/* * Copyright 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #undef LOG_TAG #define LOG_TAG "Scheduler" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "Scheduler.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../Layer.h" #include "DispSync.h" #include "DispSyncSource.h" #include "EventControlThread.h" #include "EventThread.h" #include "InjectVSyncSource.h" #include "OneShotTimer.h" #include "SchedulerUtils.h" #include "SurfaceFlingerProperties.h" #include "Timer.h" #include "VSyncDispatchTimerQueue.h" #include "VSyncPredictor.h" #include "VSyncReactor.h" #define RETURN_IF_INVALID_HANDLE(handle, ...) \ do { \ if (mConnections.count(handle) == 0) { \ ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ return __VA_ARGS__; \ } \ } while (false) namespace android { std::unique_ptr createDispSync(bool supportKernelTimer) { // TODO (140302863) remove this and use the vsync_reactor system. if (property_get_bool("debug.sf.vsync_reactor", true)) { // TODO (144707443) tune Predictor tunables. static constexpr int defaultRate = 60; static constexpr auto initialPeriod = std::chrono::duration>(1); static constexpr size_t vsyncTimestampHistorySize = 20; static constexpr size_t minimumSamplesForPrediction = 6; static constexpr uint32_t discardOutlierPercent = 20; auto tracker = std::make_unique< scheduler::VSyncPredictor>(std::chrono::duration_cast( initialPeriod) .count(), vsyncTimestampHistorySize, minimumSamplesForPrediction, discardOutlierPercent); static constexpr auto vsyncMoveThreshold = std::chrono::duration_cast(3ms); static constexpr auto timerSlack = std::chrono::duration_cast(500us); auto dispatch = std::make_unique< scheduler::VSyncDispatchTimerQueue>(std::make_unique(), *tracker, timerSlack.count(), vsyncMoveThreshold.count()); static constexpr size_t pendingFenceLimit = 20; return std::make_unique(std::make_unique(), std::move(dispatch), std::move(tracker), pendingFenceLimit, supportKernelTimer); } else { return std::make_unique("SchedulerDispSync", sysprop::running_without_sync_framework(true)); } } Scheduler::Scheduler(impl::EventControlThread::SetVSyncEnabledFunction function, const scheduler::RefreshRateConfigs& refreshRateConfig, ISchedulerCallback& schedulerCallback, bool useContentDetectionV2, bool useContentDetection) : mSupportKernelTimer(sysprop::support_kernel_idle_timer(false)), mPrimaryDispSync(createDispSync(mSupportKernelTimer)), mEventControlThread(new impl::EventControlThread(std::move(function))), mSchedulerCallback(schedulerCallback), mRefreshRateConfigs(refreshRateConfig), mUseContentDetection(useContentDetection), mUseContentDetectionV2(useContentDetectionV2) { using namespace sysprop; if (mUseContentDetectionV2) { mLayerHistory = std::make_unique(refreshRateConfig); } else { mLayerHistory = std::make_unique(); } const int setIdleTimerMs = property_get_int32("debug.sf.set_idle_timer_ms", 0); if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) { const auto callback = mSupportKernelTimer ? &Scheduler::kernelIdleTimerCallback : &Scheduler::idleTimerCallback; mIdleTimer.emplace( std::chrono::milliseconds(millis), [this, callback] { std::invoke(callback, this, TimerState::Reset); }, [this, callback] { std::invoke(callback, this, TimerState::Expired); }); mIdleTimer->start(); } if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { // Touch events are coming to SF every 100ms, so the timer needs to be higher than that mTouchTimer.emplace( std::chrono::milliseconds(millis), [this] { touchTimerCallback(TimerState::Reset); }, [this] { touchTimerCallback(TimerState::Expired); }); mTouchTimer->start(); } if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { mDisplayPowerTimer.emplace( std::chrono::milliseconds(millis), [this] { displayPowerTimerCallback(TimerState::Reset); }, [this] { displayPowerTimerCallback(TimerState::Expired); }); mDisplayPowerTimer->start(); } } Scheduler::Scheduler(std::unique_ptr primaryDispSync, std::unique_ptr eventControlThread, const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& schedulerCallback, bool useContentDetectionV2, bool useContentDetection) : mSupportKernelTimer(false), mPrimaryDispSync(std::move(primaryDispSync)), mEventControlThread(std::move(eventControlThread)), mSchedulerCallback(schedulerCallback), mRefreshRateConfigs(configs), mUseContentDetection(useContentDetection), mUseContentDetectionV2(useContentDetectionV2) {} Scheduler::~Scheduler() { // Ensure