// Copyright (C) 2019 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #define ATRACE_TAG ATRACE_TAG_APP #define LOG_TAG "FuseDaemon" #define LIBFUSE_LOG_TAG "libfuse" #include "FuseDaemon.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MediaProviderWrapper.h" #include "libfuse_jni/FuseUtils.h" #include "libfuse_jni/ReaddirHelper.h" #include "libfuse_jni/RedactionInfo.h" #include "node-inl.h" using mediaprovider::fuse::DirectoryEntry; using mediaprovider::fuse::dirhandle; using mediaprovider::fuse::handle; using mediaprovider::fuse::node; using mediaprovider::fuse::RedactionInfo; using std::list; using std::string; using std::vector; // logging macros to avoid duplication. #define TRACE_NODE(__node, __req) \ LOG(VERBOSE) << __FUNCTION__ << " : " << #__node << " = [" << get_name(__node) \ << "] (uid=" << __req->ctx.uid << ") " #define ATRACE_NAME(name) ScopedTrace ___tracer(name) #define ATRACE_CALL() ATRACE_NAME(__FUNCTION__) class ScopedTrace { public: explicit inline ScopedTrace(const char *name) { ATrace_beginSection(name); } inline ~ScopedTrace() { ATrace_endSection(); } }; const bool IS_OS_DEBUGABLE = android::base::GetIntProperty("ro.debuggable", 0); #define FUSE_UNKNOWN_INO 0xffffffff // Stolen from: android_filesystem_config.h #define AID_APP_START 10000 constexpr size_t MAX_READ_SIZE = 128 * 1024; // Stolen from: UserHandle#getUserId constexpr int PER_USER_RANGE = 100000; // Regex copied from FileUtils.java in MediaProvider, but without media directory. const std::regex PATTERN_OWNED_PATH( "^/storage/[^/]+/(?:[0-9]+/)?Android/(?:data|obb|sandbox)/([^/]+)(/?.*)?", std::regex_constants::icase); /* * In order to avoid double caching with fuse, call fadvise on the file handles * in the underlying file system. However, if this is done on every read/write, * the fadvises cause a very significant slowdown in tests (specifically fio * seq_write). So call fadvise on the file handles with the most reads/writes * only after a threshold is passed. */ class FAdviser { public: FAdviser() : thread_(MessageLoop, this), total_size_(0) {} ~FAdviser() { SendMessage(Message::quit); thread_.join(); } void Record(int fd, size_t size) { SendMessage(Message::record, fd, size); } void Close(int fd) { SendMessage(Message::close, fd); } private: struct Message { enum Type { record, close, quit }; Type type; int fd; size_t size; }; void RecordImpl(int fd, size_t size) { total_size_ += size; // Find or create record in files_ // Remove record from sizes_ if it exists, adjusting size appropriately auto file = files_.find(fd); if (file != files_.end()) { auto old_size = file->second; size += old_size->first; sizes_.erase(old_size); } else { file = files_.insert(Files::value_type(fd, sizes_.end())).first; } // Now (re) insert record in sizes_ auto new_size = sizes_.insert(Sizes::value_type(size, fd)); file->second = new_size; if (total_size_ < threshold_) return; LOG(INFO) << "Threshold exceeded - fadvising " << total_size_; while (!sizes_.empty() && total_size_ > target_) { auto size = --sizes_.end(); total_size_ -= size->first; posix_fadvise(size->second, 0, 0, POSIX_FADV_DONTNEED); files_.erase(size->second); sizes_.erase(size); } LOG(INFO) << "Threshold now " << total_size_; } void CloseImpl(int fd) { auto file = files_.find(fd); if (file == files_.end()) return; total_size_ -= file->second->first; sizes_.erase(file->second); files_.erase(file); } void MessageLoopImpl() { while (1) { Message message; { std::unique_lock lock(mutex_); cv_.wait(lock, [this] { return !queue_.empty(); }); message = queue_.front(); queue_.pop(); } switch (message.type) { case Message::record: RecordImpl(message.fd, message.size); break; case Message::close: CloseImpl(message.fd); break; case Message::quit: return; } } } static int MessageLoop(FAdviser* ptr) { ptr->MessageLoopImpl(); return 0; } void SendMessage(Message::Type type, int fd = -1, size_t size = 0) { { std::unique_lock lock(mutex_); Message message = {type, fd, size}; queue_.push(message); } cv_.notify_one(); } std::mutex mutex_; std::condition_variable cv_; std::queue queue_; std::thread thread_; typedef std::multimap Sizes; typedef std::map Files; Files files_; Sizes sizes_; size_t total_size_; const size_t threshold_ = 64 * 1024 * 1024; const size_t target_ = 32 * 1024 * 1024; }; /* Single FUSE mount */ struct fuse { explicit fuse(const std::string& _path) : path(_path), tracker(mediaprovider::fuse::NodeTracker(&lock)), root(node::CreateRoot(_path, &lock, &tracker)), mp(0), zero_addr(0) {} inline bool IsRoot(const node* node) const { return node == root; } inline string GetEffectiveRootPath() { if (path.find("/storage/emulated", 0) == 0) { return path + "/" + std::to_string(getuid() / PER_USER_RANGE); } return path; } // Note that these two (FromInode / ToInode) conversion wrappers are required // because fuse_lowlevel_ops documents that the root inode is always one // (see FUSE_ROOT_ID in fuse_lowlevel.h). There are no particular requirements // on any of the other inodes in the FS. inline node* FromInode(__u64 inode) { if (inode == FUSE_ROOT_ID) { return root; } return node::FromInode(inode, &tracker); } inline __u64 ToInode(node* node) const { if (IsRoot(node)) { return FUSE_ROOT_ID; } return node::ToInode(node); } std::recursive_mutex lock; const string path; // The Inode tracker associated with this FUSE instance. mediaprovider::fuse::NodeTracker tracker; node* const root; struct fuse_session* se; /* * Used to make JNI calls to MediaProvider. * Responsibility of freeing this object falls on corresponding * FuseDaemon object. */ mediaprovider::fuse::MediaProviderWrapper* mp; /* * Points to a range of zeroized bytes, used by pf_read to represent redacted ranges. * The memory is read only and should never be modified. */ /* const */ char* zero_addr; FAdviser fadviser; std::atomic_bool* active; }; static inline string get_name(node* n) { if (n) { std::string name = IS_OS_DEBUGABLE ? "real_path: " + n->BuildPath() + " " : ""; name += "node_path: " + n->BuildSafePath(); return name; } return "?"; } static inline __u64 ptr_to_id(void* ptr) { return (__u64)(uintptr_t) ptr; } /* * Set an F_RDLCK or F_WRLCKK on fd with fcntl(2). * * This is called before the MediaProvider returns fd from the lower file * system to an app over the ContentResolver interface. This allows us * check with is_file_locked if any reference to that fd is still open. */ static int set_file_lock(int fd, bool for_read, const std::string& path) { std::string lock_str = (for_read ? "read" : "write"); struct flock fl{}; fl.l_type = for_read ? F_RDLCK : F_WRLCK; fl.l_whence = SEEK_SET; int res = fcntl(fd, F_OFD_SETLK, &fl); if (res) { PLOG(WARNING) << "Failed to set lock: " << lock_str; return res; } return res; } /* * Check if an F_RDLCK or F_WRLCK is set on fd with fcntl(2). * * This is used to determine if the MediaProvider has given an fd to the lower fs to an app over * the ContentResolver interface. Before that happens, we always call set_file_lock on the file * allowing us to know if any reference to that fd is still open here. * * Returns true if fd may have a lock, false otherwise */ static bool is_file_locked(int fd, const std::string& path) { struct flock fl{}; fl.l_type = F_WRLCK; fl.l_whence = SEEK_SET; int res = fcntl(fd, F_OFD_GETLK, &fl); if (res) { PLOG(WARNING) << "Failed to check lock"; // Assume worst return true; } bool locked = fl.l_type != F_UNLCK; return locked; } static struct fuse* get_fuse(fuse_req_t req) { return reinterpret_cast(fuse_req_userdata(req)); } static bool is_package_owned_path(const string& path, const string& fuse_path) { if (path.rfind(fuse_path, 0) != 0) { return false; } return std::regex_match(path, PATTERN_OWNED_PATH); } // See fuse_lowlevel.h fuse_lowlevel_notify_inval_entry for how to call this safetly without // deadlocking the kernel static void fuse_inval(fuse_session* se, fuse_ino_t parent_ino, fuse_ino_t child_ino, const string& child_name, const string& path) { if (mediaprovider::fuse::containsMount(path, std::to_string(getuid() / PER_USER_RANGE))) { LOG(WARNING) << "Ignoring attempt to invalidate dentry for FUSE mounts"; return; } if (fuse_lowlevel_notify_inval_entry(se, parent_ino, child_name.c_str(), child_name.size())) { // Invalidating the dentry can fail if there's no dcache entry, however, there may still // be cached attributes, so attempt to invalidate those by invalidating the inode fuse_lowlevel_notify_inval_inode(se, child_ino, 0, 0); } } static double get_timeout(struct fuse* fuse, const string& path, bool should_inval) { string media_path = fuse->GetEffectiveRootPath() + "/Android/media"; if (should_inval || path.find(media_path, 0) == 0 || is_package_owned_path(path, fuse->path)) { // We set dentry timeout to 0 for the following reasons: // 1. Case-insensitive lookups need to invalidate other case-insensitive dentry matches // 2. Installd might delete Android/media/ dirs when app data is cleared. // This can leave a stale entry in the kernel dcache, and break subsequent creation of the // dir via FUSE. // 3. With app data isolation enabled, app A should not guess existence of app B from the // Android/{data,obb}/ paths, hence we prevent the kernel from caching that // information. return 0; } return std::numeric_limits::max(); } static node* make_node_entry(fuse_req_t req, node* parent, const string& name, const string& path, struct fuse_entry_param* e, int* error_code) { struct fuse* fuse = get_fuse(req); const struct fuse_ctx* ctx = fuse_req_ctx(req); node* node; memset(e, 0, sizeof(*e)); if (lstat(path.c_str(), &e->attr) < 0) { *error_code = errno; return NULL; } bool should_inval = false; node = parent->LookupChildByName(name, true /* acquire */); if (!node) { node = ::node::Create(parent, name, &fuse->lock, &fuse->tracker); } else if (!mediaprovider::fuse::containsMount(path, std::to_string(getuid() / PER_USER_RANGE))) { should_inval = true; // Only invalidate a path if it does not contain mount. // Invalidate both names to ensure there's no dentry left in the kernel after the following // operations: // 1) touch foo, touch FOO, unlink *foo* // 2) touch foo, touch FOO, unlink *FOO* // Invalidating lookup_name fixes (1) and invalidating node_name fixes (2) // |should_inval| invalidates lookup_name by using 0 timeout below and we explicitly // invalidate node_name if different case // Note that we invalidate async otherwise we will deadlock the kernel if (name != node->GetName()) { // Make copies of the node name and path so we're not attempting to acquire // any node locks from the invalidation thread. Depending on timing, we may end // up invalidating the wrong inode but that shouldn't result in correctness issues. const fuse_ino_t parent_ino = fuse->ToInode(parent); const fuse_ino_t child_ino = fuse->ToInode(node); const std::string& node_name = node->GetName(); std::thread t([=]() { fuse_inval(fuse->se, parent_ino, child_ino, node_name, path); }); t.detach(); } } TRACE_NODE(node, req); // This FS is not being exported via NFS so just a fixed generation number // for now. If we do need this, we need to increment the generation ID each // time the fuse daemon restarts because that's what it takes for us to // reuse inode numbers. e->generation = 0; e->ino = fuse->ToInode(node); e->entry_timeout = get_timeout(fuse, path, should_inval); e->attr_timeout = is_package_owned_path(path, fuse->path) || should_inval ? 