• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_JMP32	0x06	/* jmp mode in word width */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_XADD	0xc0	/* exclusive add */
23 
24 /* alu/jmp fields */
25 #define BPF_MOV		0xb0	/* mov reg to reg */
26 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
27 
28 /* change endianness of a register */
29 #define BPF_END		0xd0	/* flags for endianness conversion: */
30 #define BPF_TO_LE	0x00	/* convert to little-endian */
31 #define BPF_TO_BE	0x08	/* convert to big-endian */
32 #define BPF_FROM_LE	BPF_TO_LE
33 #define BPF_FROM_BE	BPF_TO_BE
34 
35 /* jmp encodings */
36 #define BPF_JNE		0x50	/* jump != */
37 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
38 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
39 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
42 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
43 #define BPF_CALL	0x80	/* function call */
44 #define BPF_EXIT	0x90	/* function return */
45 
46 /* Register numbers */
47 enum {
48 	BPF_REG_0 = 0,
49 	BPF_REG_1,
50 	BPF_REG_2,
51 	BPF_REG_3,
52 	BPF_REG_4,
53 	BPF_REG_5,
54 	BPF_REG_6,
55 	BPF_REG_7,
56 	BPF_REG_8,
57 	BPF_REG_9,
58 	BPF_REG_10,
59 	__MAX_BPF_REG,
60 };
61 
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG	__MAX_BPF_REG
64 
65 struct bpf_insn {
66 	__u8	code;		/* opcode */
67 	__u8	dst_reg:4;	/* dest register */
68 	__u8	src_reg:4;	/* source register */
69 	__s16	off;		/* signed offset */
70 	__s32	imm;		/* signed immediate constant */
71 };
72 
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
76 	__u8	data[0];	/* Arbitrary size */
77 };
78 
79 struct bpf_cgroup_storage_key {
80 	__u64	cgroup_inode_id;	/* cgroup inode id */
81 	__u32	attach_type;		/* program attach type */
82 };
83 
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 	BPF_MAP_CREATE,
87 	BPF_MAP_LOOKUP_ELEM,
88 	BPF_MAP_UPDATE_ELEM,
89 	BPF_MAP_DELETE_ELEM,
90 	BPF_MAP_GET_NEXT_KEY,
91 	BPF_PROG_LOAD,
92 	BPF_OBJ_PIN,
93 	BPF_OBJ_GET,
94 	BPF_PROG_ATTACH,
95 	BPF_PROG_DETACH,
96 	BPF_PROG_TEST_RUN,
97 	BPF_PROG_GET_NEXT_ID,
98 	BPF_MAP_GET_NEXT_ID,
99 	BPF_PROG_GET_FD_BY_ID,
100 	BPF_MAP_GET_FD_BY_ID,
101 	BPF_OBJ_GET_INFO_BY_FD,
102 	BPF_PROG_QUERY,
103 	BPF_RAW_TRACEPOINT_OPEN,
104 	BPF_BTF_LOAD,
105 	BPF_BTF_GET_FD_BY_ID,
106 	BPF_TASK_FD_QUERY,
107 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 	BPF_MAP_FREEZE,
109 	BPF_BTF_GET_NEXT_ID,
110 };
111 
112 enum bpf_map_type {
113 	BPF_MAP_TYPE_UNSPEC,
114 	BPF_MAP_TYPE_HASH,
115 	BPF_MAP_TYPE_ARRAY,
116 	BPF_MAP_TYPE_PROG_ARRAY,
117 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
118 	BPF_MAP_TYPE_PERCPU_HASH,
119 	BPF_MAP_TYPE_PERCPU_ARRAY,
120 	BPF_MAP_TYPE_STACK_TRACE,
121 	BPF_MAP_TYPE_CGROUP_ARRAY,
122 	BPF_MAP_TYPE_LRU_HASH,
123 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
124 	BPF_MAP_TYPE_LPM_TRIE,
125 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
126 	BPF_MAP_TYPE_HASH_OF_MAPS,
127 	BPF_MAP_TYPE_DEVMAP,
128 	BPF_MAP_TYPE_SOCKMAP,
129 	BPF_MAP_TYPE_CPUMAP,
130 	BPF_MAP_TYPE_XSKMAP,
131 	BPF_MAP_TYPE_SOCKHASH,
132 	BPF_MAP_TYPE_CGROUP_STORAGE,
133 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
134 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
135 	BPF_MAP_TYPE_QUEUE,
136 	BPF_MAP_TYPE_STACK,
137 	BPF_MAP_TYPE_SK_STORAGE,
138 	BPF_MAP_TYPE_DEVMAP_HASH,
139 };
140 
141 /* Note that tracing related programs such as
142  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
143  * are not subject to a stable API since kernel internal data
144  * structures can change from release to release and may
145  * therefore break existing tracing BPF programs. Tracing BPF
146  * programs correspond to /a/ specific kernel which is to be
147  * analyzed, and not /a/ specific kernel /and/ all future ones.
148  */
149 enum bpf_prog_type {
150 	BPF_PROG_TYPE_UNSPEC,
151 	BPF_PROG_TYPE_SOCKET_FILTER,
152 	BPF_PROG_TYPE_KPROBE,
153 	BPF_PROG_TYPE_SCHED_CLS,
154 	BPF_PROG_TYPE_SCHED_ACT,
155 	BPF_PROG_TYPE_TRACEPOINT,
156 	BPF_PROG_TYPE_XDP,
157 	BPF_PROG_TYPE_PERF_EVENT,
158 	BPF_PROG_TYPE_CGROUP_SKB,
159 	BPF_PROG_TYPE_CGROUP_SOCK,
160 	BPF_PROG_TYPE_LWT_IN,
161 	BPF_PROG_TYPE_LWT_OUT,
162 	BPF_PROG_TYPE_LWT_XMIT,
163 	BPF_PROG_TYPE_SOCK_OPS,
164 	BPF_PROG_TYPE_SK_SKB,
165 	BPF_PROG_TYPE_CGROUP_DEVICE,
166 	BPF_PROG_TYPE_SK_MSG,
167 	BPF_PROG_TYPE_RAW_TRACEPOINT,
168 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
169 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
170 	BPF_PROG_TYPE_LIRC_MODE2,
171 	BPF_PROG_TYPE_SK_REUSEPORT,
172 	BPF_PROG_TYPE_FLOW_DISSECTOR,
173 	BPF_PROG_TYPE_CGROUP_SYSCTL,
174 	BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
175 	BPF_PROG_TYPE_CGROUP_SOCKOPT,
176 	BPF_PROG_TYPE_TRACING,
177 };
178 
179 enum bpf_attach_type {
180 	BPF_CGROUP_INET_INGRESS,
181 	BPF_CGROUP_INET_EGRESS,
182 	BPF_CGROUP_INET_SOCK_CREATE,
183 	BPF_CGROUP_SOCK_OPS,
184 	BPF_SK_SKB_STREAM_PARSER,
185 	BPF_SK_SKB_STREAM_VERDICT,
186 	BPF_CGROUP_DEVICE,
187 	BPF_SK_MSG_VERDICT,
188 	BPF_CGROUP_INET4_BIND,
189 	BPF_CGROUP_INET6_BIND,
190 	BPF_CGROUP_INET4_CONNECT,
191 	BPF_CGROUP_INET6_CONNECT,
192 	BPF_CGROUP_INET4_POST_BIND,
193 	BPF_CGROUP_INET6_POST_BIND,
194 	BPF_CGROUP_UDP4_SENDMSG,
195 	BPF_CGROUP_UDP6_SENDMSG,
196 	BPF_LIRC_MODE2,
197 	BPF_FLOW_DISSECTOR,
198 	BPF_CGROUP_SYSCTL,
199 	BPF_CGROUP_UDP4_RECVMSG,
200 	BPF_CGROUP_UDP6_RECVMSG,
201 	BPF_CGROUP_GETSOCKOPT,
202 	BPF_CGROUP_SETSOCKOPT,
203 	BPF_TRACE_RAW_TP,
204 	BPF_TRACE_FENTRY,
205 	BPF_TRACE_FEXIT,
206 	__MAX_BPF_ATTACH_TYPE
207 };
208 
209 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
210 
211 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
212  *
213  * NONE(default): No further bpf programs allowed in the subtree.
214  *
215  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
216  * the program in this cgroup yields to sub-cgroup program.
217  *
218  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
219  * that cgroup program gets run in addition to the program in this cgroup.
220  *
221  * Only one program is allowed to be attached to a cgroup with
222  * NONE or BPF_F_ALLOW_OVERRIDE flag.
223  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
224  * release old program and attach the new one. Attach flags has to match.
225  *
226  * Multiple programs are allowed to be attached to a cgroup with
227  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
228  * (those that were attached first, run first)
229  * The programs of sub-cgroup are executed first, then programs of
230  * this cgroup and then programs of parent cgroup.
231  * When children program makes decision (like picking TCP CA or sock bind)
232  * parent program has a chance to override it.
233  *
234  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
235  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
236  * Ex1:
237  * cgrp1 (MULTI progs A, B) ->
238  *    cgrp2 (OVERRIDE prog C) ->
239  *      cgrp3 (MULTI prog D) ->
240  *        cgrp4 (OVERRIDE prog E) ->
241  *          cgrp5 (NONE prog F)
242  * the event in cgrp5 triggers execution of F,D,A,B in that order.
243  * if prog F is detached, the execution is E,D,A,B
244  * if prog F and D are detached, the execution is E,A,B
245  * if prog F, E and D are detached, the execution is C,A,B
246  *
247  * All eligible programs are executed regardless of return code from
248  * earlier programs.
249  */
250 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
251 #define BPF_F_ALLOW_MULTI	(1U << 1)
252 
253 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
254  * verifier will perform strict alignment checking as if the kernel
255  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
256  * and NET_IP_ALIGN defined to 2.
257  */
258 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
259 
260 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
261  * verifier will allow any alignment whatsoever.  On platforms
262  * with strict alignment requirements for loads ands stores (such
263  * as sparc and mips) the verifier validates that all loads and
264  * stores provably follow this requirement.  This flag turns that
265  * checking and enforcement off.
266  *
267  * It is mostly used for testing when we want to validate the
268  * context and memory access aspects of the verifier, but because
269  * of an unaligned access the alignment check would trigger before
270  * the one we are interested in.