the OneShotTimer threads are joined before we start destroying state. mDisplayPowerTimer.reset(); mTouchTimer.reset(); mIdleTimer.reset(); } DispSync& Scheduler::getPrimaryDispSync() { return *mPrimaryDispSync; } std::unique_ptr Scheduler::makePrimaryDispSyncSource(const char* name, nsecs_t phaseOffsetNs) { return std::make_unique(mPrimaryDispSync.get(), phaseOffsetNs, true /* traceVsync */, name); } Scheduler::ConnectionHandle Scheduler::createConnection( const char* connectionName, nsecs_t phaseOffsetNs, impl::EventThread::InterceptVSyncsCallback interceptCallback) { auto vsyncSource = makePrimaryDispSyncSource(connectionName, phaseOffsetNs); auto eventThread = std::make_unique(std::move(vsyncSource), std::move(interceptCallback)); return createConnection(std::move(eventThread)); } Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr eventThread) { const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); auto connection = createConnectionInternal(eventThread.get(), ISurfaceComposer::eConfigChangedSuppress); mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); return handle; } sp Scheduler::createConnectionInternal( EventThread* eventThread, ISurfaceComposer::ConfigChanged configChanged) { return eventThread->createEventConnection([&] { resync(); }, configChanged); } sp Scheduler::createDisplayEventConnection( ConnectionHandle handle, ISurfaceComposer::ConfigChanged configChanged) { RETURN_IF_INVALID_HANDLE(handle, nullptr); return createConnectionInternal(mConnections[handle].thread.get(), configChanged); } sp Scheduler::getEventConnection(ConnectionHandle handle) { RETURN_IF_INVALID_HANDLE(handle, nullptr); return mConnections[handle].connection; } void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, bool connected) { RETURN_IF_INVALID_HANDLE(handle); mConnections[handle].thread->onHotplugReceived(displayId, connected); } void Scheduler::onScreenAcquired(ConnectionHandle handle) { RETURN_IF_INVALID_HANDLE(handle); mConnections[handle].thread->onScreenAcquired(); } void Scheduler::onScreenReleased(ConnectionHandle handle) { RETURN_IF_INVALID_HANDLE(handle); mConnections[handle].thread->onScreenReleased(); } void Scheduler::onPrimaryDisplayConfigChanged(ConnectionHandle handle, PhysicalDisplayId displayId, HwcConfigIndexType configId, nsecs_t vsyncPeriod) { std::lock_guard lock(mFeatureStateLock); // Cache the last reported config for primary display. mFeatures.cachedConfigChangedParams = {handle, displayId, configId, vsyncPeriod}; onNonPrimaryDisplayConfigChanged(handle, displayId, configId, vsyncPeriod); } void Scheduler::dispatchCachedReportedConfig() { const auto configId = *mFeatures.configId; const auto vsyncPeriod = mRefreshRateConfigs.getRefreshRateFromConfigId(configId).getVsyncPeriod(); // If there is no change from cached config, there is no need to dispatch an event if (configId == mFeatures.cachedConfigChangedParams->configId && vsyncPeriod == mFeatures.cachedConfigChangedParams->vsyncPeriod) { return; } mFeatures.cachedConfigChangedParams->configId = configId; mFeatures.cachedConfigChangedParams->vsyncPeriod = vsyncPeriod; onNonPrimaryDisplayConfigChanged(mFeatures.cachedConfigChangedParams->handle, mFeatures.cachedConfigChangedParams->displayId, mFeatures.cachedConfigChangedParams->configId, mFeatures.cachedConfigChangedParams->vsyncPeriod); } void Scheduler::onNonPrimaryDisplayConfigChanged(ConnectionHandle handle, PhysicalDisplayId displayId, HwcConfigIndexType configId, nsecs_t vsyncPeriod) { RETURN_IF_INVALID_HANDLE(handle); mConnections[handle].thread->onConfigChanged(displayId, configId, vsyncPeriod); } size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { RETURN_IF_INVALID_HANDLE(handle, 0); return mConnections[handle].thread->getEventThreadConnectionCount(); } void Scheduler::dump(ConnectionHandle handle, std::string& result) const { RETURN_IF_INVALID_HANDLE(handle); mConnections.at(handle).thread->dump(result); } void Scheduler::setPhaseOffset(ConnectionHandle handle, nsecs_t phaseOffset) { RETURN_IF_INVALID_HANDLE(handle); mConnections[handle].thread->setPhaseOffset(phaseOffset); } void