0 : std::numeric_limits::max(); return node; } static inline bool is_requesting_write(int flags) { return flags & (O_WRONLY | O_RDWR); } namespace mediaprovider { namespace fuse { /** * Function implementations * * These implement the various functions in fuse_lowlevel_ops * */ static void pf_init(void* userdata, struct fuse_conn_info* conn) { // We don't want a getattr request with every read request conn->want &= ~FUSE_CAP_AUTO_INVAL_DATA & ~FUSE_CAP_READDIRPLUS_AUTO; unsigned mask = (FUSE_CAP_SPLICE_WRITE | FUSE_CAP_SPLICE_MOVE | FUSE_CAP_SPLICE_READ | FUSE_CAP_ASYNC_READ | FUSE_CAP_ATOMIC_O_TRUNC | FUSE_CAP_WRITEBACK_CACHE | FUSE_CAP_EXPORT_SUPPORT | FUSE_CAP_FLOCK_LOCKS); conn->want |= conn->capable & mask; conn->max_read = MAX_READ_SIZE; struct fuse* fuse = reinterpret_cast(userdata); fuse->active->store(true, std::memory_order_release); } static void pf_destroy(void* userdata) { struct fuse* fuse = reinterpret_cast(userdata); LOG(INFO) << "DESTROY " << fuse->path; node::DeleteTree(fuse->root); } // Return true if the path is accessible for that uid. static bool is_app_accessible_path(MediaProviderWrapper* mp, const string& path, uid_t uid) { if (uid < AID_APP_START) { return true; } if (path == "/storage/emulated") { // Apps should never refer to /storage/emulated - they should be using the user-spcific // subdirs, eg /storage/emulated/0 return false; } std::smatch match; if (std::regex_match(path, match, PATTERN_OWNED_PATH)) { const std::string& pkg = match[1]; // .nomedia is not a valid package. .nomedia always exists in /Android/data directory, // and it's not an external file/directory of any package if (pkg == ".nomedia") { return true; } if (!mp->IsUidForPackage(pkg, uid)) { PLOG(WARNING) << "Invalid other package file access from " << pkg << "(: " << path; return false; } } return true; } static std::regex storage_emulated_regex("^\\/storage\\/emulated\\/([0-9]+)"); static node* do_lookup(fuse_req_t req, fuse_ino_t parent, const char* name, struct fuse_entry_param* e, int* error_code) { struct fuse* fuse = get_fuse(req); node* parent_node = fuse->FromInode(parent); if (!parent_node) { *error_code = ENOENT; return nullptr; } string parent_path = parent_node->BuildPath(); // We should always allow lookups on the root, because failing them could cause // bind mounts to be invalidated. if (!fuse->IsRoot(parent_node) && !is_app_accessible_path(fuse->mp, parent_path, req->ctx.uid)) { *error_code = ENOENT; return nullptr; } string child_path = parent_path + "/" + name; TRACE_NODE(parent_node, req); std::smatch match; std::regex_search(child_path, match, storage_emulated_regex); if (match.size() == 2 && std::to_string(getuid() / PER_USER_RANGE) != match[1].str()) { // Ensure the FuseDaemon user id matches the user id in requested path *error_code = EPERM; return nullptr; } return make_node_entry(req, parent_node, name, child_path, e, error_code); } static void pf_lookup(fuse_req_t req, fuse_ino_t parent, const char* name) { ATRACE_CALL(); struct fuse_entry_param e; int error_code = 0; if (do_lookup(req, parent, name, &e, &error_code)) { fuse_reply_entry(req, &e); } else { CHECK(error_code != 0); fuse_reply_err(req, error_code); } } static void do_forget(fuse_req_t req, struct fuse* fuse, fuse_ino_t ino, uint64_t nlookup) { node* node = fuse->FromInode(ino); TRACE_NODE(node, req); if (node) { // This is a narrowing conversion from an unsigned 64bit to a 32bit value. For // some reason we only keep 32 bit refcounts but the kernel issues // forget requests with a 64 bit counter. node->Release(static_cast(nlookup)); } } static void pf_forget(fuse_req_t req, fuse_ino_t ino, uint64_t nlookup) { // Always allow to forget so no need to check is_app_accessible_path() ATRACE_CALL(); node* node; struct fuse* fuse = get_fuse(req); do_forget(req, fuse, ino, nlookup); fuse_reply_none(req); } static void pf_forget_multi(fuse_req_t req, size_t count, struct fuse_forget_data* forgets) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); for (int i = 0; i < count; i++) { do_forget(req, fuse, forgets[i].ino, forgets[i].nlookup); } fuse_reply_none(req); } static void pf_getattr(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* node = fuse->FromInode(ino); if (!node) { fuse_reply_err(req, ENOENT); return; } string path = node->BuildPath(); if (!is_app_accessible_path(fuse->mp, path, req->ctx.uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(node, req); struct stat s; memset(&s, 0, sizeof(s)); if (lstat(path.c_str(), &s) < 0) { fuse_reply_err(req, errno); } else { fuse_reply_attr(req, &s, is_package_owned_path(path, fuse->path) ? 0 : std::numeric_limits::max()); } } static void pf_setattr(fuse_req_t req, fuse_ino_t ino, struct stat* attr, int to_set, struct fuse_file_info* fi) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* node = fuse->FromInode(ino); if (!node) { fuse_reply_err(req, ENOENT); return; } string path = node->BuildPath(); if (!is_app_accessible_path(fuse->mp, path, req->ctx.uid)) { fuse_reply_err(req, ENOENT); return; } int fd = -1; if (fi) { // If we have a file_info, setattr was called with an fd so use the fd instead of path handle* h = reinterpret_cast(fi->fh); fd = h->fd; } else { const struct fuse_ctx* ctx = fuse_req_ctx(req); int status = fuse->mp->IsOpenAllowed(path, ctx->uid, true); if (status) { fuse_reply_err(req, EACCES); return; } } struct timespec times[2]; TRACE_NODE(node, req); /* XXX: incomplete implementation on purpose. * chmod/chown should NEVER be implemented.*/ if ((to_set & FUSE_SET_ATTR_SIZE)) { int res = 0; if (fd == -1) { res = truncate64(path.c_str(), attr->st_size); } else { res = ftruncate64(fd, attr->st_size); } if (res < 0) { fuse_reply_err(req, errno); return; } } /* Handle changing atime and mtime. If FATTR_ATIME_and FATTR_ATIME_NOW * are both set, then set it to the current time. Else, set it to the * time specified in the request. Same goes for mtime. Use utimensat(2) * as it allows ATIME and MTIME to be changed independently, and has * nanosecond resolution which fuse also has. */ if (to_set & (FATTR_ATIME | FATTR_MTIME)) { times[0].tv_nsec = UTIME_OMIT; times[1].tv_nsec = UTIME_OMIT; if (to_set & FATTR_ATIME) { if (to_set & FATTR_ATIME_NOW) { times[0].tv_nsec = UTIME_NOW; } else { times[0] = attr->st_atim; } } if (to_set & FATTR_MTIME) { if (to_set & FATTR_MTIME_NOW) { times[1].tv_nsec = UTIME_NOW; } else { times[1] = attr->st_mtim; } } TRACE_NODE(node, req); int res = 0; if (fd == -1) { res = utimensat(-1, path.c_str(), times, 0); } else { res = futimens(fd, times); } if (res < 0) { fuse_reply_err(req, errno); return; } } lstat(path.c_str(), attr); fuse_reply_attr(req, attr, is_package_owned_path(path, fuse->path) ? 