271  */
272 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
273 
274 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
275  * Verifier does sub-register def/use analysis and identifies instructions whose
276  * def only matters for low 32-bit, high 32-bit is never referenced later
277  * through implicit zero extension. Therefore verifier notifies JIT back-ends
278  * that it is safe to ignore clearing high 32-bit for these instructions. This
279  * saves some back-ends a lot of code-gen. However such optimization is not
280  * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
281  * hence hasn't used verifier's analysis result. But, we really want to have a
282  * way to be able to verify the correctness of the described optimization on
283  * x86_64 on which testsuites are frequently exercised.
284  *
285  * So, this flag is introduced. Once it is set, verifier will randomize high
286  * 32-bit for those instructions who has been identified as safe to ignore them.
287  * Then, if verifier is not doing correct analysis, such randomization will
288  * regress tests to expose bugs.
289  */
290 #define BPF_F_TEST_RND_HI32	(1U << 2)
291 
292 /* The verifier internal test flag. Behavior is undefined */
293 #define BPF_F_TEST_STATE_FREQ	(1U << 3)
294 
295 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
296  * two extensions:
297  *
298  * insn[0].src_reg:  BPF_PSEUDO_MAP_FD   BPF_PSEUDO_MAP_VALUE
299  * insn[0].imm:      map fd              map fd
300  * insn[1].imm:      0                   offset into value
301  * insn[0].off:      0                   0
302  * insn[1].off:      0                   0
303  * ldimm64 rewrite:  address of map      address of map[0]+offset
304  * verifier type:    CONST_PTR_TO_MAP    PTR_TO_MAP_VALUE
305  */
306 #define BPF_PSEUDO_MAP_FD	1
307 #define BPF_PSEUDO_MAP_VALUE	2
308 
309 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
310  * offset to another bpf function
311  */
312 #define BPF_PSEUDO_CALL		1
313 
314 /* flags for BPF_MAP_UPDATE_ELEM command */
315 #define BPF_ANY		0 /* create new element or update existing */
316 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
317 #define BPF_EXIST	2 /* update existing element */
318 #define BPF_F_LOCK	4 /* spin_lock-ed map_lookup/map_update */
319 
320 /* flags for BPF_MAP_CREATE command */
321 #define BPF_F_NO_PREALLOC	(1U << 0)
322 /* Instead of having one common LRU list in the
323  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
324  * which can scale and perform better.
325  * Note, the LRU nodes (including free nodes) cannot be moved
326  * across different LRU lists.
327  */
328 #define BPF_F_NO_COMMON_LRU	(1U << 1)
329 /* Specify numa node during map creation */
330 #define BPF_F_NUMA_NODE		(1U << 2)
331 
332 #define BPF_OBJ_NAME_LEN 16U
333 
334 /* Flags for accessing BPF object from syscall side. */
335 #define BPF_F_RDONLY		(1U << 3)
336 #define BPF_F_WRONLY		(1U << 4)
337 
338 /* Flag for stack_map, store build_id+offset instead of pointer */
339 #define BPF_F_STACK_BUILD_ID	(1U << 5)
340 
341 /* Zero-initialize hash function seed. This should only be used for testing. */
342 #define BPF_F_ZERO_SEED		(1U << 6)
343 
344 /* Flags for accessing BPF object from program side. */
345 #define BPF_F_RDONLY_PROG	(1U << 7)
346 #define BPF_F_WRONLY_PROG	(1U << 8)
347 
348 /* Clone map from listener for newly accepted socket */
349 #define BPF_F_CLONE		(1U << 9)
350 
351 /* Enable memory-mapping BPF map */
352 #define BPF_F_MMAPABLE		(1U << 10)
353 
354 /* flags for BPF_PROG_QUERY */
355 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
356 
357 enum bpf_stack_build_id_status {
358 	/* user space need an empty entry to identify end of a trace */
359 	BPF_STACK_BUILD_ID_EMPTY = 0,
360 	/* with valid build_id and offset */
361 	BPF_STACK_BUILD_ID_VALID = 1,
362 	/* couldn't get build_id, fallback to ip */
363 	BPF_STACK_BUILD_ID_IP = 2,
364 };
365 
366 #define BPF_BUILD_ID_SIZE 20
367 struct bpf_stack_build_id {
368 	__s32		status;
369 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
370 	union {
371 		__u64	offset;
372 		__u64	ip;
373 	};
374 };
375 
376 union bpf_attr {
377 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
378 		__u32	map_type;	/* one of enum bpf_map_type */
379 		__u32	key_size;	/* size of key in bytes */
380 		__u32	value_size;	/* size of value in bytes */
381 		__u32	max_entries;	/* max number of entries in a map */
382 		__u32	map_flags;	/* BPF_MAP_CREATE related
383 					 * flags defined above.
384 					 */
385 		__u32	inner_map_fd;	/* fd pointing to the inner map */
386 		__u32	numa_node;	/* numa node (effective only if
387 					 * BPF_F_NUMA_NODE is set).
388 					 */
389 		char	map_name[BPF_OBJ_NAME_LEN];
390 		__u32	map_ifindex;	/* ifindex of netdev to create on */
391 		__u32	btf_fd;		/* fd pointing to a BTF type data */
392 		__u32	btf_key_type_id;	/* BTF type_id of the key */
393 		__u32	btf_value_type_id;	/* BTF type_id of the value */
394 	};
395 
396 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
397 		__u32		map_fd;
398 		__aligned_u64	key;
399 		union {
400 			__aligned_u64 value;
401 			__aligned_u64 next_key;
402 		};
403 		__u64		flags;
404 	};
405 
406 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
407 		__u32		prog_type;	/* one of enum bpf_prog_type */
408 		__u32		insn_cnt;
409 		__aligned_u64	insns;
410 		__aligned_u64	license;
411 		__u32		log_level;	/* verbosity level of verifier */
412 		__u32		log_size;	/* size of user buffer */
413 		__aligned_u64	log_buf;	/* user supplied buffer */
414 		__u32		kern_version;	/* not used */
415 		__u32		prog_flags;
416 		char		prog_name[BPF_OBJ_NAME_LEN];
417 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
418 		/* For some prog types expected attach type must be known at
419 		 * load time to verify attach type specific parts of prog
420 		 * (context accesses, allowed helpers, etc).
421 		 */
422 		__u32		expected_attach_type;
423 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
424 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
425 		__aligned_u64	func_info;	/* func info */
426 		__u32		func_info_cnt;	/* number of bpf_func_info records */
427 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
428 		__aligned_u64	line_info;	/* line info */
429 		__u32		line_info_cnt;	/* number of bpf_line_info records */
430 		__u32		attach_btf_id;	/* in-kernel BTF type id to attach to */
431 		__u32		attach_prog_fd; /* 0 to attach to vmlinux */
432 	};
433 
434 	struct { /* anonymous struct used by BPF_OBJ_* commands */
435 		__aligned_u64	pathname;
436 		__u32		bpf_fd;
437 		__u32		file_flags;
438 	};
439 
440 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
441 		__u32		target_fd;	/* container object to attach to */
442 		__u32		attach_bpf_fd;	/* eBPF program to attach */
443 		__u32		attach_type;
444 		__u32		attach_flags;
445 	};
446 
447 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
448 		__u32		prog_fd;
449 		__u32		retval;
450 		__u32		data_size_in;	/* input: len of data_in */
451 		__u32		data_size_out;	/* input/output: len of data_out
452 						 *   returns ENOSPC if data_out
453 						 *   is too small.
454 						 */
455 		__aligned_u64	data_in;
456 		__aligned_u64	data_out;
457 		__u32		repeat;
458 		__u32		duration;
459 		__u32		ctx_size_in;	/* input: len of ctx_in */
460 		__u32		ctx_size_out;	/* input/output: len of ctx_out
461 						 *   returns ENOSPC if ctx_out
462 						 *   is too small.
463 						 */
464 		__aligned_u64	ctx_in;
465 		__aligned_u64	ctx_out;
466 	} test;
467 
468 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
469 		union {
470 			__u32		start_id;
471 			__u32		prog_id;
472 			__u32		map_id;
473 			__u32		btf_id;
474 		};
475 		__u32		next_id;
476 		__u32		open_flags;
477 	};
478 
479 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
480 		__u32		bpf_fd;
481 		__u32		info_len;
482 		__aligned_u64	info;
483 	} info;
484 
485 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
486 		__u32		target_fd;	/* container object to query */
487 		__u32		attach_type;
488 		__u32		query_flags;
489 		__u32		attach_flags;
490 		__aligned_u64	prog_ids;
491 		__u32		prog_cnt;
492 	} query;
493 
494 	struct {
495 		__u64 name;
496 		__u32 prog_fd;
497 	} raw_tracepoint;
498 
499 	struct { /* anonymous struct for BPF_BTF_LOAD */
500 		__aligned_u64	btf;
501 		__aligned_u64	btf_log_buf;
502 		__u32		btf_size;
503 		__u32		btf_log_size;
504 		__u32		btf_log_level;
505 	};
506 
507 	struct {
508 		__u32		pid;		/* input: pid */
509 		__u32		fd;		/* input: fd */
510 		__u32		flags;		/* input: flags */
511 		__u32		buf_len;	/* input/output: buf len */
512 		__aligned_u64	buf;		/* input/output:
513 						 *   tp_name for tracepoint
514 						 *   symbol for kprobe
515 						 *   filename for uprobe
516 						 */
517 		__u32		prog_id;	/* output: prod_id */
518 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
519 		__u64		probe_offset;	/* output: probe_offset */
520 		__u64		probe_addr;	/* output: probe_addr */
521 	} task_fd_query;
522 } __attribute__((aligned(8)));
523 
524 /* The description below is an attempt at providing documentation to eBPF
525  * developers about the multiple available eBPF helper functions. It can be
526  * parsed and used to produce a manual page. The workflow is the following,
527  * and requires the rst2man utility:
528  *
529  *     $ ./scripts/bpf_helpers_doc.py \
530  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
531  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
532  *     $ man /tmp/bpf-helpers.7
533  *
534  * Note that in order to produce this external documentation, some RST
535  * formatting is used in the descriptions to get "bold" and "italics" in
536  * manual pages. Also note that the few trailing white spaces are
537  * intentional, removing them would break paragraphs for rst2man.
538  *
539  * Start of BPF helper function descriptions:
540  *
541  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
542  * 	Description
543  * 		Perform a lookup in *map* for an entry associated to *key*.
544  * 	Return
545  * 		Map value associated to *key*, or **NULL** if no entry was
546  * 		found.