Scheduler::getDisplayStatInfo(DisplayStatInfo* stats) { stats->vsyncTime = mPrimaryDispSync->computeNextRefresh(0, systemTime()); stats->vsyncPeriod = mPrimaryDispSync->getPeriod(); } Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) { if (mInjectVSyncs == enable) { return {}; } ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling"); if (!mInjectorConnectionHandle) { auto vsyncSource = std::make_unique(); mVSyncInjector = vsyncSource.get(); auto eventThread = std::make_unique(std::move(vsyncSource), impl::EventThread::InterceptVSyncsCallback()); mInjectorConnectionHandle = createConnection(std::move(eventThread)); } mInjectVSyncs = enable; return mInjectorConnectionHandle; } bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime) { if (!mInjectVSyncs || !mVSyncInjector) { return false; } mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime); return true; } void Scheduler::enableHardwareVsync() { std::lock_guard lock(mHWVsyncLock); if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { mPrimaryDispSync->beginResync(); mEventControlThread->setVsyncEnabled(true); mPrimaryHWVsyncEnabled = true; } } void Scheduler::disableHardwareVsync(bool makeUnavailable) { std::lock_guard lock(mHWVsyncLock); if (mPrimaryHWVsyncEnabled) { mEventControlThread->setVsyncEnabled(false); mPrimaryDispSync->endResync(); mPrimaryHWVsyncEnabled = false; } if (makeUnavailable) { mHWVsyncAvailable = false; } } void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) { { std::lock_guard lock(mHWVsyncLock); if (makeAvailable) { mHWVsyncAvailable = makeAvailable; } else if (!mHWVsyncAvailable) { // Hardware vsync is not currently available, so abort the resync // attempt for now return; } } if (period <= 0) { return; } setVsyncPeriod(period); } void Scheduler::resync() { static constexpr nsecs_t kIgnoreDelay = ms2ns(750); const nsecs_t now = systemTime(); const nsecs_t last = mLastResyncTime.exchange(now); if (now - last > kIgnoreDelay) { resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod()); } } void Scheduler::setVsyncPeriod(nsecs_t period) { std::lock_guard lock(mHWVsyncLock); mPrimaryDispSync->setPeriod(period); if (!mPrimaryHWVsyncEnabled) { mPrimaryDispSync->beginResync(); mEventControlThread->setVsyncEnabled(true); mPrimaryHWVsyncEnabled = true; } } void Scheduler::addResyncSample(nsecs_t timestamp, std::optional hwcVsyncPeriod, bool* periodFlushed) { bool needsHwVsync = false; *periodFlushed = false; { // Scope for the lock std::lock_guard lock(mHWVsyncLock); if (mPrimaryHWVsyncEnabled) { needsHwVsync = mPrimaryDispSync->addResyncSample(timestamp, hwcVsyncPeriod, periodFlushed); } } if (needsHwVsync) { enableHardwareVsync(); } else { disableHardwareVsync(false); } } void Scheduler::addPresentFence(const std::shared_ptr& fenceTime) { if (mPrimaryDispSync->addPresentFence(fenceTime)) { enableHardwareVsync(); } else { disableHardwareVsync(false); } } void Scheduler::setIgnorePresentFences(bool ignore) { mPrimaryDispSync->setIgnorePresentFences(ignore); } nsecs_t Scheduler::getDispSyncExpectedPresentTime(nsecs_t now) { return mPrimaryDispSync->expectedPresentTime(now); } void Scheduler::registerLayer(Layer* layer) { if (!mLayerHistory) return; const auto minFps = mRefreshRateConfigs.getMinRefreshRate().getFps(); const auto maxFps = mRefreshRateConfigs.getMaxRefreshRate().getFps(); if (layer->getWindowType() == InputWindowInfo::TYPE_STATUS_BAR) { mLayerHistory->registerLayer(layer, minFps, maxFps, scheduler::LayerHistory::LayerVoteType::NoVote); } else if (!mUseContentDetection) { // If the content detection feature is off, all layers are registered at Max. We still keep // the layer history, since we use it for other features (like Frame Rate API), so layers // still need to be registered. mLayerHistory->registerLayer(layer, minFps, maxFps, scheduler::LayerHistory::LayerVoteType::Max); } else if (!mUseContentDetectionV2) { // In V1 of content detection, all layers are registered as Heuristic (unless it's // wallpaper). const auto highFps = layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER ? minFps : maxFps; mLayerHistory->registerLayer(layer, minFps, highFps, scheduler::LayerHistory::LayerVoteType::Heuristic); } else { if (layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER) { // Running Wallpaper at Min is considered as part of content detection. mLayerHistory->registerLayer(layer, minFps, maxFps, scheduler::LayerHistory::LayerVoteType::Min); } else { mLayerHistory->registerLayer(layer, minFps, maxFps, scheduler::LayerHistory::LayerVoteType::Heuristic); } } } void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime, LayerHistory::LayerUpdateType updateType) { if (mLayerHistory) { mLayerHistory->record(layer, presentTime, systemTime(), updateType); } } void Scheduler::setConfigChangePending(bool pending) { if (mLayerHistory) { mLayerHistory->setConfigChangePending(pending); } } void Scheduler::chooseRefreshRateForContent() { if (!mLayerHistory) return; ATRACE_CALL(); scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime()); HwcConfigIndexType newConfigId; { std::lock_guard lock(mFeatureStateLock); if (mFeatures.contentRequirements == summary) { return; } mFeatures.contentRequirements = summary; mFeatures.contentDetectionV1 = !summary.empty() ? ContentDetectionState::On : ContentDetectionState::Off; scheduler::RefreshRateConfigs::GlobalSignals consideredSignals; newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals); if (mFeatures.configId == newConfigId) { // We don't need to change the config, but we might need to send an event // about a config change, since it was suppressed due to a previous idleConsidered if (!consideredSignals.idle) { dispatchCachedReportedConfig(); } return; } mFeatures.configId = newConfigId; auto& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId); mSchedulerCallback.changeRefreshRate(newRefreshRate, consideredSignals.idle ? ConfigEvent::None : ConfigEvent::Changed); } } void Scheduler::resetIdleTimer() { if (mIdleTimer) { mIdleTimer->reset(); } } void Scheduler::notifyTouchEvent() { if (!mTouchTimer) return; // Touch event will boost the refresh rate to performance. // Clear Layer History to get fresh FPS detection. // NOTE: Instead of checking all the layers, we should be checking the layer // that is currently on top. b/142507166 will give us this capability. std::lock_guard lock(mFeatureStateLock); if (mLayerHistory) { // Layer History will be cleared based on RefreshRateConfigs::getBestRefreshRate mTouchTimer->reset(); if (mSupportKernelTimer && mIdleTimer) { mIdleTimer->reset(); } } } void Scheduler::setDisplayPowerState(bool normal) { { std::lock_guard lock(mFeatureStateLock); mFeatures.isDisplayPowerStateNormal = normal; } if (mDisplayPowerTimer) { mDisplayPowerTimer->reset(); } // Display Power event will boost the refresh rate to performance. // Clear Layer History to get fresh FPS detection if (mLayerHistory) { mLayerHistory->clear(); } } void Scheduler::kernelIdleTimerCallback(TimerState state) { ATRACE_INT("ExpiredKernelIdleTimer", static_cast(state)); // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate // magic number const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate(); constexpr float FPS_THRESHOLD_FOR_KERNEL_TIMER = 65.0f; if (state == TimerState::Reset && refreshRate.getFps() > FPS_THRESHOLD_FOR_KERNEL_TIMER) { // If we're not in performance mode then the kernel timer shouldn't do // anything, as the refresh rate during DPU power collapse will be the // same. resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod()); } else if (state == TimerState::Expired && refreshRate.getFps() <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { // Disable HW VSYNC if the timer expired, as we don't need it enabled if // we're not pushing frames, and if we're in PERFORMANCE mode then we'll // need to update the DispSync model anyway. disableHardwareVsync(false /* makeUnavailable */); } mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); } void Scheduler::idleTimerCallback(TimerState state) { handleTimerStateChanged(&mFeatures.idleTimer, state); ATRACE_INT("ExpiredIdleTimer", static_cast(state)); } void Scheduler::touchTimerCallback(TimerState state) { const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; if (handleTimerStateChanged(&mFeatures.touch, touch)) { mLayerHistory->clear(); } ATRACE_INT("TouchState", static_cast(touch)); } void Scheduler::displayPowerTimerCallback(TimerState