0 : std::numeric_limits::max()); } static void pf_canonical_path(fuse_req_t req, fuse_ino_t ino) { struct fuse* fuse = get_fuse(req); node* node = fuse->FromInode(ino); string path = node ? node->BuildPath() : ""; if (node && is_app_accessible_path(fuse->mp, path, req->ctx.uid)) { // TODO(b/147482155): Check that uid has access to |path| and its contents fuse_reply_canonical_path(req, path.c_str()); return; } fuse_reply_err(req, ENOENT); } static void pf_mknod(fuse_req_t req, fuse_ino_t parent, const char* name, mode_t mode, dev_t rdev) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* parent_node = fuse->FromInode(parent); if (!parent_node) { fuse_reply_err(req, ENOENT); return; } string parent_path = parent_node->BuildPath(); if (!is_app_accessible_path(fuse->mp, parent_path, req->ctx.uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(parent_node, req); const string child_path = parent_path + "/" + name; mode = (mode & (~0777)) | 0664; if (mknod(child_path.c_str(), mode, rdev) < 0) { fuse_reply_err(req, errno); return; } int error_code = 0; struct fuse_entry_param e; if (make_node_entry(req, parent_node, name, child_path, &e, &error_code)) { fuse_reply_entry(req, &e); } else { CHECK(error_code != 0); fuse_reply_err(req, error_code); } } static void pf_mkdir(fuse_req_t req, fuse_ino_t parent, const char* name, mode_t mode) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* parent_node = fuse->FromInode(parent); if (!parent_node) { fuse_reply_err(req, ENOENT); return; } const struct fuse_ctx* ctx = fuse_req_ctx(req); const string parent_path = parent_node->BuildPath(); if (!is_app_accessible_path(fuse->mp, parent_path, ctx->uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(parent_node, req); const string child_path = parent_path + "/" + name; int status = fuse->mp->IsCreatingDirAllowed(child_path, ctx->uid); if (status) { fuse_reply_err(req, status); return; } mode = (mode & (~0777)) | 0775; if (mkdir(child_path.c_str(), mode) < 0) { fuse_reply_err(req, errno); return; } int error_code = 0; struct fuse_entry_param e; if (make_node_entry(req, parent_node, name, child_path, &e, &error_code)) { fuse_reply_entry(req, &e); } else { CHECK(error_code != 0); fuse_reply_err(req, error_code); } } static void pf_unlink(fuse_req_t req, fuse_ino_t parent, const char* name) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* parent_node = fuse->FromInode(parent); if (!parent_node) { fuse_reply_err(req, ENOENT); return; } const struct fuse_ctx* ctx = fuse_req_ctx(req); const string parent_path = parent_node->BuildPath(); if (!is_app_accessible_path(fuse->mp, parent_path, ctx->uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(parent_node, req); const string child_path = parent_path + "/" + name; int status = fuse->mp->DeleteFile(child_path, ctx->uid); if (status) { fuse_reply_err(req, status); return; } node* child_node = parent_node->LookupChildByName(name, false /* acquire */); TRACE_NODE(child_node, req); if (child_node) { child_node->SetDeleted(); } fuse_reply_err(req, 0); } static void pf_rmdir(fuse_req_t req, fuse_ino_t parent, const char* name) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* parent_node = fuse->FromInode(parent); if (!parent_node) { fuse_reply_err(req, ENOENT); return; } const string parent_path = parent_node->BuildPath(); if (!is_app_accessible_path(fuse->mp, parent_path, req->ctx.uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(parent_node, req); const string child_path = parent_path + "/" + name; int status = fuse->mp->IsDeletingDirAllowed(child_path, req->ctx.uid); if (status) { fuse_reply_err(req, status); return; } if (rmdir(child_path.c_str()) < 0) { fuse_reply_err(req, errno); return; } node* child_node = parent_node->LookupChildByName(name, false /* acquire */); TRACE_NODE(child_node, req); if (child_node) { child_node->SetDeleted(); } fuse_reply_err(req, 0); } /* static void pf_symlink(fuse_req_t req, const char* link, fuse_ino_t parent, const char* name) { cout << "TODO:" << __func__; } */ static int do_rename(fuse_req_t req, fuse_ino_t parent, const char* name, fuse_ino_t new_parent, const char* new_name, unsigned int flags) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); if (flags != 0) { return EINVAL; } node* old_parent_node = fuse->FromInode(parent); if (!old_parent_node) return ENOENT; const struct fuse_ctx* ctx = fuse_req_ctx(req); const string old_parent_path = old_parent_node->BuildPath(); if (!is_app_accessible_path(fuse->mp, old_parent_path, ctx->uid)) { return ENOENT; } node* new_parent_node = fuse->FromInode(new_parent); if (!new_parent_node) return ENOENT; const string new_parent_path = new_parent_node->BuildPath(); if (!is_app_accessible_path(fuse->mp, new_parent_path, ctx->uid)) { return ENOENT; } if (!old_parent_node || !new_parent_node) { return ENOENT; } else if (parent == new_parent && name == new_name) { // No rename required. return 0; } TRACE_NODE(old_parent_node, req); TRACE_NODE(new_parent_node, req); node* child_node = old_parent_node->LookupChildByName(name, true /* acquire */); TRACE_NODE(child_node, req) << "old_child"; const string old_child_path = child_node->BuildPath(); const string new_child_path = new_parent_path + "/" + new_name; // TODO(b/147408834): Check ENOTEMPTY & EEXIST error conditions before JNI call. const int res = fuse->mp->Rename(old_child_path, new_child_path, req->ctx.uid); // TODO(b/145663158): Lookups can go out of sync if file/directory is actually moved but // EFAULT/EIO is reported due to JNI exception. if (res == 0) { child_node->Rename(new_name, new_parent_node); } TRACE_NODE(child_node, req) << "new_child"; child_node->Release(1); return res; } static void pf_rename(fuse_req_t req, fuse_ino_t parent, const char* name, fuse_ino_t new_parent, const char* new_name, unsigned int flags) { int res = do_rename(req, parent, name, new_parent, new_name, flags); fuse_reply_err(req, res); } /* static void pf_link(fuse_req_t req, fuse_ino_t ino, fuse_ino_t new_parent, const char* new_name) { cout << "TODO:" << __func__; } */ static handle* create_handle_for_node(struct