547  *
548  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
549  * 	Description
550  * 		Add or update the value of the entry associated to *key* in
551  * 		*map* with *value*. *flags* is one of:
552  *
553  * 		**BPF_NOEXIST**
554  * 			The entry for *key* must not exist in the map.
555  * 		**BPF_EXIST**
556  * 			The entry for *key* must already exist in the map.
557  * 		**BPF_ANY**
558  * 			No condition on the existence of the entry for *key*.
559  *
560  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
561  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
562  * 		elements always exist), the helper would return an error.
563  * 	Return
564  * 		0 on success, or a negative error in case of failure.
565  *
566  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
567  * 	Description
568  * 		Delete entry with *key* from *map*.
569  * 	Return
570  * 		0 on success, or a negative error in case of failure.
571  *
572  * int bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
573  * 	Description
574  * 		For tracing programs, safely attempt to read *size* bytes from
575  * 		kernel space address *unsafe_ptr* and store the data in *dst*.
576  *
577  * 		Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
578  * 		instead.
579  * 	Return
580  * 		0 on success, or a negative error in case of failure.
581  *
582  * u64 bpf_ktime_get_ns(void)
583  * 	Description
584  * 		Return the time elapsed since system boot, in nanoseconds.
585  * 	Return
586  * 		Current *ktime*.
587  *
588  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
589  * 	Description
590  * 		This helper is a "printk()-like" facility for debugging. It
591  * 		prints a message defined by format *fmt* (of size *fmt_size*)
592  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
593  * 		available. It can take up to three additional **u64**
594  * 		arguments (as an eBPF helpers, the total number of arguments is
595  * 		limited to five).
596  *
597  * 		Each time the helper is called, it appends a line to the trace.
598  * 		Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
599  * 		open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
600  * 		The format of the trace is customizable, and the exact output
601  * 		one will get depends on the options set in
602  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
603  * 		*README* file under the same directory). However, it usually
604  * 		defaults to something like:
605  *
606  * 		::
607  *
608  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
609  *
610  * 		In the above:
611  *
612  * 			* ``telnet`` is the name of the current task.
613  * 			* ``470`` is the PID of the current task.
614  * 			* ``001`` is the CPU number on which the task is
615  * 			  running.
616  * 			* In ``.N..``, each character refers to a set of
617  * 			  options (whether irqs are enabled, scheduling
618  * 			  options, whether hard/softirqs are running, level of
619  * 			  preempt_disabled respectively). **N** means that
620  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
621  * 			  are set.
622  * 			* ``419421.045894`` is a timestamp.
623  * 			* ``0x00000001`` is a fake value used by BPF for the
624  * 			  instruction pointer register.
625  * 			* ``<formatted msg>`` is the message formatted with
626  * 			  *fmt*.
627  *
628  * 		The conversion specifiers supported by *fmt* are similar, but
629  * 		more limited than for printk(). They are **%d**, **%i**,
630  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
631  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
632  * 		of field, padding with zeroes, etc.) is available, and the
633  * 		helper will return **-EINVAL** (but print nothing) if it
634  * 		encounters an unknown specifier.
635  *
636  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
637  * 		only be used for debugging purposes. For this reason, a notice
638  * 		bloc (spanning several lines) is printed to kernel logs and
639  * 		states that the helper should not be used "for production use"
640  * 		the first time this helper is used (or more precisely, when
641  * 		**trace_printk**\ () buffers are allocated). For passing values
642  * 		to user space, perf events should be preferred.
643  * 	Return
644  * 		The number of bytes written to the buffer, or a negative error
645  * 		in case of failure.
646  *
647  * u32 bpf_get_prandom_u32(void)
648  * 	Description
649  * 		Get a pseudo-random number.
650  *
651  * 		From a security point of view, this helper uses its own
652  * 		pseudo-random internal state, and cannot be used to infer the
653  * 		seed of other random functions in the kernel. However, it is
654  * 		essential to note that the generator used by the helper is not
655  * 		cryptographically secure.
656  * 	Return
657  * 		A random 32-bit unsigned value.
658  *
659  * u32 bpf_get_smp_processor_id(void)
660  * 	Description
661  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
662  * 		all programs run with preemption disabled, which means that the
663  * 		SMP processor id is stable during all the execution of the
664  * 		program.
665  * 	Return
666  * 		The SMP id of the processor running the program.
667  *
668  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
669  * 	Description
670  * 		Store *len* bytes from address *from* into the packet
671  * 		associated to *skb*, at *offset*. *flags* are a combination of
672  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
673  * 		checksum for the packet after storing the bytes) and
674  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
675  * 		**->swhash** and *skb*\ **->l4hash** to 0).
676  *
677  * 		A call to this helper is susceptible to change the underlying
678  * 		packet buffer. Therefore, at load time, all checks on pointers
679  * 		previously done by the verifier are invalidated and must be
680  * 		performed again, if the helper is used in combination with
681  * 		direct packet access.
682  * 	Return
683  * 		0 on success, or a negative error in case of failure.
684  *
685  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
686  * 	Description
687  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
688  * 		associated to *skb*. Computation is incremental, so the helper
689  * 		must know the former value of the header field that was
690  * 		modified (*from*), the new value of this field (*to*), and the
691  * 		number of bytes (2 or 4) for this field, stored in *size*.
692  * 		Alternatively, it is possible to store the difference between
693  * 		the previous and the new values of the header field in *to*, by
694  * 		setting *from* and *size* to 0. For both methods, *offset*
695  * 		indicates the location of the IP checksum within the packet.
696  *
697  * 		This helper works in combination with **bpf_csum_diff**\ (),
698  * 		which does not update the checksum in-place, but offers more
699  * 		flexibility and can handle sizes larger than 2 or 4 for the
700  * 		checksum to update.
701  *
702  * 		A call to this helper is susceptible to change the underlying
703  * 		packet buffer. Therefore, at load time, all checks on pointers
704  * 		previously done by the verifier are invalidated and must be
705  * 		performed again, if the helper is used in combination with
706  * 		direct packet access.
707  * 	Return
708  * 		0 on success, or a negative error in case of failure.
709  *
710  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
711  * 	Description
712  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
713  * 		packet associated to *skb*. Computation is incremental, so the
714  * 		helper must know the former value of the header field that was
715  * 		modified (*from*), the new value of this field (*to*), and the
716  * 		number of bytes (2 or 4) for this field, stored on the lowest
717  * 		four bits of *flags*. Alternatively, it is possible to store
718  * 		the difference between the previous and the new values of the
719  * 		header field in *to*, by setting *from* and the four lowest
720  * 		bits of *flags* to 0. For both methods, *offset* indicates the
721  * 		location of the IP checksum within the packet. In addition to
722  * 		the size of the field, *flags* can be added (bitwise OR) actual
723  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
724  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
725  * 		for updates resulting in a null checksum the value is set to
726  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
727  * 		the checksum is to be computed against a pseudo-header.
728  *
729  * 		This helper works in combination with **bpf_csum_diff**\ (),
730  * 		which does not update the checksum in-place, but offers more
731  * 		flexibility and can handle sizes larger than 2 or 4 for the
732  * 		checksum to update.
733  *
734  * 		A call to this helper is susceptible to change the underlying
735  * 		packet buffer. Therefore, at load time, all checks on pointers
736  * 		previously done by the verifier are invalidated and must be
737  * 		performed again, if the helper is used in combination with
738  * 		direct packet access.
739  * 	Return
740  * 		0 on success, or a negative error in case of failure.
741  *
742  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
743  * 	Description
744  * 		This special helper is used to trigger a "tail call", or in
745  * 		other words, to jump into another eBPF program. The same stack
746  * 		frame is used (but values on stack and in registers for the
747  * 		caller are not accessible to the callee). This mechanism allows
748  * 		for program chaining, either for raising the maximum number of
749  * 		available eBPF instructions, or to execute given programs in
750  * 		conditional blocks. For security reasons, there is an upper
751  * 		limit to the number of successive tail calls that can be
752  * 		performed.
753  *
754  * 		Upon call of this helper, the program attempts to jump into a
755  * 		program referenced at index *index* in *prog_array_map*, a
756  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
757  * 		*ctx*, a pointer to the context.
758  *
759  * 		If the call succeeds, the kernel immediately runs the first
760  * 		instruction of the new program. This is not a function call,
761  * 		and it never returns to the previous program. If the call
762  * 		fails, then the helper has no effect, and the caller continues
763  * 		to run its subsequent instructions. A call can fail if the
764  * 		destination program for the jump does not exist (i.e. *index*
765  * 		is superior to the number of entries in *prog_array_map*), or
766  * 		if the maximum number of tail calls has been reached for this
767  * 		chain of programs. This limit is defined in the kernel by the
768  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
769  * 		which is currently set to 32.
770  * 	Return
771  * 		0 on success, or a negative error in case of failure.
772  *
773  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
774  * 	Description
775  * 		Clone and redirect the packet associated to *skb* to another
776  * 		net device of index *ifindex*. Both ingress and egress
777  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
778  * 		value in *flags* is used to make the distinction (ingress path
779  * 		is selected if the flag is present, egress path otherwise).
780  * 		This is the only flag supported for now.
781  *
782  * 		In comparison with **bpf_redirect**\ () helper,
783  * 		**bpf_clone_redirect**\ () has the associated cost of
784  * 		duplicating the packet buffer, but this can be executed out of
785  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
786  * 		efficient, but it is handled through an action code where the
787  * 		redirection happens only after the eBPF program has returned.
788  *
789  * 		A call to this helper is susceptible to change the underlying
790  * 		packet buffer. Therefore, at load time, all checks on pointers
791  * 		previously done by the verifier are invalidated and must be
792  * 		performed again, if the helper is used in combination with
793  * 		direct packet access.
794  * 	Return
795  * 		0 on success, or a negative error in case of failure.
796  *
797  * u64 bpf_get_current_pid_tgid(void)
798  * 	Return
799  * 		A 64-bit integer containing the current tgid and pid, and
800  * 		created as such:
801  * 		*current_task*\ **->tgid << 32 \|**
802  * 		*current_task*\ **->pid**.
803  *
804  * u64 bpf_get_current_uid_gid(void)
805  * 	Return
806  * 		A 64-bit integer containing the current GID and UID, and
807  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
808  *
809  * int bpf_get_current_comm(void *buf, u32 size_of_buf)
810  * 	Description
811  * 		Copy the **comm** attribute of the current task into *buf* of
812  * 		*size_of_buf*. The **comm** attribute contains the name of
813  * 		the executable (excluding the path) for the current task. The
814  * 		*size_of_buf* must be strictly positive. On success, the
815  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
816  * 		it is filled with zeroes.
