/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "android_keymaster_test_utils.h" using std::ifstream; using std::istreambuf_iterator; using std::ofstream; using std::string; using std::unique_ptr; using std::vector; extern "C" { int __android_log_print(int prio, const char* tag, const char* fmt); int __android_log_print(int prio, const char* tag, const char* fmt) { (void)prio, (void)tag, (void)fmt; return 0; } } // extern "C" namespace { // For some reason std::make_unique isn't available. Define make_unique. template std::unique_ptr make_unique(Args&&... args) { return std::unique_ptr(new T(std::forward(args)...)); } } // namespace namespace keymaster { namespace test { const uint32_t kOsVersion = 060000; const uint32_t kOsPatchLevel = 201603; StdoutLogger logger; template vector make_vector(const T* array, size_t len) { return vector(array, array + len); } /** * KeymasterEnforcement class for use in testing. It's permissive in the sense that it doesn't * check cryptoperiods, but restrictive in the sense that the clock never advances (so rate-limited * keys will only work once). */ class TestKeymasterEnforcement : public SoftKeymasterEnforcement { public: TestKeymasterEnforcement() : SoftKeymasterEnforcement(3, 3) {} virtual bool activation_date_valid(uint64_t /* activation_date */) const { return true; } virtual bool expiration_date_passed(uint64_t /* expiration_date */) const { return false; } virtual bool auth_token_timed_out(const hw_auth_token_t& /* token */, uint32_t /* timeout */) const { return false; } virtual uint32_t get_current_time() const { return 0; } virtual bool ValidateTokenSignature(const hw_auth_token_t& /* token */) const { return true; } }; /** * Variant of SoftKeymasterContext that provides a TestKeymasterEnforcement. */ class TestKeymasterContext : public SoftKeymasterContext { public: TestKeymasterContext() {} explicit TestKeymasterContext(const string& root_of_trust) : SoftKeymasterContext(root_of_trust) {} KeymasterEnforcement* enforcement_policy() override { return &test_policy_; } private: TestKeymasterEnforcement test_policy_; }; /** * Test instance creator that builds a pure software keymaster2 implementation. */ class SoftKeymasterTestInstanceCreator : public Keymaster2TestInstanceCreator { public: keymaster2_device_t* CreateDevice() const override { std::cerr << "Creating software-only device" << std::endl; context_ = new TestKeymasterContext; SoftKeymasterDevice* device = new SoftKeymasterDevice(context_); AuthorizationSet version_info(AuthorizationSetBuilder() .Authorization(TAG_OS_VERSION, kOsVersion) .Authorization(TAG_OS_PATCHLEVEL, kOsPatchLevel)); device->keymaster2_device()->configure(device->keymaster2_device(), &version_info); return device->keymaster2_device(); } bool algorithm_in_km0_hardware(keymaster_algorithm_t) const override { return false; } int keymaster0_calls() const override { return 0; } bool is_keymaster1_hw() const override { return false; } KeymasterContext* keymaster_context() const override { return context_; } string name() const override { return "Soft Keymaster2"; } private: mutable TestKeymasterContext* context_; }; /** * Test instance creator that builds a SoftKeymasterDevice which wraps a fake hardware keymaster1 * instance, with minimal digest support. */ class Sha256OnlyKeymaster1TestInstanceCreator : public Keymaster2TestInstanceCreator { keymaster2_device_t* CreateDevice() const override { std::cerr << "Creating keymaster1-backed device that supports only SHA256"; // fake_device doesn't leak because device (below) takes ownership of it. keymaster1_device_t* fake_device = make_device_sha256_only( (new SoftKeymasterDevice(new TestKeymasterContext("PseudoHW")))->keymaster_device()); // device doesn't leak; it's cleaned up by device->keymaster_device()->common.close(). context_ = new TestKeymasterContext; SoftKeymasterDevice* device = new SoftKeymasterDevice(context_); device->SetHardwareDevice(fake_device); AuthorizationSet version_info(AuthorizationSetBuilder() .Authorization(TAG_OS_VERSION, kOsVersion) .Authorization(TAG_OS_PATCHLEVEL, kOsPatchLevel)); device->keymaster2_device()->configure(device->keymaster2_device(), &version_info); return device->keymaster2_device(); } bool algorithm_in_km0_hardware(keymaster_algorithm_t) const override { return false; } int keymaster0_calls() const override { return 0; } int minimal_digest_set() const override { return true; } bool is_keymaster1_hw() const override { return true; } KeymasterContext* keymaster_context() const override { return context_; } string name() const override { return "Wrapped fake keymaster1 w/minimal digests"; } private: mutable TestKeymasterContext* context_; }; /** * Test instance creator that builds a SoftKeymasterDevice which wraps a fake hardware keymaster1 * instance, with full digest support */ class Keymaster1TestInstanceCreator : public Keymaster2TestInstanceCreator { keymaster2_device_t* CreateDevice() const override { std::cerr << "Creating keymaster1-backed device"; // fake_device doesn't leak because device (below) takes ownership of it. keymaster1_device_t* fake_device = (new SoftKeymasterDevice(new TestKeymasterContext("PseudoHW")))->keymaster_device(); // device doesn't leak; it's cleaned up by device->keymaster_device()->common.close(). context_ = new TestKeymasterContext; SoftKeymasterDevice* device = new SoftKeymasterDevice(context_); device->SetHardwareDevice(fake_device); AuthorizationSet version_info(AuthorizationSetBuilder() .Authorization(TAG_OS_VERSION, kOsVersion) .Authorization(TAG_OS_PATCHLEVEL, kOsPatchLevel)); device->keymaster2_device()->configure(device->keymaster2_device(), &version_info); return device->keymaster2_device(); } bool algorithm_in_km0_hardware(keymaster_algorithm_t) const override { return false; } int keymaster0_calls() const override { return 0; } int minimal_digest_set() const override { return false; } bool is_keymaster1_hw() const override { return true; } KeymasterContext* keymaster_context() const override { return context_; } string name() const override { return "Wrapped fake keymaster1 w/full digests"; } private: mutable TestKeymasterContext* context_; }; static auto test_params = testing::Values( InstanceCreatorPtr(new SoftKeymasterTestInstanceCreator), InstanceCreatorPtr(new Keymaster1TestInstanceCreator), InstanceCreatorPtr(new Sha256OnlyKeymaster1TestInstanceCreator)); class NewKeyGeneration : public Keymaster2Test { protected: void CheckBaseParams() { AuthorizationSet auths = sw_enforced(); EXPECT_GT(auths.SerializedSize(), 12U); EXPECT_TRUE(contains(auths, TAG_PURPOSE, KM_PURPOSE_SIGN)); EXPECT_TRUE(contains(auths, TAG_PURPOSE, KM_PURPOSE_VERIFY)); EXPECT_TRUE(contains(auths, TAG_USER_ID, 7)); EXPECT_TRUE(contains(auths, TAG_USER_AUTH_TYPE, HW_AUTH_PASSWORD)); EXPECT_TRUE(contains(auths, TAG_AUTH_TIMEOUT, 300)); // Verify that App ID, App data and ROT are NOT included. EXPECT_FALSE(contains(auths, TAG_ROOT_OF_TRUST)); EXPECT_FALSE(contains(auths, TAG_APPLICATION_ID)); EXPECT_FALSE(contains(auths, TAG_APPLICATION_DATA)); // Just for giggles, check that some unexpected tags/values are NOT present. EXPECT_FALSE(contains(auths, TAG_PURPOSE, KM_PURPOSE_ENCRYPT)); EXPECT_FALSE(contains(auths, TAG_PURPOSE, KM_PURPOSE_DECRYPT)); EXPECT_FALSE(contains(auths, TAG_AUTH_TIMEOUT, 301)); // Now check that unspecified, defaulted tags are correct. EXPECT_TRUE(contains(auths, KM_TAG_CREATION_DATETIME)); if (GetParam()->is_keymaster1_hw()) { // If the underlying (faked) HW is KM1, it will not have version info. EXPECT_FALSE(auths.Contains(TAG_OS_VERSION)); EXPECT_FALSE(auths.Contains(TAG_OS_PATCHLEVEL)); } else { // In all othe cases; SoftKeymasterDevice keys, or keymaster0 keys wrapped by // SoftKeymasterDevice, version information will be present and up to date. EXPECT_TRUE(contains(auths, TAG_OS_VERSION, kOsVersion)); EXPECT_TRUE(contains(auths, TAG_OS_PATCHLEVEL, kOsPatchLevel)); } } }; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, NewKeyGeneration, test_params); TEST_P(NewKeyGeneration, Rsa) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); CheckBaseParams(); // Check specified tags are all present, and in the right set. AuthorizationSet crypto_params; AuthorizationSet non_crypto_params; if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) { EXPECT_NE(0U, hw_enforced().size()); EXPECT_NE(0U, sw_enforced().size()); crypto_params.push_back(hw_enforced()); non_crypto_params.push_back(sw_enforced()); } else { EXPECT_EQ(0U, hw_enforced().size()); EXPECT_NE(0U, sw_enforced().size()); crypto_params.push_back(sw_enforced()); } EXPECT_TRUE(contains(crypto_params, TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_FALSE(contains(non_crypto_params, TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_TRUE(contains(crypto_params, TAG_KEY_SIZE, 256)); EXPECT_FALSE(contains(non_crypto_params, TAG_KEY_SIZE, 256)); EXPECT_TRUE(contains(crypto_params, TAG_RSA_PUBLIC_EXPONENT, 3)); EXPECT_FALSE(contains(non_crypto_params, TAG_RSA_PUBLIC_EXPONENT, 3)); EXPECT_EQ(KM_ERROR_OK, DeleteKey()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, RsaDefaultSize) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder() .Authorization(TAG_ALGORITHM, KM_ALGORITHM_RSA) .Authorization(TAG_RSA_PUBLIC_EXPONENT, 3) .SigningKey())); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, Ecdsa) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); CheckBaseParams(); // Check specified tags are all present, and in the right set. AuthorizationSet crypto_params; AuthorizationSet non_crypto_params; if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) { EXPECT_NE(0U, hw_enforced().size()); EXPECT_NE(0U, sw_enforced().size()); crypto_params.push_back(hw_enforced()); non_crypto_params.push_back(sw_enforced()); } else { EXPECT_EQ(0U, hw_enforced().size()); EXPECT_NE(0U, sw_enforced().size()); crypto_params.push_back(sw_enforced()); } EXPECT_TRUE(contains(crypto_params, TAG_ALGORITHM, KM_ALGORITHM_EC)); EXPECT_FALSE(contains(non_crypto_params, TAG_ALGORITHM, KM_ALGORITHM_EC)); EXPECT_TRUE(contains(crypto_params, TAG_KEY_SIZE, 224)); EXPECT_FALSE(contains(non_crypto_params, TAG_KEY_SIZE, 224)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(1, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, EcdsaDefaultSize) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder() .Authorization(TAG_ALGORITHM, KM_ALGORITHM_EC) .SigningKey() .Digest(KM_DIGEST_NONE))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, EcdsaInvalidSize) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(190).Digest(KM_DIGEST_NONE))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, EcdsaMismatchKeySize) { ASSERT_EQ(KM_ERROR_INVALID_ARGUMENT, GenerateKey(AuthorizationSetBuilder() .EcdsaSigningKey(224) .Authorization(TAG_EC_CURVE, KM_EC_CURVE_P_256) .Digest(KM_DIGEST_NONE))); } TEST_P(NewKeyGeneration, EcdsaAllValidSizes) { size_t valid_sizes[] = {224, 256, 384, 521}; for (size_t size : valid_sizes) { EXPECT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(size).Digest( KM_DIGEST_NONE))) << "Failed to generate size: " << size; } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacSha256) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, CheckKeySizes) { for (size_t key_size = 0; key_size <= kMaxHmacKeyLengthBits + 10; ++key_size) { if (key_size < kMinHmacKeyLengthBits || key_size > kMaxHmacKeyLengthBits || key_size % 8 != 0) { EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder() .HmacKey(key_size) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))) << "HMAC key size " << key_size << " invalid."; } else { EXPECT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(key_size) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))); } } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacMultipleDigests) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_DIGEST, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA1) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacDigestNone) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_DIGEST, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacSha256TooShortMacLength) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_MIN_MAC_LENGTH, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 48))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacSha256NonIntegralOctetMacLength) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_MIN_MAC_LENGTH, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 130))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacSha256TooLongMacLength) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_MIN_MAC_LENGTH, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 384))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test GetKeyCharacteristics; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, GetKeyCharacteristics, test_params); TEST_P(GetKeyCharacteristics, SimpleRsa) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); AuthorizationSet original(sw_enforced()); ASSERT_EQ(KM_ERROR_OK, GetCharacteristics()); EXPECT_EQ(original, sw_enforced()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(1, GetParam()->keymaster0_calls()); } typedef Keymaster2Test SigningOperationsTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, SigningOperationsTest, test_params); TEST_P(SigningOperationsTest, RsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPssSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(768, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPaddingNoneDoesNotAllowOther) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_PADDING_MODE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPkcs1Sha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPkcs1NoDigestSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); string message(53, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_RSA_PKCS1_1_5_SIGN); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPkcs1NoDigestTooLarge) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); string message(54, 'a'); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); string result; string signature; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(message, "", &signature)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPssSha256TooSmallKey) { // Key must be at least 10 bytes larger than hash, to provide eight bytes of random salt, so // verify that nine bytes larger than hash won't work. ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256 + 9 * 8, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS))); string message(1024, 'a'); string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PSS); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_DIGEST, BeginOperation(KM_PURPOSE_SIGN, begin_params)); } TEST_P(SigningOperationsTest, RsaNoPaddingHugeData) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); string message(64 * 1024, 'a'); string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); ASSERT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); string result; size_t input_consumed; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, UpdateOperation(message, &result, &input_consumed)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaAbort) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); ASSERT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); EXPECT_EQ(KM_ERROR_OK, AbortOperation()); // Another abort should fail EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, AbortOperation()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaUnsupportedPadding) { GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_SHA_2_256 /* supported digest */) .Padding(KM_PAD_PKCS7)); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PADDING_MODE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaNoDigest) { // PSS requires a digest. GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_RSA_PSS)); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PSS); ASSERT_EQ(KM_ERROR_INCOMPATIBLE_DIGEST, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaNoPadding) { // Padding must be specified ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaKey(256, 3).SigningKey().Digest( KM_DIGEST_NONE))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PADDING_MODE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaTooShortMessage) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message = "1234567890123456789012345678901"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaSignWithEncryptionKey) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); ASSERT_EQ(KM_ERROR_INCOMPATIBLE_PURPOSE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaSignTooLargeMessage) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message(256 / 8, static_cast(0xff)); string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); ASSERT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); string result; size_t input_consumed; ASSERT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); ASSERT_EQ(message.size(), input_consumed); string output; ASSERT_EQ(KM_ERROR_INVALID_ARGUMENT, FinishOperation(&output)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); string message(224 / 8, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest( KM_DIGEST_SHA_2_256))); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaSha384Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest( KM_DIGEST_SHA_2_384))); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_384); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaNoPaddingHugeData) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); string message(64 * 1024, 'a'); string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); ASSERT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); string result; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaAllSizesAndHashes) { vector key_sizes = {224, 256, 384, 521}; vector digests = { KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224, KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512, }; for (int key_size : key_sizes) { for (keymaster_digest_t digest : digests) { ASSERT_EQ( KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(key_size).Digest(digest))); string message(1024, 'a'); string signature; if (digest == KM_DIGEST_NONE) message.resize(key_size / 8); SignMessage(message, &signature, digest); } } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(digests.size() * key_sizes.size() * 3, static_cast(GetParam()->keymaster0_calls())); } TEST_P(SigningOperationsTest, AesEcbSign) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().AesEncryptionKey(128).Authorization( TAG_BLOCK_MODE, KM_MODE_ECB))); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_SIGN)); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_VERIFY)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha1Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA1) .Authorization(TAG_MIN_MAC_LENGTH, 160)); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 160); ASSERT_EQ(20U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha224Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_224) .Authorization(TAG_MIN_MAC_LENGTH, 160))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 224); ASSERT_EQ(28U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 256); ASSERT_EQ(32U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha384Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_384) .Authorization(TAG_MIN_MAC_LENGTH, 384))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 384); ASSERT_EQ(48U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha512Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_512) .Authorization(TAG_MIN_MAC_LENGTH, 384))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 512); ASSERT_EQ(64U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacLengthInKey) { // TODO(swillden): unified API should generate an error on key generation. ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 160); ASSERT_EQ(20U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase3) { string key(20, 0xaa); string message(50, 0xdd); uint8_t sha_224_expected[] = { 0x7f, 0xb3, 0xcb, 0x35, 0x88, 0xc6, 0xc1, 0xf6, 0xff, 0xa9, 0x69, 0x4d, 0x7d, 0x6a, 0xd2, 0x64, 0x93, 0x65, 0xb0, 0xc1, 0xf6, 0x5d, 0x69, 0xd1, 0xec, 0x83, 0x33, 0xea, }; uint8_t sha_256_expected[] = { 0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8, 0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8, 0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe, }; uint8_t sha_384_expected[] = { 0x88, 0x06, 0x26, 0x08, 0xd3, 0xe6, 0xad, 0x8a, 0x0a, 0xa2, 0xac, 0xe0, 0x14, 0xc8, 0xa8, 0x6f, 0x0a, 0xa6, 0x35, 0xd9, 0x47, 0xac, 0x9f, 0xeb, 0xe8, 0x3e, 0xf4, 0xe5, 0x59, 0x66, 0x14, 0x4b, 0x2a, 0x5a, 0xb3, 0x9d, 0xc1, 0x38, 0x14, 0xb9, 0x4e, 0x3a, 0xb6, 0xe1, 0x01, 0xa3, 0x4f, 0x27, }; uint8_t sha_512_expected[] = { 0xfa, 0x73, 0xb0, 0x08, 0x9d, 0x56, 0xa2, 0x84, 0xef, 0xb0, 0xf0, 0x75, 0x6c, 0x89, 0x0b, 0xe9, 0xb1, 0xb5, 0xdb, 0xdd, 0x8e, 0xe8, 0x1a, 0x36, 0x55, 0xf8, 0x3e, 0x33, 0xb2, 0x27, 0x9d, 0x39, 0xbf, 0x3e, 0x84, 0x82, 0x79, 0xa7, 0x22, 0xc8, 0x06, 0xb4, 0x85, 0xa4, 0x7e, 0x67, 0xc8, 0x07, 0xb9, 0x46, 0xa3, 0x37, 0xbe, 0xe8, 0x94, 0x26, 0x74, 0x27, 0x88, 0x59, 0xe1, 0x32, 0x92, 0xfb, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase4) { uint8_t key_data[25] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, }; string key = make_string(key_data); string message(50, 0xcd); uint8_t sha_224_expected[] = { 0x6c, 0x11, 0x50, 0x68, 0x74, 0x01, 0x3c, 0xac, 0x6a, 0x2a, 0xbc, 0x1b, 0xb3, 0x82, 0x62, 0x7c, 0xec, 0x6a, 0x90, 0xd8, 0x6e, 0xfc, 0x01, 0x2d, 0xe7, 0xaf, 0xec, 0x5a, }; uint8_t sha_256_expected[] = { 0x82, 0x55, 0x8a, 0x38, 0x9a, 0x44, 0x3c, 0x0e, 0xa4, 0xcc, 0x81, 0x98, 0x99, 0xf2, 0x08, 0x3a, 0x85, 0xf0, 0xfa, 0xa3, 0xe5, 0x78, 0xf8, 0x07, 0x7a, 0x2e, 0x3f, 0xf4, 0x67, 0x29, 0x66, 0x5b, }; uint8_t sha_384_expected[] = { 0x3e, 0x8a, 0x69, 0xb7, 0x78, 0x3c, 0x25, 0x85, 0x19, 0x33, 0xab, 0x62, 0x90, 0xaf, 0x6c, 0xa7, 0x7a, 0x99, 0x81, 0x48, 0x08, 0x50, 0x00, 0x9c, 0xc5, 0x57, 0x7c, 0x6e, 0x1f, 0x57, 0x3b, 0x4e, 0x68, 0x01, 0xdd, 0x23, 0xc4, 0xa7, 0xd6, 0x79, 0xcc, 0xf8, 0xa3, 0x86, 0xc6, 0x74, 0xcf, 0xfb, }; uint8_t sha_512_expected[] = { 0xb0, 0xba, 0x46, 0x56, 0x37, 0x45, 0x8c, 0x69, 0x90, 0xe5, 0xa8, 0xc5, 0xf6, 0x1d, 0x4a, 0xf7, 0xe5, 0x76, 0xd9, 0x7f, 0xf9, 0x4b, 0x87, 0x2d, 0xe7, 0x6f, 0x80, 0x50, 0x36, 0x1e, 0xe3, 0xdb, 0xa9, 0x1c, 0xa5, 0xc1, 0x1a, 0xa2, 0x5e, 0xb4, 0xd6, 0x79, 0x27, 0x5c, 0xc5, 0x78, 0x80, 0x63, 0xa5, 0xf1, 0x97, 0x41, 0x12, 0x0c, 0x4f, 0x2d, 0xe2, 0xad, 0xeb, 0xeb, 0x10, 0xa2, 0x98, 0xdd, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase5) { string key(20, 0x0c); string message = "Test With Truncation"; uint8_t sha_224_expected[] = { 0x0e, 0x2a, 0xea, 0x68, 0xa9, 0x0c, 0x8d, 0x37, 0xc9, 0x88, 0xbc, 0xdb, 0x9f, 0xca, 0x6f, 0xa8, }; uint8_t sha_256_expected[] = { 0xa3, 0xb6, 0x16, 0x74, 0x73, 0x10, 0x0e, 0xe0, 0x6e, 0x0c, 0x79, 0x6c, 0x29, 0x55, 0x55, 0x2b, }; uint8_t sha_384_expected[] = { 0x3a, 0xbf, 0x34, 0xc3, 0x50, 0x3b, 0x2a, 0x23, 0xa4, 0x6e, 0xfc, 0x61, 0x9b, 0xae, 0xf8, 0x97, }; uint8_t sha_512_expected[] = { 0x41, 0x5f, 0xad, 0x62, 0x71, 0x58, 0x0a, 0x53, 0x1d, 0x41, 0x79, 0xbc, 0x89, 0x1d, 0x87, 0xa6, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase6) { string key(131, 0xaa); string message = "Test Using Larger Than Block-Size Key - Hash Key First"; uint8_t sha_224_expected[] = { 0x95, 0xe9, 0xa0, 0xdb, 0x96, 0x20, 0x95, 0xad, 0xae, 0xbe, 0x9b, 0x2d, 0x6f, 0x0d, 0xbc, 0xe2, 0xd4, 0x99, 0xf1, 0x12, 0xf2, 0xd2, 0xb7, 0x27, 0x3f, 0xa6, 0x87, 0x0e, }; uint8_t sha_256_expected[] = { 0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54, }; uint8_t sha_384_expected[] = { 0x4e, 0xce, 0x08, 0x44, 0x85, 0x81, 0x3e, 0x90, 0x88, 0xd2, 0xc6, 0x3a, 0x04, 0x1b, 0xc5, 0xb4, 0x4f, 0x9e, 0xf1, 0x01, 0x2a, 0x2b, 0x58, 0x8f, 0x3c, 0xd1, 0x1f, 0x05, 0x03, 0x3a, 0xc4, 0xc6, 0x0c, 0x2e, 0xf6, 0xab, 0x40, 0x30, 0xfe, 0x82, 0x96, 0x24, 0x8d, 0xf1, 0x63, 0xf4, 0x49, 0x52, }; uint8_t sha_512_expected[] = { 0x80, 0xb2, 0x42, 0x63, 0xc7, 0xc1, 0xa3, 0xeb, 0xb7, 0x14, 0x93, 0xc1, 0xdd, 0x7b, 0xe8, 0xb4, 0x9b, 0x46, 0xd1, 0xf4, 0x1b, 0x4a, 0xee, 0xc1, 0x12, 0x1b, 0x01, 0x37, 0x83, 0xf8, 0xf3, 0x52, 0x6b, 0x56, 0xd0, 0x37, 0xe0, 0x5f, 0x25, 0x98, 0xbd, 0x0f, 0xd2, 0x21, 0x5d, 0x6a, 0x1e, 0x52, 0x95, 0xe6, 0x4f, 0x73, 0xf6, 0x3f, 0x0a, 0xec, 0x8b, 0x91, 0x5a, 0x98, 0x5d, 0x78, 0x65, 0x98, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase7) { string key(131, 0xaa); string message = "This is a test using a larger than block-size key and a larger than " "block-size data. The key needs to be hashed before being used by the HMAC " "algorithm."; uint8_t sha_224_expected[] = { 0x3a, 0x85, 0x41, 0x66, 0xac, 0x5d, 0x9f, 0x02, 0x3f, 0x54, 0xd5, 0x17, 0xd0, 0xb3, 0x9d, 0xbd, 0x94, 0x67, 0x70, 0xdb, 0x9c, 0x2b, 0x95, 0xc9, 0xf6, 0xf5, 0x65, 0xd1, }; uint8_t sha_256_expected[] = { 0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2, }; uint8_t sha_384_expected[] = { 0x66, 0x17, 0x17, 0x8e, 0x94, 0x1f, 0x02, 0x0d, 0x35, 0x1e, 0x2f, 0x25, 0x4e, 0x8f, 0xd3, 0x2c, 0x60, 0x24, 0x20, 0xfe, 0xb0, 0xb8, 0xfb, 0x9a, 0xdc, 0xce, 0xbb, 0x82, 0x46, 0x1e, 0x99, 0xc5, 0xa6, 0x78, 0xcc, 0x31, 0xe7, 0x99, 0x17, 0x6d, 0x38, 0x60, 0xe6, 0x11, 0x0c, 0x46, 0x52, 0x3e, }; uint8_t sha_512_expected[] = { 0xe3, 0x7b, 0x6a, 0x77, 0x5d, 0xc8, 0x7d, 0xba, 0xa4, 0xdf, 0xa9, 0xf9, 0x6e, 0x5e, 0x3f, 0xfd, 0xde, 0xbd, 0x71, 0xf8, 0x86, 0x72, 0x89, 0x86, 0x5d, 0xf5, 0xa3, 0x2d, 0x20, 0xcd, 0xc9, 0x44, 0xb6, 0x02, 0x2c, 0xac, 0x3c, 0x49, 0x82, 0xb1, 0x0d, 0x5e, 0xeb, 0x55, 0xc3, 0xe4, 0xde, 0x15, 0x13, 0x46, 0x76, 0xfb, 0x6d, 0xe0, 0x44, 0x60, 0x65, 0xc9, 0x74, 0x40, 0xfa, 0x8c, 0x6a, 0x58, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha256TooLargeMacLength) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_MAC_LENGTH, 264); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); ASSERT_EQ(KM_ERROR_UNSUPPORTED_MAC_LENGTH, BeginOperation(KM_PURPOSE_SIGN, begin_params, nullptr /* output_params */)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha256TooSmallMacLength) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_MAC_LENGTH, 120); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); ASSERT_EQ(KM_ERROR_INVALID_MAC_LENGTH, BeginOperation(KM_PURPOSE_SIGN, begin_params, nullptr /* output_params */)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } // TODO(swillden): Add more verification failure tests. typedef Keymaster2Test VerificationOperationsTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, VerificationOperationsTest, test_params); TEST_P(VerificationOperationsTest, RsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE, KM_PAD_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPssSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(768, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPssSha224Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_224) .Padding(KM_PAD_RSA_PSS))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_224, KM_PAD_RSA_PSS); VerifyMessage(message, signature, KM_DIGEST_SHA_2_224, KM_PAD_RSA_PSS); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); // Verify with OpenSSL. string pubkey; EXPECT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &pubkey)); const uint8_t* p = reinterpret_cast(pubkey.data()); unique_ptr pkey( d2i_PUBKEY(nullptr /* alloc new */, &p, pubkey.size())); ASSERT_TRUE(pkey.get()); EVP_MD_CTX digest_ctx; EVP_MD_CTX_init(&digest_ctx); EVP_PKEY_CTX* pkey_ctx; EXPECT_EQ(1, EVP_DigestVerifyInit(&digest_ctx, &pkey_ctx, EVP_sha224(), nullptr /* engine */, pkey.get())); EXPECT_EQ(1, EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING)); EXPECT_EQ(1, EVP_DigestVerifyUpdate(&digest_ctx, message.data(), message.size())); EXPECT_EQ(1, EVP_DigestVerifyFinal(&digest_ctx, reinterpret_cast(signature.data()), signature.size())); EVP_MD_CTX_cleanup(&digest_ctx); } TEST_P(VerificationOperationsTest, RsaPssSha256CorruptSignature) { GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(768, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS)); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); ++signature[signature.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PSS); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPssSha256CorruptInput) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(768, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); ++message[message.