fuse* fuse, const string& path, int fd, node* node, const RedactionInfo* ri) { std::lock_guard guard(fuse->lock); // We don't want to use the FUSE VFS cache in two cases: // 1. When redaction is needed because app A with EXIF access might access // a region that should have been redacted for app B without EXIF access, but app B on // a subsequent read, will be able to see the EXIF data because the read request for // that region will be served from cache and not get to the FUSE daemon // 2. When the file has a read or write lock on it. This means that the MediaProvider // has given an fd to the lower file system to an app. There are two cases where using // the cache in this case can be a problem: // a. Writing to a FUSE fd with caching enabled will use the write-back cache and a // subsequent read from the lower fs fd will not see the write. // b. Reading from a FUSE fd with caching enabled may not see the latest writes using // the lower fs fd because those writes did not go through the FUSE layer and reads from // FUSE after that write may be served from cache bool direct_io = ri->isRedactionNeeded() || is_file_locked(fd, path); handle* h = new handle(fd, ri, !direct_io); node->AddHandle(h); return h; } static void pf_open(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* node = fuse->FromInode(ino); if (!node) { fuse_reply_err(req, ENOENT); return; } const struct fuse_ctx* ctx = fuse_req_ctx(req); const string path = node->BuildPath(); if (!is_app_accessible_path(fuse->mp, path, ctx->uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(node, req) << (is_requesting_write(fi->flags) ? "write" : "read"); if (fi->flags & O_DIRECT) { fi->flags &= ~O_DIRECT; fi->direct_io = true; } int status = fuse->mp->IsOpenAllowed(path, ctx->uid, is_requesting_write(fi->flags)); if (status) { fuse_reply_err(req, status); return; } // With the writeback cache enabled, FUSE may generate READ requests even for files that // were opened O_WRONLY; so make sure we open it O_RDWR instead. int open_flags = fi->flags; if (open_flags & O_WRONLY) { open_flags &= ~O_WRONLY; open_flags |= O_RDWR; } if (open_flags & O_APPEND) { open_flags &= ~O_APPEND; } const int fd = open(path.c_str(), open_flags); if (fd < 0) { fuse_reply_err(req, errno); return; } // We don't redact if the caller was granted write permission for this file std::unique_ptr ri; if (is_requesting_write(fi->flags)) { ri = std::make_unique(); } else { ri = fuse->mp->GetRedactionInfo(path, req->ctx.uid, req->ctx.pid); } if (!ri) { close(fd); fuse_reply_err(req, EFAULT); return; } handle* h = create_handle_for_node(fuse, path, fd, node, ri.release()); fi->fh = ptr_to_id(h); fi->keep_cache = 1; fi->direct_io = !h->cached; fuse_reply_open(req, fi); } static void do_read(fuse_req_t req, size_t size, off_t off, struct fuse_file_info* fi) { handle* h = reinterpret_cast(fi->fh); struct fuse_bufvec buf = FUSE_BUFVEC_INIT(size); buf.buf[0].fd = h->fd; buf.buf[0].pos = off; buf.buf[0].flags = (enum fuse_buf_flags) (FUSE_BUF_IS_FD | FUSE_BUF_FD_SEEK); fuse_reply_data(req, &buf, (enum fuse_buf_copy_flags) 0); } static bool range_contains(const RedactionRange& rr, off_t off) { return rr.first <= off && off <= rr.second; } /** * Sets the parameters for a fuse_buf that reads from memory, including flags. * Makes buf->mem point to an already mapped region of zeroized memory. * This memory is read only. */ static void create_mem_fuse_buf(size_t size, fuse_buf* buf, struct fuse* fuse) { buf->size = size; buf->mem = fuse->zero_addr; buf->flags = static_cast(0 /*read from fuse_buf.mem*/); buf->pos = -1; buf->fd = -1; } /** * Sets the parameters for a fuse_buf that reads from file, including flags. */ static void create_file_fuse_buf(size_t size, off_t pos, int fd, fuse_buf* buf) { buf->size = size; buf->fd = fd; buf->pos = pos; buf->flags = static_cast(FUSE_BUF_IS_FD | FUSE_BUF_FD_SEEK); buf->mem = nullptr; } static void do_read_with_redaction(fuse_req_t req, size_t size, off_t off, fuse_file_info* fi) { handle* h = reinterpret_cast(fi->fh); auto overlapping_rr = h->ri->getOverlappingRedactionRanges(size, off); if (overlapping_rr->size() <= 0) { // no relevant redaction ranges for this request do_read(req, size, off, fi); return; } // the number of buffers we need, if the read doesn't start or end with // a redaction range. int num_bufs = overlapping_rr->size() * 2 + 1; if (overlapping_rr->front().first <= off) { // the beginning of the read request is redacted num_bufs--; } if (overlapping_rr->back().second >= off + size) { // the end of the read request is redacted num_bufs--; } auto bufvec_ptr = std::unique_ptr{ reinterpret_cast( malloc(sizeof(fuse_bufvec) + (num_bufs - 1) * sizeof(fuse_buf))), free}; fuse_bufvec& bufvec = *bufvec_ptr; // initialize bufvec bufvec.count = num_bufs; bufvec.idx = 0; bufvec.off = 0; int rr_idx = 0; off_t start = off; // Add a dummy redaction range to make sure we don't go out of vector // limits when computing the end of the last non-redacted range. // This ranges is invalid because its starting point is larger than it's ending point. overlapping_rr->push_back(RedactionRange(LLONG_MAX, LLONG_MAX - 1)); for (int i = 0; i < num_bufs; ++i) { off_t end; if (range_contains(overlapping_rr->at(rr_idx), start)) { // Handle a redacted range // end should be the end of the redacted range, but can't be out of // the read request bounds end = std::min(static_cast(off + size - 1), overlapping_rr->at(rr_idx).second); create_mem_fuse_buf(/*size*/ end - start + 1, &(bufvec.buf[i]), get_fuse(req)); ++rr_idx; } else { // Handle a non-redacted range // end should be right before the next redaction range starts or // the end of the read request end = std::min(static_cast(off + size - 1), overlapping_rr->at(rr_idx).first - 1); create_file_fuse_buf(/*size*/ end - start + 1, start, h->fd, &(bufvec.buf[i])); } start = end + 1; } fuse_reply_data(req, &bufvec, static_cast(0)); } static void pf_read(fuse_req_t req, fuse_ino_t ino, size_t size, off_t off, struct