/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Parcel" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Static.h" #define LOG_REFS(...) //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__) #define LOG_ALLOC(...) //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__) // --------------------------------------------------------------------------- // This macro should never be used at runtime, as a too large value // of s could cause an integer overflow. Instead, you should always // use the wrapper function pad_size() #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3) static size_t pad_size(size_t s) { if (s > (std::numeric_limits::max() - 3)) { LOG_ALWAYS_FATAL("pad size too big %zu", s); } return PAD_SIZE_UNSAFE(s); } // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER #define STRICT_MODE_PENALTY_GATHER (1 << 31) namespace android { // many things compile this into prebuilts on the stack static_assert(sizeof(Parcel) == 60 || sizeof(Parcel) == 120); static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER; static size_t gParcelGlobalAllocSize = 0; static size_t gParcelGlobalAllocCount = 0; static size_t gMaxFds = 0; // Maximum size of a blob to transfer in-place. static const size_t BLOB_INPLACE_LIMIT = 16 * 1024; enum { BLOB_INPLACE = 0, BLOB_ASHMEM_IMMUTABLE = 1, BLOB_ASHMEM_MUTABLE = 2, }; static void acquire_object(const sp& proc, const flat_binder_object& obj, const void* who, size_t* outAshmemSize) { switch (obj.hdr.type) { case BINDER_TYPE_BINDER: if (obj.binder) { LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie); reinterpret_cast(obj.cookie)->incStrong(who); } return; case BINDER_TYPE_HANDLE: { const sp b = proc->getStrongProxyForHandle(obj.handle); if (b != nullptr) { LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get()); b->incStrong(who); } return; } case BINDER_TYPE_FD: { if ((obj.cookie != 0) && (outAshmemSize != nullptr) && ashmem_valid(obj.handle)) { // If we own an ashmem fd, keep track of how much memory it refers to. int size = ashmem_get_size_region(obj.handle); if (size > 0) { *outAshmemSize += size; } } return; } } ALOGD("Invalid object type 0x%08x", obj.hdr.type); } static void release_object(const sp& proc, const flat_binder_object& obj, const void* who, size_t* outAshmemSize) { switch (obj.hdr.type) { case BINDER_TYPE_BINDER: if (obj.binder) { LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie); reinterpret_cast(obj.cookie)->decStrong(who); } return; case BINDER_TYPE_HANDLE: { const sp b = proc->getStrongProxyForHandle(obj.handle); if (b != nullptr) { LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get()); b->decStrong(who); } return; } case BINDER_TYPE_FD: { if (obj.cookie != 0) { // owned if ((outAshmemSize != nullptr) && ashmem_valid(obj.handle)) { int size = ashmem_get_size_region(obj.handle); if (size > 0) { // ashmem size might have changed since last time it was accounted for, e.g. // in acquire_object(). Value of *outAshmemSize is not critical since we are // releasing the object anyway. Check for integer overflow condition. *outAshmemSize -= std::min(*outAshmemSize, static_cast(size)); } } close(obj.handle); } return; } } ALOGE("Invalid object type 0x%08x", obj.hdr.type); } status_t Parcel::finishFlattenBinder( const sp& binder, const flat_binder_object& flat) { status_t status = writeObject(flat, false); if (status != OK) return status; internal::Stability::tryMarkCompilationUnit(binder.get()); return writeInt32(internal::Stability::get(binder.get())); } status_t Parcel::finishUnflattenBinder( const sp& binder, sp* out) const { int32_t stability; status_t status = readInt32(&stability); if (status != OK) return status; status = internal::Stability::set(binder.get(), stability, true /*log*/); if (status != OK) return status; *out = binder; return OK; } static constexpr inline int schedPolicyMask(int policy, int priority) { return (priority & FLAT_BINDER_FLAG_PRIORITY_MASK) | ((policy & 3) << FLAT_BINDER_FLAG_SCHED_POLICY_SHIFT); } status_t Parcel::flattenBinder(const sp& binder) { flat_binder_object obj; obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS; int schedBits = 0; if (!IPCThreadState::self()->backgroundSchedulingDisabled()) { schedBits = schedPolicyMask(SCHED_NORMAL, 19); } if (binder != nullptr) { BBinder *local = binder->localBinder(); if (!local) { BpBinder *proxy = binder->remoteBinder(); if (proxy == nullptr) { ALOGE("null proxy"); } const int32_t handle = proxy ? proxy->handle() : 0; obj.hdr.type = BINDER_TYPE_HANDLE; obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */ obj.handle = handle; obj.cookie = 0; } else { int policy = local->getMinSchedulerPolicy(); int priority = local->getMinSchedulerPriority(); if (policy != 0 || priority != 0) { // override value, since it is set explicitly schedBits = schedPolicyMask(policy, priority); } if (local->isRequestingSid()) { obj.flags |= FLAT_BINDER_FLAG_TXN_SECURITY_CTX; } obj.hdr.type = BINDER_TYPE_BINDER; obj.binder = reinterpret_cast(local->getWeakRefs()); obj.cookie = reinterpret_cast(local); } } else { obj.hdr.type = BINDER_TYPE_BINDER; obj.binder = 0; obj.cookie = 0; } obj.flags |= schedBits; return finishFlattenBinder(binder, obj); } status_t Parcel::unflattenBinder(sp* out) const { const flat_binder_object* flat = readObject(false); if (flat) { switch (flat->hdr.type) { case BINDER_TYPE_BINDER: { sp binder = reinterpret_cast(flat->cookie); return finishUnflattenBinder(binder, out); } case BINDER_TYPE_HANDLE: { sp binder = ProcessState::self()->getStrongProxyForHandle(flat->handle); return finishUnflattenBinder(binder, out); } } } return BAD_TYPE; } // --------------------------------------------------------------------------- Parcel::Parcel() { LOG_ALLOC("Parcel %p: constructing", this); initState(); } Parcel::~Parcel() { freeDataNoInit(); LOG_ALLOC("Parcel %p: destroyed", this); } size_t Parcel::getGlobalAllocSize() { pthread_mutex_lock(&gParcelGlobalAllocSizeLock); size_t size = gParcelGlobalAllocSize; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); return size; } size_t Parcel::getGlobalAllocCount() { pthread_mutex_lock(&gParcelGlobalAllocSizeLock); size_t count = gParcelGlobalAllocCount; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); return count; } const uint8_t* Parcel::data() const { return mData; } size_t Parcel::dataSize() const { return (mDataSize > mDataPos ? mDataSize : mDataPos); } size_t Parcel::dataAvail() const { size_t result = dataSize() - dataPosition(); if (result > INT32_MAX) { LOG_ALWAYS_FATAL("result too big: %zu", result); } return result; } size_t Parcel::dataPosition() const { return mDataPos; } size_t Parcel::dataCapacity() const { return mDataCapacity; } status_t Parcel::setDataSize(size_t size) { if (size > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } status_t err; err = continueWrite(size); if (err == NO_ERROR) { mDataSize = size; ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize); } return err; } void Parcel::setDataPosition(size_t pos) const { if (pos > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. LOG_ALWAYS_FATAL("pos too big: %zu", pos); } mDataPos = pos; mNextObjectHint = 0; mObjectsSorted = false; } status_t Parcel::setDataCapacity(size_t size) { if (size > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if (size > mDataCapacity) return continueWrite(size); return NO_ERROR; } status_t Parcel::setData(const