state) { handleTimerStateChanged(&mFeatures.displayPowerTimer, state); ATRACE_INT("ExpiredDisplayPowerTimer", static_cast(state)); } void Scheduler::dump(std::string& result) const { using base::StringAppendF; const char* const states[] = {"off", "on"}; StringAppendF(&result, "+ Idle timer: %s\n", mIdleTimer ? mIdleTimer->dump().c_str() : states[0]); StringAppendF(&result, "+ Touch timer: %s\n", mTouchTimer ? mTouchTimer->dump().c_str() : states[0]); StringAppendF(&result, "+ Use content detection: %s\n\n", sysprop::use_content_detection_for_refresh_rate(false) ? "on" : "off"); } template bool Scheduler::handleTimerStateChanged(T* currentState, T newState) { HwcConfigIndexType newConfigId; scheduler::RefreshRateConfigs::GlobalSignals consideredSignals; { std::lock_guard lock(mFeatureStateLock); if (*currentState == newState) { return false; } *currentState = newState; newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals); if (mFeatures.configId == newConfigId) { // We don't need to change the config, but we might need to send an event // about a config change, since it was suppressed due to a previous idleConsidered if (!consideredSignals.idle) { dispatchCachedReportedConfig(); } return consideredSignals.touch; } mFeatures.configId = newConfigId; } const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId); mSchedulerCallback.changeRefreshRate(newRefreshRate, consideredSignals.idle ? ConfigEvent::None : ConfigEvent::Changed); return consideredSignals.touch; } HwcConfigIndexType Scheduler::calculateRefreshRateConfigIndexType( scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) { ATRACE_CALL(); if (consideredSignals) *consideredSignals = {}; // If Display Power is not in normal operation we want to be in performance mode. When coming // back to normal mode, a grace period is given with DisplayPowerTimer. if (mDisplayPowerTimer && (!mFeatures.isDisplayPowerStateNormal || mFeatures.displayPowerTimer == TimerState::Reset)) { return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); } const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active; const bool idle = mIdleTimer && mFeatures.idleTimer == TimerState::Expired; if (!mUseContentDetectionV2) { // As long as touch is active we want to be in performance mode. if (touchActive) { return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); } // If timer has expired as it means there is no new content on the screen. if (idle) { if (consideredSignals) consideredSignals->idle = true; return mRefreshRateConfigs.getMinRefreshRateByPolicy().getConfigId(); } // If content detection is off we choose performance as we don't know the content fps. if (mFeatures.contentDetectionV1 == ContentDetectionState::Off) { // NOTE: V1 always calls this, but this is not a default behavior for V2. return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); } // Content detection is on, find the appropriate refresh rate with minimal error return mRefreshRateConfigs.getRefreshRateForContent(mFeatures.contentRequirements) .getConfigId(); } return mRefreshRateConfigs .getBestRefreshRate(mFeatures.contentRequirements, {.touch = touchActive, .idle = idle}, consideredSignals) .getConfigId(); } std::optional Scheduler::getPreferredConfigId() { std::lock_guard lock(mFeatureStateLock); // Make sure that the default config ID is first updated, before returned. if (mFeatures.configId.has_value()) { mFeatures.configId = calculateRefreshRateConfigIndexType(); } return mFeatures.configId; } void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { if (timeline.refreshRequired) { mSchedulerCallback.repaintEverythingForHWC(); } std::lock_guard lock(mVsyncTimelineLock); mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; } } void Scheduler::onDisplayRefreshed(nsecs_t timestamp) { bool callRepaint = false; { std::lock_guard lock(mVsyncTimelineLock); if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) { mLastVsyncPeriodChangeTimeline->refreshRequired = false; } else { // We need to send another refresh as refreshTimeNanos is still in the future callRepaint = true; } } } if (callRepaint) { mSchedulerCallback.repaintEverythingForHWC(); } } void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) { if (mLayerHistory) { mLayerHistory->setDisplayArea(displayArea); } } } // namespace android