/* * Copyright (C) 2019, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "aidl_language.h" #include "aidl_typenames.h" #include "logging.h" #include <stdlib.h> #include <algorithm> #include <iostream> #include <memory> #include <android-base/parsedouble.h> #include <android-base/parseint.h> #include <android-base/strings.h> using android::base::ConsumeSuffix; using android::base::Join; using std::string; using std::unique_ptr; using std::vector; #define SHOULD_NOT_REACH() CHECK(false) << LOG(FATAL) << ": should not reach here: " #define OPEQ(__y__) (string(op_) == string(__y__)) #define COMPUTE_UNARY(__op__) \ if (op == string(#__op__)) return __op__ val; #define COMPUTE_BINARY(__op__) \ if (op == string(#__op__)) return lval __op__ rval; #define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%")) #define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&")) #define OP_IS_BIN_COMP \ (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!=")) #define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<")) #define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&")) // NOLINT to suppress missing parentheses warnings about __def__. #define SWITCH_KIND(__cond__, __action__, __def__) \ switch (__cond__) { \ case Type::BOOLEAN: \ __action__(bool); \ case Type::INT8: \ __action__(int8_t); \ case Type::INT32: \ __action__(int32_t); \ case Type::INT64: \ __action__(int64_t); \ default: \ __def__; /* NOLINT */ \ } template <class T> T handleUnary(const string& op, T val) { COMPUTE_UNARY(+) COMPUTE_UNARY(-) COMPUTE_UNARY(!) COMPUTE_UNARY(~) // Should not reach here. SHOULD_NOT_REACH() << "Could not handleUnary for " << op << " " << val; return static_cast<T>(0xdeadbeef); } template <class T> T handleBinaryCommon(T lval, const string& op, T rval) { COMPUTE_BINARY(+) COMPUTE_BINARY(-) COMPUTE_BINARY(*) COMPUTE_BINARY(/) COMPUTE_BINARY(%) COMPUTE_BINARY(|) COMPUTE_BINARY(^) COMPUTE_BINARY(&) // comparison operators: return 0 or 1 by nature. COMPUTE_BINARY(==) COMPUTE_BINARY(!=) COMPUTE_BINARY(<) COMPUTE_BINARY(>) COMPUTE_BINARY(<=) COMPUTE_BINARY(>=) // Should not reach here. SHOULD_NOT_REACH() << "Could not handleBinaryCommon for " << lval << " " << op << " " << rval; return static_cast<T>(0xdeadbeef); } template <class T> T handleShift(T lval, const string& op, int64_t rval) { // just cast rval to int64_t and it should fit. COMPUTE_BINARY(>>) COMPUTE_BINARY(<<) // Should not reach here. SHOULD_NOT_REACH() << "Could not handleShift for " << lval << " " << op << " " << rval; return static_cast<T>(0xdeadbeef); } bool handleLogical(bool lval, const string& op, bool rval) { COMPUTE_BINARY(||); COMPUTE_BINARY(&&); // Should not reach here. SHOULD_NOT_REACH() << "Could not handleLogical for " << lval << " " << op << " " << rval; return false; } static bool isValidLiteralChar(char c) { return !(c <= 0x1f || // control characters are < 0x20 c >= 0x7f || // DEL is 0x7f c == '\\'); // Disallow backslashes for future proofing. } bool AidlUnaryConstExpression::IsCompatibleType(Type type, const string& op) { // Verify the unary type here switch (type) { case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: return true; case Type::FLOATING: return (op == "+" || op == "-"); default: return false; } } bool AidlBinaryConstExpression::AreCompatibleTypes(Type t1, Type t2) { switch (t1) { case Type::STRING: if (t2 == Type::STRING) { return true; } break; case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: switch (t2) { case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: return true; break; default: break; } break; default: break; } return false; } // Returns the promoted kind for both operands AidlConstantValue::Type AidlBinaryConstExpression::UsualArithmeticConversion(Type left, Type right) { // These are handled as special cases CHECK(left != Type::STRING && right != Type::STRING); CHECK(left != Type::FLOATING && right != Type::FLOATING); // Kinds in concern: bool, (u)int[8|32|64] if (left == right) return left; // easy case if (left == Type::BOOLEAN) return right; if (right == Type::BOOLEAN) return left; return left < right ? right : left; } // Returns the promoted integral type where INT32 is the smallest type AidlConstantValue::Type AidlBinaryConstExpression::IntegralPromotion(Type in) { return (Type::INT32 < in) ? in : Type::INT32; } template <typename T> T AidlConstantValue::cast() const { CHECK(is_evaluated_ == true); #define CASE_CAST_T(__type__) return static_cast<T>(static_cast<__type__>(final_value_)); SWITCH_KIND(final_type_, CASE_CAST_T, SHOULD_NOT_REACH(); return 0;); } AidlConstantValue* AidlConstantValue::Boolean(const AidlLocation& location, bool value) { return new AidlConstantValue(location, Type::BOOLEAN, value ? "true" : "false"); } AidlConstantValue* AidlConstantValue::Character(const AidlLocation& location, char value) { const std::string explicit_value = string("'") + value + "'"; if (!isValidLiteralChar(value)) { AIDL_ERROR(location) << "Invalid character literal " << value; return new AidlConstantValue(location, Type::ERROR, explicit_value); } return new AidlConstantValue(location, Type::CHARACTER, explicit_value); } AidlConstantValue* AidlConstantValue::Floating(const AidlLocation& location, const std::string& value) { return new AidlConstantValue(location, Type::FLOATING, value); } bool AidlConstantValue::IsHex(const string& value) { if (value.length() > (sizeof("0x") - 1)) { if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) { return true; } } return false; } bool AidlConstantValue::ParseIntegral(const string& value, int64_t* parsed_value, Type* parsed_type) { bool isLong = false; if (parsed_value == nullptr || parsed_type == nullptr) { return false; } if (IsHex(value)) { bool parseOK = false; uint32_t rawValue32; // AIDL considers 'const int foo = 0xffffffff' as -1, but if we want to // handle that when computing constant expressions, then we need to // represent 0xffffffff as a uint32_t. However, AIDL only has signed types; // so we parse as an unsigned int when possible and then cast to a signed // int. One example of this is in ICameraService.aidl where a constant int // is used for bit manipulations which ideally should be handled with an // unsigned int. parseOK = android::base::ParseUint<uint32_t>(value, &rawValue32); if (parseOK) { *parsed_value = static_cast<int32_t>(rawValue32); *parsed_type = Type::INT32; } else { parseOK = android::base::ParseInt<int64_t>(value, parsed_value); if (!parseOK) { *parsed_type = Type::ERROR; return false; } *parsed_type = Type::INT64; } return true; } if (value[value.size() - 1] == 'l' || value[value.size() - 1] == 'L') { isLong = true; *parsed_type = Type::INT64; } string value_substr = value.substr(0, isLong ? value.size() - 1 : value.size()); bool parseOK = android::base::ParseInt<int64_t>(value_substr, parsed_value); if (!parseOK) { *parsed_type = Type::ERROR; return false; } if (!isLong) { // guess literal type. if (*parsed_value <= INT8_MAX && *parsed_value >= INT8_MIN) { *parsed_type = Type::INT8; } else if (*parsed_value <= INT32_MAX && *parsed_value >= INT32_MIN) { *parsed_type = Type::INT32; } else { *parsed_type = Type::INT64; } } return true; } AidlConstantValue* AidlConstantValue::Integral(const AidlLocation& location, const string& value) { CHECK(!value.empty()); Type parsed_type; int64_t parsed_value = 0; bool success = ParseIntegral(value, &parsed_value, &parsed_type); if (!success) { return nullptr; } return new AidlConstantValue(location, parsed_type, parsed_value, value); } AidlConstantValue* AidlConstantValue::Array( const AidlLocation& location, std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values) { return new AidlConstantValue(location, Type::ARRAY, std::move(values)); } AidlConstantValue* AidlConstantValue::String(const AidlLocation& location, const string& value) { for (size_t i = 0; i < value.length(); ++i) { if (!isValidLiteralChar(value[i])) { AIDL_ERROR(location) << "Found invalid character at index " << i << " in string constant '" << value << "'"; return new AidlConstantValue(location, Type::ERROR, value); } } return new AidlConstantValue(location, Type::STRING, value); } AidlConstantValue* AidlConstantValue::ShallowIntegralCopy(const AidlConstantValue& other) { // TODO(b/141313220) Perform a full copy instead of parsing+unparsing AidlTypeSpecifier type = AidlTypeSpecifier(AIDL_LOCATION_HERE, "long", false, nullptr, ""); // TODO(b/142722772) CheckValid() should be called before ValueString() if (!other.CheckValid() || !other.evaluate(type)) { AIDL_ERROR(other) << "Failed to parse expression as integer: " << other.value_; return nullptr; } const std::string& value = other.ValueString(type, AidlConstantValueDecorator); if (value.empty()) { return nullptr; // error already logged } AidlConstantValue* result = Integral(AIDL_LOCATION_HERE, value); if (result == nullptr) { AIDL_FATAL(other) << "Unable to perform ShallowIntegralCopy."; } return result; } string AidlConstantValue::ValueString(const AidlTypeSpecifier& type, const ConstantValueDecorator& decorator) const { if (type.IsGeneric()) { AIDL_ERROR(type) << "Generic type cannot be specified with a constant literal."; return ""; } if (!is_evaluated_) { // TODO(b/142722772) CheckValid() should be called before ValueString() bool success = CheckValid(); success &= evaluate(type); if (!success) { // the detailed error message shall be printed in evaluate return ""; } } if (!is_valid_) { AIDL_ERROR(this) << "Invalid constant value: " + value_; return ""; } const string& type_string = type.GetName(); int err = 0; switch (final_type_) { case Type::CHARACTER: if (type_string == "char") { return decorator(type, final_string_value_); } err = -1; break; case Type::STRING: if (type_string == "String") { return decorator(type, final_string_value_); } err = -1; break; case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: if (type_string == "byte") { if (final_value_ > INT8_MAX || final_value_ < INT8_MIN) { err = -1; break; } return decorator(type, std::to_string(static_cast<int8_t>(final_value_))); } else if (type_string == "int") { if (final_value_ > INT32_MAX || final_value_ < INT32_MIN) { err = -1; break; } return decorator(type, std::to_string(static_cast<int32_t>(final_value_))); } else if (type_string == "long") { return decorator(type, std::to_string(final_value_)); } else if (type_string == "boolean") { return decorator(type, final_value_ ? "true" : "false"); } err = -1; break; case Type::ARRAY: { if (!type.IsArray()) { err = -1; break; } vector<string> value_strings; value_strings.reserve(values_.size()); bool success = true; for (const auto& value : values_) { const AidlTypeSpecifier& array_base = type.ArrayBase(); const string value_string = value->ValueString(array_base, decorator); if (value_string.empty()) { success = false; break; } value_strings.push_back(value_string); } if (!success) { err = -1; break; } return decorator(type, "{" + Join(value_strings, ", ") + "}"); } case Type::FLOATING: { std::string_view raw_view(value_.c_str()); bool is_float_literal = ConsumeSuffix(&raw_view, "f"); std::string stripped_value = std::string(raw_view); if (type_string == "double") { double parsed_value; if (!android::base::ParseDouble(stripped_value, &parsed_value)) { AIDL_ERROR(this) << "Could not parse " << value_; err = -1; break; } return decorator(type, std::to_string(parsed_value)); } if (is_float_literal && type_string == "float") { float parsed_value; if (!android::base::ParseFloat(stripped_value, &parsed_value)) { AIDL_ERROR(this) << "Could not parse " << value_; err = -1; break; } return decorator(type, std::to_string(parsed_value) + "f"); } err = -1; break; } default: err = -1; break; } CHECK(err != 0); AIDL_ERROR(this) << "Invalid type specifier for " << ToString(final_type_) << ": " << type_string; return ""; } bool AidlConstantValue::CheckValid() const { // Nothing needs to be checked here. The constant value will be validated in // the constructor or in the evaluate() function. if (is_evaluated_) return is_valid_; switch (type_) { case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: // fall-through case Type::ARRAY: // fall-through case Type::CHARACTER: // fall-through case Type::STRING: // fall-through case Type::FLOATING: // fall-through case Type::UNARY: // fall-through case Type::BINARY: is_valid_ = true; break; case Type::ERROR: return false; default: AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_); return false; } return true; } bool AidlConstantValue::evaluate(const AidlTypeSpecifier& type) const { if (is_evaluated_) { return is_valid_; } int err = 0; is_evaluated_ = true; switch (type_) { case Type::ARRAY: { if (!type.IsArray()) { AIDL_ERROR(this) << "Invalid constant array type: " << type.GetName(); err = -1; break; } Type array_type = Type::ERROR; bool success = true; for (const auto& value : values_) { success = value->CheckValid(); if (success) { success = value->evaluate(type.ArrayBase()); if (!success) { AIDL_ERROR(this) << "Invalid array element: " << value->value_; break; } if (array_type == Type::ERROR) { array_type = value->final_type_; } else if (!AidlBinaryConstExpression::AreCompatibleTypes(array_type, value->final_type_)) { AIDL_ERROR(this) << "Incompatible array element type: " << ToString(value->final_type_) << ". Expecting type compatible with " << ToString(array_type); success = false; break; } } else { break; } } if (!success) { err = -1; break; } final_type_ = type_; break; } case Type::BOOLEAN: if ((value_ != "true") && (value_ != "false")) { AIDL_ERROR(this) << "Invalid constant boolean value: " << value_; err = -1; break; } final_value_ = (value_ == "true") ? 