817  * 	Return
818  * 		0 on success, or a negative error in case of failure.
819  *
820  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
821  * 	Description
822  * 		Retrieve the classid for the current task, i.e. for the net_cls
823  * 		cgroup to which *skb* belongs.
824  *
825  * 		This helper can be used on TC egress path, but not on ingress.
826  *
827  * 		The net_cls cgroup provides an interface to tag network packets
828  * 		based on a user-provided identifier for all traffic coming from
829  * 		the tasks belonging to the related cgroup. See also the related
830  * 		kernel documentation, available from the Linux sources in file
831  * 		*Documentation/admin-guide/cgroup-v1/net_cls.rst*.
832  *
833  * 		The Linux kernel has two versions for cgroups: there are
834  * 		cgroups v1 and cgroups v2. Both are available to users, who can
835  * 		use a mixture of them, but note that the net_cls cgroup is for
836  * 		cgroup v1 only. This makes it incompatible with BPF programs
837  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
838  * 		only hold data for one version of cgroups at a time).
839  *
840  * 		This helper is only available is the kernel was compiled with
841  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
842  * 		"**y**" or to "**m**".
843  * 	Return
844  * 		The classid, or 0 for the default unconfigured classid.
845  *
846  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
847  * 	Description
848  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
849  * 		*vlan_proto* to the packet associated to *skb*, then update
850  * 		the checksum. Note that if *vlan_proto* is different from
851  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
852  * 		be **ETH_P_8021Q**.
853  *
854  * 		A call to this helper is susceptible to change the underlying
855  * 		packet buffer. Therefore, at load time, all checks on pointers
856  * 		previously done by the verifier are invalidated and must be
857  * 		performed again, if the helper is used in combination with
858  * 		direct packet access.
859  * 	Return
860  * 		0 on success, or a negative error in case of failure.
861  *
862  * int bpf_skb_vlan_pop(struct sk_buff *skb)
863  * 	Description
864  * 		Pop a VLAN header from the packet associated to *skb*.
865  *
866  * 		A call to this helper is susceptible to change the underlying
867  * 		packet buffer. Therefore, at load time, all checks on pointers
868  * 		previously done by the verifier are invalidated and must be
869  * 		performed again, if the helper is used in combination with
870  * 		direct packet access.
871  * 	Return
872  * 		0 on success, or a negative error in case of failure.
873  *
874  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
875  * 	Description
876  * 		Get tunnel metadata. This helper takes a pointer *key* to an
877  * 		empty **struct bpf_tunnel_key** of **size**, that will be
878  * 		filled with tunnel metadata for the packet associated to *skb*.
879  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
880  * 		indicates that the tunnel is based on IPv6 protocol instead of
881  * 		IPv4.
882  *
883  * 		The **struct bpf_tunnel_key** is an object that generalizes the
884  * 		principal parameters used by various tunneling protocols into a
885  * 		single struct. This way, it can be used to easily make a
886  * 		decision based on the contents of the encapsulation header,
887  * 		"summarized" in this struct. In particular, it holds the IP
888  * 		address of the remote end (IPv4 or IPv6, depending on the case)
889  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
890  * 		this struct exposes the *key*\ **->tunnel_id**, which is
891  * 		generally mapped to a VNI (Virtual Network Identifier), making
892  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
893  * 		() helper.
894  *
895  * 		Let's imagine that the following code is part of a program
896  * 		attached to the TC ingress interface, on one end of a GRE
897  * 		tunnel, and is supposed to filter out all messages coming from
898  * 		remote ends with IPv4 address other than 10.0.0.1:
899  *
900  * 		::
901  *
902  * 			int ret;
903  * 			struct bpf_tunnel_key key = {};
904  *
905  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
906  * 			if (ret < 0)
907  * 				return TC_ACT_SHOT;	// drop packet
908  *
909  * 			if (key.remote_ipv4 != 0x0a000001)
910  * 				return TC_ACT_SHOT;	// drop packet
911  *
912  * 			return TC_ACT_OK;		// accept packet
913  *
914  * 		This interface can also be used with all encapsulation devices
915  * 		that can operate in "collect metadata" mode: instead of having
916  * 		one network device per specific configuration, the "collect
917  * 		metadata" mode only requires a single device where the
918  * 		configuration can be extracted from this helper.
919  *
920  * 		This can be used together with various tunnels such as VXLan,
921  * 		Geneve, GRE or IP in IP (IPIP).
922  * 	Return
923  * 		0 on success, or a negative error in case of failure.
924  *
925  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
926  * 	Description
927  * 		Populate tunnel metadata for packet associated to *skb.* The
928  * 		tunnel metadata is set to the contents of *key*, of *size*. The
929  * 		*flags* can be set to a combination of the following values:
930  *
931  * 		**BPF_F_TUNINFO_IPV6**
932  * 			Indicate that the tunnel is based on IPv6 protocol
933  * 			instead of IPv4.
934  * 		**BPF_F_ZERO_CSUM_TX**
935  * 			For IPv4 packets, add a flag to tunnel metadata
936  * 			indicating that checksum computation should be skipped
937  * 			and checksum set to zeroes.
938  * 		**BPF_F_DONT_FRAGMENT**
939  * 			Add a flag to tunnel metadata indicating that the
940  * 			packet should not be fragmented.
941  * 		**BPF_F_SEQ_NUMBER**
942  * 			Add a flag to tunnel metadata indicating that a
943  * 			sequence number should be added to tunnel header before
944  * 			sending the packet. This flag was added for GRE
945  * 			encapsulation, but might be used with other protocols
946  * 			as well in the future.
947  *
948  * 		Here is a typical usage on the transmit path:
949  *
950  * 		::
951  *
952  * 			struct bpf_tunnel_key key;
953  * 			     populate key ...
954  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
955  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
956  *
957  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
958  * 		helper for additional information.
959  * 	Return
960  * 		0 on success, or a negative error in case of failure.
961  *
962  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
963  * 	Description
964  * 		Read the value of a perf event counter. This helper relies on a
965  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
966  * 		the perf event counter is selected when *map* is updated with
967  * 		perf event file descriptors. The *map* is an array whose size
968  * 		is the number of available CPUs, and each cell contains a value
969  * 		relative to one CPU. The value to retrieve is indicated by
970  * 		*flags*, that contains the index of the CPU to look up, masked
971  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
972  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
973  * 		current CPU should be retrieved.
974  *
975  * 		Note that before Linux 4.13, only hardware perf event can be
976  * 		retrieved.
977  *
978  * 		Also, be aware that the newer helper
979  * 		**bpf_perf_event_read_value**\ () is recommended over
980  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
981  * 		quirks where error and counter value are used as a return code
982  * 		(which is wrong to do since ranges may overlap). This issue is
983  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
984  * 		time provides more features over the **bpf_perf_event_read**\
985  * 		() interface. Please refer to the description of
986  * 		**bpf_perf_event_read_value**\ () for details.
987  * 	Return
988  * 		The value of the perf event counter read from the map, or a
989  * 		negative error code in case of failure.
990  *
991  * int bpf_redirect(u32 ifindex, u64 flags)
992  * 	Description
993  * 		Redirect the packet to another net device of index *ifindex*.
994  * 		This helper is somewhat similar to **bpf_clone_redirect**\
995  * 		(), except that the packet is not cloned, which provides
996  * 		increased performance.
997  *
998  * 		Except for XDP, both ingress and egress interfaces can be used
999  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
1000  * 		to make the distinction (ingress path is selected if the flag
1001  * 		is present, egress path otherwise). Currently, XDP only
1002  * 		supports redirection to the egress interface, and accepts no
1003  * 		flag at all.
1004  *
1005  * 		The same effect can be attained with the more generic
1006  * 		**bpf_redirect_map**\ (), which requires specific maps to be
1007  * 		used but offers better performance.
1008  * 	Return
1009  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
1010  * 		**XDP_ABORTED** on error. For other program types, the values
1011  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1012  * 		error.
1013  *
1014  * u32 bpf_get_route_realm(struct sk_buff *skb)
1015  * 	Description
1016  * 		Retrieve the realm or the route, that is to say the
1017  * 		**tclassid** field of the destination for the *skb*. The
1018  * 		indentifier retrieved is a user-provided tag, similar to the
1019  * 		one used with the net_cls cgroup (see description for
1020  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
1021  * 		held by a route (a destination entry), not by a task.
1022  *
1023  * 		Retrieving this identifier works with the clsact TC egress hook
1024  * 		(see also **tc-bpf(8)**), or alternatively on conventional
1025  * 		classful egress qdiscs, but not on TC ingress path. In case of
1026  * 		clsact TC egress hook, this has the advantage that, internally,
1027  * 		the destination entry has not been dropped yet in the transmit
1028  * 		path. Therefore, the destination entry does not need to be
1029  * 		artificially held via **netif_keep_dst**\ () for a classful
1030  * 		qdisc until the *skb* is freed.
1031  *
1032  * 		This helper is available only if the kernel was compiled with
1033  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
1034  * 	Return
1035  * 		The realm of the route for the packet associated to *skb*, or 0
1036  * 		if none was found.
1037  *
1038  * int bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
1039  * 	Description
1040  * 		Write raw *data* blob into a special BPF perf event held by
1041  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
1042  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
1043  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1044  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1045  *
1046  * 		The *flags* are used to indicate the index in *map* for which
1047  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
1048  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1049  * 		to indicate that the index of the current CPU core should be
1050  * 		used.
1051  *
1052  * 		The value to write, of *size*, is passed through eBPF stack and
1053  * 		pointed by *data*.
1054  *
1055  * 		The context of the program *ctx* needs also be passed to the
1056  * 		helper.
1057  *
1058  * 		On user space, a program willing to read the values needs to
1059  * 		call **perf_event_open**\ () on the perf event (either for
1060  * 		one or for all CPUs) and to store the file descriptor into the
1061  * 		*map*. This must be done before the eBPF program can send data
1062  * 		into it. An example is available in file
1063  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
1064  * 		tree (the eBPF program counterpart is in
1065  * 		*samples/bpf/trace_output_kern.c*).
1066  *
1067  * 		**bpf_perf_event_output**\ () achieves better performance
1068  * 		than **bpf_trace_printk**\ () for sharing data with user
1069  * 		space, and is much better suitable for streaming data from eBPF
1070  * 		programs.