uint8_t* buffer, size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } status_t err = restartWrite(len); if (err == NO_ERROR) { memcpy(const_cast(data()), buffer, len); mDataSize = len; mFdsKnown = false; } return err; } status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len) { status_t err; const uint8_t *data = parcel->mData; const binder_size_t *objects = parcel->mObjects; size_t size = parcel->mObjectsSize; int startPos = mDataPos; int firstIndex = -1, lastIndex = -2; if (len == 0) { return NO_ERROR; } if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } // range checks against the source parcel size if ((offset > parcel->mDataSize) || (len > parcel->mDataSize) || (offset + len > parcel->mDataSize)) { return BAD_VALUE; } // Count objects in range for (int i = 0; i < (int) size; i++) { size_t off = objects[i]; if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) { if (firstIndex == -1) { firstIndex = i; } lastIndex = i; } } int numObjects = lastIndex - firstIndex + 1; if ((mDataSize+len) > mDataCapacity) { // grow data err = growData(len); if (err != NO_ERROR) { return err; } } // append data memcpy(mData + mDataPos, data + offset, len); mDataPos += len; mDataSize += len; err = NO_ERROR; if (numObjects > 0) { const sp proc(ProcessState::self()); // grow objects if (mObjectsCapacity < mObjectsSize + numObjects) { if ((size_t) numObjects > SIZE_MAX - mObjectsSize) return NO_MEMORY; // overflow if (mObjectsSize + numObjects > SIZE_MAX / 3) return NO_MEMORY; // overflow size_t newSize = ((mObjectsSize + numObjects)*3)/2; if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow binder_size_t *objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t)); if (objects == (binder_size_t*)nullptr) { return NO_MEMORY; } mObjects = objects; mObjectsCapacity = newSize; } // append and acquire objects int idx = mObjectsSize; for (int i = firstIndex; i <= lastIndex; i++) { size_t off = objects[i] - offset + startPos; mObjects[idx++] = off; mObjectsSize++; flat_binder_object* flat = reinterpret_cast(mData + off); acquire_object(proc, *flat, this, &mOpenAshmemSize); if (flat->hdr.type == BINDER_TYPE_FD) { // If this is a file descriptor, we need to dup it so the // new Parcel now owns its own fd, and can declare that we // officially know we have fds. flat->handle = fcntl(flat->handle, F_DUPFD_CLOEXEC, 0); flat->cookie = 1; mHasFds = mFdsKnown = true; if (!mAllowFds) { err = FDS_NOT_ALLOWED; } } } } return err; } int Parcel::compareData(const Parcel& other) { size_t size = dataSize(); if (size != other.dataSize()) { return size < other.dataSize() ? -1 : 1; } return memcmp(data(), other.data(), size); } bool Parcel::allowFds() const { return mAllowFds; } bool Parcel::pushAllowFds(bool allowFds) { const bool origValue = mAllowFds; if (!allowFds) { mAllowFds = false; } return origValue; } void Parcel::restoreAllowFds(bool lastValue) { mAllowFds = lastValue; } bool Parcel::hasFileDescriptors() const { if (!mFdsKnown) { scanForFds(); } return mHasFds; } void Parcel::updateWorkSourceRequestHeaderPosition() const { // Only update the request headers once. We only want to point // to the first headers read/written. if (!mRequestHeaderPresent) { mWorkSourceRequestHeaderPosition = dataPosition(); mRequestHeaderPresent = true; } } #if defined(__ANDROID_VNDK__) && !defined(__ANDROID_APEX__) constexpr int32_t kHeader = B_PACK_CHARS('V', 'N', 'D', 'R'); #else constexpr int32_t kHeader = B_PACK_CHARS('S', 'Y', 'S', 'T'); #endif // Write RPC headers. (previously just the interface token) status_t Parcel::writeInterfaceToken(const String16& interface) { const IPCThreadState* threadState = IPCThreadState::self(); writeInt32(threadState->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); updateWorkSourceRequestHeaderPosition(); writeInt32(threadState->shouldPropagateWorkSource() ? threadState->getCallingWorkSourceUid() : IPCThreadState::kUnsetWorkSource); writeInt32(kHeader); // currently the interface identification token is just its name as a string return writeString16(interface); } bool Parcel::replaceCallingWorkSourceUid(uid_t uid) { if (!mRequestHeaderPresent) { return false; } const size_t initialPosition = dataPosition(); setDataPosition(mWorkSourceRequestHeaderPosition); status_t err = writeInt32(uid); setDataPosition(initialPosition); return err == NO_ERROR; } uid_t Parcel::readCallingWorkSourceUid() const { if (!mRequestHeaderPresent) { return IPCThreadState::kUnsetWorkSource; } const size_t initialPosition = dataPosition(); setDataPosition(mWorkSourceRequestHeaderPosition); uid_t uid = readInt32(); setDataPosition(initialPosition); return uid; } bool Parcel::checkInterface(IBinder* binder) const { return enforceInterface(binder->getInterfaceDescriptor()); } bool Parcel::enforceInterface(const String16& interface, IPCThreadState* threadState) const { return enforceInterface(interface.string(), interface.size(), threadState); } bool Parcel::enforceInterface(const char16_t* interface, size_t len, IPCThreadState* threadState) const { // StrictModePolicy. int32_t strictPolicy = readInt32(); if (threadState == nullptr) { threadState = IPCThreadState::self(); } if ((threadState->getLastTransactionBinderFlags() & IBinder::FLAG_ONEWAY) != 0) { // For one-way calls, the callee is running entirely // disconnected from the caller, so disable StrictMode entirely. // Not only does disk/network usage not impact the caller, but // there's no way to commuicate back any violations anyway. threadState->setStrictModePolicy(0); } else { threadState->setStrictModePolicy(strictPolicy); } // WorkSource. updateWorkSourceRequestHeaderPosition(); int32_t workSource = readInt32(); threadState->setCallingWorkSourceUidWithoutPropagation(workSource); // vendor header int32_t header = readInt32(); if (header != kHeader) { ALOGE("Expecting header 0x%x but found 0x%x. Mixing copies of libbinder?", kHeader, header); return false; } // Interface descriptor. size_t parcel_interface_len; const char16_t* parcel_interface = readString16Inplace(&parcel_interface_len); if (len == parcel_interface_len && (!len || !memcmp(parcel_interface, interface, len * sizeof (char16_t)))) { return true; } else { ALOGW("**** enforceInterface() expected '%s' but read '%s'", String8(interface, len).string(), String8(parcel_interface, parcel_interface_len).string()); return false; } } size_t Parcel::objectsCount() const { return mObjectsSize; } status_t Parcel::errorCheck() const { return mError; } void Parcel::setError(status_t err) { mError = err; } status_t Parcel::finishWrite(size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } //printf("Finish write of %d\n", len); mDataPos += len; ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos); if (mDataPos > mDataSize) { mDataSize = mDataPos; ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize); } //printf("New pos=%d, size=%d\n", mDataPos, mDataSize); return NO_ERROR; } status_t Parcel::writeUnpadded(const void* data, size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } size_t end = mDataPos + len; if (end < mDataPos) { // integer overflow return BAD_VALUE; } if (end <= mDataCapacity) { restart_write: memcpy(mData+mDataPos, data, len); return finishWrite(len); } status_t err = growData(len); if (err == NO_ERROR) goto restart_write; return err; } status_t Parcel::write(const void* data, size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } void* const d = writeInplace(len); if (d) { memcpy(d, data, len); return