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PSS); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPkcs1Sha256Success) { GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN)); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPks1Sha224Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_224) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_224, KM_PAD_RSA_PKCS1_1_5_SIGN); VerifyMessage(message, signature, KM_DIGEST_SHA_2_224, KM_PAD_RSA_PKCS1_1_5_SIGN); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); // Verify with OpenSSL. string pubkey; EXPECT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &pubkey)); const uint8_t* p = reinterpret_cast(pubkey.data()); unique_ptr pkey( d2i_PUBKEY(nullptr /* alloc new */, &p, pubkey.size())); ASSERT_TRUE(pkey.get()); EVP_MD_CTX digest_ctx; EVP_MD_CTX_init(&digest_ctx); EVP_PKEY_CTX* pkey_ctx; EXPECT_EQ(1, EVP_DigestVerifyInit(&digest_ctx, &pkey_ctx, EVP_sha224(), nullptr /* engine */, pkey.get())); EXPECT_EQ(1, EVP_DigestVerifyUpdate(&digest_ctx, message.data(), message.size())); EXPECT_EQ(1, EVP_DigestVerifyFinal(&digest_ctx, reinterpret_cast(signature.data()), signature.size())); EVP_MD_CTX_cleanup(&digest_ctx); } TEST_P(VerificationOperationsTest, RsaPkcs1Sha256CorruptSignature) { GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN)); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); ++signature[signature.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPkcs1Sha256CorruptInput) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); ++message[message.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaAllDigestAndPadCombinations) { vector digests = { KM_DIGEST_NONE, KM_DIGEST_MD5, KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224, KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512, }; vector padding_modes{ KM_PAD_NONE, KM_PAD_RSA_PKCS1_1_5_SIGN, KM_PAD_RSA_PSS, }; int trial_count = 0; for (keymaster_padding_t padding_mode : padding_modes) { for (keymaster_digest_t digest : digests) { if (digest != KM_DIGEST_NONE && padding_mode == KM_PAD_NONE) // Digesting requires padding continue; // Compute key & message size that will work. size_t key_bits = 0; size_t message_len = 1000; if (digest == KM_DIGEST_NONE) { key_bits = 256; switch (padding_mode) { case KM_PAD_NONE: // Match key size. message_len = key_bits / 8; break; case KM_PAD_RSA_PKCS1_1_5_SIGN: message_len = key_bits / 8 - 11; break; case KM_PAD_RSA_PSS: // PSS requires a digest. continue; default: FAIL() << "Missing padding"; break; } } else { size_t digest_bits; switch (digest) { case KM_DIGEST_MD5: digest_bits = 128; break; case KM_DIGEST_SHA1: digest_bits = 160; break; case KM_DIGEST_SHA_2_224: digest_bits = 224; break; case KM_DIGEST_SHA_2_256: digest_bits = 256; break; case KM_DIGEST_SHA_2_384: digest_bits = 384; break; case KM_DIGEST_SHA_2_512: digest_bits = 512; break; default: FAIL() << "Missing digest"; } switch (padding_mode) { case KM_PAD_RSA_PKCS1_1_5_SIGN: key_bits = digest_bits + 8 * (11 + 19); break; case KM_PAD_RSA_PSS: key_bits = digest_bits * 2 + 2 * 8; break; default: FAIL() << "Missing padding"; break; } } // Round up to the nearest multiple of 128. key_bits = (key_bits + 127) / 128 * 128; GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(key_bits, 3) .Digest(digest) .Padding(padding_mode)); string message(message_len, 'a'); string signature; SignMessage(message, &signature, digest, padding_mode); VerifyMessage(message, signature, digest, padding_mode); ++trial_count; } } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(trial_count * 4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, EcdsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest(KM_DIGEST_NONE))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, EcdsaTooShort) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest(KM_DIGEST_NONE))); string message = "12345678901234567890"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, EcdsaSlightlyTooLong) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(521).Digest(KM_DIGEST_NONE))); string message(66, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); // Modifying low-order bits doesn't matter, because they didn't get signed. Ugh. message[65] ^= 7; VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(5, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, EcdsaSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .EcdsaSigningKey(256) .Digest(KM_DIGEST_SHA_2_256) .Digest(KM_DIGEST_NONE))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); // Just for giggles, try verifying with the wrong digest. AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); } TEST_P(VerificationOperationsTest, EcdsaSha224Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest( KM_DIGEST_SHA_2_224))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_224); VerifyMessage(message, signature, KM_DIGEST_SHA_2_224); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); // Just for giggles, try verifying with the wrong digest. AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); } TEST_P(VerificationOperationsTest, EcdsaAllDigestsAndKeySizes) { keymaster_digest_t digests[] = { KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224, KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512, }; size_t key_sizes[] = {224, 256, 384, 521}; string message = "1234567890"; string signature; for (auto key_size : key_sizes) { SCOPED_TRACE(testing::Message() << "Key size: " << key_size); AuthorizationSetBuilder builder; builder.EcdsaSigningKey(key_size); for (auto digest : digests) builder.Digest(digest); ASSERT_EQ(KM_ERROR_OK, GenerateKey(builder)); for (auto digest : digests) { SCOPED_TRACE(testing::Message() << "Digest: " << digest); SignMessage(message, &signature, digest); VerifyMessage(message, signature, digest); } } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(static_cast(array_length(key_sizes) * (1 + 3 * array_length(digests))), GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha1Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA1) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 160); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha224Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_224) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 224); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha256Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 256); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha256TooShortMac) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 256); // Shorten to 128 bits, should still work. signature.resize(128 / 8); VerifyMac(message, signature); // Drop one more byte. signature.resize(signature.length() - 1); AuthorizationSet begin_params(client_params()); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_INVALID_MAC_LENGTH, FinishOperation(message, signature, &result)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha384Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_384) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 384); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha512Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_512) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 512); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test ExportKeyTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, ExportKeyTest, test_params); TEST_P(ExportKeyTest, RsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string export_data; ASSERT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &export_data)); EXPECT_GT(export_data.length(), 0U); // TODO(swillden): Verify that the exported key is actually usable to verify signatures. if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(ExportKeyTest, EcdsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); string export_data; ASSERT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &export_data)); EXPECT_GT(export_data.length(), 0U); // TODO(swillden): Verify that the exported key is actually usable to verify signatures. if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(ExportKeyTest, RsaUnsupportedKeyFormat) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string export_data; ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, ExportKey(KM_KEY_FORMAT_PKCS8, &export_data)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(ExportKeyTest, RsaCorruptedKeyBlob) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); corrupt_key_blob(); string export_data; ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, ExportKey(KM_KEY_FORMAT_X509, &export_data)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(ExportKeyTest, AesKeyExportFails) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().AesEncryptionKey(128))); string export_data; EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, ExportKey(KM_KEY_FORMAT_X509, &export_data)); EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, ExportKey(KM_KEY_FORMAT_PKCS8, &export_data)); EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, ExportKey(KM_KEY_FORMAT_RAW, &export_data)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } static string read_file(const string& file_name) { ifstream file_stream(file_name, std::ios::binary); istreambuf_iterator file_begin(file_stream); istreambuf_iterator file_end; return string(file_begin, file_end); } typedef Keymaster2Test ImportKeyTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, ImportKeyTest, test_params); TEST_P(ImportKeyTest, RsaSuccess) { string pk8_key = read_file("rsa_privkey_pk8.der"); ASSERT_EQ(633U, pk8_key.size()); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder() .RsaSigningKey(1024, 65537) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); // Check values derived from the key. EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA) ? hw_enforced() : sw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA) ? hw_enforced() : sw_enforced(), TAG_KEY_SIZE, 1024)); EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA) ? hw_enforced() : sw_enforced(), TAG_RSA_PUBLIC_EXPONENT, 65537U)); // And values provided by AndroidKeymaster if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_TRUE(contains(hw_enforced(), TAG_ORIGIN, KM_ORIGIN_UNKNOWN)); else EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message(1024 / 8, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE, KM_PAD_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, RsaKeySizeMismatch) { string pk8_key = read_file("rsa_privkey_pk8.der"); ASSERT_EQ(633U, pk8_key.size()); ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, ImportKey(AuthorizationSetBuilder() .RsaSigningKey(2048 /* Doesn't match key */, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, RsaPublicExponenMismatch) { string pk8_key = read_file("rsa_privkey_pk8.der"); ASSERT_EQ(633U, pk8_key.size()); ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, ImportKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3 /* Doesnt' match key */) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, EcdsaSuccess) { string pk8_key = read_file("ec_privkey_pk8.der"); ASSERT_EQ(138U, pk8_key.size()); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest(KM_DIGEST_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); // Check values derived from the key. EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC) ? hw_enforced() : sw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_EC)); EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC) ? hw_enforced() : sw_enforced(), TAG_KEY_SIZE, 256)); // And values provided by AndroidKeymaster if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_TRUE(contains(hw_enforced(), TAG_ORIGIN, KM_ORIGIN_UNKNOWN)); else EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message(32, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, EcdsaSizeSpecified) { string pk8_key = read_file("ec_privkey_pk8.der"); ASSERT_EQ(138U, pk8_key.size()); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest(KM_DIGEST_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); // Check values derived from the key. EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC) ? hw_enforced() : sw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_EC)); EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC) ? hw_enforced() : sw_enforced(), TAG_KEY_SIZE, 256)); // And values provided by AndroidKeymaster if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_TRUE(contains(hw_enforced(), TAG_ORIGIN, KM_ORIGIN_UNKNOWN)); else EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message(32, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, EcdsaSizeMismatch) { string pk8_key = read_file("ec_privkey_pk8.der"); ASSERT_EQ(138U, pk8_key.size()); ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, ImportKey(AuthorizationSetBuilder() .EcdsaSigningKey(224 /* Doesn't match key */) .Digest(KM_DIGEST_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, AesKeySuccess) { char key_data[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; string key(key_data, sizeof(key_data)); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder().AesEncryptionKey(128).EcbMode().Authorization( TAG_PADDING, KM_PAD_PKCS7), KM_KEY_FORMAT_RAW, key)); EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message = "Hello World!"; string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_PKCS7); string plaintext = DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, HmacSha256KeySuccess) { char key_data[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; string key(key_data, sizeof(key_data)); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder() .HmacKey(sizeof(key_data) * 8) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256), KM_KEY_FORMAT_RAW, key)); EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message = "Hello World!"; string signature; MacMessage(message, &signature, 256); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } string wrapped_key = hex2str( "3082017302010004820100A2B7988012A043CE83E762A4E4D3C86D578B2E1EA5E04138353114A816951308E3222AFA" "D86CA141C581198E65BC56D9EEDC5B555713BE2C20948DD076AB4980305871317F89DD3A7A67FBBB7AACF6941C06B2" "65396D894A6DCC7B9FB152FFA8CBF44FF8063748795F3FB506DF8718535289E759075A13A5DDC83EF8470549AA7794" "3AFBACF6CF82DCE3751E05BFE05F30B998D73E23611E6EAEFC2A497E097A895C4242607B472AE8F19DA77A9A5A4786" "75541FC813C9213B5CE8C2E598BFBBCD1B369E3D7AEC0274F9B79118D8AA5FBB7634EBD3C4C2AF3B5DA483DF2CFDF1" "E68A3BFC7B6C0D503AF88E82C9EE841A278B144FF8D39F2DB2ACE9415C120190040CD796B02C370F1FA4CC0124F130" "280201033023A1083106020100020101A203020120A30402020100A4053103020101A60531030201400420CCD54085" "5F833A5E1480BFD2D36FAF3AEEE15DF5BEABE2691BC82DDE2A7AA91004107CB81BDDCD09E8F4DF575726279F3229"); string