1071  *
1072  * 		Note that this helper is not restricted to tracing use cases
1073  * 		and can be used with programs attached to TC or XDP as well,
1074  * 		where it allows for passing data to user space listeners. Data
1075  * 		can be:
1076  *
1077  * 		* Only custom structs,
1078  * 		* Only the packet payload, or
1079  * 		* A combination of both.
1080  * 	Return
1081  * 		0 on success, or a negative error in case of failure.
1082  *
1083  * int bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
1084  * 	Description
1085  * 		This helper was provided as an easy way to load data from a
1086  * 		packet. It can be used to load *len* bytes from *offset* from
1087  * 		the packet associated to *skb*, into the buffer pointed by
1088  * 		*to*.
1089  *
1090  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1091  * 		by "direct packet access", enabling packet data to be
1092  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1093  * 		pointing respectively to the first byte of packet data and to
1094  * 		the byte after the last byte of packet data. However, it
1095  * 		remains useful if one wishes to read large quantities of data
1096  * 		at once from a packet into the eBPF stack.
1097  * 	Return
1098  * 		0 on success, or a negative error in case of failure.
1099  *
1100  * int bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
1101  * 	Description
1102  * 		Walk a user or a kernel stack and return its id. To achieve
1103  * 		this, the helper needs *ctx*, which is a pointer to the context
1104  * 		on which the tracing program is executed, and a pointer to a
1105  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1106  *
1107  * 		The last argument, *flags*, holds the number of stack frames to
1108  * 		skip (from 0 to 255), masked with
1109  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1110  * 		a combination of the following flags:
1111  *
1112  * 		**BPF_F_USER_STACK**
1113  * 			Collect a user space stack instead of a kernel stack.
1114  * 		**BPF_F_FAST_STACK_CMP**
1115  * 			Compare stacks by hash only.
1116  * 		**BPF_F_REUSE_STACKID**
1117  * 			If two different stacks hash into the same *stackid*,
1118  * 			discard the old one.
1119  *
1120  * 		The stack id retrieved is a 32 bit long integer handle which
1121  * 		can be further combined with other data (including other stack
1122  * 		ids) and used as a key into maps. This can be useful for
1123  * 		generating a variety of graphs (such as flame graphs or off-cpu
1124  * 		graphs).
1125  *
1126  * 		For walking a stack, this helper is an improvement over
1127  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1128  * 		but is not efficient and consumes a lot of eBPF instructions.
1129  * 		Instead, **bpf_get_stackid**\ () can collect up to
1130  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1131  * 		this limit can be controlled with the **sysctl** program, and
1132  * 		that it should be manually increased in order to profile long
1133  * 		user stacks (such as stacks for Java programs). To do so, use:
1134  *
1135  * 		::
1136  *
1137  * 			# sysctl kernel.perf_event_max_stack=<new value>
1138  * 	Return
1139  * 		The positive or null stack id on success, or a negative error
1140  * 		in case of failure.
1141  *
1142  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1143  * 	Description
1144  * 		Compute a checksum difference, from the raw buffer pointed by
1145  * 		*from*, of length *from_size* (that must be a multiple of 4),
1146  * 		towards the raw buffer pointed by *to*, of size *to_size*
1147  * 		(same remark). An optional *seed* can be added to the value
1148  * 		(this can be cascaded, the seed may come from a previous call
1149  * 		to the helper).
1150  *
1151  * 		This is flexible enough to be used in several ways:
1152  *
1153  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1154  * 		  checksum, it can be used when pushing new data.
1155  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1156  * 		  checksum, it can be used when removing data from a packet.
1157  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1158  * 		  can be used to compute a diff. Note that *from_size* and
1159  * 		  *to_size* do not need to be equal.
1160  *
1161  * 		This helper can be used in combination with
1162  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1163  * 		which one can feed in the difference computed with
1164  * 		**bpf_csum_diff**\ ().
1165  * 	Return
1166  * 		The checksum result, or a negative error code in case of
1167  * 		failure.
1168  *
1169  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1170  * 	Description
1171  * 		Retrieve tunnel options metadata for the packet associated to
1172  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1173  * 		of *size*.
1174  *
1175  * 		This helper can be used with encapsulation devices that can
1176  * 		operate in "collect metadata" mode (please refer to the related
1177  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1178  * 		more details). A particular example where this can be used is
1179  * 		in combination with the Geneve encapsulation protocol, where it
1180  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1181  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1182  * 		the eBPF program. This allows for full customization of these
1183  * 		headers.
1184  * 	Return
1185  * 		The size of the option data retrieved.
1186  *
1187  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1188  * 	Description
1189  * 		Set tunnel options metadata for the packet associated to *skb*
1190  * 		to the option data contained in the raw buffer *opt* of *size*.
1191  *
1192  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1193  * 		helper for additional information.
1194  * 	Return
1195  * 		0 on success, or a negative error in case of failure.
1196  *
1197  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1198  * 	Description
1199  * 		Change the protocol of the *skb* to *proto*. Currently
1200  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1201  * 		IPv4. The helper takes care of the groundwork for the
1202  * 		transition, including resizing the socket buffer. The eBPF
1203  * 		program is expected to fill the new headers, if any, via
1204  * 		**skb_store_bytes**\ () and to recompute the checksums with
1205  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1206  * 		(). The main case for this helper is to perform NAT64
1207  * 		operations out of an eBPF program.
1208  *
1209  * 		Internally, the GSO type is marked as dodgy so that headers are
1210  * 		checked and segments are recalculated by the GSO/GRO engine.
1211  * 		The size for GSO target is adapted as well.
1212  *
1213  * 		All values for *flags* are reserved for future usage, and must
1214  * 		be left at zero.
1215  *
1216  * 		A call to this helper is susceptible to change the underlying
1217  * 		packet buffer. Therefore, at load time, all checks on pointers
1218  * 		previously done by the verifier are invalidated and must be
1219  * 		performed again, if the helper is used in combination with
1220  * 		direct packet access.
1221  * 	Return
1222  * 		0 on success, or a negative error in case of failure.
1223  *
1224  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1225  * 	Description
1226  * 		Change the packet type for the packet associated to *skb*. This
1227  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1228  * 		the eBPF program does not have a write access to *skb*\
1229  * 		**->pkt_type** beside this helper. Using a helper here allows
1230  * 		for graceful handling of errors.
1231  *
1232  * 		The major use case is to change incoming *skb*s to
1233  * 		**PACKET_HOST** in a programmatic way instead of having to
1234  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1235  * 		example.
1236  *
1237  * 		Note that *type* only allows certain values. At this time, they
1238  * 		are:
1239  *
1240  * 		**PACKET_HOST**
1241  * 			Packet is for us.
1242  * 		**PACKET_BROADCAST**
1243  * 			Send packet to all.
1244  * 		**PACKET_MULTICAST**
1245  * 			Send packet to group.
1246  * 		**PACKET_OTHERHOST**
1247  * 			Send packet to someone else.
1248  * 	Return
1249  * 		0 on success, or a negative error in case of failure.
1250  *
1251  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1252  * 	Description
1253  * 		Check whether *skb* is a descendant of the cgroup2 held by
1254  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1255  * 	Return
1256  * 		The return value depends on the result of the test, and can be:
1257  *
1258  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1259  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1260  * 		* A negative error code, if an error occurred.
1261  *
1262  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1263  * 	Description
1264  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1265  * 		not set, in particular if the hash was cleared due to mangling,
1266  * 		recompute this hash. Later accesses to the hash can be done
1267  * 		directly with *skb*\ **->hash**.
1268  *
1269  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1270  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1271  * 		**bpf_skb_store_bytes**\ () with the
1272  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1273  * 		the hash and to trigger a new computation for the next call to
1274  * 		**bpf_get_hash_recalc**\ ().
1275  * 	Return
1276  * 		The 32-bit hash.
1277  *
1278  * u64 bpf_get_current_task(void)
1279  * 	Return
1280  * 		A pointer to the current task struct.
1281  *
1282  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1283  * 	Description
1284  * 		Attempt in a safe way to write *len* bytes from the buffer
1285  * 		*src* to *dst* in memory. It only works for threads that are in
1286  * 		user context, and *dst* must be a valid user space address.
1287  *
1288  * 		This helper should not be used to implement any kind of
1289  * 		security mechanism because of TOC-TOU attacks, but rather to
1290  * 		debug, divert, and manipulate execution of semi-cooperative
1291  * 		processes.
1292  *
1293  * 		Keep in mind that this feature is meant for experiments, and it
1294  * 		has a risk of crashing the system and running programs.
1295  * 		Therefore, when an eBPF program using this helper is attached,
1296  * 		a warning including PID and process name is printed to kernel
1297  * 		logs.
1298  * 	Return
1299  * 		0 on success, or a negative error in case of failure.
1300  *
1301  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1302  * 	Description
1303  * 		Check whether the probe is being run is the context of a given
1304  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1305  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1306  * 	Return
1307  * 		The return value depends on the result of the test, and can be:
1308  *
1309  * 		* 0, if the *skb* task belongs to the cgroup2.
1310  * 		* 1, if the *skb* task does not belong to the cgroup2.
1311  * 		* A negative error code, if an error occurred.
1312  *
1313  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1314  * 	Description
1315  * 		Resize (trim or grow) the packet associated to *skb* to the
1316  * 		new *len*. The *flags* are reserved for future usage, and must
1317  * 		be left at zero.
1318  *
1319  * 		The basic idea is that the helper performs the needed work to
1320  * 		change the size of the packet, then the eBPF program rewrites
1321  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1322  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1323  * 		and others. This helper is a slow path utility intended for
1324  * 		replies with control messages. And because it is targeted for
1325  * 		slow path, the helper itself can afford to be slow: it
1326  * 		implicitly linearizes, unclones and drops offloads from the
1327  * 		*skb*.
1328  *
1329  * 		A call to this helper is susceptible to change the underlying
1330  * 		packet buffer. Therefore, at load time, all checks on pointers
1331  * 		previously done by the verifier are invalidated and must be
1332  * 		performed again, if the helper is used in combination with
1333  * 		direct packet access.
1334  * 	Return
1335  * 		0 on success, or a negative error in case of failure.
1336  *
1337  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1338  * 	Description
1339  * 		Pull in non-linear data in case the *skb* is non-linear and not
1340  * 		all of *len* are part of the linear section. Make *len* bytes
1341  * 		from *skb* readable and writable. If a zero value is passed for
1342  * 		*len*, then the whole length of the *skb* is pulled.