fuse_file_info* fi) { ATRACE_CALL(); handle* h = reinterpret_cast(fi->fh); struct fuse* fuse = get_fuse(req); fuse->fadviser.Record(h->fd, size); if (h->ri->isRedactionNeeded()) { do_read_with_redaction(req, size, off, fi); } else { do_read(req, size, off, fi); } } /* static void pf_write(fuse_req_t req, fuse_ino_t ino, const char* buf, size_t size, off_t off, struct fuse_file_info* fi) { cout << "TODO:" << __func__; } */ static void pf_write_buf(fuse_req_t req, fuse_ino_t ino, struct fuse_bufvec* bufv, off_t off, struct fuse_file_info* fi) { ATRACE_CALL(); handle* h = reinterpret_cast(fi->fh); struct fuse_bufvec buf = FUSE_BUFVEC_INIT(fuse_buf_size(bufv)); ssize_t size; struct fuse* fuse = get_fuse(req); buf.buf[0].fd = h->fd; buf.buf[0].pos = off; buf.buf[0].flags = (enum fuse_buf_flags) (FUSE_BUF_IS_FD | FUSE_BUF_FD_SEEK); size = fuse_buf_copy(&buf, bufv, (enum fuse_buf_copy_flags) 0); if (size < 0) fuse_reply_err(req, -size); else { fuse_reply_write(req, size); fuse->fadviser.Record(h->fd, size); } } // Haven't tested this one. Not sure what calls it. #if 0 static void pf_copy_file_range(fuse_req_t req, fuse_ino_t ino_in, off_t off_in, struct fuse_file_info* fi_in, fuse_ino_t ino_out, off_t off_out, struct fuse_file_info* fi_out, size_t len, int flags) { handle* h_in = reinterpret_cast(fi_in->fh); handle* h_out = reinterpret_cast(fi_out->fh); struct fuse_bufvec buf_in = FUSE_BUFVEC_INIT(len); struct fuse_bufvec buf_out = FUSE_BUFVEC_INIT(len); ssize_t size; buf_in.buf[0].fd = h_in->fd; buf_in.buf[0].pos = off_in; buf_in.buf[0].flags = (enum fuse_buf_flags)(FUSE_BUF_IS_FD|FUSE_BUF_FD_SEEK); buf_out.buf[0].fd = h_out->fd; buf_out.buf[0].pos = off_out; buf_out.buf[0].flags = (enum fuse_buf_flags)(FUSE_BUF_IS_FD|FUSE_BUF_FD_SEEK); size = fuse_buf_copy(&buf_out, &buf_in, (enum fuse_buf_copy_flags) 0); if (size < 0) { fuse_reply_err(req, -size); } fuse_reply_write(req, size); } #endif static void pf_flush(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); TRACE_NODE(nullptr, req) << "noop"; fuse_reply_err(req, 0); } static void pf_release(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* node = fuse->FromInode(ino); handle* h = reinterpret_cast(fi->fh); TRACE_NODE(node, req); fuse->fadviser.Close(h->fd); if (node) { node->DestroyHandle(h); } fuse_reply_err(req, 0); } static int do_sync_common(int fd, bool datasync) { int res = datasync ? fdatasync(fd) : fsync(fd); if (res == -1) return errno; return 0; } static void pf_fsync(fuse_req_t req, fuse_ino_t ino, int datasync, struct fuse_file_info* fi) { ATRACE_CALL(); handle* h = reinterpret_cast(fi->fh); int err = do_sync_common(h->fd, datasync); fuse_reply_err(req, err); } static void pf_fsyncdir(fuse_req_t req, fuse_ino_t ino, int datasync, struct fuse_file_info* fi) { dirhandle* h = reinterpret_cast(fi->fh); int err = do_sync_common(dirfd(h->d), datasync); fuse_reply_err(req, err); } static void pf_opendir(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* node = fuse->FromInode(ino); if (!node) { fuse_reply_err(req, ENOENT); return; } const struct fuse_ctx* ctx = fuse_req_ctx(req); const string path = node->BuildPath(); if (!is_app_accessible_path(fuse->mp, path, ctx->uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(node, req); int status = fuse->mp->IsOpendirAllowed(path, ctx->uid, /* forWrite */ false); if (status) { fuse_reply_err(req, status); return; } DIR* dir = opendir(path.c_str()); if (!dir) { fuse_reply_err(req, errno); return; } dirhandle* h = new dirhandle(dir); node->AddDirHandle(h); fi->fh = ptr_to_id(h); fuse_reply_open(req, fi); } #define READDIR_BUF 8192LU static void do_readdir_common(fuse_req_t req, fuse_ino_t ino, size_t size, off_t off, struct fuse_file_info* fi, bool plus) { struct fuse* fuse = get_fuse(req); dirhandle* h = reinterpret_cast(fi->fh); size_t len = std::min(size, READDIR_BUF); char buf[READDIR_BUF]; size_t used = 0; std::shared_ptr de; struct fuse_entry_param e; size_t entry_size = 0; node* node = fuse->FromInode(ino); if (!node) { fuse_reply_err(req, ENOENT); return; } const string path = node->BuildPath(); if (!is_app_accessible_path(fuse->mp, path, req->ctx.uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(node, req); // Get all directory entries from MediaProvider on first readdir() call of // directory handle. h->next_off = 0 indicates that current readdir() call // is first readdir() call for the directory handle, Avoid multiple JNI calls // for single directory handle. if (h->next_off == 0) { h->de = fuse->mp->GetDirectoryEntries(req->ctx.uid, path, h->d); } // If the last entry in the previous readdir() call was rejected due to // buffer capacity constraints, update directory offset to start from // previously rejected entry. Directory offset can also change if there was // a seekdir() on the given directory handle. if (off != h->next_off) { h->next_off = off; } const int num_directory_entries = h->de.size(); // Check for errors. Any error/exception occurred while obtaining directory // entries will be indicated by marking first directory entry name as empty // string. In the erroneous case corresponding d_type will hold error number. if (num_directory_entries && h->de[0]->d_name.empty()) { fuse_reply_err(req, h->de[0]->d_type); return; } while (h->next_off < num_directory_entries) { de = h->de[h->next_off]; entry_size = 0; h->next_off++; if (plus) { int error_code = 0; if (do_lookup(req, ino, de->d_name.c_str(), &e, &error_code)) { entry_size = fuse_add_direntry_plus(req, buf + used, len - used, de->d_name.c_str(), &e, h->next_off); } else { // Ignore lookup errors on // 1. non-existing files returned from MediaProvider database. // 2. path that doesn't match FuseDaemon UID and calling uid. if (error_code == ENOENT || error_code == EPERM || error_code == EACCES) continue; fuse_reply_err(req, error_code); return; } } else { // This should never happen because we have readdir_plus enabled without adaptive // readdir_plus, FUSE_CAP_READDIRPLUS_AUTO LOG(WARNING) << "Handling plain readdir for " << de->d_name << ". Invalid d_ino"; e.attr.st_ino = FUSE_UNKNOWN_INO; e.attr.st_mode = de->d_type << 12; entry_size = fuse_add_direntry(req, buf + used, len - used, de->d_name.c_str(), &e.attr, h->next_off); } // If buffer in fuse_add_direntry[_plus] is not large enough then // the entry is not added to buffer but the size of the entry is still // returned. Check available buffer size + returned entry size is less // than actual buffer size to confirm entry is added to buffer. if (used + entry_size > len) { // When an entry is rejected, lookup called by readdir_plus will not be tracked by // kernel. Call forget on the rejected node to decrement the reference count. if (plus) { do_forget(req, fuse, e.ino, 1); } break; } used += entry_size; } fuse_reply_buf(req, buf, used); } static void pf_readdir(fuse_req_t req, fuse_ino_t ino, size_t size, off_t off, struct fuse_file_info* fi) { ATRACE_CALL(); do_readdir_common(req, ino, size, off, fi, false); } static void pf_readdirplus(fuse_req_t req, fuse_ino_t ino, size_t size, off_t off, struct fuse_file_info* fi) { ATRACE_CALL(); do_readdir_common(req, ino, size, off, fi, true); } static void pf_releasedir(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* node = fuse->FromInode(ino); dirhandle* h = reinterpret_cast(fi->fh); TRACE_NODE(node, req); if (node) { node->DestroyDirHandle(h); } fuse_reply_err(req, 0); } static void pf_statfs(fuse_req_t req, fuse_ino_t ino) { ATRACE_CALL(); struct statvfs st; struct fuse* fuse = get_fuse(req); if (statvfs(fuse->root->GetName().c_str(), &st)) fuse_reply_err(req, errno); else fuse_reply_statfs(req, &st); } /* static void pf_setxattr(fuse_req_t req, fuse_ino_t ino, const char* name, const char* value, size_t size, int flags) { cout << "TODO:" << __func__; } static void pf_getxattr(fuse_req_t req, fuse_ino_t ino, const char* name, size_t size) { cout << "TODO:" << __func__; } static void pf_listxattr(fuse_req_t req, fuse_ino_t ino, size_t size) { cout << "TODO:" << __func__; } static void pf_removexattr(fuse_req_t req, fuse_ino_t ino, const char* name) { cout << "TODO:" << __func__; }*/ static void pf_access(fuse_req_t req, fuse_ino_t ino, int mask) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* node = fuse->FromInode(ino); if (!node) { fuse_reply_err(req, ENOENT); return; } const string path = node->BuildPath(); if (path != "/storage/emulated" && !is_app_accessible_path(fuse->mp, path, req->ctx.uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(node, req); // exists() checks are always allowed. if (mask == F_OK) { int res = access(path.c_str(), F_OK); fuse_reply_err(req, res ? errno : 0); return; } struct stat stat; if (lstat(path.c_str(), &stat)) { // File doesn't exist fuse_reply_err(req, ENOENT); return; } // For read and write permission checks we go to MediaProvider. int status = 0; bool for_write = mask & W_OK; bool is_directory = S_ISDIR(stat.st_mode); if (is_directory) { if (path == "/storage/emulated" && mask == X_OK) { // Special case for this path: apps should be allowed to enter it, // but not list directory contents (which would be user numbers). int res = access(path.c_str(), X_OK); fuse_reply_err(req, res ? errno : 0); return; } status = fuse->mp->IsOpendirAllowed(path, req->ctx.uid, for_write); } else { if (mask & X_OK) { // Fuse is mounted with MS_NOEXEC. fuse_reply_err(req, EACCES); return; } status = fuse->mp->IsOpenAllowed(path, req->ctx.uid, for_write); } fuse_reply_err(req, status); } static void pf_create(fuse_req_t req, fuse_ino_t parent, const char* name, mode_t mode, struct fuse_file_info* fi) { ATRACE_CALL(); struct fuse* fuse = get_fuse(req); node* parent_node = fuse->FromInode(parent); if (!parent_node) { fuse_reply_err(req, ENOENT); return; } const string parent_path = parent_node->BuildPath(); if (!is_app_accessible_path(fuse->mp, parent_path, req->ctx.uid)) { fuse_reply_err(req, ENOENT); return; } TRACE_NODE(parent_node, req); const string child_path = parent_path + "/" + name; int mp_return_code = fuse->mp->InsertFile(child_path.c_str(), req->ctx.uid); if (mp_return_code) { fuse_reply_err(req, mp_return_code); return; } // With the writeback cache enabled, FUSE may generate READ requests even for files that // were opened O_WRONLY; so make sure we open it O_RDWR instead. int open_flags = fi->flags; if (open_flags & O_WRONLY) { open_flags &= ~O_WRONLY; open_flags |= O_RDWR; } if (open_flags & O_APPEND) { open_flags &= ~O_APPEND; } mode = (mode & (~0777)) | 0664; int fd = open(child_path.c_str(), open_flags, mode); if (fd < 0) { int error_code = errno; // We've already inserted the file into the MP database before the // failed open(), so that needs to be rolled back here. fuse->mp->DeleteFile(child_path.c_str(), req->ctx.uid); fuse_reply_err(req, error_code); return; } int error_code = 0; struct fuse_entry_param e; node* node = make_node_entry(req, parent_node, name, child_path, &e, &error_code); TRACE_NODE(node, req); if (!node) { CHECK(error_code != 0); fuse_reply_err(req, error_code); return; } // Let MediaProvider know we've created a new file fuse->mp->OnFileCreated(child_path); // TODO(b/147274248): Assume there will be no EXIF to redact. // This prevents crashing during reads but can be a security hole if a malicious app opens an fd // to the file before all the EXIF content is written. We could special case reads before the // first close after a file has just been created. handle* h = create_handle_for_node(fuse, child_path, fd, node, new RedactionInfo()); fi->fh = ptr_to_id(h); fi->keep_cache = 1; fi->direct_io = !h->cached; fuse_reply_create(req, &e, fi); } /* static void pf_getlk(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi, struct flock* lock) { cout << "TODO:" << __func__; } static void pf_setlk(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi, struct flock* lock, int sleep) { cout << "TODO:" << __func__; } static void pf_bmap(fuse_req_t req, fuse_ino_t ino, size_t blocksize, uint64_t idx) { cout << "TODO:" << __func__; } static void pf_ioctl(fuse_req_t req, fuse_ino_t ino, unsigned int cmd, void* arg, struct