) \ V(Object_SetPrototype) \ V(ObjectTemplate_New) \ V(ObjectTemplate_NewInstance) \ V(Object_ToArrayIndex) \ V(Object_ToBigInt) \ V(Object_ToDetailString) \ V(Object_ToInt32) \ V(Object_ToInteger) \ V(Object_ToNumber) \ V(Object_ToObject) \ V(Object_ToString) \ V(Object_ToUint32) \ V(Persistent_New) \ V(Private_New) \ V(Promise_Catch) \ V(Promise_Chain) \ V(Promise_HasRejectHandler) \ V(Promise_Resolver_New) \ V(Promise_Resolver_Reject) \ V(Promise_Resolver_Resolve) \ V(Promise_Result) \ V(Promise_Status) \ V(Promise_Then) \ V(Proxy_New) \ V(RangeError_New) \ V(ReferenceError_New) \ V(RegExp_Exec) \ V(RegExp_New) \ V(ScriptCompiler_Compile) \ V(ScriptCompiler_CompileFunctionInContext) \ V(ScriptCompiler_CompileUnbound) \ V(Script_Run) \ V(Set_Add) \ V(Set_AsArray) \ V(Set_Clear) \ V(Set_Delete) \ V(Set_Has) \ V(Set_New) \ V(SharedArrayBuffer_New) \ V(SharedArrayBuffer_NewBackingStore) \ V(String_Concat) \ V(String_NewExternalOneByte) \ V(String_NewExternalTwoByte) \ V(String_NewFromOneByte) \ V(String_NewFromTwoByte) \ V(String_NewFromUtf8) \ V(String_NewFromUtf8Literal) \ V(StringObject_New) \ V(StringObject_StringValue) \ V(String_Write) \ V(String_WriteUtf8) \ V(Symbol_New) \ V(SymbolObject_New) \ V(SymbolObject_SymbolValue) \ V(SyntaxError_New) \ V(TracedGlobal_New) \ V(TryCatch_StackTrace) \ V(TypeError_New) \ V(Uint16Array_New) \ V(Uint32Array_New) \ V(Uint8Array_New) \ V(Uint8ClampedArray_New) \ V(UnboundScript_GetId) \ V(UnboundScript_GetLineNumber) \ V(UnboundScript_GetName) \ V(UnboundScript_GetSourceMappingURL) \ V(UnboundScript_GetSourceURL) \ V(ValueDeserializer_ReadHeader) \ V(ValueDeserializer_ReadValue) \ V(ValueSerializer_WriteValue) \ V(Value_InstanceOf) \ V(Value_Int32Value) \ V(Value_IntegerValue) \ V(Value_NumberValue) \ V(Value_TypeOf) \ V(Value_Uint32Value) \ V(WasmCompileError_New) \ V(WasmLinkError_New) \ V(WasmRuntimeError_New) \ V(WeakMap_Get) \ V(WeakMap_New) \ V(WeakMap_Set) #define ADD_THREAD_SPECIFIC_COUNTER(V, Prefix, Suffix) \ V(Prefix##Suffix) \ V(Prefix##Background##Suffix) #define FOR_EACH_THREAD_SPECIFIC_COUNTER(V) \ ADD_THREAD_SPECIFIC_COUNTER(V, Compile, Analyse) \ ADD_THREAD_SPECIFIC_COUNTER(V, Compile, Eval) \ ADD_THREAD_SPECIFIC_COUNTER(V, Compile, Function) \ ADD_THREAD_SPECIFIC_COUNTER(V, Compile, Ignition) \ ADD_THREAD_SPECIFIC_COUNTER(V, Compile, IgnitionFinalization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Compile, RewriteReturnResult) \ ADD_THREAD_SPECIFIC_COUNTER(V, Compile, ScopeAnalysis) \ ADD_THREAD_SPECIFIC_COUNTER(V, Compile, Script) \ \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, AllocateFPRegisters) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, AllocateGeneralRegisters) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, AssembleCode) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, AssignSpillSlots) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, BuildLiveRangeBundles) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, BuildLiveRanges) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, CommitAssignment) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, ConnectRanges) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, ControlFlowOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, CSAEarlyOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, CSAOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, DecideSpillingMode) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, DecompressionOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, EarlyOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, EarlyTrimming) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, EffectLinearization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, EscapeAnalysis) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, MidTierRegisterOutputDefinition) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