1343  *
1344  * 		This helper is only needed for reading and writing with direct
1345  * 		packet access.
1346  *
1347  * 		For direct packet access, testing that offsets to access
1348  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1349  * 		susceptible to fail if offsets are invalid, or if the requested
1350  * 		data is in non-linear parts of the *skb*. On failure the
1351  * 		program can just bail out, or in the case of a non-linear
1352  * 		buffer, use a helper to make the data available. The
1353  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1354  * 		the data. Another one consists in using **bpf_skb_pull_data**
1355  * 		to pull in once the non-linear parts, then retesting and
1356  * 		eventually access the data.
1357  *
1358  * 		At the same time, this also makes sure the *skb* is uncloned,
1359  * 		which is a necessary condition for direct write. As this needs
1360  * 		to be an invariant for the write part only, the verifier
1361  * 		detects writes and adds a prologue that is calling
1362  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1363  * 		the very beginning in case it is indeed cloned.
1364  *
1365  * 		A call to this helper is susceptible to change the underlying
1366  * 		packet buffer. Therefore, at load time, all checks on pointers
1367  * 		previously done by the verifier are invalidated and must be
1368  * 		performed again, if the helper is used in combination with
1369  * 		direct packet access.
1370  * 	Return
1371  * 		0 on success, or a negative error in case of failure.
1372  *
1373  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1374  * 	Description
1375  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1376  * 		driver has supplied a checksum for the entire packet into that
1377  * 		field. Return an error otherwise. This helper is intended to be
1378  * 		used in combination with **bpf_csum_diff**\ (), in particular
1379  * 		when the checksum needs to be updated after data has been
1380  * 		written into the packet through direct packet access.
1381  * 	Return
1382  * 		The checksum on success, or a negative error code in case of
1383  * 		failure.
1384  *
1385  * void bpf_set_hash_invalid(struct sk_buff *skb)
1386  * 	Description
1387  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1388  * 		mangling on headers through direct packet access, in order to
1389  * 		indicate that the hash is outdated and to trigger a
1390  * 		recalculation the next time the kernel tries to access this
1391  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1392  *
1393  * int bpf_get_numa_node_id(void)
1394  * 	Description
1395  * 		Return the id of the current NUMA node. The primary use case
1396  * 		for this helper is the selection of sockets for the local NUMA
1397  * 		node, when the program is attached to sockets using the
1398  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1399  * 		but the helper is also available to other eBPF program types,
1400  * 		similarly to **bpf_get_smp_processor_id**\ ().
1401  * 	Return
1402  * 		The id of current NUMA node.
1403  *
1404  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1405  * 	Description
1406  * 		Grows headroom of packet associated to *skb* and adjusts the
1407  * 		offset of the MAC header accordingly, adding *len* bytes of
1408  * 		space. It automatically extends and reallocates memory as
1409  * 		required.
1410  *
1411  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1412  * 		for redirection into a layer 2 device.
1413  *
1414  * 		All values for *flags* are reserved for future usage, and must
1415  * 		be left at zero.
1416  *
1417  * 		A call to this helper is susceptible to change the underlying
1418  * 		packet buffer. Therefore, at load time, all checks on pointers
1419  * 		previously done by the verifier are invalidated and must be
1420  * 		performed again, if the helper is used in combination with
1421  * 		direct packet access.
1422  * 	Return
1423  * 		0 on success, or a negative error in case of failure.
1424  *
1425  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1426  * 	Description
1427  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1428  * 		it is possible to use a negative value for *delta*. This helper
1429  * 		can be used to prepare the packet for pushing or popping
1430  * 		headers.
1431  *
1432  * 		A call to this helper is susceptible to change the underlying
1433  * 		packet buffer. Therefore, at load time, all checks on pointers
1434  * 		previously done by the verifier are invalidated and must be
1435  * 		performed again, if the helper is used in combination with
1436  * 		direct packet access.
1437  * 	Return
1438  * 		0 on success, or a negative error in case of failure.
1439  *
1440  * int bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
1441  * 	Description
1442  * 		Copy a NUL terminated string from an unsafe kernel address
1443  * 		*unsafe_ptr* to *dst*. See bpf_probe_read_kernel_str() for
1444  * 		more details.
1445  *
1446  * 		Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str()
1447  * 		instead.
1448  * 	Return
1449  * 		On success, the strictly positive length of the string,
1450  * 		including the trailing NUL character. On error, a negative
1451  * 		value.
1452  *
1453  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1454  * 	Description
1455  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1456  * 		retrieve the cookie (generated by the kernel) of this socket.
1457  * 		If no cookie has been set yet, generate a new cookie. Once
1458  * 		generated, the socket cookie remains stable for the life of the
1459  * 		socket. This helper can be useful for monitoring per socket
1460  * 		networking traffic statistics as it provides a global socket
1461  * 		identifier that can be assumed unique.
1462  * 	Return
1463  * 		A 8-byte long non-decreasing number on success, or 0 if the
1464  * 		socket field is missing inside *skb*.
1465  *
1466  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1467  * 	Description
1468  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1469  * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
1470  * 	Return
1471  * 		A 8-byte long non-decreasing number.
1472  *
1473  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1474  * 	Description
1475  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1476  * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
1477  * 	Return
1478  * 		A 8-byte long non-decreasing number.
1479  *
1480  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1481  * 	Return
1482  * 		The owner UID of the socket associated to *skb*. If the socket
1483  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1484  * 		time-wait or a request socket instead), **overflowuid** value
1485  * 		is returned (note that **overflowuid** might also be the actual
1486  * 		UID value for the socket).
1487  *
1488  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1489  * 	Description
1490  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1491  * 		to value *hash*.
1492  * 	Return
1493  * 		0
1494  *
1495  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1496  * 	Description
1497  * 		Emulate a call to **setsockopt()** on the socket associated to
1498  * 		*bpf_socket*, which must be a full socket. The *level* at
1499  * 		which the option resides and the name *optname* of the option
1500  * 		must be specified, see **setsockopt(2)** for more information.
1501  * 		The option value of length *optlen* is pointed by *optval*.
1502  *
1503  * 		This helper actually implements a subset of **setsockopt()**.
1504  * 		It supports the following *level*\ s:
1505  *
1506  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1507  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1508  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1509  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1510  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1511  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1512  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1513  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1514  * 	Return
1515  * 		0 on success, or a negative error in case of failure.
1516  *
1517  * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1518  * 	Description
1519  * 		Grow or shrink the room for data in the packet associated to
1520  * 		*skb* by *len_diff*, and according to the selected *mode*.
1521  *
1522  *		There are two supported modes at this time:
1523  *
1524  *		* **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1525  *		  (room space is added or removed below the layer 2 header).
1526  *
1527  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1528  * 		  (room space is added or removed below the layer 3 header).
1529  *
1530  *		The following flags are supported at this time:
1531  *
1532  *		* **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1533  *		  Adjusting mss in this way is not allowed for datagrams.
1534  *
1535  *		* **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1536  *		  **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1537  *		  Any new space is reserved to hold a tunnel header.
1538  *		  Configure skb offsets and other fields accordingly.
1539  *
1540  *		* **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1541  *		  **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1542  *		  Use with ENCAP_L3 flags to further specify the tunnel type.
1543  *
1544  *		* **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1545  *		  Use with ENCAP_L3/L4 flags to further specify the tunnel
1546  *		  type; *len* is the length of the inner MAC header.
1547  *
1548  * 		A call to this helper is susceptible to change the underlying
1549  * 		packet buffer. Therefore, at load time, all checks on pointers
1550  * 		previously done by the verifier are invalidated and must be
1551  * 		performed again, if the helper is used in combination with
1552  * 		direct packet access.
1553  * 	Return
1554  * 		0 on success, or a negative error in case of failure.
1555  *
1556  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1557  * 	Description
1558  * 		Redirect the packet to the endpoint referenced by *map* at
1559  * 		index *key*. Depending on its type, this *map* can contain
1560  * 		references to net devices (for forwarding packets through other
1561  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1562  * 		but this is only implemented for native XDP (with driver
1563  * 		support) as of this writing).
1564  *
1565  * 		The lower two bits of *flags* are used as the return code if
1566  * 		the map lookup fails. This is so that the return value can be
1567  * 		one of the XDP program return codes up to XDP_TX, as chosen by
1568  * 		the caller. Any higher bits in the *flags* argument must be
1569  * 		unset.
1570  *
1571  * 		When used to redirect packets to net devices, this helper
1572  * 		provides a high performance increase over **bpf_redirect**\ ().
1573  * 		This is due to various implementation details of the underlying
1574  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1575  * 		() tries to send packet as a "bulk" to the device.
1576  * 	Return
1577  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1578  *
1579  * int bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
1580  * 	Description
1581  * 		Redirect the packet to the socket referenced by *map* (of type
1582  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1583  * 		egress interfaces can be used for redirection. The
1584  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1585  * 		distinction (ingress path is selected if the flag is present,
1586  * 		egress path otherwise). This is the only flag supported for now.
1587  * 	Return
1588  * 		**SK_PASS** on success, or **SK_DROP** on error.
1589  *
1590  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1591  * 	Description
1592  * 		Add an entry to, or update a *map* referencing sockets. The
1593  * 		*skops* is used as a new value for the entry associated to
1594  * 		*key*. *flags* is one of:
1595  *
1596  * 		**BPF_NOEXIST**
1597  * 			The entry for *key* must not exist in the map.
1598  * 		**BPF_EXIST**
1599  * 			The entry for *key* must already exist in the map.
1600  * 		**BPF_ANY**
1601  * 			No condition on the existence of the entry for *key*.
1602  *
1603  * 		If the *map* has eBPF programs (parser and verdict), those will
1604  * 		be inherited by the socket being added. If the socket is
1605  * 		already attached to eBPF programs, this results in an error.
1606  * 	Return
1607  * 		0 on success, or a negative error in case of failure.
1608  *
1609  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1610  * 	Description
1611  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1612  * 		*delta* (which can be positive or negative). Note that this
1613  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1614  * 		so the latter must be loaded only after the helper has been
1615  * 		called.
1616  *
1617  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1618  * 		are not required to use it. The rationale is that when the
1619  * 		packet is processed with XDP (e.g. as DoS filter), it is
1620  * 		possible to push further meta data along with it before passing
1621  * 		to the stack, and to give the guarantee that an ingress eBPF
1622  * 		program attached as a TC classifier on the same device can pick
1623  * 		this up for further post-processing. Since TC works with socket
1624  * 		buffers, it remains possible to set from XDP the **mark** or
1625  * 		**priority** pointers, or other pointers for the socket buffer.