1 : 0; final_type_ = type_; break; case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: // Parsing happens in the constructor final_type_ = type_; break; case Type::CHARACTER: // fall-through case Type::STRING: final_string_value_ = value_; final_type_ = type_; break; case Type::FLOATING: // Just parse on the fly in ValueString final_type_ = type_; break; default: AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_); err = -1; } return (err == 0) ? true : false; } string AidlConstantValue::ToString(Type type) { switch (type) { case Type::BOOLEAN: return "a literal boolean"; case Type::INT8: return "an int8 literal"; case Type::INT32: return "an int32 literal"; case Type::INT64: return "an int64 literal"; case Type::ARRAY: return "a literal array"; case Type::CHARACTER: return "a literal char"; case Type::STRING: return "a literal string"; case Type::FLOATING: return "a literal float"; case Type::UNARY: return "a unary expression"; case Type::BINARY: return "a binary expression"; case Type::ERROR: LOG(FATAL) << "aidl internal error: error type failed to halt program"; return ""; default: LOG(FATAL) << "aidl internal error: unknown constant type: " << static_cast<int>(type); return ""; // not reached } } bool AidlUnaryConstExpression::CheckValid() const { if (is_evaluated_) return is_valid_; CHECK(unary_ != nullptr); is_valid_ = unary_->CheckValid(); if (!is_valid_) { final_type_ = Type::ERROR; return false; } return AidlConstantValue::CheckValid(); } bool AidlUnaryConstExpression::evaluate(const AidlTypeSpecifier& type) const { if (is_evaluated_) { return is_valid_; } is_evaluated_ = true; // Recursively evaluate the expression tree if (!unary_->is_evaluated_) { // TODO(b/142722772) CheckValid() should be called before ValueString() bool success = CheckValid(); success &= unary_->evaluate(type); if (!success) { is_valid_ = false; return false; } } if (!unary_->is_valid_ || !IsCompatibleType(unary_->final_type_, op_)) { AIDL_ERROR(type) << "Invalid constant unary expression: " + value_; is_valid_ = false; return false; } final_type_ = unary_->final_type_; if (final_type_ == Type::FLOATING) { // don't do anything here. ValueString() will handle everything. is_valid_ = true; return true; } #define CASE_UNARY(__type__) \ final_value_ = handleUnary(op_, static_cast<__type__>(unary_->final_value_)); \ return true; SWITCH_KIND(final_type_, CASE_UNARY, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; is_valid_ = false; return false;) } bool AidlBinaryConstExpression::CheckValid() const { bool success = false; if (is_evaluated_) return is_valid_; CHECK(left_val_ != nullptr); CHECK(right_val_ != nullptr); success = left_val_->CheckValid(); if (!success) { final_type_ = Type::ERROR; AIDL_ERROR(this) << "Invalid left operand in binary expression: " + value_; } success = right_val_->CheckValid(); if (!success) { AIDL_ERROR(this) << "Invalid right operand in binary expression: " + value_; final_type_ = Type::ERROR; } if (final_type_ == Type::ERROR) { is_valid_ = false; return false; } is_valid_ = true; return AidlConstantValue::CheckValid(); } bool AidlBinaryConstExpression::evaluate(const AidlTypeSpecifier& type) const { if (is_evaluated_) { return is_valid_; } is_evaluated_ = true; CHECK(left_val_ != nullptr); CHECK(right_val_ != nullptr); // Recursively evaluate the binary expression tree if (!left_val_->is_evaluated_ || !right_val_->is_evaluated_) { // TODO(b/142722772) CheckValid() should be called before ValueString() bool success = CheckValid(); success &= left_val_->evaluate(type); success &= right_val_->evaluate(type); if (!success) { is_valid_ = false; return false; } } if (!left_val_->is_valid_ || !right_val_->is_valid_) { is_valid_ = false; return false; } is_valid_ = AreCompatibleTypes(left_val_->final_type_, right_val_->final_type_); if (!is_valid_) { return false; } bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP; // Handle