, MidTierPopulateReferenceMaps) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, MidTierRegisterAllocator) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, MidTierSpillSlotAllocator) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, FinalizeCode) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, FrameElision) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, GenericLowering) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, BytecodeGraphBuilder) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, Inlining) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, JumpThreading) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, LateGraphTrimming) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, LateOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, LoadElimination) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, LocateSpillSlots) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, LoopExitElimination) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, LoopPeeling) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, MachineOperatorOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, MeetRegisterConstraints) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, MemoryOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, OptimizeMoves) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, PopulatePointerMaps) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, PrintGraph) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, ResolveControlFlow) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, ResolvePhis) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, \ ScheduledEffectControlLinearization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, ScheduledMachineLowering) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, Scheduling) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, SelectInstructions) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, SimplifiedLowering) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, StoreStoreElimination) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, TypeAssertions) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, TypedLowering) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, Typer) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, Untyper) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, VerifyGraph) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, WasmBaseOptimization) \ ADD_THREAD_SPECIFIC_COUNTER(V, Optimize, WasmFullOptimization) \ \ ADD_THREAD_SPECIFIC_COUNTER(V, Parse, ArrowFunctionLiteral) \ ADD_THREAD_SPECIFIC_COUNTER(V, Parse, FunctionLiteral) \ ADD_THREAD_SPECIFIC_COUNTER(V, Parse, Program) \ ADD_THREAD_SPECIFIC_COUNTER(V, PreParse, ArrowFunctionLiteral) \ ADD_THREAD_SPECIFIC_COUNTER(V, PreParse, WithVariableResolution) #define FOR_EACH_MANUAL_COUNTER(V) \ V(AccessorGetterCallback) \ V(AccessorSetterCallback) \ V(ArrayLengthGetter) \ V(ArrayLengthSetter) \ V(BoundFunctionLengthGetter) \ V(BoundFunctionNameGetter) \ V(CodeGenerationFromStringsCallbacks) \ V(CompileBackgroundCompileTask) \ V(CompileCollectSourcePositions) \ V(CompileDeserialize) \ V(CompileEnqueueOnDispatcher) \ V(CompileFinalizeBackgroundCompileTask) \ V(CompileFinishNowOnDispatcher) \ V(CompileGetFromOptimizedCodeMap) \ V(CompilePublishBackgroundFinalization) \ V(CompileSerialize) \ V(CompileWaitForDispatcher) \ V(DeoptimizeCode) \ V(DeserializeContext) \ V(DeserializeIsolate) \ V(FinalizationRegistryCleanupFromTask) \ V(FunctionCallback) \ V(FunctionLengthGetter) \ V(FunctionPrototypeGetter) \ V(FunctionPrototypeSetter) \ V(GC_Custom_AllAvailableGarbage) \ V(GC_Custom_IncrementalMarkingObserver) \ V(GC_Custom_SlowAllocateRaw) \ V(GCEpilogueCallback) \ V(GCPrologueCallback) \ V(Genesis) \ V(GetMoreDataCallback) \ V(IndexedDefinerCallback) \ V(IndexedDeleterCallback) \ V(IndexedDescriptorCallback) \ V(IndexedEnumeratorCallback) \ V(IndexedGetterCallback) \ V(IndexedQueryCallback) \ V(IndexedSetterCallback) \ V(Invoke) \ V(InvokeApiFunction) \ V(InvokeApiInterruptCallbacks) \ V(JS_Execution) \ V(Map_SetPrototype) \ V(Map_TransitionToAccessorProperty) \ V(Map_TransitionToDataProperty) \ V(MessageListenerCallback) \ V(NamedDefinerCallback) \ V(NamedDeleterCallback) \ V(NamedDescriptorCallback) \ V(NamedEnumeratorCallback) \ V(NamedGetterCallback) \ V(NamedQueryCallback) \ V(NamedSetterCallback) \ V(Object_DeleteProperty) \ V(ObjectVerify) \ V(OptimizeBackgroundDispatcherJob) \ V(OptimizeCode) \ V(OptimizeConcurrentPrepare) \ V(OptimizeConcurrentFinalize) \ V(OptimizeFinalizePipelineJob) \ V(OptimizeHeapBrokerInitialization) \ V(OptimizeNonConcurrent) \ V(OptimizeSerialization) \ V(OptimizeSerializeMetadata) \ V(ParseEval) \ V(ParseFunction) \ V(PropertyCallback) \ V(PrototypeMap_TransitionToAccessorProperty) \ V(PrototypeMap_TransitionToDataProperty) \ V(PrototypeObject_DeleteProperty) \ V(ReconfigureToDataProperty) \ V(StringLengthGetter) \ V(TestCounter1) \ V(TestCounter2) \ V(TestCounter3) #define FOR_EACH_HANDLER_COUNTER(V) \ V(KeyedLoadIC_KeyedLoadSloppyArgumentsStub) \ V(KeyedLoadIC_LoadElementDH) \ V(KeyedLoadIC_LoadIndexedInterceptorStub) \ V(KeyedLoadIC_LoadIndexedStringDH) \ V(KeyedLoadIC_SlowStub) \ V(KeyedStoreIC_ElementsTransitionAndStoreStub) \ V(KeyedStoreIC_KeyedStoreSloppyArgumentsStub) \ V(KeyedStoreIC_SlowStub) \ V(KeyedStoreIC_StoreElementStub) \ V(KeyedStoreIC_StoreFastElementStub) \ V(LoadGlobalIC_LoadScriptContextField) \ V(LoadGlobalIC_SlowStub) \ V(LoadIC_FunctionPrototypeStub) \ V(LoadIC_HandlerCacheHit_Accessor) \ V(LoadIC_LoadAccessorDH) \ V(LoadIC_LoadAccessorFromPrototypeDH) \ V(LoadIC_LoadApiGetterFromPrototypeDH) \ V(LoadIC_LoadCallback) \ V(LoadIC_LoadConstantDH) \ V(LoadIC_LoadConstantFromPrototypeDH) \ V(LoadIC_LoadFieldDH) \ V(LoadIC_LoadFieldFromPrototypeDH) \ V(LoadIC_LoadGlobalDH) \ V(LoadIC_LoadGlobalFromPrototypeDH) \ V(LoadIC_LoadIntegerIndexedExoticDH) \ V(LoadIC_LoadInterceptorDH) \ V(LoadIC_LoadInterceptorFromPrototypeDH) \ V(LoadIC_LoadNativeDataPropertyDH) \ V(LoadIC_LoadNativeDataPropertyFromPrototypeDH) \ V(LoadIC_LoadNonexistentDH) \ V(LoadIC_LoadNonMaskingInterceptorDH) \ V(LoadIC_LoadNormalDH) \ V(LoadIC_LoadNormalFromPrototypeDH) \ V(LoadIC_NonReceiver) \ V(LoadIC_SlowStub) \ V(LoadIC_StringLength) \ V(LoadIC_StringWrapperLength) \ V(StoreGlobalIC_SlowStub) \ V(StoreGlobalIC_StoreScriptContextField) \ V(StoreIC_HandlerCacheHit_Accessor) \ V(StoreIC_NonReceiver) \ V(StoreIC_SlowStub) \ V(StoreIC_StoreAccessorDH) \ V(StoreIC_StoreAccessorOnPrototypeDH) \ V(StoreIC_StoreApiSetterOnPrototypeDH) \ V(StoreIC_StoreFieldDH) \ V(StoreIC_StoreGlobalDH) \ V(StoreIC_StoreGlobalTransitionDH) \ V(StoreIC_StoreInterceptorStub) \ V(StoreIC_StoreNativeDataPropertyDH) \ V(StoreIC_StoreNativeDataPropertyOnPrototypeDH) \ V(StoreIC_StoreNormalDH) \ V(StoreIC_StoreTransitionDH) \ V(StoreInArrayLiteralIC_SlowStub) enum RuntimeCallCounterId { #define CALL_RUNTIME_COUNTER(name) kGC_##name, FOR_EACH_GC_COUNTER(CALL_RUNTIME_COUNTER) // #undef CALL_RUNTIME_COUNTER #define CALL_RUNTIME_COUNTER(name) k##name, FOR_EACH_MANUAL_COUNTER(CALL_RUNTIME_COUNTER) // #undef CALL_RUNTIME_COUNTER #define CALL_RUNTIME_COUNTER(name, nargs, ressize) kRuntime_##name, FOR_EACH_INTRINSIC(CALL_RUNTIME_COUNTER) // #undef CALL_RUNTIME_COUNTER #define CALL_BUILTIN_COUNTER(name) kBuiltin_##name, BUILTIN_LIST_C(CALL_BUILTIN_COUNTER) // #undef CALL_BUILTIN_COUNTER #define CALL_BUILTIN_COUNTER(name) kAPI_##name, FOR_EACH_API_COUNTER(CALL_BUILTIN_COUNTER) // #undef CALL_BUILTIN_COUNTER #define CALL_BUILTIN_COUNTER(name) kHandler_##name, FOR_EACH_HANDLER_COUNTER(CALL_BUILTIN_COUNTER) // #undef CALL_BUILTIN_COUNTER #define