NO_ERROR; } return mError; } void* Parcel::writeInplace(size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return nullptr; } const size_t padded = pad_size(len); // sanity check for integer overflow if (mDataPos+padded < mDataPos) { return nullptr; } if ((mDataPos+padded) <= mDataCapacity) { restart_write: //printf("Writing %ld bytes, padded to %ld\n", len, padded); uint8_t* const data = mData+mDataPos; // Need to pad at end? if (padded != len) { #if BYTE_ORDER == BIG_ENDIAN static const uint32_t mask[4] = { 0x00000000, 0xffffff00, 0xffff0000, 0xff000000 }; #endif #if BYTE_ORDER == LITTLE_ENDIAN static const uint32_t mask[4] = { 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff }; #endif //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len], // *reinterpret_cast(data+padded-4)); *reinterpret_cast(data+padded-4) &= mask[padded-len]; } finishWrite(padded); return data; } status_t err = growData(padded); if (err == NO_ERROR) goto restart_write; return nullptr; } status_t Parcel::writeUtf8AsUtf16(const std::string& str) { const uint8_t* strData = (uint8_t*)str.data(); const size_t strLen= str.length(); const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen); if (utf16Len < 0 || utf16Len > std::numeric_limits::max()) { return BAD_VALUE; } status_t err = writeInt32(utf16Len); if (err) { return err; } // Allocate enough bytes to hold our converted string and its terminating NULL. void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t)); if (!dst) { return NO_MEMORY; } utf8_to_utf16(strData, strLen, (char16_t*)dst, (size_t) utf16Len + 1); return NO_ERROR; } status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr& str) { if (!str) { return writeInt32(-1); } return writeUtf8AsUtf16(*str); } status_t Parcel::writeByteVectorInternal(const int8_t* data, size_t size) { if (size > std::numeric_limits::max()) { return BAD_VALUE; } status_t status = writeInt32(size); if (status != OK) { return status; } return write(data, size); } status_t Parcel::writeByteVector(const std::vector& val) { return writeByteVectorInternal(val.data(), val.size()); } status_t Parcel::writeByteVector(const std::unique_ptr>& val) { if (!val) return writeInt32(-1); return writeByteVectorInternal(val->data(), val->size()); } status_t Parcel::writeByteVector(const std::vector& val) { return writeByteVectorInternal(reinterpret_cast(val.data()), val.size()); } status_t Parcel::writeByteVector(const std::unique_ptr>& val) { if (!val) return writeInt32(-1); return writeByteVectorInternal(reinterpret_cast(val->data()), val->size()); } status_t Parcel::writeInt32Vector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeInt32); } status_t Parcel::writeInt32Vector(const std::unique_ptr>& val) { return writeNullableTypedVector(val, &Parcel::writeInt32); } status_t Parcel::writeInt64Vector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeInt64); } status_t Parcel::writeInt64Vector(const std::unique_ptr>& val) { return writeNullableTypedVector(val, &Parcel::writeInt64); } status_t Parcel::writeUint64Vector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeUint64); } status_t Parcel::writeUint64Vector(const std::unique_ptr>& val) { return writeNullableTypedVector(val, &Parcel::writeUint64); } status_t Parcel::writeFloatVector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeFloat); } status_t Parcel::writeFloatVector(const std::unique_ptr>& val) { return writeNullableTypedVector(val, &Parcel::writeFloat); } status_t Parcel::writeDoubleVector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeDouble); } status_t Parcel::writeDoubleVector(const std::unique_ptr>& val) { return writeNullableTypedVector(val, &Parcel::writeDouble); } status_t Parcel::writeBoolVector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeBool); } status_t Parcel::writeBoolVector(const std::unique_ptr>& val) { return writeNullableTypedVector(val, &Parcel::writeBool); } status_t Parcel::writeCharVector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeChar); } status_t Parcel::writeCharVector(const std::unique_ptr>& val) { return writeNullableTypedVector(val, &Parcel::writeChar); } status_t Parcel::writeString16Vector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeString16); } status_t Parcel::writeString16Vector( const std::unique_ptr>>& val) { return writeNullableTypedVector(val, &Parcel::writeString16); } status_t Parcel::writeUtf8VectorAsUtf16Vector( const std::unique_ptr>>& val) { return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16); } status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeUtf8AsUtf16); } status_t Parcel::writeInt32(int32_t val) { return writeAligned(val); } status_t Parcel::writeUint32(uint32_t val) { return writeAligned(val); } status_t Parcel::writeInt32Array(size_t len, const int32_t *val) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if (!val) { return writeInt32(-1); } status_t ret = writeInt32(static_cast(len)); if (ret == NO_ERROR) { ret = write(val, len * sizeof(*val)); } return ret; } status_t Parcel::writeByteArray(size_t len, const uint8_t *val) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if (!val) { return writeInt32(-1); } status_t ret = writeInt32(static_cast(len)); if (ret == NO_ERROR) { ret = write(val, len * sizeof(*val)); } return ret; } status_t Parcel::writeBool(bool val) { return writeInt32(int32_t(val)); } status_t Parcel::writeChar(char16_t val) { return writeInt32(int32_t(val)); } status_t Parcel::writeByte(int8_t val) { return writeInt32(int32_t(val)); } status_t Parcel::writeInt64(int64_t val) { return writeAligned(val); } status_t Parcel::writeUint64(uint64_t val) { return writeAligned(val); } status_t Parcel::writePointer(uintptr_t val) { return writeAligned(val); } status_t Parcel::writeFloat(float val) { return writeAligned(val); } #if defined(__mips__) && defined(__mips_hard_float) status_t Parcel::writeDouble(double val) { union { double d; unsigned long long ll; } u; u.d = val; return writeAligned(u.ll); } #else status_t Parcel::writeDouble(double val) { return writeAligned(val); } #endif status_t Parcel::writeCString(const char* str) { return write(str, strlen(str)+1); } status_t Parcel::writeString8(const String8& str) { return writeString8(str.string(), str.size()); } status_t Parcel::writeString8(const char* str, size_t len) { if (str == nullptr) return writeInt32(-1); status_t err = writeInt32(len); if (err == NO_ERROR) { uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char)); if (data) { memcpy(data, str, len); *reinterpret_cast(data+len) = 0; return NO_ERROR; } err = mError; } return err; } status_t Parcel::writeString16(const std::unique_ptr& str) { if (!str) { return writeInt32(-1); } return writeString16(*str); } status_t Parcel::writeString16(const String16& str) { return writeString16(str.string(), str.size()); } status_t Parcel::writeString16(const char16_t* str, size_t len) { if (str == nullptr) return writeInt32(-1); status_t err = writeInt32(len); if (err == NO_ERROR) { len *= sizeof(char16_t); uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t)); if (data) { memcpy(data, str, len); *reinterpret_cast(data+len) = 0; return NO_ERROR; } err = mError; } return err; } status_t Parcel::writeStrongBinder(const sp& val) { return flattenBinder(val); } status_t Parcel::writeStrongBinderVector(const std::vector>& val) { return writeTypedVector(val, &Parcel::writeStrongBinder); } status_t Parcel::writeStrongBinderVector(const