fuse_file_info* fi, unsigned flags, const void* in_buf, size_t in_bufsz, size_t out_bufsz) { cout << "TODO:" << __func__; } static void pf_poll(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi, struct fuse_pollhandle* ph) { cout << "TODO:" << __func__; } static void pf_retrieve_reply(fuse_req_t req, void* cookie, fuse_ino_t ino, off_t offset, struct fuse_bufvec* bufv) { cout << "TODO:" << __func__; } static void pf_flock(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi, int op) { cout << "TODO:" << __func__; } static void pf_fallocate(fuse_req_t req, fuse_ino_t ino, int mode, off_t offset, off_t length, struct fuse_file_info* fi) { cout << "TODO:" << __func__; } */ static struct fuse_lowlevel_ops ops{ .init = pf_init, .destroy = pf_destroy, .lookup = pf_lookup, .forget = pf_forget, .getattr = pf_getattr, .setattr = pf_setattr, .canonical_path = pf_canonical_path, .mknod = pf_mknod, .mkdir = pf_mkdir, .unlink = pf_unlink, .rmdir = pf_rmdir, /*.symlink = pf_symlink,*/ .rename = pf_rename, /*.link = pf_link,*/ .open = pf_open, .read = pf_read, /*.write = pf_write,*/ .flush = pf_flush, .release = pf_release, .fsync = pf_fsync, .opendir = pf_opendir, .readdir = pf_readdir, .releasedir = pf_releasedir, .fsyncdir = pf_fsyncdir, .statfs = pf_statfs, /*.setxattr = pf_setxattr, .getxattr = pf_getxattr, .listxattr = pf_listxattr, .removexattr = pf_removexattr,*/ .access = pf_access, .create = pf_create, /*.getlk = pf_getlk, .setlk = pf_setlk, .bmap = pf_bmap, .ioctl = pf_ioctl, .poll = pf_poll,*/ .write_buf = pf_write_buf, /*.retrieve_reply = pf_retrieve_reply,*/ .forget_multi = pf_forget_multi, /*.flock = pf_flock, .fallocate = pf_fallocate,*/ .readdirplus = pf_readdirplus, /*.copy_file_range = pf_copy_file_range,*/ }; static struct fuse_loop_config config = { .clone_fd = 1, .max_idle_threads = 10, }; static std::unordered_map fuse_to_android_loglevel({ {FUSE_LOG_EMERG, ANDROID_LOG_FATAL}, {FUSE_LOG_ALERT, ANDROID_LOG_ERROR}, {FUSE_LOG_CRIT, ANDROID_LOG_ERROR}, {FUSE_LOG_ERR, ANDROID_LOG_ERROR}, {FUSE_LOG_WARNING, ANDROID_LOG_WARN}, {FUSE_LOG_NOTICE, ANDROID_LOG_INFO}, {FUSE_LOG_INFO, ANDROID_LOG_DEBUG}, {FUSE_LOG_DEBUG, ANDROID_LOG_VERBOSE}, }); static void fuse_logger(enum fuse_log_level level, const char* fmt, va_list ap) { __android_log_vprint(fuse_to_android_loglevel.at(level), LIBFUSE_LOG_TAG, fmt, ap); } bool FuseDaemon::ShouldOpenWithFuse(int fd, bool for_read, const std::string& path) { bool use_fuse = false; if (active.load(std::memory_order_acquire)) { std::lock_guard guard(fuse->lock); const node* node = node::LookupAbsolutePath(fuse->root, path); if (node && node->HasCachedHandle()) { use_fuse = true; } else { // If we are unable to set a lock, we should use fuse since we can't track // when all fd references (including dups) are closed. This can happen when // we try to set a write lock twice on the same file use_fuse = set_file_lock(fd, for_read, path); } } else { LOG(WARNING) << "FUSE daemon is inactive. Cannot open file with FUSE"; } return use_fuse; } void FuseDaemon::InvalidateFuseDentryCache(const std::string& path) { LOG(VERBOSE) << "Invalidating FUSE dentry cache"; if (active.load(std::memory_order_acquire)) { string name; fuse_ino_t parent; fuse_ino_t child; { std::lock_guard guard(fuse->lock); const node* node = node::LookupAbsolutePath(fuse->root, path); if (node) { name = node->GetName(); child = fuse->ToInode(const_cast(node)); parent = fuse->ToInode(node->GetParent()); } } if (!name.empty()) { fuse_inval(fuse->se, parent, child, name, path); } } else { LOG(WARNING) << "FUSE daemon is inactive. Cannot invalidate dentry"; } } FuseDaemon::FuseDaemon(JNIEnv* env, jobject mediaProvider) : mp(env, mediaProvider), active(false), fuse(nullptr) {} bool FuseDaemon::IsStarted() const { return active.load(std::memory_order_acquire); } void FuseDaemon::Start(android::base::unique_fd fd, const std::string& path) { android::base::SetDefaultTag(LOG_TAG); struct fuse_args args; struct fuse_cmdline_opts opts; struct stat stat; if (lstat(path.c_str(), &stat)) { PLOG(ERROR) << "ERROR: failed to stat source " << path; return; } if (!S_ISDIR(stat.st_mode)) { PLOG(ERROR) << "ERROR: source is not a directory"; return; } args = FUSE_ARGS_INIT(0, nullptr); if (fuse_opt_add_arg(&args, path.c_str()) || fuse_opt_add_arg(&args, "-odebug") || fuse_opt_add_arg(&args, ("-omax_read=" + std::to_string(MAX_READ_SIZE)).c_str())) { LOG(ERROR) << "ERROR: failed to set options"; return; } struct fuse fuse_default(path); fuse_default.mp = ∓ // fuse_default is stack allocated, but it's safe to save it as an instance variable because // this method blocks and FuseDaemon#active tells if we are currently blocking fuse = &fuse_default; // Used by pf_read: redacted ranges are represented by zeroized ranges of bytes, // so we mmap the maximum length of redacted ranges in the beginning and save memory allocations // on each read. fuse_default.zero_addr = static_cast(mmap( NULL, MAX_READ_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, /*fd*/ -1, /*off*/ 0)); if (fuse_default.zero_addr == MAP_FAILED) { LOG(FATAL) << "mmap failed - could not start fuse! errno = " << errno; } // Custom logging for libfuse if (android::base::GetBoolProperty("persist.sys.fuse.log", false)) { fuse_set_log_func(fuse_logger); } struct fuse_session * se = fuse_session_new(&args, &ops, sizeof(ops), &fuse_default); if (!se) { PLOG(ERROR) << "Failed to create session "; return; } fuse_default.se = se; fuse_default.active = &active; se->fd = fd.release(); // libfuse owns the FD now se->mountpoint = strdup(path.c_str()); // Single thread. Useful for debugging // fuse_session_loop(se); // Multi-threaded LOG(INFO) << "Starting fuse..."; fuse_session_loop_mt(se, &config); fuse->active->store(false, std::memory_order_release); LOG(INFO) << "Ending fuse..."; if (munmap(fuse_default.zero_addr, MAX_READ_SIZE)) { PLOG(ERROR) << "munmap failed!"; } fuse_opt_free_args(&args); fuse_session_destroy(se); LOG(INFO) << "Ended fuse"; return; } } //namespace fuse } // namespace mediaprovider