THREAD_SPECIFIC_COUNTER(name) k##name, FOR_EACH_THREAD_SPECIFIC_COUNTER(THREAD_SPECIFIC_COUNTER) // #undef THREAD_SPECIFIC_COUNTER kNumberOfCounters, }; class RuntimeCallStats final { public: enum ThreadType { kMainIsolateThread, kWorkerThread }; // If kExact is chosen the counter will be use as given. With kThreadSpecific, // if the RuntimeCallStats was created for a worker thread, then the // background specific version of the counter will be used instead. enum CounterMode { kExact, kThreadSpecific }; explicit V8_EXPORT_PRIVATE RuntimeCallStats(ThreadType thread_type); // Starting measuring the time for a function. This will establish the // connection to the parent counter for properly calculating the own times. V8_EXPORT_PRIVATE void Enter(RuntimeCallTimer* timer, RuntimeCallCounterId counter_id); // Leave a scope for a measured runtime function. This will properly add // the time delta to the current_counter and subtract the delta from its // parent. V8_EXPORT_PRIVATE void Leave(RuntimeCallTimer* timer); // Set counter id for the innermost measurement. It can be used to refine // event kind when a runtime entry counter is too generic. V8_EXPORT_PRIVATE void CorrectCurrentCounterId( RuntimeCallCounterId counter_id, CounterMode mode = kExact); V8_EXPORT_PRIVATE void Reset(); // Add all entries from another stats object. void Add(RuntimeCallStats* other); V8_EXPORT_PRIVATE void Print(std::ostream& os); V8_EXPORT_PRIVATE void Print(); V8_NOINLINE void Dump(v8::tracing::TracedValue* value); V8_EXPORT_PRIVATE void EnumerateCounters( debug::RuntimeCallCounterCallback callback); ThreadId thread_id() const { return thread_id_; } RuntimeCallTimer* current_timer() { return current_timer_.Value(); } RuntimeCallCounter* current_counter() { return current_counter_.Value(); } bool InUse() { return in_use_; } bool IsCalledOnTheSameThread(); V8_EXPORT_PRIVATE bool IsBackgroundThreadSpecificVariant( RuntimeCallCounterId id); V8_EXPORT_PRIVATE bool HasThreadSpecificCounterVariants( RuntimeCallCounterId id); // This should only be called for counters with a dual Background variant. If // on the main thread, this just returns the counter. If on a worker thread, // it returns Background variant of the counter. RuntimeCallCounterId CounterIdForThread(RuntimeCallCounterId id) { DCHECK(HasThreadSpecificCounterVariants(id)); // All thread specific counters are laid out with the main thread variant // first followed by the background variant. return thread_type_ == kWorkerThread ? static_cast(id + 1) : id; } bool IsCounterAppropriateForThread(RuntimeCallCounterId id) { // TODO(delphick): We should add background-only counters and ensure that // all counters (not just the thread-specific variants) are only invoked on // the correct thread. if (!HasThreadSpecificCounterVariants(id)) return true; return IsBackgroundThreadSpecificVariant(id) == (thread_type_ == kWorkerThread); } static const int kNumberOfCounters = static_cast(RuntimeCallCounterId::kNumberOfCounters); RuntimeCallCounter* GetCounter(RuntimeCallCounterId counter_id) { return &counters_[static_cast(counter_id)]; } RuntimeCallCounter* GetCounter(int counter_id) { return &counters_[counter_id]; } private: // Top of a stack of active timers. base::AtomicValue current_timer_; // Active counter object associated with current timer. base::AtomicValue current_counter_; // Used to track nested tracing scopes. bool in_use_; ThreadType thread_type_; ThreadId thread_id_; RuntimeCallCounter counters_[kNumberOfCounters]; }; class WorkerThreadRuntimeCallStats final { public: WorkerThreadRuntimeCallStats(); ~WorkerThreadRuntimeCallStats(); // Returns the TLS key associated with this WorkerThreadRuntimeCallStats. base::Thread::LocalStorageKey GetKey(); // Returns a new worker thread runtime call stats table managed by this // WorkerThreadRuntimeCallStats. RuntimeCallStats* NewTable(); // Adds