1626  * 		Having this scratch space generic and programmable allows for
1627  * 		more flexibility as the user is free to store whatever meta
1628  * 		data they need.
1629  *
1630  * 		A call to this helper is susceptible to change the underlying
1631  * 		packet buffer. Therefore, at load time, all checks on pointers
1632  * 		previously done by the verifier are invalidated and must be
1633  * 		performed again, if the helper is used in combination with
1634  * 		direct packet access.
1635  * 	Return
1636  * 		0 on success, or a negative error in case of failure.
1637  *
1638  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1639  * 	Description
1640  * 		Read the value of a perf event counter, and store it into *buf*
1641  * 		of size *buf_size*. This helper relies on a *map* of type
1642  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1643  * 		counter is selected when *map* is updated with perf event file
1644  * 		descriptors. The *map* is an array whose size is the number of
1645  * 		available CPUs, and each cell contains a value relative to one
1646  * 		CPU. The value to retrieve is indicated by *flags*, that
1647  * 		contains the index of the CPU to look up, masked with
1648  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1649  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1650  * 		current CPU should be retrieved.
1651  *
1652  * 		This helper behaves in a way close to
1653  * 		**bpf_perf_event_read**\ () helper, save that instead of
1654  * 		just returning the value observed, it fills the *buf*
1655  * 		structure. This allows for additional data to be retrieved: in
1656  * 		particular, the enabled and running times (in *buf*\
1657  * 		**->enabled** and *buf*\ **->running**, respectively) are
1658  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1659  * 		recommended over **bpf_perf_event_read**\ (), which has some
1660  * 		ABI issues and provides fewer functionalities.
1661  *
1662  * 		These values are interesting, because hardware PMU (Performance
1663  * 		Monitoring Unit) counters are limited resources. When there are
1664  * 		more PMU based perf events opened than available counters,
1665  * 		kernel will multiplex these events so each event gets certain
1666  * 		percentage (but not all) of the PMU time. In case that
1667  * 		multiplexing happens, the number of samples or counter value
1668  * 		will not reflect the case compared to when no multiplexing
1669  * 		occurs. This makes comparison between different runs difficult.
1670  * 		Typically, the counter value should be normalized before
1671  * 		comparing to other experiments. The usual normalization is done
1672  * 		as follows.
1673  *
1674  * 		::
1675  *
1676  * 			normalized_counter = counter * t_enabled / t_running
1677  *
1678  * 		Where t_enabled is the time enabled for event and t_running is
1679  * 		the time running for event since last normalization. The
1680  * 		enabled and running times are accumulated since the perf event
1681  * 		open. To achieve scaling factor between two invocations of an
1682  * 		eBPF program, users can can use CPU id as the key (which is
1683  * 		typical for perf array usage model) to remember the previous
1684  * 		value and do the calculation inside the eBPF program.
1685  * 	Return
1686  * 		0 on success, or a negative error in case of failure.
1687  *
1688  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1689  * 	Description
1690  * 		For en eBPF program attached to a perf event, retrieve the
1691  * 		value of the event counter associated to *ctx* and store it in
1692  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1693  * 		and running times are also stored in the structure (see
1694  * 		description of helper **bpf_perf_event_read_value**\ () for
1695  * 		more details).
1696  * 	Return
1697  * 		0 on success, or a negative error in case of failure.
1698  *
1699  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1700  * 	Description
1701  * 		Emulate a call to **getsockopt()** on the socket associated to
1702  * 		*bpf_socket*, which must be a full socket. The *level* at
1703  * 		which the option resides and the name *optname* of the option
1704  * 		must be specified, see **getsockopt(2)** for more information.
1705  * 		The retrieved value is stored in the structure pointed by
1706  * 		*opval* and of length *optlen*.
1707  *
1708  * 		This helper actually implements a subset of **getsockopt()**.
1709  * 		It supports the following *level*\ s:
1710  *
1711  * 		* **IPPROTO_TCP**, which supports *optname*
1712  * 		  **TCP_CONGESTION**.
1713  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1714  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1715  * 	Return
1716  * 		0 on success, or a negative error in case of failure.
1717  *
1718  * int bpf_override_return(struct pt_regs *regs, u64 rc)
1719  * 	Description
1720  * 		Used for error injection, this helper uses kprobes to override
1721  * 		the return value of the probed function, and to set it to *rc*.
1722  * 		The first argument is the context *regs* on which the kprobe
1723  * 		works.
1724  *
1725  * 		This helper works by setting setting the PC (program counter)
1726  * 		to an override function which is run in place of the original
1727  * 		probed function. This means the probed function is not run at
1728  * 		all. The replacement function just returns with the required
1729  * 		value.
1730  *
1731  * 		This helper has security implications, and thus is subject to
1732  * 		restrictions. It is only available if the kernel was compiled
1733  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1734  * 		option, and in this case it only works on functions tagged with
1735  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1736  *
1737  * 		Also, the helper is only available for the architectures having
1738  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1739  * 		x86 architecture is the only one to support this feature.
1740  * 	Return
1741  * 		0
1742  *
1743  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1744  * 	Description
1745  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1746  * 		for the full TCP socket associated to *bpf_sock_ops* to
1747  * 		*argval*.
1748  *
1749  * 		The primary use of this field is to determine if there should
1750  * 		be calls to eBPF programs of type
1751  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1752  * 		code. A program of the same type can change its value, per
1753  * 		connection and as necessary, when the connection is
1754  * 		established. This field is directly accessible for reading, but
1755  * 		this helper must be used for updates in order to return an
1756  * 		error if an eBPF program tries to set a callback that is not
1757  * 		supported in the current kernel.
1758  *
1759  * 		*argval* is a flag array which can combine these flags:
1760  *
1761  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1762  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1763  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1764  * 		* **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
1765  *
1766  * 		Therefore, this function can be used to clear a callback flag by
1767  * 		setting the appropriate bit to zero. e.g. to disable the RTO
1768  * 		callback:
1769  *
1770  * 		**bpf_sock_ops_cb_flags_set(bpf_sock,**
1771  * 			**bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1772  *
1773  * 		Here are some examples of where one could call such eBPF
1774  * 		program:
1775  *
1776  * 		* When RTO fires.
1777  * 		* When a packet is retransmitted.
1778  * 		* When the connection terminates.
1779  * 		* When a packet is sent.
1780  * 		* When a packet is received.
1781  * 	Return
1782  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1783  * 		otherwise, a positive number containing the bits that could not
1784  * 		be set is returned (which comes down to 0 if all bits were set
1785  * 		as required).
1786  *
1787  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1788  * 	Description
1789  * 		This helper is used in programs implementing policies at the
1790  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1791  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1792  * 		the socket referenced by *map* (of type
1793  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1794  * 		egress interfaces can be used for redirection. The
1795  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1796  * 		distinction (ingress path is selected if the flag is present,
1797  * 		egress path otherwise). This is the only flag supported for now.
1798  * 	Return
1799  * 		**SK_PASS** on success, or **SK_DROP** on error.
1800  *
1801  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1802  * 	Description
1803  * 		For socket policies, apply the verdict of the eBPF program to
1804  * 		the next *bytes* (number of bytes) of message *msg*.
1805  *
1806  * 		For example, this helper can be used in the following cases:
1807  *
1808  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1809  * 		  contains multiple logical messages that the eBPF program is
1810  * 		  supposed to read and for which it should apply a verdict.
1811  * 		* An eBPF program only cares to read the first *bytes* of a
1812  * 		  *msg*. If the message has a large payload, then setting up
1813  * 		  and calling the eBPF program repeatedly for all bytes, even
1814  * 		  though the verdict is already known, would create unnecessary
1815  * 		  overhead.
1816  *
1817  * 		When called from within an eBPF program, the helper sets a
1818  * 		counter internal to the BPF infrastructure, that is used to
1819  * 		apply the last verdict to the next *bytes*. If *bytes* is
1820  * 		smaller than the current data being processed from a
1821  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1822  * 		*bytes* will be sent and the eBPF program will be re-run with
1823  * 		the pointer for start of data pointing to byte number *bytes*
1824  * 		**+ 1**. If *bytes* is larger than the current data being
1825  * 		processed, then the eBPF verdict will be applied to multiple
1826  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1827  * 		consumed.
1828  *
1829  * 		Note that if a socket closes with the internal counter holding
1830  * 		a non-zero value, this is not a problem because data is not
1831  * 		being buffered for *bytes* and is sent as it is received.
1832  * 	Return
1833  * 		0
1834  *
1835  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1836  * 	Description
1837  * 		For socket policies, prevent the execution of the verdict eBPF
1838  * 		program for message *msg* until *bytes* (byte number) have been
1839  * 		accumulated.
1840  *
1841  * 		This can be used when one needs a specific number of bytes
1842  * 		before a verdict can be assigned, even if the data spans
1843  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1844  * 		case would be a user calling **sendmsg**\ () repeatedly with
1845  * 		1-byte long message segments. Obviously, this is bad for
1846  * 		performance, but it is still valid. If the eBPF program needs
1847  * 		*bytes* bytes to validate a header, this helper can be used to
1848  * 		prevent the eBPF program to be called again until *bytes* have
1849  * 		been accumulated.
1850  * 	Return
1851  * 		0
1852  *
1853  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1854  * 	Description
1855  * 		For socket policies, pull in non-linear data from user space
1856  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1857  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1858  * 		respectively.
1859  *
1860  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1861  * 		*msg* it can only parse data that the (**data**, **data_end**)
1862  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1863  * 		is likely the first scatterlist element. But for calls relying
1864  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1865  * 		be the range (**0**, **0**) because the data is shared with
1866  * 		user space and by default the objective is to avoid allowing
1867  * 		user space to modify data while (or after) eBPF verdict is
1868  * 		being decided. This helper can be used to pull in data and to
1869  * 		set the start and end pointer to given values. Data will be
1870  * 		copied if necessary (i.e. if data was not linear and if start
1871  * 		and end pointers do not point to the same chunk).
1872  *
1873  * 		A call to this helper is susceptible to change the underlying
1874  * 		packet buffer. Therefore, at load time, all checks on pointers
1875  * 		previously done by the verifier are invalidated and must be
1876  * 		performed again, if the helper is used in combination with
1877  * 		direct packet access.