std::unique_ptr>>& val) { return writeNullableTypedVector(val, &Parcel::writeStrongBinder); } status_t Parcel::readStrongBinderVector(std::unique_ptr>>* val) const { return readNullableTypedVector(val, &Parcel::readNullableStrongBinder); } status_t Parcel::readStrongBinderVector(std::vector>* val) const { return readTypedVector(val, &Parcel::readStrongBinder); } status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) { if (!parcelable) { return writeInt32(0); } return writeParcelable(*parcelable); } status_t Parcel::writeParcelable(const Parcelable& parcelable) { status_t status = writeInt32(1); // parcelable is not null. if (status != OK) { return status; } return parcelable.writeToParcel(this); } status_t Parcel::writeNativeHandle(const native_handle* handle) { if (!handle || handle->version != sizeof(native_handle)) return BAD_TYPE; status_t err; err = writeInt32(handle->numFds); if (err != NO_ERROR) return err; err = writeInt32(handle->numInts); if (err != NO_ERROR) return err; for (int i=0 ; err==NO_ERROR && inumFds ; i++) err = writeDupFileDescriptor(handle->data[i]); if (err != NO_ERROR) { ALOGD("write native handle, write dup fd failed"); return err; } err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts); return err; } status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership) { flat_binder_object obj; obj.hdr.type = BINDER_TYPE_FD; obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */ obj.handle = fd; obj.cookie = takeOwnership ? 1 : 0; return writeObject(obj, true); } status_t Parcel::writeDupFileDescriptor(int fd) { int dupFd = fcntl(fd, F_DUPFD_CLOEXEC, 0); if (dupFd < 0) { return -errno; } status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/); if (err != OK) { close(dupFd); } return err; } status_t Parcel::writeParcelFileDescriptor(int fd, bool takeOwnership) { writeInt32(0); return writeFileDescriptor(fd, takeOwnership); } status_t Parcel::writeDupParcelFileDescriptor(int fd) { int dupFd = fcntl(fd, F_DUPFD_CLOEXEC, 0); if (dupFd < 0) { return -errno; } status_t err = writeParcelFileDescriptor(dupFd, true /*takeOwnership*/); if (err != OK) { close(dupFd); } return err; } status_t Parcel::writeUniqueFileDescriptor(const base::unique_fd& fd) { return writeDupFileDescriptor(fd.get()); } status_t Parcel::writeUniqueFileDescriptorVector(const std::vector& val) { return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor); } status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr>& val) { return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor); } status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } status_t status; if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) { ALOGV("writeBlob: write in place"); status = writeInt32(BLOB_INPLACE); if (status) return status; void* ptr = writeInplace(len); if (!ptr) return NO_MEMORY; outBlob->init(-1, ptr, len, false); return NO_ERROR; } ALOGV("writeBlob: write to ashmem"); int fd = ashmem_create_region("Parcel Blob", len); if (fd < 0) return NO_MEMORY; int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE); if (result < 0) { status = result; } else { void* ptr = ::mmap(nullptr, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (ptr == MAP_FAILED) { status = -errno; } else { if (!mutableCopy) { result = ashmem_set_prot_region(fd, PROT_READ); } if (result < 0) { status = result; } else { status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE); if (!status) { status = writeFileDescriptor(fd, true /*takeOwnership*/); if (!status) { outBlob->init(fd, ptr, len, mutableCopy); return NO_ERROR; } } } } ::munmap(ptr, len); } ::close(fd); return status; } status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd) { // Must match up with what's done in writeBlob. if (!mAllowFds) return FDS_NOT_ALLOWED; status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE); if (status) return status; return writeDupFileDescriptor(fd); } status_t Parcel::write(const FlattenableHelperInterface& val) { status_t err; // size if needed const size_t len = val.getFlattenedSize(); const size_t fd_count = val.getFdCount(); if ((len > INT32_MAX) || (fd_count >= gMaxFds)) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } err = this->writeInt32(len); if (err) return err; err = this->writeInt32(fd_count); if (err) return err; // payload void* const buf = this->writeInplace(len); if (buf == nullptr) return BAD_VALUE; int* fds = nullptr; if (fd_count) { fds = new (std::nothrow) int[fd_count]; if (fds == nullptr) { ALOGE("write: failed to allocate requested %zu fds", fd_count); return BAD_VALUE; } } err = val.flatten(buf, len, fds, fd_count); for (size_t i=0 ; iwriteDupFileDescriptor( fds[i] ); } if (fd_count) { delete [] fds; } return err; } status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData) { const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity; const bool enoughObjects = mObjectsSize < mObjectsCapacity; if (enoughData && enoughObjects) { restart_write: *reinterpret_cast(mData+mDataPos) = val; // remember if it's a file descriptor if (val.hdr.type == BINDER_TYPE_FD) { if (!mAllowFds) { // fail before modifying our object index return FDS_NOT_ALLOWED; } mHasFds = mFdsKnown = true; } // Need to write meta-data? if (nullMetaData || val.binder != 0) { mObjects[mObjectsSize] = mDataPos; acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize); mObjectsSize++; } return finishWrite(sizeof(flat_binder_object)); } if (!enoughData) { const status_t err = growData(sizeof(val)); if (err != NO_ERROR) return err; } if (!enoughObjects) { if (mObjectsSize > SIZE_MAX - 2) return NO_MEMORY; // overflow if ((mObjectsSize + 2) > SIZE_MAX / 3) return NO_MEMORY; // overflow size_t newSize = ((mObjectsSize+2)*3)/2; if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t)); if (objects == nullptr) return NO_MEMORY; mObjects = objects; mObjectsCapacity = newSize; } goto restart_write; } status_t Parcel::writeNoException() { binder::Status status; return status.writeToParcel(this); } status_t Parcel::validateReadData(size_t upperBound) const { // Don't allow non-object reads on object data if (mObjectsSorted || mObjectsSize <= 1) { data_sorted: // Expect to check only against the next object if (mNextObjectHint < mObjectsSize && upperBound > mObjects[mNextObjectHint]) { // For some reason the current read position is greater than the next object // hint. Iterate until we find the right object size_t nextObject = mNextObjectHint; do { if (mDataPos < mObjects[nextObject] + sizeof(flat_binder_object)) { // Requested info overlaps with an object ALOGE("Attempt to read from protected data in Parcel %p", this); return PERMISSION_DENIED; } nextObject++; } while (nextObject < mObjectsSize && upperBound > mObjects[nextObject]); mNextObjectHint = nextObject; } return NO_ERROR; } // Quickly determine if mObjects is sorted. binder_size_t* currObj = mObjects + mObjectsSize - 1; binder_size_t* prevObj = currObj; while (currObj > mObjects) { prevObj--; if(*prevObj > *currObj) { goto data_unsorted; } currObj--; } mObjectsSorted = true; goto data_sorted; data_unsorted: // Insertion Sort mObjects // Great for mostly sorted lists. If randomly sorted or reverse ordered mObjects become common, // switch to std::sort(mObjects, mObjects + mObjectsSize); for (binder_size_t* iter0 = mObjects + 1; iter0 < mObjects + mObjectsSize; iter0++) { binder_size_t temp = *iter0; binder_size_t* iter1 = iter0 - 1; while (iter1 >= mObjects && *iter1 > temp) { *(iter1 + 1) = *iter1; iter1--; } *(iter1 + 1) = temp; } mNextObjectHint = 0; mObjectsSorted = true; goto data_sorted; } status_t Parcel::read(void* outData, size_t len) const { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize && len <= pad_size(len)) { if (mObjectsSize > 0) { status_t err = validateReadData(mDataPos + pad_size(len)); if(err != NO_ERROR) { // Still increment the data position by the expected length mDataPos += pad_size(len); ALOGV("read Setting data pos of %p to %zu", this, mDataPos); return err; } } memcpy(outData, mData+mDataPos, len); mDataPos += pad_size(len); ALOGV("read Setting data pos of %p to %zu", this, mDataPos); return NO_ERROR; } return NOT_ENOUGH_DATA; } const void* Parcel::readInplace(size_t len) const { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return nullptr; } if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize && len <= pad_size(len)) { if (mObjectsSize > 0) { status_t err = validateReadData(mDataPos + pad_size(len)); if(err != NO_ERROR) { // Still increment the data position by the expected length mDataPos += pad_size(len); ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos); return nullptr; } } const void* data = mData+mDataPos; mDataPos += pad_size(len); ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos); return data; } return nullptr; } template status_t Parcel::readAligned(T *pArg) const { COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T)); if ((mDataPos+sizeof(T)) <= mDataSize) { if (mObjectsSize > 0) { status_t err = validateReadData(mDataPos + sizeof(T)); if(err != NO_ERROR) { // Still increment the data position by the expected length mDataPos += sizeof(T); return err; } } const void* data = mData+mDataPos; mDataPos += sizeof(T); *pArg = *reinterpret_cast(data); return NO_ERROR; } else { return NOT_ENOUGH_DATA; } } template T Parcel::readAligned() const { T result; if (readAligned(&result) != NO_ERROR) { result = 0; } return result; } template status_t Parcel::writeAligned(T val) { COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T)); if ((mDataPos+sizeof(val)) <= mDataCapacity) { restart_write: *reinterpret_cast(mData+mDataPos) = val; return finishWrite(sizeof(val)); } status_t err = growData(sizeof(val)); if (err == NO_ERROR) goto restart_write; return err; } status_t Parcel::readByteVector(std::vector* val) const { size_t size; if (status_t status = reserveOutVector(val, &size); status != OK) return status; return readByteVectorInternal(val, size); } status_t Parcel::readByteVector(std::vector* val) const { size_t size; if (status_t status = reserveOutVector(val, &size); status != OK) return status; return readByteVectorInternal(val, size); } status_t Parcel::readByteVector(std::unique_ptr>* val) const { size_t size; if (status_t status = reserveOutVector(val, &size); status != OK) return status; if (val->get() == nullptr) { // reserveOutVector does not create the out vector if size is < 0. // This occurs when writing a null byte vector. return OK; } return readByteVectorInternal(val->get(), size); } status_t Parcel::readByteVector(std::unique_ptr>* val) const { size_t size; if (status_t status = reserveOutVector(val, &size); status != OK) return status; if (val->get() == nullptr) { // reserveOutVector does not create the out vector if size is < 0. // This occurs when writing a null byte vector. return OK; } return readByteVectorInternal(val->get(), size); } status_t Parcel::readInt32Vector(std::unique_ptr>* val) const { return readNullableTypedVector(val, &Parcel::readInt32); } status_t Parcel::readInt32Vector(std::vector* val) const { return readTypedVector(val, &Parcel::readInt32); } status_t Parcel::readInt64Vector(std::unique_ptr>* val) const { return readNullableTypedVector(val, &Parcel::readInt64); } status_t Parcel::readInt64Vector(std::vector* val) const { return readTypedVector(val, &Parcel::readInt64); } status_t Parcel::readUint64Vector(std::unique_ptr>* val) const { return readNullableTypedVector(val, &Parcel::readUint64); } status_t Parcel::readUint64Vector(std::vector* val) const { return readTypedVector(val, &Parcel::readUint64); } status_t Parcel::readFloatVector(std::unique_ptr>* val) const { return readNullableTypedVector(val, &Parcel::readFloat); } status_t Parcel::readFloatVector(std::vector* val) const { return readTypedVector(val, &Parcel::readFloat); } status_t Parcel::readDoubleVector(std::unique_ptr>* val) const { return readNullableTypedVector(val, &Parcel::readDouble); } status_t Parcel::readDoubleVector(std::vector* val) const { return readTypedVector(val, &Parcel::readDouble); } status_t Parcel::readBoolVector(std::unique_ptr>* val) const { const int32_t start = dataPosition(); int32_t size; status_t status = readInt32(&size); val->reset(); if (status != OK || size < 0) { return status; } setDataPosition(start); val->reset(new (std::nothrow) std::vector()); status = readBoolVector(val->get()); if (status != OK) { val->reset(); } return status; } status_t Parcel::readBoolVector(std::vector* val) const { int32_t size; status_t status = readInt32(&size); if (status != OK) { return status; } if (size < 0) { return UNEXPECTED_NULL; } val->resize(size); /* C++ bool handling means a vector of bools isn't necessarily addressable * (we might use individual bits) */ bool data; for (int32_t i = 0; i < size; ++i) { status = readBool(&data); (*val)[i] = data; if (status != OK) { return status; } } return OK; } status_t Parcel::readCharVector(std::unique_ptr>* val) const { return readNullableTypedVector(val, &Parcel::readChar); } status_t Parcel::readCharVector(std::vector* val) const { return readTypedVector(val, &Parcel::readChar); } status_t Parcel::readString16Vector( std::unique_ptr>>* val) const { return readNullableTypedVector(val, &Parcel::readString16); } status_t Parcel::readString16Vector(std::vector* val) const { return readTypedVector(val, &Parcel::readString16); } status_t Parcel::readUtf8VectorFromUtf16Vector( std::unique_ptr>>* val) const { return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16); } status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector* val) const { return readTypedVector(val, &Parcel::readUtf8FromUtf16); } status_t Parcel::readInt32(int32_t *pArg) const { return readAligned(pArg); } int32_t Parcel::readInt32() const { return readAligned(); } status_t Parcel::readUint32(uint32_t *pArg) const { return readAligned(pArg); } uint32_t Parcel::readUint32() const { return readAligned(); } status_t Parcel::readInt64(int64_t *pArg) const { return readAligned(pArg); } int64_t Parcel::readInt64() const { return readAligned(); } status_t Parcel::readUint64(uint64_t *pArg) const { return readAligned(pArg); } uint64_t Parcel::readUint64() const { return readAligned(); } status_t Parcel::readPointer(uintptr_t *pArg) const { status_t ret; binder_uintptr_t ptr; ret = readAligned(&ptr); if (!ret) *pArg = ptr; return ret; } uintptr_t Parcel::readPointer() const { return readAligned(); } status_t Parcel::readFloat(float *pArg) const { return readAligned(pArg); } float Parcel::readFloat() const { return readAligned(); } #if defined(__mips__) && defined(__mips_hard_float) status_t Parcel::readDouble(double *pArg) const { union { double d; unsigned long long ll; } u; u.d = 0; status_t status; status = readAligned(&u.ll); *pArg = u.d; return status; } double Parcel::readDouble() const { union { double d; unsigned long long ll; } u; u.ll = readAligned(); return u.d; } #else status_t Parcel::readDouble(double *pArg) const { return readAligned(pArg); } double Parcel::readDouble() const { return readAligned(); } #endif status_t Parcel::readIntPtr(intptr_t *pArg) const { return readAligned(pArg); } intptr_t Parcel::readIntPtr() const { return readAligned(); } status_t Parcel::readBool(bool *pArg) const { int32_t tmp = 0; status_t ret = readInt32(&tmp); *pArg = (tmp != 0); return ret; } bool Parcel::readBool() const { return readInt32() != 0; } status_t Parcel::readChar(char16_t *pArg) const { int32_t tmp = 0; status_t ret = readInt32(&tmp); *pArg = char16_t(tmp); return ret; } char16_t Parcel::readChar() const { return char16_t(readInt32()); } status_t Parcel::readByte(int8_t *pArg) const { int32_t tmp = 0; status_t ret = readInt32(&tmp); *pArg = int8_t(tmp); return ret; } int8_t Parcel::readByte() const { return int8_t(readInt32()); } status_t Parcel::readUtf8FromUtf16(std::string* str) const { size_t utf16Size = 0; const char16_t* src = readString16Inplace(&utf16Size); if (!src) { return UNEXPECTED_NULL; } // Save ourselves the trouble, we're done. if (utf16Size == 0u) { str->clear(); return NO_ERROR; } // Allow for closing '\0' ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size) + 1; if (utf8Size < 1) { return BAD_VALUE; } // Note that while it is probably safe to assume string::resize keeps a // spare byte around for the trailing null, we still pass the size including the trailing null str->resize(utf8Size); utf16_to_utf8(src, utf16Size, &((*str)[0]), utf8Size); str->resize(utf8Size - 1); return NO_ERROR; } status_t Parcel::readUtf8FromUtf16(std::unique_ptr* str) const { const int32_t start = dataPosition(); int32_t size; status_t status = readInt32(&size); str->reset(); if (status != OK || size < 0) { return status; } setDataPosition(start); str->reset(new (std::nothrow) std::string()); return readUtf8FromUtf16(str->get()); } const char* Parcel::readCString() const { if (mDataPos < mDataSize) { const size_t avail = mDataSize-mDataPos; const char* str = reinterpret_cast(mData+mDataPos); // is the string's trailing NUL within the parcel's valid bounds? const char* eos = reinterpret_cast(memchr(str, 0, avail)); if (eos) { const size_t len = eos - str; mDataPos += pad_size(len+1); ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos); return str; } } return nullptr; } String8 Parcel::readString8() const { size_t len; const char* str = readString8Inplace(&len); if (str) return String8(str, len); ALOGE("Reading a NULL string not supported here."); return String8(); } status_t Parcel::readString8(String8* pArg) const { size_t len; const char* str = readString8Inplace(&len); if (str) { pArg->setTo(str, len); return 0; } else { *pArg = String8(); return UNEXPECTED_NULL; } } const char* Parcel::readString8Inplace(size_t* outLen) const { int32_t size = readInt32(); // watch for potential int overflow from size+1 if (size >= 0 && size < INT32_MAX) { *outLen = size; const char* str = (const char*)readInplace(size+1); if (str != nullptr) { if (str[size] == '\0') { return str; } android_errorWriteLog(0x534e4554, "172655291"); } } *outLen = 0; return nullptr; } String16 Parcel::readString16() const { size_t len; const char16_t* str = readString16Inplace(&len); if (str) return String16(str, len); ALOGE("Reading a NULL string not supported here."); return String16(); } status_t Parcel::readString16(std::unique_ptr* pArg) const { const int32_t start = dataPosition(); int32_t size; status_t status = readInt32(&size); pArg->reset(); if (status != OK || size < 0) { return status; } setDataPosition(start); pArg->reset(new (std::nothrow) String16()); status = readString16(pArg->get()); if (status != OK) { pArg->reset(); } return status; } status_t Parcel::readString16(String16* pArg) const { size_t len; const char16_t* str = readString16Inplace(&len); if (str) { pArg->setTo(str, len); return 0; } else { *pArg = String16(); return UNEXPECTED_NULL; } } const char16_t* Parcel::readString16Inplace(size_t* outLen) const { int32_t size = readInt32(); // watch for potential int overflow from size+1 if (size >= 0 && size < INT32_MAX) { *outLen = size; const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t)); if (str != nullptr) { if (str[size] == u'\0') { return str; } android_errorWriteLog(0x534e4554, "172655291"); } } *outLen = 0; return nullptr; } status_t Parcel::readStrongBinder(sp* val) const { status_t status = readNullableStrongBinder(val); if (status == OK && !val->get()) { status = UNEXPECTED_NULL; } return status; } status_t Parcel::readNullableStrongBinder(sp* val) const { return unflattenBinder(val); } sp Parcel::readStrongBinder() const { sp val; // Note that a lot of code in Android reads binders by hand with this // method, and that code has historically been ok with getting nullptr // back (while ignoring error codes). readNullableStrongBinder(&val); return val; } status_t Parcel::readParcelable(Parcelable* parcelable) const { int32_t have_parcelable = 0; status_t status = readInt32(&have_parcelable); if (status != OK) { return status; } if (!have_parcelable) { return UNEXPECTED_NULL; } return parcelable->readFromParcel(this); } int32_t Parcel::readExceptionCode() const { binder::Status status; status.readFromParcel(*this); return status.exceptionCode(); } native_handle* Parcel::readNativeHandle() const { int numFds, numInts; status_t err; err = readInt32(&numFds); if (err != NO_ERROR) return nullptr; err = readInt32(&numInts); if (err != NO_ERROR) return nullptr; native_handle* h = native_handle_create(numFds, numInts); if (!h) { return nullptr; } for (int i=0 ; err==NO_ERROR && idata[i] = fcntl(readFileDescriptor(), F_DUPFD_CLOEXEC, 0); if (h->data[i] < 0) { for (int j = 0; j < i; j++) { close(h->data[j]); } native_handle_delete(h); return nullptr; } } err = read(h->data + numFds, sizeof(int)*numInts); if (err != NO_ERROR) { native_handle_close(h); native_handle_delete(h); h = nullptr; } return h; } int Parcel::readFileDescriptor() const { const flat_binder_object* flat = readObject(true); if (flat && flat->hdr.type == BINDER_TYPE_FD) { return flat->handle; } return BAD_TYPE; } int Parcel::readParcelFileDescriptor() const { int32_t hasComm = readInt32(); int fd = readFileDescriptor(); if (hasComm != 0) { // detach (owned by the binder driver) int comm = readFileDescriptor(); // warning: this must be kept in sync with: // frameworks/base/core/java/android/os/ParcelFileDescriptor.java enum ParcelFileDescriptorStatus { DETACHED = 2, }; #if BYTE_ORDER == BIG_ENDIAN const int32_t message = ParcelFileDescriptorStatus::DETACHED; #endif #if BYTE_ORDER == LITTLE_ENDIAN const int32_t message = __builtin_bswap32(ParcelFileDescriptorStatus::DETACHED); #endif ssize_t written = TEMP_FAILURE_RETRY( ::write(comm, &message, sizeof(message))); if (written == -1 || written != sizeof(message)) { ALOGW("Failed to detach ParcelFileDescriptor written: %zd err: %s", written, strerror(errno)); return BAD_TYPE; } } return fd; } status_t Parcel::readUniqueFileDescriptor(base::unique_fd* val) const { int got = readFileDescriptor(); if (got == BAD_TYPE) { return BAD_TYPE; } val->reset(fcntl(got, F_DUPFD_CLOEXEC, 0)); if (val->get() < 0) { return BAD_VALUE; } return OK; } status_t Parcel::readUniqueParcelFileDescriptor(base::unique_fd* val) const { int got = readParcelFileDescriptor(); if (got == BAD_TYPE) { return BAD_TYPE; } val->reset(fcntl(got, F_DUPFD_CLOEXEC, 