String case first if (left_val_->final_type_ == Type::STRING) { if (!OPEQ("+")) { // invalid operation on strings final_type_ = Type::ERROR; is_valid_ = false; return false; } // Remove trailing " from lhs const string& lhs = left_val_->final_string_value_; if (lhs.back() != '"') { AIDL_ERROR(this) << "'" << lhs << "' is missing a trailing quote."; final_type_ = Type::ERROR; is_valid_ = false; return false; } const string& rhs = right_val_->final_string_value_; // Remove starting " from rhs if (rhs.front() != '"') { AIDL_ERROR(this) << "'" << rhs << "' is missing a leading quote."; final_type_ = Type::ERROR; is_valid_ = false; return false; } final_string_value_ = string(lhs.begin(), lhs.end() - 1).append(rhs.begin() + 1, rhs.end()); final_type_ = Type::STRING; return true; } // TODO(b/139877950) Add support for handling overflows // CASE: + - * / % | ^ & < > <= >= == != if (isArithmeticOrBitflip || OP_IS_BIN_COMP) { if ((op_ == "/" || op_ == "%") && right_val_->final_value_ == 0) { final_type_ = Type::ERROR; is_valid_ = false; AIDL_ERROR(this) << "Cannot do division operation with zero for expression: " + value_; return false; } // promoted kind for both operands. Type promoted = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_), IntegralPromotion(right_val_->final_type_)); // result kind. final_type_ = isArithmeticOrBitflip ? promoted // arithmetic or bitflip operators generates promoted type : Type::BOOLEAN; // comparison operators generates bool #define CASE_BINARY_COMMON(__type__) \ final_value_ = handleBinaryCommon(static_cast<__type__>(left_val_->final_value_), op_, \ static_cast<__type__>(right_val_->final_value_)); \ return true; SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; is_valid_ = false; return false;) } // CASE: << >> string newOp = op_; if (OP_IS_BIN_SHIFT) { final_type_ = IntegralPromotion(left_val_->final_type_); // instead of promoting rval, simply casting it to int64 should also be good. int64_t numBits = right_val_->cast<int64_t>(); if (numBits < 0) { // shifting with negative number of bits is undefined in C. In AIDL it // is defined as shifting into the other direction. newOp = OPEQ("<<") ? ">>" : "<<"; numBits = -numBits; } #define CASE_SHIFT(__type__) \ final_value_ = handleShift(static_cast<__type__>(left_val_->final_value_), newOp, numBits); \ return true; SWITCH_KIND(final_type_, CASE_SHIFT, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; is_valid_ = false; return false;) } // CASE: && || if (OP_IS_BIN_LOGICAL) { final_type_ = Type::BOOLEAN; // easy; everything is bool. final_value_ = handleLogical(left_val_->final_value_, op_, right_val_->final_value_); return true; } SHOULD_NOT_REACH(); is_valid_ = false; return false; } AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type parsed_type, int64_t parsed_value, const string& checked_value) : AidlNode(location), type_(parsed_type), value_(checked_value), final_type_(parsed_type), final_value_(parsed_value) { CHECK(!value_.empty() || type_ == Type::ERROR); CHECK(type_ == Type::INT8 || type_ == Type::INT32 || type_ == Type::INT64); } AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type, const string& checked_value) : AidlNode(location), type_(type), value_(checked_value), final_type_(type) { CHECK(!value_.empty() || type_ == Type::ERROR); switch (type_) { case Type::INT8: case Type::INT32: case Type::INT64: case Type::ARRAY: AIDL_FATAL(this) << "Invalid type: " << ToString(type_); break; default: break; } } AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type, std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values) : AidlNode(location), type_(type), values_(std::move(*values)), is_valid_(false), is_evaluated_(false), final_type_(type) { CHECK(type_ == Type::ARRAY); } AidlUnaryConstExpression::AidlUnaryConstExpression(const AidlLocation& location, const string& op, std::unique_ptr<AidlConstantValue> rval) : AidlConstantValue(location, Type::UNARY, op + rval->value_), unary_(std::move(rval)), op_(op) { final_type_ = Type::UNARY; } AidlBinaryConstExpression::AidlBinaryConstExpression(const AidlLocation& location, std::unique_ptr<AidlConstantValue> lval, const string& op, std::unique_ptr<AidlConstantValue> rval) : AidlConstantValue(location, Type::BINARY, lval->value_ + op + rval->value_), left_val_(std::move(lval)), right_val_(std::move(rval)), op_(op) { final_type_ = Type::BINARY; }