wrapped_key_masked = hex2str( "30820173020100048201008CBEE0DC600215FFC85FC26B57DD2331DDF5D3E106C0A68BFEF167AFD428041D9B7C3316" "110BBB914A86FC24D4EF5C6A4673C9B3CC914C7806453650753B5130C4FE72264A52C1A270286032513F24EB3E033A" "BCC26A9D6AEFD0D0AD3E922E4E737ECDAD3C4DF2ABDB416378E67381BE0391175EC8F05FDFBC3794B7D0D88298010F" "E9B6F788BC049D874575D2D4C33DB582B113694738A9151BBC7603D3556B26FEC0279EE1C1CA44D6F7F91F4C424912" "7F9CC3232DE8B0AEFFD5AFAD4C3D5B846FD26873315606F6457BC19447FD7C6431550D6E6592A0555E61C7A021D149" "BCEE7A858DD6D4A8E230C6015EEDF0A58F4CAA8A6D0E3A1E3794CAEE7854CE92040C6D9721D08589581AB49204A330" "280201033023A1083106020100020101A203020120A30402020100A4053103020101A60531030201400420A61C6E24" "7E25B3E6E69AA78EB03C2D4AC20D1F99A9A024A76F35C8E2CAB9B68D04101FF7A0E793B9EE4AECEBB9AC4C545254"); string wrapping_key = hex2str( "308204be020100300d06092a864886f70d0101010500048204a8308204a40201000282010100aec367931d8900ce56" "b0067f7d70e1fc653f3f34d194c1fed50018fb43db937b06e673a837313d56b1c725150a3fef86acbddc41bb759c28" "54eae32d35841efb5c18d82bc90a1cb5c1d55adf245b02911f0b7cda88c421ff0ebafe7c0d23be312d7bd5921ffaea" "1347c157406fef718f682643e4e5d33c6703d61c0cf7ac0bf4645c11f5c1374c3886427411c449796792e0bef75dec" "858a2123c36753e02a95a96d7c454b504de385a642e0dfc3e60ac3a7ee4991d0d48b0172a95f9536f02ba13cecccb9" "2b727db5c27e5b2f5cec09600b286af5cf14c42024c61ddfe71c2a8d7458f185234cb00e01d282f10f8fc6721d2aed" "3f4833cca2bd8fa62821dd55020301000102820100431447b6251908112b1ee76f99f3711a52b6630960046c2de70d" "e188d833f8b8b91e4d785caeeeaf4f0f74414e2cda40641f7fe24f14c67a88959bdb27766df9e710b630a03adc683b" "5d2c43080e52bee71e9eaeb6de297a5fea1072070d181c822bccff087d63c940ba8a45f670feb29fb4484d1c95e6d2" "579ba02aae0a00900c3ebf490e3d2cd7ee8d0e20c536e4dc5a5097272888cddd7e91f228b1c4d7474c55b8fcd618c4" "a957bbddd5ad7407cc312d8d98a5caf7e08f4a0d6b45bb41c652659d5a5ba05b663737a8696281865ba20fbdd7f851" "e6c56e8cbe0ddbbf24dc03b2d2cb4c3d540fb0af52e034a2d06698b128e5f101e3b51a34f8d8b4f8618102818100de" "392e18d682c829266cc3454e1d6166242f32d9a1d10577753e904ea7d08bff841be5bac82a164c5970007047b8c517" "db8f8f84e37bd5988561bdf503d4dc2bdb38f885434ae42c355f725c9a60f91f0788e1f1a97223b524b5357fdf72e2" "f696bab7d78e32bf92ba8e1864eab1229e91346130748a6e3c124f9149d71c743502818100c95387c0f9d35f137b57" "d0d65c397c5e21cc251e47008ed62a542409c8b6b6ac7f8967b3863ca645fcce49582a9aa17349db6c4a95affdae0d" "ae612e1afac99ed39a2d934c880440aed8832f9843163a47f27f392199dc1202f9a0f9bd08308007cb1e4e7f583093" "66a7de25f7c3c9b880677c068e1be936e81288815252a8a102818057ff8ca1895080b2cae486ef0adfd791fb0235c0" "b8b36cd6c136e52e4085f4ea5a063212a4f105a3764743e53281988aba073f6e0027298e1c4378556e0efca0e14ece" "1af76ad0b030f27af6f0ab35fb73a060d8b1a0e142fa2647e93b32e36d8282ae0a4de50ab7afe85500a16f43a64719" "d6e2b9439823719cd08bcd03178102818100ba73b0bb28e3f81e9bd1c568713b101241acc607976c4ddccc90e65b65" "56ca31516058f92b6e09f3b160ff0e374ec40d78ae4d4979fde6ac06a1a400c61dd31254186af30b22c10582a8a43e" "34fe949c5f3b9755bae7baa7b7b7a6bd03b38cef55c86885fc6c1978b9cee7ef33da507c9df6b9277cff1e6aaa5d57" "aca528466102818100c931617c77829dfb1270502be9195c8f2830885f57dba869536811e6864236d0c4736a0008a1" "45af36b8357a7c3d139966d04c4e00934ea1aede3bb6b8ec841dc95e3f579751e2bfdfe27ae778983f959356210723" "287b0affcc9f727044d48c373f1babde0724fa17a4fd4da0902c7c9b9bf27ba61be6ad02dfddda8f4e6822"); string zero_masking_key = hex2str("0000000000000000000000000000000000000000000000000000000000000000"); string masking_key = hex2str("D796B02C370F1FA4CC0124F14EC8CBEBE987E825246265050F399A51FD477DFC"); class ImportWrappedKeyTest : public testing::Test { public: ImportWrappedKeyTest() : keymaster_(new PureSoftKeymasterContext(), 16) {} protected: void SetUp() override { ConfigureRequest configReq; configReq.os_version = kOsVersion; configReq.os_patchlevel = kOsPatchLevel; ConfigureResponse configRsp; keymaster_.Configure(configReq, &configRsp); EXPECT_EQ(KM_ERROR_OK, configRsp.error); } keymaster_error_t BeginOperation(keymaster_purpose_t purpose, const AuthorizationSet& input_set) { BeginOperationRequest req; req.purpose = purpose; req.SetKeyMaterial(blob_); req.additional_params = input_set; BeginOperationResponse rsp; keymaster_.BeginOperation(req, &rsp); op_handle_ = rsp.op_handle; return rsp.error; } keymaster_error_t FinishOperation(const string& input, string* output) { FinishOperationRequest req; req.op_handle = op_handle_; req.input.Reinitialize(input.data(), input.size()); FinishOperationResponse rsp; keymaster_.FinishOperation(req, &rsp); if (output) { *output = string(reinterpret_cast(rsp.output.peek_read()), rsp.output.available_read()); } return rsp.error; } string ProcessMessage(keymaster_purpose_t purpose, const string& message, const AuthorizationSet& begin_params) { EXPECT_EQ(KM_ERROR_OK, BeginOperation(purpose, begin_params)); string result; EXPECT_EQ(KM_ERROR_OK, FinishOperation(message, &result)); return result; } AndroidKeymaster keymaster_; KeymasterKeyBlob blob_; uint64_t op_handle_; }; TEST_F(ImportWrappedKeyTest, GoldenKeySuccess) { ImportKeyRequest import_request; auto import_params = AuthorizationSetBuilder() .RsaEncryptionKey(2048, 65537) .Digest(KM_DIGEST_SHA1) .Padding(KM_PAD_RSA_OAEP) .Authorization(TAG_PURPOSE, KM_PURPOSE_WRAP) .build(); import_request.key_description.Reinitialize(import_params); import_request.SetKeyMaterial(reinterpret_cast(wrapping_key.c_str()), wrapping_key.size()); import_request.key_format = KM_KEY_FORMAT_PKCS8; ImportKeyResponse import_response; keymaster_.ImportKey(import_request, &import_response); ASSERT_EQ(import_response.error, KM_ERROR_OK); ImportWrappedKeyRequest request; KeymasterKeyBlob wrapped_key_blob(reinterpret_cast(wrapped_key.c_str()), wrapped_key.size()); request.SetKeyMaterial(wrapped_key_blob, import_response.key_blob); request.SetMaskingKeyMaterial(reinterpret_cast(zero_masking_key.c_str()), zero_masking_key.size()); ImportWrappedKeyResponse response; keymaster_.ImportWrappedKey(request, &response); EXPECT_EQ(response.error, KM_ERROR_OK); // Check that the tags from the wrapped auth list were imported correctly ASSERT_EQ(response.key_blob.key_material_size > 0, true); ASSERT_EQ(response.unenforced.Contains(TAG_ALGORITHM), true); ASSERT_EQ(response.unenforced.Contains(TAG_KEY_SIZE), true); ASSERT_EQ(response.unenforced.Contains(TAG_PURPOSE), true); ASSERT_EQ(response.unenforced.Contains(TAG_BLOCK_MODE), true); blob_ = move(response.key_blob); string message = "Hello World!"; auto params = AuthorizationSetBuilder().BlockMode(KM_MODE_ECB).Padding(KM_PAD_PKCS7).build(); string ciphertext = ProcessMessage(KM_PURPOSE_ENCRYPT, message, params); string plaintext = ProcessMessage(KM_PURPOSE_DECRYPT, ciphertext, params); EXPECT_EQ(message, plaintext); } TEST_F(ImportWrappedKeyTest, SuccessMaskingKey) { ImportKeyRequest import_request; auto import_params = AuthorizationSetBuilder() .RsaEncryptionKey(2048, 65537) .Digest(KM_DIGEST_SHA1) .Padding(KM_PAD_RSA_OAEP) .Authorization(TAG_PURPOSE, KM_PURPOSE_WRAP) .build(); import_request.key_description.Reinitialize(import_params); import_request.SetKeyMaterial(reinterpret_cast(wrapping_key.c_str()), wrapping_key.size()); import_request.key_format = KM_KEY_FORMAT_PKCS8; ImportKeyResponse import_response; keymaster_.ImportKey(import_request, &import_response); EXPECT_EQ(import_response.error, KM_ERROR_OK); if (import_response.error != KM_ERROR_OK) return; ImportWrappedKeyRequest request; KeymasterKeyBlob wrapped_key_blob(reinterpret_cast(wrapped_key_masked.c_str()), wrapped_key_masked.size()); request.SetKeyMaterial(wrapped_key_blob, import_response.key_blob); request.SetMaskingKeyMaterial(reinterpret_cast(masking_key.c_str()), masking_key.size()); ImportWrappedKeyResponse response; keymaster_.ImportWrappedKey(request, &response); EXPECT_EQ(response.error, KM_ERROR_OK); } TEST_F(ImportWrappedKeyTest, WrongMaskingKey) { ImportKeyRequest import_request; auto import_params = AuthorizationSetBuilder() .RsaEncryptionKey(2048, 65537) .Digest(KM_DIGEST_SHA1) .Padding(KM_PAD_RSA_OAEP) .Authorization(TAG_PURPOSE, KM_PURPOSE_WRAP) .build(); import_request.key_description.Reinitialize(import_params); import_request.SetKeyMaterial(reinterpret_cast(wrapping_key.c_str()), wrapping_key.size()); import_request.key_format = KM_KEY_FORMAT_PKCS8; ImportKeyResponse import_response; keymaster_.ImportKey(import_request, &import_response); EXPECT_EQ(import_response.error, KM_ERROR_OK); if (import_response.error != KM_ERROR_OK) return; ImportWrappedKeyRequest request; KeymasterKeyBlob wrapped_key_blob(reinterpret_cast(wrapped_key_masked.c_str()), wrapped_key_masked.size()); request.SetKeyMaterial(wrapped_key_blob, import_response.key_blob); request.SetMaskingKeyMaterial(reinterpret_cast(zero_masking_key.c_str()), zero_masking_key.size()); ImportWrappedKeyResponse response; keymaster_.ImportWrappedKey(request, &response); EXPECT_EQ(response.error, KM_ERROR_VERIFICATION_FAILED); } TEST_F(ImportWrappedKeyTest, WrongPurpose) { ImportKeyRequest import_request; auto import_params = AuthorizationSetBuilder() .RsaEncryptionKey(2048, 65537) .Digest(KM_DIGEST_SHA1) .Padding(KM_PAD_RSA_OAEP) .build(); import_request.key_description.Reinitialize(import_params); import_request.SetKeyMaterial(reinterpret_cast(wrapping_key.c_str()), wrapping_key.size()); import_request.key_format = KM_KEY_FORMAT_PKCS8; ImportKeyResponse import_response; keymaster_.ImportKey(import_request, &import_response); EXPECT_EQ(import_response.error, KM_ERROR_OK); if (import_response.error != KM_ERROR_OK) return; ImportWrappedKeyRequest request; KeymasterKeyBlob wrapped_key_blob(reinterpret_cast(wrapped_key.c_str()), wrapped_key.size()); request.SetKeyMaterial(wrapped_key_blob, import_response.key_blob); ImportWrappedKeyResponse response; keymaster_.ImportWrappedKey(request, &response); EXPECT_EQ(response.error, KM_ERROR_INCOMPATIBLE_PURPOSE); } typedef Keymaster2Test EncryptionOperationsTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, EncryptionOperationsTest, test_params); TEST_P(EncryptionOperationsTest, RsaNoPaddingSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string ciphertext1 = EncryptMessage(string(message), KM_PAD_NONE); EXPECT_EQ(256U / 8, ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_PAD_NONE); EXPECT_EQ(256U / 8, ciphertext2.size()); // Unpadded RSA is deterministic EXPECT_EQ(ciphertext1, ciphertext2); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaNoPaddingTooShort) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); string message = "1"; string ciphertext = EncryptMessage(message, KM_PAD_NONE); EXPECT_EQ(256U / 8, ciphertext.size()); string expected_plaintext = string(256 / 8 - 1, 0) + message; string plaintext = DecryptMessage(ciphertext, KM_PAD_NONE); EXPECT_EQ(expected_plaintext, plaintext); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaNoPaddingTooLong) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); string message = "123456789012345678901234567890123"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); string result; size_t input_consumed; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, UpdateOperation(message, &result, &input_consumed)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaNoPaddingLargerThanModulus) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); string exported; ASSERT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &exported)); const uint8_t* p = reinterpret_cast(exported.data()); unique_ptr pkey( d2i_PUBKEY(nullptr /* alloc new */, &p, exported.size())); unique_ptr rsa(EVP_PKEY_get1_RSA(pkey.get())); size_t modulus_len = BN_num_bytes(rsa->n); ASSERT_EQ(256U / 8, modulus_len); unique_ptr modulus_buf(new uint8_t[modulus_len]); BN_bn2bin(rsa->n, modulus_buf.get()); // The modulus is too big to encrypt. string message(reinterpret_cast(modulus_buf.get()), modulus_len); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); string result; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, FinishOperation(&result)); // One smaller than the modulus is okay. BN_sub(rsa->n, rsa->n, BN_value_one()); modulus_len = BN_num_bytes(rsa->n); ASSERT_EQ(256U / 8, modulus_len); BN_bn2bin(rsa->n, modulus_buf.get()); message = string(reinterpret_cast(modulus_buf.get()), modulus_len); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(message, "", &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepSuccess) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256))); string message = "Hello"; string ciphertext1 = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext2.size()); // OAEP randomizes padding so every result should be different. EXPECT_NE(ciphertext1, ciphertext2); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepSha224Success) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_224))); string message = "Hello"; string ciphertext1 = EncryptMessage(string(message), KM_DIGEST_SHA_2_224, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_DIGEST_SHA_2_224, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext2.size()); // OAEP randomizes padding so every result should be different. EXPECT_NE(ciphertext1, ciphertext2); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepRoundTrip) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(message, plaintext); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepSha224RoundTrip) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_224))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_DIGEST_SHA_2_224, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_DIGEST_SHA_2_224, KM_PAD_RSA_OAEP); EXPECT_EQ(message, plaintext); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepInvalidDigest) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(512, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_NONE))); string message = "Hello World!"