0)); if (val->get() < 0) { return BAD_VALUE; } return OK; } status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr>* val) const { return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor); } status_t Parcel::readUniqueFileDescriptorVector(std::vector* val) const { return readTypedVector(val, &Parcel::readUniqueFileDescriptor); } status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const { int32_t blobType; status_t status = readInt32(&blobType); if (status) return status; if (blobType == BLOB_INPLACE) { ALOGV("readBlob: read in place"); const void* ptr = readInplace(len); if (!ptr) return BAD_VALUE; outBlob->init(-1, const_cast(ptr), len, false); return NO_ERROR; } ALOGV("readBlob: read from ashmem"); bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE); int fd = readFileDescriptor(); if (fd == int(BAD_TYPE)) return BAD_VALUE; if (!ashmem_valid(fd)) { ALOGE("invalid fd"); return BAD_VALUE; } int size = ashmem_get_size_region(fd); if (size < 0 || size_t(size) < len) { ALOGE("request size %zu does not match fd size %d", len, size); return BAD_VALUE; } void* ptr = ::mmap(nullptr, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ, MAP_SHARED, fd, 0); if (ptr == MAP_FAILED) return NO_MEMORY; outBlob->init(fd, ptr, len, isMutable); return NO_ERROR; } status_t Parcel::read(FlattenableHelperInterface& val) const { // size const size_t len = this->readInt32(); const size_t fd_count = this->readInt32(); if ((len > INT32_MAX) || (fd_count >= gMaxFds)) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } // payload void const* const buf = this->readInplace(pad_size(len)); if (buf == nullptr) return BAD_VALUE; int* fds = nullptr; if (fd_count) { fds = new (std::nothrow) int[fd_count]; if (fds == nullptr) { ALOGE("read: failed to allocate requested %zu fds", fd_count); return BAD_VALUE; } } status_t err = NO_ERROR; for (size_t i=0 ; ireadFileDescriptor(); if (fd < 0 || ((fds[i] = fcntl(fd, F_DUPFD_CLOEXEC, 0)) < 0)) { err = BAD_VALUE; ALOGE("fcntl(F_DUPFD_CLOEXEC) failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s", i, fds[i], fd_count, strerror(fd < 0 ? -fd : errno)); // Close all the file descriptors that were dup-ed. for (size_t j=0; j(mData+DPOS); mDataPos = DPOS + sizeof(flat_binder_object); if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) { // When transferring a NULL object, we don't write it into // the object list, so we don't want to check for it when // reading. ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos); return obj; } // Ensure that this object is valid... binder_size_t* const OBJS = mObjects; const size_t N = mObjectsSize; size_t opos = mNextObjectHint; if (N > 0) { ALOGV("Parcel %p looking for obj at %zu, hint=%zu", this, DPOS, opos); // Start at the current hint position, looking for an object at // the current data position. if (opos < N) { while (opos < (N-1) && OBJS[opos] < DPOS) { opos++; } } else { opos = N-1; } if (OBJS[opos] == DPOS) { // Found it! ALOGV("Parcel %p found obj %zu at index %zu with forward search", this, DPOS, opos); mNextObjectHint = opos+1; ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos); return obj; } // Look backwards for it... while (opos > 0 && OBJS[opos] > DPOS) { opos--; } if (OBJS[opos] == DPOS) { // Found it! ALOGV("Parcel %p found obj %zu at index %zu with backward search", this, DPOS, opos); mNextObjectHint = opos+1; ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos); return obj; } } ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list", this, DPOS); } return nullptr; } void Parcel::closeFileDescriptors() { size_t i = mObjectsSize; if (i > 0) { //ALOGI("Closing file descriptors for %zu objects...", i); } while (i > 0) { i--; const flat_binder_object* flat = reinterpret_cast(mData+mObjects[i]); if (flat->hdr.type == BINDER_TYPE_FD) { //ALOGI("Closing fd: %ld", flat->handle); close(flat->handle); } } } uintptr_t Parcel::ipcData() const { return reinterpret_cast(mData); } size_t Parcel::ipcDataSize() const { return (mDataSize > mDataPos ? mDataSize : mDataPos); } uintptr_t Parcel::ipcObjects() const { return reinterpret_cast(mObjects); } size_t Parcel::ipcObjectsCount() const { return mObjectsSize; } void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie) { binder_size_t minOffset = 0; freeDataNoInit(); mError = NO_ERROR; mData = const_cast(data); mDataSize = mDataCapacity = dataSize; //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid()); mDataPos = 0; ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos); mObjects = const_cast(objects); mObjectsSize = mObjectsCapacity = objectsCount; mNextObjectHint = 0; mObjectsSorted = false; mOwner = relFunc; mOwnerCookie = relCookie; for (size_t i = 0; i < mObjectsSize; i++) { binder_size_t offset = mObjects[i]; if (offset < minOffset) { ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n", __func__, (uint64_t)offset, (uint64_t)minOffset); mObjectsSize = 0; break; } const flat_binder_object* flat = reinterpret_cast(mData + offset); uint32_t type = flat->hdr.type; if (!(type == BINDER_TYPE_BINDER || type == BINDER_TYPE_HANDLE || type == BINDER_TYPE_FD)) { // We should never receive other types (eg BINDER_TYPE_FDA) as long as we don't support // them in libbinder. If we do receive them, it probably means a kernel bug; try to // recover gracefully by clearing out the objects, and releasing the objects we do // know about. android_errorWriteLog(0x534e4554, "135930648"); ALOGE("%s: unsupported type object (%" PRIu32 ") at offset %" PRIu64 "\n", __func__, type, (uint64_t)offset); releaseObjects(); mObjectsSize = 0; break; } minOffset = offset + sizeof(flat_binder_object); } scanForFds(); } void Parcel::print(TextOutput& to, uint32_t /*flags*/) const { to << "Parcel("; if (errorCheck() != NO_ERROR) { const status_t err = errorCheck(); to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\""; } else if (dataSize() > 0) { const uint8_t* DATA = data(); to << indent << HexDump(DATA, dataSize()) << dedent; const binder_size_t* OBJS = mObjects; const size_t N = objectsCount(); for (size_t i=0; i(DATA+OBJS[i]); to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": " << TypeCode(flat->hdr.type & 0x7f7f7f00) << " = " << flat->binder; } } else { to << "NULL"; } to << ")"; } void Parcel::releaseObjects() { size_t i = mObjectsSize; if (i == 0) { return; } sp proc(ProcessState::self()); uint8_t* const data = mData; binder_size_t* const objects = mObjects; while (i > 0) { i--; const flat_binder_object* flat = reinterpret_cast(data+objects[i]); release_object(proc, *flat, this, &mOpenAshmemSize); } } void Parcel::acquireObjects() { size_t i = mObjectsSize; if (i == 0) { return; } const sp proc(ProcessState::self()); uint8_t* const data = mData; binder_size_t* const objects = mObjects; while (i > 0) { i--; const flat_binder_object* flat = reinterpret_cast(data+objects[i]); acquire_object(proc, *flat, this, &mOpenAshmemSize); } } void Parcel::freeData() { freeDataNoInit(); initState(); } void Parcel::freeDataNoInit() { if (mOwner) { LOG_ALLOC("Parcel %p: freeing other owner data", this); //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid()); mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie); } else { LOG_ALLOC("Parcel %p: freeing allocated data", this); releaseObjects(); if (mData) { LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); if (mDataCapacity <= gParcelGlobalAllocSize) { gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity; } else { gParcelGlobalAllocSize = 0; } if (gParcelGlobalAllocCount > 0) { gParcelGlobalAllocCount--; } pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); free(mData); } if (mObjects) free(mObjects); } } status_t Parcel::growData(size_t len) { if (len > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if (len > SIZE_MAX - mDataSize) return NO_MEMORY; // overflow if (mDataSize + len > SIZE_MAX / 3) return NO_MEMORY; // overflow size_t newSize = ((mDataSize+len)*3)/2; return (newSize <= mDataSize) ? (status_t) NO_MEMORY : continueWrite(newSize); } status_t Parcel::restartWrite(size_t desired) { if (desired > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } if (mOwner) { freeData(); return continueWrite(desired); } uint8_t* data = (uint8_t*)realloc(mData, desired); if (!data && desired > mDataCapacity) { mError = NO_MEMORY; return NO_MEMORY; } releaseObjects(); if (data || desired == 0) { LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); gParcelGlobalAllocSize += desired; gParcelGlobalAllocSize -= mDataCapacity; if (!mData) { gParcelGlobalAllocCount++; } pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); mData = data; mDataCapacity = desired; } mDataSize = mDataPos = 0; ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize); ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos); free(mObjects); mObjects = nullptr; mObjectsSize = mObjectsCapacity = 0; mNextObjectHint = 0; mObjectsSorted = false; mHasFds = false; mFdsKnown = true; mAllowFds = true; return NO_ERROR; } status_t Parcel::continueWrite(size_t desired) { if (desired > INT32_MAX) { // don't accept size_t values which may have come from an // inadvertent conversion from a negative int. return BAD_VALUE; } // If shrinking, first adjust for any objects that appear // after the new data size. size_t objectsSize = mObjectsSize; if (desired < mDataSize) { if (desired == 0) { objectsSize = 0; } else { while (objectsSize > 0) { if (mObjects[objectsSize-1] < desired) break; objectsSize--; } } } if (mOwner) { // If the size is going to zero, just release the owner's data. if (desired == 0) { freeData(); return NO_ERROR; } // If there is a different owner, we need to take // posession. uint8_t* data = (uint8_t*)malloc(desired); if (!data) { mError = NO_MEMORY; return NO_MEMORY; } binder_size_t* objects = nullptr; if (objectsSize) { objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t)); if (!objects) { free(data); mError = NO_MEMORY; return NO_MEMORY; } // Little hack to only acquire references on objects // we will be keeping. size_t oldObjectsSize = mObjectsSize; mObjectsSize = objectsSize; acquireObjects(); mObjectsSize = oldObjectsSize; } if (mData) { memcpy(data, mData, mDataSize < desired ? mDataSize : desired); } if (objects && mObjects) { memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t)); } //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid()); mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie); mOwner = nullptr; LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); gParcelGlobalAllocSize += desired; gParcelGlobalAllocCount++; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); mData = data; mObjects = objects; mDataSize = (mDataSize < desired) ? mDataSize : desired; ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize); mDataCapacity = desired; mObjectsSize = mObjectsCapacity = objectsSize; mNextObjectHint = 0; mObjectsSorted = false; } else if (mData) { if (objectsSize < mObjectsSize) { // Need to release refs on any objects we are dropping. const sp proc(ProcessState::self()); for (size_t i=objectsSize; i(mData+mObjects[i]); if (flat->hdr.type == BINDER_TYPE_FD) { // will need to rescan because we may have lopped off the only FDs mFdsKnown = false; } release_object(proc, *flat, this, &mOpenAshmemSize); } if (objectsSize == 0) { free(mObjects); mObjects = nullptr; mObjectsCapacity = 0; } else { binder_size_t* objects = (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t)); if (objects) { mObjects = objects; mObjectsCapacity = objectsSize; } } mObjectsSize = objectsSize; mNextObjectHint = 0; mObjectsSorted = false; } // We own the data, so we can just do a realloc(). if (desired > mDataCapacity) { uint8_t* data = (uint8_t*)realloc(mData, desired); if (data) { LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity, desired); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); gParcelGlobalAllocSize += desired; gParcelGlobalAllocSize -= mDataCapacity; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); mData = data; mDataCapacity = desired; } else { mError = NO_MEMORY; return NO_MEMORY; } } else { if (mDataSize > desired) { mDataSize = desired; ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize); } if (mDataPos > desired) { mDataPos = desired; ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos); } } } else { // This is the first data. Easy! uint8_t* data = (uint8_t*)malloc(desired); if (!data) { mError = NO_MEMORY; return NO_MEMORY; } if(!(mDataCapacity == 0 && mObjects == nullptr && mObjectsCapacity == 0)) { ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired); } LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired); pthread_mutex_lock(&gParcelGlobalAllocSizeLock); gParcelGlobalAllocSize += desired; gParcelGlobalAllocCount++; pthread_mutex_unlock(&gParcelGlobalAllocSizeLock); mData = data; mDataSize = mDataPos = 0; ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize); ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos); mDataCapacity = desired; } return NO_ERROR; } void Parcel::initState() { LOG_ALLOC("Parcel %p: initState", this); mError = NO_ERROR; mData = nullptr; mDataSize = 0; mDataCapacity = 0; mDataPos = 0; ALOGV("initState Setting data size of %p to %zu", this, mDataSize); ALOGV("initState Setting data pos of %p to %zu", this, mDataPos); mObjects = nullptr; mObjectsSize = 0; mObjectsCapacity = 0; mNextObjectHint = 0; mObjectsSorted = false; mHasFds = false; mFdsKnown = true; mAllowFds = true; mOwner = nullptr; mOpenAshmemSize = 0; mWorkSourceRequestHeaderPosition = 0; mRequestHeaderPresent = false; // racing multiple init leads only to multiple identical write if (gMaxFds == 0) { struct rlimit result; if (!getrlimit(RLIMIT_NOFILE, &result)) { gMaxFds = (size_t)result.rlim_cur; //ALOGI("parcel fd limit set to %zu", gMaxFds); } else { ALOGW("Unable to getrlimit: %s", strerror(errno)); gMaxFds = 1024; } } } void Parcel::scanForFds() const { bool hasFds = false; for (size_t i=0; i(mData + mObjects[i]); if (flat->hdr.type == BINDER_TYPE_FD) { hasFds = true; break; } } mHasFds = hasFds; mFdsKnown = true; } size_t Parcel::getBlobAshmemSize() const { // This used to return the size of all blobs that were written to ashmem, now we're returning // the ashmem currently referenced by this Parcel, which should be equivalent. // TODO: Remove method once ABI can be changed. return mOpenAshmemSize; } size_t Parcel::getOpenAshmemSize() const { return mOpenAshmemSize; } // --- Parcel::Blob --- Parcel::Blob::Blob() : mFd(-1), mData(nullptr), mSize(0), mMutable(false) { } Parcel::Blob::~Blob() { release(); } void Parcel::Blob::release() { if (mFd != -1 && mData) { ::munmap(mData, mSize); } clear(); } void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) { mFd = fd; mData = data; mSize = size; mMutable = isMutable; } void Parcel::Blob::clear() { mFd = -1; mData = nullptr; mSize = 0; mMutable = false; } } // namespace android