the counters from the worker thread tables to |main_call_stats|. void AddToMainTable(RuntimeCallStats* main_call_stats); private: base::Mutex mutex_; std::vector> tables_; base::Optional tls_key_; // Since this is for creating worker thread runtime-call stats, record the // main thread ID to ensure we never create a worker RCS table for the main // thread. ThreadId isolate_thread_id_; }; // Creating a WorkerThreadRuntimeCallStatsScope will provide a thread-local // runtime call stats table, and will dump the table to an immediate trace event // when it is destroyed. class WorkerThreadRuntimeCallStatsScope final { public: explicit WorkerThreadRuntimeCallStatsScope( WorkerThreadRuntimeCallStats* off_thread_stats); ~WorkerThreadRuntimeCallStatsScope(); RuntimeCallStats* Get() const { return table_; } private: RuntimeCallStats* table_; }; #define CHANGE_CURRENT_RUNTIME_COUNTER(runtime_call_stats, counter_id) \ do { \ if (V8_UNLIKELY(TracingFlags::is_runtime_stats_enabled()) && \ runtime_call_stats) { \ runtime_call_stats->CorrectCurrentCounterId(counter_id); \ } \ } while (false) #define TRACE_HANDLER_STATS(isolate, counter_name) \ CHANGE_CURRENT_RUNTIME_COUNTER( \ isolate->counters()->runtime_call_stats(), \ RuntimeCallCounterId::kHandler_##counter_name) // A RuntimeCallTimerScopes wraps around a RuntimeCallTimer to measure the // the time of C++ scope. class RuntimeCallTimerScope { public: inline RuntimeCallTimerScope(Isolate* isolate, RuntimeCallCounterId counter_id); inline RuntimeCallTimerScope(RuntimeCallStats* stats, RuntimeCallCounterId counter_id, RuntimeCallStats::CounterMode mode = RuntimeCallStats::CounterMode::kExact) { if (V8_LIKELY(!TracingFlags::is_runtime_stats_enabled() || stats == nullptr)) { return; } stats_ = stats; if (mode == RuntimeCallStats::CounterMode::kThreadSpecific) { counter_id = stats->CounterIdForThread(counter_id); } DCHECK(stats->IsCounterAppropriateForThread(counter_id)); stats_->Enter(&timer_, counter_id); } inline ~RuntimeCallTimerScope() { if (V8_UNLIKELY(stats_ != nullptr)) { stats_->Leave(&timer_); } } private: RuntimeCallStats* stats_ = nullptr; RuntimeCallTimer timer_; DISALLOW_COPY_AND_ASSIGN(RuntimeCallTimerScope); }; // This file contains all the v8 counters that are in use. class Counters : public std::enable_shared_from_this { public: explicit Counters(Isolate* isolate); // Register an application-defined function for recording // subsequent counter statistics. Note: Must be called on the main // thread. void ResetCounterFunction(CounterLookupCallback f); // Register an application-defined function to create histograms for // recording subsequent histogram samples. Note: Must be called on // the main thread. void ResetCreateHistogramFunction(CreateHistogramCallback f); // Register an application-defined function to add a sample // to a histogram. Will be used in all subsequent sample additions. // Note: Must be called on the main thread. void SetAddHistogramSampleFunction(AddHistogramSampleCallback f) { stats_table_.SetAddHistogramSampleFunction(f); } #define HR(name, caption, min, max, num_buckets) \ Histogram* name() { return &name##_; } HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) \ HistogramTimer* name() { return &name##_; } HISTOGRAM_TIMER_LIST(HT) #undef HT #define HT(name, caption, max, res) \ TimedHistogram* name() { return &name##_; } TIMED_HISTOGRAM_LIST(HT) #undef HT #define AHT(name, caption) \ AggregatableHistogramTimer* name() { return &name##_; } AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) \ Histogram* name() { return &name##_; } HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP #define HM(name, caption) \ Histogram* name() { return &name##_; } HISTOGRAM_LEGACY_MEMORY_LIST(HM) #undef HM #define SC(name, caption) \ StatsCounter* name() { return &name##_; } STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) STATS_COUNTER_NATIVE_CODE_LIST(SC) #undef SC #define SC(name, caption) \ StatsCounterThreadSafe* name() { return &name##_; } STATS_COUNTER_TS_LIST(SC) #undef SC // clang-format off enum Id { #define RATE_ID(name, caption, max, res) k_##name, HISTOGRAM_TIMER_LIST(RATE_ID) TIMED_HISTOGRAM_LIST(RATE_ID) #undef RATE_ID #define AGGREGATABLE_ID(name, caption) k_##name, AGGREGATABLE_HISTOGRAM_TIMER_LIST(AGGREGATABLE_ID) #undef AGGREGATABLE_ID #define PERCENTAGE_ID(name, caption) k_##name, HISTOGRAM_PERCENTAGE_LIST(PERCENTAGE_ID) #undef PERCENTAGE_ID #define MEMORY_ID(name, caption) k_##name, HISTOGRAM_LEGACY_MEMORY_LIST(MEMORY_ID) #undef MEMORY_ID #define COUNTER_ID(name, caption) k_##name, STATS_COUNTER_LIST_1(COUNTER_ID) STATS_COUNTER_LIST_2(COUNTER_ID) STATS_COUNTER_TS_LIST(COUNTER_ID) STATS_COUNTER_NATIVE_CODE_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOf##name, kSizeOf##name, INSTANCE_TYPE_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOfCODE_TYPE_##name, \ kSizeOfCODE_TYPE_##name, CODE_KIND_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOfFIXED_ARRAY__##name, \ kSizeOfFIXED_ARRAY__##name, FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(COUNTER_ID) #undef COUNTER_ID stats_counter_count }; // clang-format on RuntimeCallStats* runtime_call_stats() { return &runtime_call_stats_; } WorkerThreadRuntimeCallStats* worker_thread_runtime_call_stats() { return &worker_thread_runtime_call_stats_; } private: friend class StatsTable; friend class StatsCounterBase; friend class Histogram; friend class HistogramTimer; Isolate* isolate_; StatsTable stats_table_; int* FindLocation(const char* name) { return stats_table_.FindLocation(name); } void* CreateHistogram(const char* name, int min, int max, size_t buckets) { return stats_table_.CreateHistogram(name, min, max, buckets); } void AddHistogramSample(void* histogram, int sample) { stats_table_.AddHistogramSample(histogram, sample); } Isolate* isolate() { return isolate_; } #define HR(name, caption, min, max, num_buckets) Histogram name##_; HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) HistogramTimer name##_; HISTOGRAM_TIMER_LIST(HT) #undef HT #define HT(name, caption, max, res) TimedHistogram name##_; TIMED_HISTOGRAM_LIST(HT) #undef HT #define AHT(name, caption) AggregatableHistogramTimer name##_; AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) Histogram name##_; HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP #define HM(name, caption) Histogram name##_; HISTOGRAM_LEGACY_MEMORY_LIST(HM) #undef HM #define SC(name, caption) StatsCounter name##_; STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) STATS_COUNTER_NATIVE_CODE_LIST(SC) #undef SC #define SC(name, caption) StatsCounterThreadSafe name##_; STATS_COUNTER_TS_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_##name##_; \ StatsCounter count_of_##name##_; INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_CODE_TYPE_##name##_; \ StatsCounter count_of_CODE_TYPE_##name##_; CODE_KIND_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_FIXED_ARRAY_##name##_; \ StatsCounter count_of_FIXED_ARRAY_##name##_; FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC) #undef SC RuntimeCallStats runtime_call_stats_; WorkerThreadRuntimeCallStats worker_thread_runtime_call_stats_; DISALLOW_IMPLICIT_CONSTRUCTORS(Counters); }; void HistogramTimer::Start() { TimedHistogram::Start(&timer_, counters()->isolate()); } void HistogramTimer::Stop() { TimedHistogram::Stop(&timer_, counters()->isolate()); } RuntimeCallTimerScope::RuntimeCallTimerScope(Isolate* isolate, RuntimeCallCounterId counter_id) { if (V8_LIKELY(!TracingFlags::is_runtime_stats_enabled())) return; stats_ = isolate->counters()->runtime_call_stats(); stats_->Enter(&timer_, counter_id); } } // namespace internal } // namespace v8 #endif // V8_LOGGING_COUNTERS_H_