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_DIGEST, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepUnauthorizedDigest) { if (GetParam()->minimal_digest_set()) // We don't have two supported digests, so we can't try authorizing one and using another. return; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(512, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256))); string message = "Hello World!"; // Works because encryption is a public key operation. EncryptMessage(string(message), KM_DIGEST_SHA1, KM_PAD_RSA_OAEP); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA1); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_DIGEST, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepDecryptWithWrongDigest) { if (GetParam()->minimal_digest_set()) // We don't have two supported digests, so we can't try encrypting with one and decrypting // with another. return; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(768, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256) .Digest(KM_DIGEST_SHA_2_384))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_384); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepTooLarge) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(512, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA1))); string message = "12345678901234567890123"; string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA1); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepCorruptedDecrypt) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(768, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext.size()); // Corrupt the ciphertext ciphertext[key_size / 8 / 2]++; string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaPkcs1Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(512, 3).Padding( KM_PAD_RSA_PKCS1_1_5_ENCRYPT))); string message = "Hello World!"; string ciphertext1 = EncryptMessage(message, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(512U / 8, ciphertext1.size()); string ciphertext2 = EncryptMessage(message, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(512U / 8, ciphertext2.size()); // PKCS1 v1.5 randomizes padding so every result should be different. EXPECT_NE(ciphertext1, ciphertext2); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaPkcs1RoundTrip) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(512, 3).Padding( KM_PAD_RSA_PKCS1_1_5_ENCRYPT))); string message = "Hello World!"; string ciphertext = EncryptMessage(message, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(512U / 8, ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(message, plaintext); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaRoundTripAllCombinations) { size_t key_size = 2048; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_PKCS1_1_5_ENCRYPT) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_NONE) .Digest(KM_DIGEST_MD5) .Digest(KM_DIGEST_SHA1) .Digest(KM_DIGEST_SHA_2_224) .Digest(KM_DIGEST_SHA_2_256) .Digest(KM_DIGEST_SHA_2_384) .Digest(KM_DIGEST_SHA_2_512))); string message = "Hello World!"; keymaster_padding_t padding_modes[] = {KM_PAD_RSA_OAEP, KM_PAD_RSA_PKCS1_1_5_ENCRYPT}; keymaster_digest_t digests[] = { KM_DIGEST_NONE, KM_DIGEST_MD5, KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224, KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512, }; for (auto padding : padding_modes) for (auto digest : digests) { if (padding == KM_PAD_RSA_OAEP && digest == KM_DIGEST_NONE) // OAEP requires a digest. continue; string ciphertext = EncryptMessage(message, digest, padding); EXPECT_EQ(key_size / 8, ciphertext.size()); string plaintext = DecryptMessage(ciphertext, digest, padding); EXPECT_EQ(message, plaintext); } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(40, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaPkcs1TooLarge) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(512, 3).Padding( KM_PAD_RSA_PKCS1_1_5_ENCRYPT))); string message = "123456789012345678901234567890123456789012345678901234"; string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaPkcs1CorruptedDecrypt) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(512, 3).Padding( KM_PAD_RSA_PKCS1_1_5_ENCRYPT))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(512U / 8, ciphertext.size()); // Corrupt the ciphertext ciphertext[512 / 8 / 2]++; string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaEncryptWithSigningKey) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaSigningKey(256, 3).Padding(KM_PAD_NONE))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); ASSERT_EQ(KM_ERROR_INCOMPATIBLE_PURPOSE, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, EcdsaEncrypt) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_ENCRYPT)); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_DECRYPT)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, HmacEncrypt) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_ENCRYPT)); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_DECRYPT)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE))); // Two-block message. string message = "12345678901234567890123456789012"; string ciphertext1 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message.size(), ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message.size(), ciphertext2.size()); // ECB is deterministic. EXPECT_EQ(ciphertext1, ciphertext2); string plaintext = DecryptMessage(ciphertext1, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbNotAuthorized) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); // Two-block message. string message = "12345678901234567890123456789012"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_BLOCK_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbNoPaddingWrongInputSize) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE))); // Message is slightly shorter than two blocks. string message = "1234567890123456789012345678901"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); string ciphertext; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(message, "", &ciphertext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); // Try various message lengths; all should work. for (size_t i = 0; i < 32; ++i) { string message(i, 'a'); string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(i + 16 - (i % 16), ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(message, plaintext); } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbNoPaddingKeyWithPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_NONE))); // Try various message lengths; all should fail. for (size_t i = 0; i < 32; ++i) { AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_PKCS7); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_PADDING_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbPkcs7PaddingCorrupted) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); string message = "a"; string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(16U, ciphertext.size()); EXPECT_NE(ciphertext, message); ++ciphertext[ciphertext.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_PKCS7); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, FinishOperation(&plaintext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCtrRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CTR) .Padding(KM_PAD_NONE))); string message = "123"; string iv1; string ciphertext1 = EncryptMessage(message, KM_MODE_CTR, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); EXPECT_EQ(16U, iv1.size()); string iv2; string ciphertext2 = EncryptMessage(message, KM_MODE_CTR, KM_PAD_NONE, &iv2); EXPECT_EQ(message.size(), ciphertext2.size()); EXPECT_EQ(16U, iv2.size()); // IVs should be random, so ciphertexts should differ. EXPECT_NE(iv1, iv2); EXPECT_NE(ciphertext1, ciphertext2); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CTR, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCtrIncremental) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CTR) .Padding(KM_PAD_NONE))); int increment = 15; string message(239, 'a'); AuthorizationSet input_params(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CTR); input_params.push_back(TAG_PADDING, KM_PAD_NONE); AuthorizationSet output_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, input_params, &output_params)); string ciphertext; size_t input_consumed; for (size_t i = 0; i < message.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message.substr(i, increment), &ciphertext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); EXPECT_EQ(message.size(), ciphertext.size()); // Move TAG_NONCE into input_params input_params.Reinitialize(output_params); input_params.push_back(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CTR); input_params.push_back(TAG_PADDING, KM_PAD_NONE); output_params.Clear(); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, input_params, &output_params)); string plaintext; for (size_t i = 0; i < ciphertext.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext.substr(i, increment), &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(ciphertext.size(), plaintext.size()); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } struct AesCtrSp80038aTestVector { const char* key; const char* nonce; const char* plaintext; const char* ciphertext; }; // These test vectors are taken from // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf, section F.5. static const AesCtrSp80038aTestVector kAesCtrSp80038aTestVectors[] = { // AES-128 { "2b7e151628aed2a6abf7158809cf4f3c", "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" "30c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710", "874d6191b620e3261bef6864990db6ce9806f66b7970fdff8617187bb9fffdff" "5ae4df3edbd5d35e5b4f09020db03eab1e031dda2fbe03d1792170a0f3009cee", }, // AES-192 { "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" "30c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710", "1abc932417521ca24f2b0459fe7e6e0b090339ec0aa6faefd5ccc2c6f4ce8e94" "1e36b26bd1ebc670d1bd1d665620abf74f78a7f6d29809585a97daec58c6b050", }, // AES-256 { "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" "30c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710", "601ec313775789a5b7a7f504bbf3d228f443e3ca4d62b59aca84e990cacaf5c5" "2b0930daa23de94ce87017ba2d84988ddfc9c58db67aada613c2dd08457941a6", }, }; TEST_P(EncryptionOperationsTest, AesCtrSp80038aTestVector) { for (size_t i = 0; i < 3; i++) { const AesCtrSp80038aTestVector& test(kAesCtrSp80038aTestVectors[i]); const string key = hex2str(test.key); const string nonce = hex2str(test.nonce); const string plaintext = hex2str(test.plaintext); const string ciphertext = hex2str(test.ciphertext); CheckAesCtrTestVector(key, nonce, plaintext, ciphertext); } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCtrInvalidPaddingMode) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CTR) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_CTR); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_PADDING_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCtrInvalidCallerNonce) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CTR) .Authorization(TAG_CALLER_NONCE) .Padding(KM_PAD_NONE))); AuthorizationSet input_params(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CTR); input_params.push_back(TAG_PADDING, KM_PAD_NONE); input_params.push_back(TAG_NONCE, "123", 3); EXPECT_EQ(KM_ERROR_INVALID_NONCE, BeginOperation(KM_PURPOSE_ENCRYPT, input_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCbcRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); // Two-block message. string message = "12345678901234567890123456789012"; string iv1; string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); string iv2; string ciphertext2 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv2); EXPECT_EQ(message.size(), ciphertext2.size()); // IVs should be random, so ciphertexts should differ. EXPECT_NE(iv1, iv2); EXPECT_NE(ciphertext1, ciphertext2); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCallerNonce) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Authorization(TAG_CALLER_NONCE) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string iv1; // Don't specify nonce, should get a random one. string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); EXPECT_EQ(16U, iv1.size()); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); // Now specify a nonce, should also work. AuthorizationSet input_params(client_params()); AuthorizationSet update_params; AuthorizationSet output_params; input_params.push_back(TAG_NONCE, "abcdefghijklmnop", 16); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); string ciphertext2 = ProcessMessage(KM_PURPOSE_ENCRYPT, message, input_params, update_params, &output_params); // Decrypt with correct nonce. plaintext = ProcessMessage(KM_PURPOSE_DECRYPT, ciphertext2, input_params, update_params, &output_params); EXPECT_EQ(message, plaintext); // Now try with wrong nonce. input_params.Reinitialize(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); input_params.push_back(TAG_NONCE, "aaaaaaaaaaaaaaaa", 16); plaintext = ProcessMessage(KM_PURPOSE_DECRYPT, ciphertext2, input_params, update_params, &output_params); EXPECT_NE(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCallerNonceProhibited) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string iv1; // Don't specify nonce, should get a random one. string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); EXPECT_EQ(16U, iv1.size()); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); // Now specify a nonce, should fail. AuthorizationSet input_params(client_params()); AuthorizationSet update_params; AuthorizationSet output_params; input_params.push_back(TAG_NONCE, "abcdefghijklmnop", 16); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_CALLER_NONCE_PROHIBITED, BeginOperation(KM_PURPOSE_ENCRYPT, input_params, &output_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCbcIncrementalNoPadding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); int increment = 15; string message(240, 'a'); AuthorizationSet input_params(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); AuthorizationSet output_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, input_params, &output_params)); string ciphertext; size_t input_consumed; for (size_t i = 0; i < message.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message.substr(i, increment), &ciphertext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); EXPECT_EQ(message.size(), ciphertext.size()); // Move TAG_NONCE into input_params input_params.Reinitialize(output_params); input_params.push_back(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); output_params.Clear(); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, input_params, &output_params)); string plaintext; for (size_t i = 0; i < ciphertext.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext.substr(i, increment), &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(ciphertext.size(), plaintext.size()); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCbcPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); // Try various message lengths; all should work. for (size_t i = 0; i < 32; ++i) { string message(i, 'a'); string iv; string ciphertext = EncryptMessage(message, KM_MODE_CBC, KM_PAD_PKCS7, &iv); EXPECT_EQ(i + 16 - (i % 16), ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_MODE_CBC, KM_PAD_PKCS7, iv); EXPECT_EQ(message, plaintext); } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "foobar"; string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmTooShortTag) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "foobar"; string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 96); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_INVALID_MAC_LENGTH, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmTooShortTagOnDecrypt) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "foobar"; string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.Reinitialize(client_params()); begin_params.push_back(begin_out_params); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 96); // Decrypt. EXPECT_EQ(KM_ERROR_INVALID_MAC_LENGTH, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmCorruptKey) { uint8_t nonce[] = { 0xb7, 0x94, 0x37, 0xae, 0x08, 0xff, 0x35, 0x5d, 0x7d, 0x8a, 0x4d, 0x0f, }; uint8_t ciphertext[] = { 0xb3, 0xf6, 0x79, 0x9e, 0x8f, 0x93, 0x26, 0xf2, 0xdf, 0x1e, 0x80, 0xfc, 0xd2, 0xcb, 0x16, 0xd7, 0x8c, 0x9d, 0xc7, 0xcc, 0x14, 0xbb, 0x67, 0x78, 0x62, 0xdc, 0x6c, 0x63, 0x9b, 0x3a, 0x63, 0x38, 0xd2, 0x4b, 0x31, 0x2d, 0x39, 0x89, 0xe5, 0x92, 0x0b, 0x5d, 0xbf, 0xc9, 0x76, 0x76, 0x5e, 0xfb, 0xfe, 0x57, 0xbb, 0x38, 0x59, 0x40, 0xa7, 0xa4, 0x3b, 0xdf, 0x05, 0xbd, 0xda, 0xe3, 0xc9, 0xd6, 0xa2, 0xfb, 0xbd, 0xfc, 0xc0, 0xcb, 0xa0, }; string ciphertext_str(reinterpret_cast(ciphertext), sizeof(ciphertext)); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); begin_params.push_back(TAG_NONCE, nonce, sizeof(nonce)); string plaintext; size_t input_consumed; // Import correct key and decrypt uint8_t good_key[] = { 0xba, 0x76, 0x35, 0x4f, 0x0a, 0xed, 0x6e, 0x8d, 0x91, 0xf4, 0x5c, 0x4f, 0xf5, 0xa0, 0x62, 0xdb, }; string good_key_str(reinterpret_cast(good_key), sizeof(good_key)); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_CALLER_NONCE) .Authorization(TAG_MIN_MAC_LENGTH, 128), KM_KEY_FORMAT_RAW, good_key_str)); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext_str, &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); // Import bad key and decrypt uint8_t bad_key[] = { 0xbb, 0x76, 0x35, 0x4f, 0x0a, 0xed, 0x6e, 0x8d, 0x91, 0xf4, 0x5c, 0x4f, 0xf5, 0xa0, 0x62, 0xdb, }; string bad_key_str(reinterpret_cast(bad_key), sizeof(bad_key)); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128), KM_KEY_FORMAT_RAW, bad_key_str)); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext_str, &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(&plaintext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmAadNoData) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "123456789012345678"; string empty_message; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, empty_message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(0U, input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(empty_message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmIncremental) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, "b", 1); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; // Send AAD, incrementally for (int i = 0; i < 1000; ++i) { EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, "", &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(0U, input_consumed); EXPECT_EQ(0U, ciphertext.size()); } // Now send data, incrementally, no data. AuthorizationSet empty_params; for (int i = 0; i < 1000; ++i) { EXPECT_EQ(KM_ERROR_OK, UpdateOperation(empty_params, "a", &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(1U, input_consumed); } EXPECT_EQ(1000U, ciphertext.size()); // And finish. EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); EXPECT_EQ(1016U, ciphertext.size()); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; // Send AAD, incrementally, no data for (int i = 0; i < 1000; ++i) { EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, "", &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(0U, input_consumed); EXPECT_EQ(0U, plaintext.size()); } // Now send data, incrementally. for (size_t i = 0; i < ciphertext.length(); ++i) { EXPECT_EQ(KM_ERROR_OK, UpdateOperation(empty_params, string(ciphertext.data() + i, 1), &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(1U, input_consumed); } EXPECT_EQ(1000U, plaintext.size()); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmMultiPartAad) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet begin_out_params; AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, "foo", 3); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); // No data, AAD only. string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, "" /* message */, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(0U, input_consumed); // AAD and data. EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce. EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt update_params.Clear(); update_params.push_back(TAG_ASSOCIATED_DATA, "foofoo", 6); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmBadAad) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string message = "12345678901234567890123456789012"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, "foobar", 6); AuthorizationSet finish_params; AuthorizationSet finish_out_params; // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); AuthorizationSet update_out_params; string ciphertext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); update_params.Clear(); update_params.push_back(TAG_ASSOCIATED_DATA, "barfoo" /* Wrong AAD */, 6); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params, &begin_out_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(&plaintext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmWrongNonce) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string message = "12345678901234567890123456789012"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, "foobar", 6); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); AuthorizationSet update_out_params; string ciphertext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); begin_params.push_back(TAG_NONCE, "123456789012", 12); // Decrypt EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params, &begin_out_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(&plaintext)); // With wrong nonce, should have gotten garbage plaintext. EXPECT_NE(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmCorruptTag) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "foobar"; string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet begin_out_params; AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); // Encrypt EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); AuthorizationSet update_out_params; string ciphertext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Corrupt tag (*ciphertext.rbegin())++; // Grab nonce. EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params, &begin_out_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(&plaintext)); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, TripleDesEcbRoundTripSuccess) { auto auths = AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE); ASSERT_EQ(KM_ERROR_OK, GenerateKey(auths)); // Two-block message. string message = "1234567890123456"; string ciphertext1 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message.size(), ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message.size(), ciphertext2.size()); // ECB is deterministic. EXPECT_EQ(ciphertext1, ciphertext2); string plaintext = DecryptMessage(ciphertext1, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message, plaintext); } TEST_P(EncryptionOperationsTest, TripleDesEcbNotAuthorized) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); // Two-block message. string message = "1234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_BLOCK_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); } TEST_P(EncryptionOperationsTest, TripleDesEcbNoPaddingWrongInputSize) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE))); // Message is slightly shorter than two blocks. string message = "123456789012345"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); string ciphertext; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(message, "", &ciphertext)); } TEST_P(EncryptionOperationsTest, TripleDesEcbPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); // Try various message lengths; all should work. for (size_t i = 0; i < 32; ++i) { string message(i, 'a'); string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(i + 8 - (i % 8), ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(message, plaintext); } } TEST_P(EncryptionOperationsTest, TripleDesEcbNoPaddingKeyWithPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_NONE))); // Try various message lengths; all should fail. for (size_t i = 0; i < 32; ++i) { AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_PKCS7); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_PADDING_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); } } TEST_P(EncryptionOperationsTest, TripleDesEcbPkcs7PaddingCorrupted) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); string message = "a"; string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(8U, ciphertext.size()); EXPECT_NE(ciphertext, message); ++ciphertext[ciphertext.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_PKCS7); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, FinishOperation(&plaintext)); } struct TripleDesTestVector { const char* name; const keymaster_purpose_t purpose; const keymaster_block_mode_t block_mode; const keymaster_padding_t padding_mode; const char* key; const char* iv; const char* input; const char* output; }; // These test vectors are from NIST CAVP, plus a few custom variants to test padding, since all of // the NIST vectors are multiples of the block size. static const TripleDesTestVector kTripleDesTestVectors[] = { { "TECBMMT2 Encrypt 0", KM_PURPOSE_ENCRYPT, KM_MODE_ECB, KM_PAD_NONE, "ad192fd064b5579e7a4fb3c8f794f22a", // key "", // IV "13bad542f3652d67", // input "908e543cf2cb254f", // output }, { "TECBMMT2 Encrypt 0 PKCS7", KM_PURPOSE_ENCRYPT, KM_MODE_ECB, KM_PAD_PKCS7, "ad192fd064b5579e7a4fb3c8f794f22a", // key "", // IV "13bad542f3652d6700", // input "908e543cf2cb254fc40165289a89008c", // output }, { "TECBMMT2 Encrypt 0 PKCS7 decrypted", KM_PURPOSE_DECRYPT, KM_MODE_ECB, KM_PAD_PKCS7, "ad192fd064b5579e7a4fb3c8f794f22a", // key "", // IV "908e543cf2cb254fc40165289a89008c", // input "13bad542f3652d6700", // output }, { "TECBMMT2 Encrypt 1", KM_PURPOSE_ENCRYPT, KM_MODE_ECB, KM_PAD_NONE, "259df16e7af804fe83b90e9bf7c7e557", // key "", // IV "a4619c433bbd6787c07c81728f9ac9fa", // input "9e06de155c483c6bcfd834dbc8bd5830", // output }, { "TECBMMT2 Decrypt 0", KM_PURPOSE_DECRYPT, KM_MODE_ECB, KM_PAD_NONE, "b32ff42092024adf2076b9d3d9f19e6d", // key "", // IV "2f3f2a49bba807a5", // input "2249973fa135fb52", // output }, { "TECBMMT2 Decrypt 1", KM_PURPOSE_DECRYPT, KM_MODE_ECB, KM_PAD_NONE, "023dfbe6621aa17cc219eae9cdecd923", // key "", // IV "54045dc71d8d565b227ec19f06fef912", // input "9b071622181e6412de6066429401410d", // output }, { "TECBMMT3 Encrypt 0", KM_PURPOSE_ENCRYPT, KM_MODE_ECB, KM_PAD_NONE, "a2b5bc67da13dc92cd9d344aa238544a0e1fa79ef76810cd", // key "", // IV "329d86bdf1bc5af4", // input "d946c2756d78633f", // output }, { "TECBMMT3 Encrypt 1", KM_PURPOSE_ENCRYPT, KM_MODE_ECB, KM_PAD_NONE, "49e692290d2a5e46bace79b9648a4c5d491004c262dc9d49", // key "", // IV "6b1540781b01ce1997adae102dbf3c5b", // input "4d0dc182d6e481ac4a3dc6ab6976ccae", // output }, { "TECBMMT3 Decrypt 0", KM_PURPOSE_DECRYPT, KM_MODE_ECB, KM_PAD_NONE, "52daec2ac7dc1958377392682f37860b2cc1ea2304bab0e9", // key "", // IV "6daad94ce08acfe7", // input "660e7d32dcc90e79", // output }, { "TECBMMT3 Decrypt 1", KM_PURPOSE_DECRYPT, KM_MODE_ECB, KM_PAD_NONE, "7f8fe3d3f4a48394fb682c2919926d6ddfce8932529229ce", // key "", // IV "e9653a0a1f05d31b9acd12d73aa9879d", // input "9b2ae9d998efe62f1b592e7e1df8ff38", // output }, { "TCBCMMT2 Encrypt 0", KM_PURPOSE_ENCRYPT, KM_MODE_CBC, KM_PAD_NONE, "34a41a8c293176c1b30732ecfe38ae8a", // key "f55b4855228bd0b4", // IV "7dd880d2a9ab411c", // input "c91892948b6cadb4", // output }, { "TCBCMMT2 Encrypt 1", KM_PURPOSE_ENCRYPT, KM_MODE_CBC, KM_PAD_NONE, "70a88fa1dfb9942fa77f40157ffef2ad", // key "ece08ce2fdc6ce80", // IV "bc225304d5a3a5c9918fc5006cbc40cc", // input "27f67dc87af7ddb4b68f63fa7c2d454a", // output }, { "TCBCMMT2 Decrypt 0", KM_PURPOSE_DECRYPT, KM_MODE_CBC, KM_PAD_NONE, "4ff47fda89209bda8c85f7fe80192007", // key "d5bc4891dabe48b9", // IV "7e154b28c353adef", // input "712b961ea9a1d0af", // output }, { "TCBCMMT2 Decrypt 1", KM_PURPOSE_DECRYPT, KM_MODE_CBC, KM_PAD_NONE, "464092cdbf736d38fb1fe6a12a94ae0e", // key "5423455f00023b01", // IV "3f6050b74ed64416bc23d53b0469ed7a", // input "9cbe7d1b5cdd1864c3095ba810575960", // output }, { "TCBCMMT3 Encrypt 0", KM_PURPOSE_ENCRYPT, KM_MODE_CBC, KM_PAD_NONE, "b5cb1504802326c73df186e3e352a20de643b0d63ee30e37", // key "43f791134c5647ba", // IV "dcc153cef81d6f24", // input "92538bd8af18d3ba", // output }, { "TCBCMMT3 Encrypt 1", KM_PURPOSE_ENCRYPT, KM_MODE_CBC, KM_PAD_NONE, "a49d7564199e97cb529d2c9d97bf2f98d35edf57ba1f7358", // key "c2e999cb6249023c", // IV "c689aee38a301bb316da75db36f110b5", // input "e9afaba5ec75ea1bbe65506655bb4ecb", // output }, { "TCBCMMT3 Encrypt 1 PKCS7 variant", KM_PURPOSE_ENCRYPT, KM_MODE_CBC, KM_PAD_PKCS7, "a49d7564199e97cb529d2c9d97bf2f98d35edf57ba1f7358", // key "c2e999cb6249023c", // IV "c689aee38a301bb316da75db36f110b500", // input "e9afaba5ec75ea1bbe65506655bb4ecb825aa27ec0656156", // output }, { "TCBCMMT3 Encrypt 1 PKCS7 decrypted", KM_PURPOSE_DECRYPT, KM_MODE_CBC, KM_PAD_PKCS7, "a49d7564199e97cb529d2c9d97bf2f98d35edf57ba1f7358", // key "c2e999cb6249023c", // IV "e9afaba5ec75ea1bbe65506655bb4ecb825aa27ec0656156", // input "c689aee38a301bb316da75db36f110b500", // output }, { "TCBCMMT3 Decrypt 0", KM_PURPOSE_DECRYPT, KM_MODE_CBC, KM_PAD_NONE, "5eb6040d46082c7aa7d06dfd08dfeac8c18364c1548c3ba1", // key "41746c7e442d3681", // IV "c53a7b0ec40600fe", // input "d4f00eb455de1034", // output }, { "TCBCMMT3 Decrypt 1", KM_PURPOSE_DECRYPT, KM_MODE_CBC, KM_PAD_NONE, "5b1cce7c0dc1ec49130dfb4af45785ab9179e567f2c7d549", // key "3982bc02c3727d45", // IV "6006f10adef52991fcc777a1238bbb65", // input "edae09288e9e3bc05746d872b48e3b29", // output }, }; TEST_P(EncryptionOperationsTest, TripleDesTestVector) { for (auto& test : array_range(kTripleDesTestVectors)) { SCOPED_TRACE(test.name); CheckTripleDesTestVector(test.purpose, test.block_mode, test.padding_mode, hex2str(test.key), hex2str(test.iv), hex2str(test.input), hex2str(test.output)); } } TEST_P(EncryptionOperationsTest, TripleDesCbcRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); // Two-block message. string message = "1234567890123456"; string iv1; string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); string iv2; string ciphertext2 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv2); EXPECT_EQ(message.size(), ciphertext2.size()); // IVs should be random, so ciphertexts should differ. EXPECT_NE(iv1, iv2); EXPECT_NE(ciphertext1, ciphertext2); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, TripleDesCallerIv) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Authorization(TAG_CALLER_NONCE) .Padding(KM_PAD_NONE))); string message = "1234567890123456"; string iv1; // Don't specify IV, should get a random one. string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); EXPECT_EQ(8U, iv1.size()); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); // Now specify an IV, should also work. AuthorizationSet input_params(client_params()); AuthorizationSet update_params; AuthorizationSet output_params; input_params.push_back(TAG_NONCE, "abcdefgh", 8); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); string ciphertext2 = ProcessMessage(KM_PURPOSE_ENCRYPT, message, input_params, update_params, &output_params); // Decrypt with correct IV. plaintext = ProcessMessage(KM_PURPOSE_DECRYPT, ciphertext2, input_params, update_params, &output_params); EXPECT_EQ(message, plaintext); // Now try with wrong IV. input_params.Reinitialize(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); input_params.push_back(TAG_NONCE, "aaaaaaaa", 8); plaintext = ProcessMessage(KM_PURPOSE_DECRYPT, ciphertext2, input_params, update_params, &output_params); EXPECT_NE(message, plaintext); } TEST_P(EncryptionOperationsTest, TripleDesCallerNonceProhibited) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string iv1; // Don't specify nonce, should get a random one. string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); EXPECT_EQ(8U, iv1.size()); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); // Now specify a nonce, should fail. AuthorizationSet input_params(client_params()); AuthorizationSet update_params; AuthorizationSet output_params; input_params.push_back(TAG_NONCE, "abcdefgh", 8); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_CALLER_NONCE_PROHIBITED, BeginOperation(KM_PURPOSE_ENCRYPT, input_params, &output_params)); } TEST_P(EncryptionOperationsTest, TripleDesCbcNotAuthorized) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE))); // Two-block message. string message = "1234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_BLOCK_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); } TEST_P(EncryptionOperationsTest, TripleDesCbcNoPaddingWrongInputSize) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); // Message is slightly shorter than two blocks. string message = "123456789012345"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); AuthorizationSet output_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &output_params)); string ciphertext; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(message, "", &ciphertext)); } TEST_P(EncryptionOperationsTest, TripleDesCbcPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); // Try various message lengths; all should work. for (size_t i = 0; i < 32; ++i) { string message(i, 'a'); string iv; string ciphertext = EncryptMessage(message, KM_MODE_CBC, KM_PAD_PKCS7, &iv); EXPECT_EQ(i + 8 - (i % 8), ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_MODE_CBC, KM_PAD_PKCS7, iv); EXPECT_EQ(message, plaintext); } } TEST_P(EncryptionOperationsTest, TripleDesCbcNoPaddingKeyWithPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Authorization(TAG_PADDING, KM_PAD_NONE))); // Try various message lengths; all should fail. for (size_t i = 0; i < 32; ++i) { AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); begin_params.push_back(TAG_PADDING, KM_PAD_PKCS7); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_PADDING_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); } } TEST_P(EncryptionOperationsTest, TripleDesCbcPkcs7PaddingCorrupted) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); string message = "a"; string iv; string ciphertext = EncryptMessage(message, KM_MODE_CBC, KM_PAD_PKCS7, &iv); EXPECT_EQ(8U, ciphertext.size()); EXPECT_NE(ciphertext, message); ++ciphertext[ciphertext.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); begin_params.push_back(TAG_PADDING, KM_PAD_PKCS7); begin_params.push_back(TAG_NONCE, iv.data(), iv.size()); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, FinishOperation(&plaintext)); } TEST_P(EncryptionOperationsTest, TripleDesCbcIncrementalNoPadding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .TripleDesEncryptionKey(112) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); int increment = 7; string message(240, 'a'); AuthorizationSet input_params(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); AuthorizationSet output_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, input_params, &output_params)); string ciphertext; size_t input_consumed; for (size_t i = 0; i < message.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message.substr(i, increment), &ciphertext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); EXPECT_EQ(message.size(), ciphertext.size()); // Move TAG_NONCE into input_params input_params.Reinitialize(output_params); input_params.push_back(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); output_params.Clear(); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, input_params, &output_params)); string plaintext; for (size_t i = 0; i < ciphertext.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext.substr(i, increment), &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(ciphertext.size(), plaintext.size()); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test MaxOperationsTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, MaxOperationsTest, test_params); TEST_P(MaxOperationsTest, TestLimit) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .EcbMode() .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MAX_USES_PER_BOOT, 3))); string message = "1234567890123456"; string ciphertext1 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); string ciphertext2 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); string ciphertext3 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); // Fourth time should fail. AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_KEY_MAX_OPS_EXCEEDED, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(MaxOperationsTest, TestAbort) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .EcbMode() .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MAX_USES_PER_BOOT, 3))); string message = "1234567890123456"; string ciphertext1 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); string ciphertext2 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); string ciphertext3 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); // Fourth time should fail. AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_KEY_MAX_OPS_EXCEEDED, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test AddEntropyTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, AddEntropyTest, test_params); TEST_P(AddEntropyTest, AddEntropy) { // There's no obvious way to test that entropy is actually added, but we can test that the API // doesn't blow up or return an error. EXPECT_EQ(KM_ERROR_OK, device()->add_rng_entropy(device(), reinterpret_cast("foo"), 3)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test AttestationTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, AttestationTest, test_params); static X509* parse_cert_blob(const keymaster_blob_t& blob) { const uint8_t* p = blob.data; return d2i_X509(nullptr, &p, blob.data_length); } static bool verify_chain(const keymaster_cert_chain_t& chain) { for (size_t i = 0; i < chain.entry_count - 1; ++i) { keymaster_blob_t& key_cert_blob = chain.entries[i]; keymaster_blob_t& signing_cert_blob = chain.entries[i + 1]; X509_Ptr key_cert(parse_cert_blob(key_cert_blob)); X509_Ptr signing_cert(parse_cert_blob(signing_cert_blob)); EXPECT_TRUE(!!key_cert.get() && !!signing_cert.get()); if (!key_cert.get() || !signing_cert.get()) return false; EVP_PKEY_Ptr signing_pubkey(X509_get_pubkey(signing_cert.get())); EXPECT_TRUE(!!signing_pubkey.get()); if (!signing_pubkey.get()) return false; EXPECT_EQ(1, X509_verify(key_cert.get(), signing_pubkey.get())) << "Verification of certificate " << i << " failed"; } return true; } // Extract attestation record from cert. Returned object is still part of cert; don't free it // separately. static ASN1_OCTET_STRING* get_attestation_record(X509* certificate) { ASN1_OBJECT_Ptr oid(OBJ_txt2obj(kAttestionRecordOid, 1 /* dotted string format */)); EXPECT_TRUE(!!oid.get()); if (!oid.get()) return nullptr; int location = X509_get_ext_by_OBJ(certificate, oid.get(), -1 /* search from beginning */); EXPECT_NE(-1, location); if (location == -1) return nullptr; X509_EXTENSION* attest_rec_ext = X509_get_ext(certificate, location); EXPECT_TRUE(!!attest_rec_ext); if (!attest_rec_ext) return nullptr; ASN1_OCTET_STRING* attest_rec = X509_EXTENSION_get_data(attest_rec_ext); EXPECT_TRUE(!!attest_rec); return attest_rec; } static bool verify_attestation_record(const string& challenge, const string& attestation_app_id, AuthorizationSet expected_sw_enforced, AuthorizationSet expected_tee_enforced, uint32_t expected_keymaster_version, keymaster_security_level_t expected_keymaster_security_level, const keymaster_blob_t& attestation_cert) { X509_Ptr cert(parse_cert_blob(attestation_cert)); EXPECT_TRUE(!!cert.get()); if (!cert.get()) return false; ASN1_OCTET_STRING* attest_rec = get_attestation_record(cert.get()); EXPECT_TRUE(!!attest_rec); if (!attest_rec) return false; AuthorizationSet att_sw_enforced; AuthorizationSet att_tee_enforced; uint32_t att_attestation_version; uint32_t att_keymaster_version; keymaster_security_level_t att_attestation_security_level; keymaster_security_level_t att_keymaster_security_level; keymaster_blob_t att_challenge = {}; keymaster_blob_t att_unique_id = {}; EXPECT_EQ(KM_ERROR_OK, parse_attestation_record( attest_rec->data, attest_rec->length, &att_attestation_version, &att_attestation_security_level, &att_keymaster_version, &att_keymaster_security_level, &att_challenge, &att_sw_enforced, &att_tee_enforced, &att_unique_id)); EXPECT_EQ(2U, att_attestation_version); EXPECT_EQ(KM_SECURITY_LEVEL_SOFTWARE, att_attestation_security_level); EXPECT_EQ(expected_keymaster_version, att_keymaster_version); EXPECT_EQ(expected_keymaster_security_level, att_keymaster_security_level); EXPECT_EQ(challenge.length(), att_challenge.data_length); EXPECT_EQ(0, memcmp(challenge.data(), att_challenge.data, challenge.length())); // Add TAG_USER_ID to the relevant attestation list, because user IDs are not included in // attestations, since they're meaningless off-device. uint32_t user_id; if (expected_sw_enforced.GetTagValue(TAG_USER_ID, &user_id)) att_sw_enforced.push_back(TAG_USER_ID, user_id); if (expected_tee_enforced.GetTagValue(TAG_USER_ID, &user_id)) att_tee_enforced.push_back(TAG_USER_ID, user_id); // Add TAG_INCLUDE_UNIQUE_ID to the relevant attestation list, because that tag is not included // in the attestation. if (expected_sw_enforced.GetTagValue(TAG_INCLUDE_UNIQUE_ID)) att_sw_enforced.push_back(TAG_INCLUDE_UNIQUE_ID); if (expected_tee_enforced.GetTagValue(TAG_INCLUDE_UNIQUE_ID)) att_tee_enforced.push_back(TAG_INCLUDE_UNIQUE_ID); // Add TAG_ATTESTATION_APPLICATION_ID to the expected sw-enforced list. expected_sw_enforced.push_back(TAG_ATTESTATION_APPLICATION_ID, attestation_app_id.data(), attestation_app_id.size()); att_sw_enforced.Sort(); expected_sw_enforced.Sort(); EXPECT_EQ(expected_sw_enforced, att_sw_enforced); att_tee_enforced.Sort(); expected_tee_enforced.Sort(); EXPECT_EQ(expected_tee_enforced, att_tee_enforced); delete[] att_challenge.data; delete[] att_unique_id.data; return true; } TEST_P(AttestationTest, RsaAttestation) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE) .Authorization(TAG_INCLUDE_UNIQUE_ID))); keymaster_cert_chain_t cert_chain; EXPECT_EQ(KM_ERROR_OK, AttestKey("challenge", "attest_app_id", &cert_chain)); ASSERT_EQ(3U, cert_chain.entry_count); EXPECT_TRUE(verify_chain(cert_chain)); uint32_t expected_keymaster_version; keymaster_security_level_t expected_keymaster_security_level; // TODO(swillden): Add a test KM1 that claims to be hardware. if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) { expected_keymaster_version = 0; expected_keymaster_security_level = KM_SECURITY_LEVEL_TRUSTED_ENVIRONMENT; } else { expected_keymaster_version = 3; expected_keymaster_security_level = KM_SECURITY_LEVEL_SOFTWARE; } EXPECT_TRUE(verify_attestation_record( "challenge", "attest_app_id", sw_enforced(), hw_enforced(), expected_keymaster_version, expected_keymaster_security_level, cert_chain.entries[0])); keymaster_free_cert_chain(&cert_chain); } TEST_P(AttestationTest, EcAttestation) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest( KM_DIGEST_SHA_2_256))); uint32_t expected_keymaster_version; keymaster_security_level_t expected_keymaster_security_level; // TODO(swillden): Add a test KM1 that claims to be hardware. if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) { expected_keymaster_version = 0; expected_keymaster_security_level = KM_SECURITY_LEVEL_TRUSTED_ENVIRONMENT; } else { expected_keymaster_version = 3; expected_keymaster_security_level = KM_SECURITY_LEVEL_SOFTWARE; } keymaster_cert_chain_t cert_chain; EXPECT_EQ(KM_ERROR_OK, AttestKey("challenge", "attest_app_id", &cert_chain)); ASSERT_EQ(3U, cert_chain.entry_count); EXPECT_TRUE(verify_chain(cert_chain)); EXPECT_TRUE(verify_attestation_record( "challenge", "attest_app_id", sw_enforced(), hw_enforced(), expected_keymaster_version, expected_keymaster_security_level, cert_chain.entries[0])); keymaster_free_cert_chain(&cert_chain); } typedef Keymaster2Test KeyUpgradeTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, KeyUpgradeTest, test_params); TEST_P(KeyUpgradeTest, AesVersionUpgrade) { GetParam()->keymaster_context()->SetSystemVersion(1, 1); ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE))); // Key should operate fine. string message = "1234567890123456"; string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message, DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_NONE)); // Increase patch level. Key usage should fail with KM_ERROR_KEY_REQUIRES_UPGRADE. GetParam()->keymaster_context()->SetSystemVersion(1, 2); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); if (GetParam()->is_keymaster1_hw()) { // Keymaster1 hardware can't support version binding. The key will work regardless // of system version. Just abort the remainder of the test. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, AbortOperation()); return; } EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); // Getting characteristics should also fail EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, GetCharacteristics()); // Upgrade key. EXPECT_EQ(KM_ERROR_OK, UpgradeKey(client_params())); // Key should work again ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message, DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_NONE)); // Decrease patch level. Key usage should fail with KM_ERROR_INVALID_KEY_BLOB. GetParam()->keymaster_context()->SetSystemVersion(1, 1); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, GetCharacteristics()); // Upgrade should fail EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, UpgradeKey(client_params())); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(KeyUpgradeTest, RsaVersionUpgrade) { GetParam()->keymaster_context()->SetSystemVersion(1, 1); ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); // Key should operate fine. string message = "12345678901234567890123456789012"; string ciphertext = EncryptMessage(message, KM_PAD_NONE); EXPECT_EQ(message, DecryptMessage(ciphertext, KM_PAD_NONE)); // Increase patch level. Key usage should fail with KM_ERROR_KEY_REQUIRES_UPGRADE. GetParam()->keymaster_context()->SetSystemVersion(1, 2); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); if (GetParam()->is_keymaster1_hw()) { // Keymaster1 hardware can't support version binding. The key will work regardless // of system version. Just abort the remainder of the test. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, AbortOperation()); return; } EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); // Getting characteristics should also fail EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, GetCharacteristics()); // Upgrade key. EXPECT_EQ(KM_ERROR_OK, UpgradeKey(client_params())); // Key should work again ciphertext = EncryptMessage(message, KM_PAD_NONE); EXPECT_EQ(message, DecryptMessage(ciphertext, KM_PAD_NONE)); // Decrease patch level. Key usage should fail with KM_ERROR_INVALID_KEY_BLOB. GetParam()->keymaster_context()->SetSystemVersion(1, 1); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, GetCharacteristics()); // Upgrade should fail EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, UpgradeKey(client_params())); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(7, GetParam()->keymaster0_calls()); } TEST_P(KeyUpgradeTest, EcVersionUpgrade) { GetParam()->keymaster_context()->SetSystemVersion(1, 1); ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest( KM_DIGEST_SHA_2_256))); // Key should operate fine. string message = "1234567890123456"; string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256); // Increase patch level. Key usage should fail with KM_ERROR_KEY_REQUIRES_UPGRADE. GetParam()->keymaster_context()->SetSystemVersion(1, 2); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); if (GetParam()->is_keymaster1_hw()) { // Keymaster1 hardware can't support version binding. The key will work regardless // of system version. Just abort the remainder of the test. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); EXPECT_EQ(KM_ERROR_OK, AbortOperation()); return; } EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); // Getting characteristics should also fail EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, GetCharacteristics()); // Upgrade key. EXPECT_EQ(KM_ERROR_OK, UpgradeKey(client_params())); // Key should work again SignMessage(message, &signature, KM_DIGEST_SHA_2_256); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256); // Decrease patch level. Key usage should fail with KM_ERROR_INVALID_KEY_BLOB. GetParam()->keymaster_context()->SetSystemVersion(1, 1); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, GetCharacteristics()); // Upgrade should fail EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, UpgradeKey(client_params())); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(7, GetParam()->keymaster0_calls()); } TEST(SoftKeymasterWrapperTest, CheckKeymaster2Device) { // Make a good fake device, and wrap it. SoftKeymasterDevice* good_fake(new SoftKeymasterDevice(new TestKeymasterContext)); // Wrap it and check it. SoftKeymasterDevice* good_fake_wrapper(new SoftKeymasterDevice(new TestKeymasterContext)); good_fake_wrapper->SetHardwareDevice(good_fake->keymaster_device()); EXPECT_TRUE(good_fake_wrapper->Keymaster1DeviceIsGood()); // Close and clean up wrapper and wrapped good_fake_wrapper->keymaster_device()->common.close(good_fake_wrapper->hw_device()); // Make a "bad" (doesn't support all digests) device; keymaster1_device_t* sha256_only_fake = make_device_sha256_only( (new SoftKeymasterDevice(new TestKeymasterContext("256")))->keymaster_device()); // Wrap it and check it. SoftKeymasterDevice* sha256_only_fake_wrapper( (new SoftKeymasterDevice(new TestKeymasterContext))); sha256_only_fake_wrapper->SetHardwareDevice(sha256_only_fake); EXPECT_FALSE(sha256_only_fake_wrapper->Keymaster1DeviceIsGood()); // Close and clean up wrapper and wrapped sha256_only_fake_wrapper->keymaster_device()->common.close( sha256_only_fake_wrapper->hw_device()); } class HmacKeySharingTest : public ::testing::Test { protected: using KeymasterVec = std::vector>; using ParamsVec = std::vector; using ByteString = std::basic_string; using NonceVec = std::vector; using ResponseVec = std::vector; KeymasterVec CreateKeymasters(size_t count) { KeymasterVec keymasters; for (size_t i = 0; i < count; ++i) { keymasters.push_back(make_unique(new TestKeymasterContext, 16)); } return keymasters; } ParamsVec GetHmacSharingParameters(const KeymasterVec& keymasters) { ParamsVec paramsVec; for (auto& keymaster : keymasters) { auto result = keymaster->GetHmacSharingParameters(); EXPECT_EQ(KM_ERROR_OK, result.error); if (result.error == KM_ERROR_OK) paramsVec.push_back(move(result.params)); } return paramsVec; } template ByteString ToByteString(const uint8_t (&a)[N]) { return ByteString(a, N); } ByteString ToByteString(const keymaster_blob_t& b) { return ByteString(b.data, b.data_length); } NonceVec CopyNonces(const ParamsVec& paramsVec) { NonceVec nonces; for (auto& param : paramsVec) { nonces.push_back(ToByteString(param.nonce)); } return nonces; } ResponseVec ComputeSharedHmac(const KeymasterVec& keymasters, const ParamsVec& paramsVec) { ComputeSharedHmacRequest req; req.params_array.params_array = const_cast(paramsVec.data()); auto prevent_deletion_of_paramsVec_data = finally([&]() { req.params_array.params_array = nullptr; }); req.params_array.num_params = paramsVec.size(); ResponseVec responses; for (auto& keymaster : keymasters) { responses.push_back(keymaster->ComputeSharedHmac(req)); } return responses; } bool VerifyResponses(const ByteString& expected, const ResponseVec& responses) { for (auto& response : responses) { EXPECT_EQ(KM_ERROR_OK, response.error); auto this_sharing_check = ToByteString(response.sharing_check); EXPECT_EQ(expected, this_sharing_check) << "Sharing check values should match."; if (response.error != KM_ERROR_OK || expected != this_sharing_check) { return false; } } return true; } }; TEST_F(HmacKeySharingTest, GetParametersIdempotency) { AndroidKeymaster keymaster(new TestKeymasterContext, 16); ParamsVec paramsVec; auto result1 = keymaster.GetHmacSharingParameters(); EXPECT_EQ(KM_ERROR_OK, result1.error); paramsVec.push_back(std::move(result1.params)); auto result2 = keymaster.GetHmacSharingParameters(); EXPECT_EQ(KM_ERROR_OK, result2.error); paramsVec.push_back(std::move(result2.params)); ASSERT_EQ(ToByteString(paramsVec[0].seed), ToByteString(paramsVec[1].seed)) << "A given keymaster should always return the same seed."; EXPECT_EQ(ToByteString(paramsVec[0].nonce), ToByteString(paramsVec[1].nonce)) << "A given keymaster should always return the same nonce until restart."; } TEST_F(HmacKeySharingTest, ComputeSharedHmac) { // ComputeSharedHmac should work with any number of participants; we just test 1 through 4. for (size_t keymaster_count = 1; keymaster_count <= 4; ++keymaster_count) { SCOPED_TRACE(testing::Message() << keymaster_count << " keymaster instances"); auto keymasters = CreateKeymasters(keymaster_count); auto params = GetHmacSharingParameters(keymasters); ASSERT_EQ(keymaster_count, params.size()) << "One or more keymasters failed to provide parameters."; auto nonces = CopyNonces(params); EXPECT_EQ(keymaster_count, nonces.size()) << "We should have a nonce per keymaster."; std::sort(nonces.begin(), nonces.end()); std::unique(nonces.begin(), nonces.end()); EXPECT_EQ(keymaster_count, nonces.size()) << "Nonces should all be unique."; auto responses = ComputeSharedHmac(keymasters, params); ASSERT_EQ(keymaster_count, responses.size()); ASSERT_TRUE(VerifyResponses(ToByteString(responses[0].sharing_check), responses)); } } TEST_F(HmacKeySharingTest, ComputeSharedHmacTwice) { for (size_t keymaster_count = 1; keymaster_count <= 4; ++keymaster_count) { SCOPED_TRACE(testing::Message() << keymaster_count << " keymaster instances"); auto keymasters = CreateKeymasters(keymaster_count); auto params = GetHmacSharingParameters(keymasters); ASSERT_EQ(keymaster_count, params.size()) << "One or more keymasters failed to provide parameters."; auto responses = ComputeSharedHmac(keymasters, params); ASSERT_EQ(keymaster_count, responses.size()); ByteString sharing_check_value = ToByteString(responses[0].sharing_check); ASSERT_TRUE(VerifyResponses(sharing_check_value, responses)); params = GetHmacSharingParameters(keymasters); ASSERT_EQ(keymaster_count, params.size()) << "One or more keymasters failed to provide parameters."; responses = ComputeSharedHmac(keymasters, params); // Verify against first check value; we should get the same one every time, because each // keymaster instance returns the same seed every time, and the same nonce until restart. ASSERT_TRUE(VerifyResponses(sharing_check_value, responses)); } } TEST_F(HmacKeySharingTest, ComputeSharedHmacCorruptNonce) { constexpr size_t keymaster_count = 4; auto keymasters = CreateKeymasters(keymaster_count); auto params = GetHmacSharingParameters(keymasters); ASSERT_EQ(keymaster_count, params.size()) << "One or more keymasters failed to provide parameters."; // All should be well in the normal case auto responses = ComputeSharedHmac(keymasters, params); ASSERT_EQ(keymaster_count, responses.size()); ByteString sharing_check_value = ToByteString(responses[0].sharing_check); ASSERT_TRUE(VerifyResponses(sharing_check_value, responses)); // Pick a random param, a random byte within the param's nonce, and a random bit within // the byte. Flip that bit. size_t param_to_tweak = rand() % params.size(); uint8_t byte_to_tweak = rand() % sizeof(params[param_to_tweak].nonce); uint8_t bit_to_tweak = rand() % 8; params[param_to_tweak].nonce[byte_to_tweak] ^= (1 << bit_to_tweak); responses = ComputeSharedHmac(keymasters, params); EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, responses[param_to_tweak].error) << "Keymaster that provided tweaked response should fail to compute HMAC key"; for (size_t i = 0; i < responses.size(); ++i) { if (i != param_to_tweak) { EXPECT_EQ(KM_ERROR_OK, responses[i].error) << "Others should succeed"; EXPECT_NE(sharing_check_value, ToByteString(responses[i].sharing_check)) << "Others should calculate a different HMAC key, due to the tweaked nonce."; } } } TEST_F(HmacKeySharingTest, ComputeSharedHmacCorruptSeed) { constexpr size_t keymaster_count = 4; auto keymasters = CreateKeymasters(keymaster_count); auto params = GetHmacSharingParameters(keymasters); ASSERT_EQ(keymaster_count, params.size()) << "One or more keymasters failed to provide parameters."; // All should be well in the normal case auto responses = ComputeSharedHmac(keymasters, params); ASSERT_EQ(keymaster_count, responses.size()); ByteString sharing_check_value = ToByteString(responses[0].sharing_check); ASSERT_TRUE(VerifyResponses(sharing_check_value, responses)); // Pick a random param and modify the seed. auto param_to_tweak = rand() & params.size(); constexpr uint8_t wrong_seed_value[] = {0xF, 0x0, 0x0}; params[param_to_tweak].SetSeed({wrong_seed_value, sizeof(wrong_seed_value)}); auto prevent_deletion_of_wrong_seed = finally([&]() { params[param_to_tweak].seed.data = nullptr; }); responses = ComputeSharedHmac(keymasters, params); EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, responses[param_to_tweak].error) << "Keymaster that provided tweaked response should fail to compute HMAC key"; for (size_t i = 0; i < responses.size(); ++i) { if (i != param_to_tweak) { EXPECT_EQ(KM_ERROR_OK, responses[i].error) << "Others should succeed"; EXPECT_NE(sharing_check_value, ToByteString(responses[i].sharing_check)) << "Others should calculate a different HMAC key, due to the tweaked seed."; } } } } // namespace test } // namespace keymaster