1878  *
1879  * 		All values for *flags* are reserved for future usage, and must
1880  * 		be left at zero.
1881  * 	Return
1882  * 		0 on success, or a negative error in case of failure.
1883  *
1884  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1885  * 	Description
1886  * 		Bind the socket associated to *ctx* to the address pointed by
1887  * 		*addr*, of length *addr_len*. This allows for making outgoing
1888  * 		connection from the desired IP address, which can be useful for
1889  * 		example when all processes inside a cgroup should use one
1890  * 		single IP address on a host that has multiple IP configured.
1891  *
1892  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1893  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1894  * 		**AF_INET6**). Looking for a free port to bind to can be
1895  * 		expensive, therefore binding to port is not permitted by the
1896  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1897  * 		must be set to zero.
1898  * 	Return
1899  * 		0 on success, or a negative error in case of failure.
1900  *
1901  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1902  * 	Description
1903  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1904  * 		only possible to shrink the packet as of this writing,
1905  * 		therefore *delta* must be a negative integer.
1906  *
1907  * 		A call to this helper is susceptible to change the underlying
1908  * 		packet buffer. Therefore, at load time, all checks on pointers
1909  * 		previously done by the verifier are invalidated and must be
1910  * 		performed again, if the helper is used in combination with
1911  * 		direct packet access.
1912  * 	Return
1913  * 		0 on success, or a negative error in case of failure.
1914  *
1915  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1916  * 	Description
1917  * 		Retrieve the XFRM state (IP transform framework, see also
1918  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1919  *
1920  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1921  * 		pointed by *xfrm_state* and of length *size*.
1922  *
1923  * 		All values for *flags* are reserved for future usage, and must
1924  * 		be left at zero.
1925  *
1926  * 		This helper is available only if the kernel was compiled with
1927  * 		**CONFIG_XFRM** configuration option.
1928  * 	Return
1929  * 		0 on success, or a negative error in case of failure.
1930  *
1931  * int bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
1932  * 	Description
1933  * 		Return a user or a kernel stack in bpf program provided buffer.
1934  * 		To achieve this, the helper needs *ctx*, which is a pointer
1935  * 		to the context on which the tracing program is executed.
1936  * 		To store the stacktrace, the bpf program provides *buf* with
1937  * 		a nonnegative *size*.
1938  *
1939  * 		The last argument, *flags*, holds the number of stack frames to
1940  * 		skip (from 0 to 255), masked with
1941  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1942  * 		the following flags:
1943  *
1944  * 		**BPF_F_USER_STACK**
1945  * 			Collect a user space stack instead of a kernel stack.
1946  * 		**BPF_F_USER_BUILD_ID**
1947  * 			Collect buildid+offset instead of ips for user stack,
1948  * 			only valid if **BPF_F_USER_STACK** is also specified.
1949  *
1950  * 		**bpf_get_stack**\ () can collect up to
1951  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1952  * 		to sufficient large buffer size. Note that
1953  * 		this limit can be controlled with the **sysctl** program, and
1954  * 		that it should be manually increased in order to profile long
1955  * 		user stacks (such as stacks for Java programs). To do so, use:
1956  *
1957  * 		::
1958  *
1959  * 			# sysctl kernel.perf_event_max_stack=<new value>
1960  * 	Return
1961  * 		A non-negative value equal to or less than *size* on success,
1962  * 		or a negative error in case of failure.
1963  *
1964  * int bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
1965  * 	Description
1966  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
1967  * 		it provides an easy way to load *len* bytes from *offset*
1968  * 		from the packet associated to *skb*, into the buffer pointed
1969  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1970  * 		a fifth argument *start_header* exists in order to select a
1971  * 		base offset to start from. *start_header* can be one of:
1972  *
1973  * 		**BPF_HDR_START_MAC**
1974  * 			Base offset to load data from is *skb*'s mac header.
1975  * 		**BPF_HDR_START_NET**
1976  * 			Base offset to load data from is *skb*'s network header.
1977  *
1978  * 		In general, "direct packet access" is the preferred method to
1979  * 		access packet data, however, this helper is in particular useful
1980  * 		in socket filters where *skb*\ **->data** does not always point
1981  * 		to the start of the mac header and where "direct packet access"
1982  * 		is not available.
1983  * 	Return
1984  * 		0 on success, or a negative error in case of failure.
1985  *
1986  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1987  *	Description
1988  *		Do FIB lookup in kernel tables using parameters in *params*.
1989  *		If lookup is successful and result shows packet is to be
1990  *		forwarded, the neighbor tables are searched for the nexthop.
1991  *		If successful (ie., FIB lookup shows forwarding and nexthop
1992  *		is resolved), the nexthop address is returned in ipv4_dst
1993  *		or ipv6_dst based on family, smac is set to mac address of
1994  *		egress device, dmac is set to nexthop mac address, rt_metric
1995  *		is set to metric from route (IPv4/IPv6 only), and ifindex
1996  *		is set to the device index of the nexthop from the FIB lookup.
1997  *
1998  *		*plen* argument is the size of the passed in struct.
1999  *		*flags* argument can be a combination of one or more of the
2000  *		following values:
2001  *
2002  *		**BPF_FIB_LOOKUP_DIRECT**
2003  *			Do a direct table lookup vs full lookup using FIB
2004  *			rules.
2005  *		**BPF_FIB_LOOKUP_OUTPUT**
2006  *			Perform lookup from an egress perspective (default is
2007  *			ingress).
2008  *
2009  *		*ctx* is either **struct xdp_md** for XDP programs or
2010  *		**struct sk_buff** tc cls_act programs.
2011  *	Return
2012  *		* < 0 if any input argument is invalid
2013  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
2014  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
2015  *		  packet is not forwarded or needs assist from full stack
2016  *
2017  * int bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2018  *	Description
2019  *		Add an entry to, or update a sockhash *map* referencing sockets.
2020  *		The *skops* is used as a new value for the entry associated to
2021  *		*key*. *flags* is one of:
2022  *
2023  *		**BPF_NOEXIST**
2024  *			The entry for *key* must not exist in the map.
2025  *		**BPF_EXIST**
2026  *			The entry for *key* must already exist in the map.
2027  *		**BPF_ANY**
2028  *			No condition on the existence of the entry for *key*.
2029  *
2030  *		If the *map* has eBPF programs (parser and verdict), those will
2031  *		be inherited by the socket being added. If the socket is
2032  *		already attached to eBPF programs, this results in an error.
2033  *	Return
2034  *		0 on success, or a negative error in case of failure.
2035  *
2036  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2037  *	Description
2038  *		This helper is used in programs implementing policies at the
2039  *		socket level. If the message *msg* is allowed to pass (i.e. if
2040  *		the verdict eBPF program returns **SK_PASS**), redirect it to
2041  *		the socket referenced by *map* (of type
2042  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2043  *		egress interfaces can be used for redirection. The
2044  *		**BPF_F_INGRESS** value in *flags* is used to make the
2045  *		distinction (ingress path is selected if the flag is present,
2046  *		egress path otherwise). This is the only flag supported for now.
2047  *	Return
2048  *		**SK_PASS** on success, or **SK_DROP** on error.
2049  *
2050  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2051  *	Description
2052  *		This helper is used in programs implementing policies at the
2053  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2054  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
2055  *		to the socket referenced by *map* (of type
2056  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2057  *		egress interfaces can be used for redirection. The
2058  *		**BPF_F_INGRESS** value in *flags* is used to make the
2059  *		distinction (ingress path is selected if the flag is present,
2060  *		egress otherwise). This is the only flag supported for now.
2061  *	Return
2062  *		**SK_PASS** on success, or **SK_DROP** on error.
2063  *
2064  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2065  *	Description
2066  *		Encapsulate the packet associated to *skb* within a Layer 3
2067  *		protocol header. This header is provided in the buffer at
2068  *		address *hdr*, with *len* its size in bytes. *type* indicates
2069  *		the protocol of the header and can be one of:
2070  *
2071  *		**BPF_LWT_ENCAP_SEG6**
2072  *			IPv6 encapsulation with Segment Routing Header
2073  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2074  *			the IPv6 header is computed by the kernel.
2075  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2076  *			Only works if *skb* contains an IPv6 packet. Insert a
2077  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2078  *			the IPv6 header.
2079  *		**BPF_LWT_ENCAP_IP**
2080  *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2081  *			must be IPv4 or IPv6, followed by zero or more
2082  *			additional headers, up to **LWT_BPF_MAX_HEADROOM**
2083  *			total bytes in all prepended headers. Please note that
2084  *			if **skb_is_gso**\ (*skb*) is true, no more than two
2085  *			headers can be prepended, and the inner header, if
2086  *			present, should be either GRE or UDP/GUE.
2087  *
2088  *		**BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2089  *		of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2090  *		be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2091  *		**BPF_PROG_TYPE_LWT_XMIT**.
2092  *
2093  * 		A call to this helper is susceptible to change the underlying
2094  * 		packet buffer. Therefore, at load time, all checks on pointers
2095  * 		previously done by the verifier are invalidated and must be
2096  * 		performed again, if the helper is used in combination with
2097  * 		direct packet access.
2098  *	Return
2099  * 		0 on success, or a negative error in case of failure.
2100  *
2101  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2102  *	Description
2103  *		Store *len* bytes from address *from* into the packet
2104  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2105  *		inside the outermost IPv6 Segment Routing Header can be
2106  *		modified through this helper.
2107  *
2108  * 		A call to this helper is susceptible to change the underlying
2109  * 		packet buffer. Therefore, at load time, all checks on pointers
2110  * 		previously done by the verifier are invalidated and must be
2111  * 		performed again, if the helper is used in combination with
2112  * 		direct packet access.
2113  *	Return
2114  * 		0 on success, or a negative error in case of failure.
2115  *
2116  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2117  *	Description
2118  *		Adjust the size allocated to TLVs in the outermost IPv6
2119  *		Segment Routing Header contained in the packet associated to
2120  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2121  *		after the segments are accepted. *delta* can be as well
2122  *		positive (growing) as negative (shrinking).
2123  *
2124  * 		A call to this helper is susceptible to change the underlying
2125  * 		packet buffer. Therefore, at load time, all checks on pointers
2126  * 		previously done by the verifier are invalidated and must be
2127  * 		performed again, if the helper is used in combination with
2128  * 		direct packet access.
2129  *	Return
2130  * 		0 on success, or a negative error in case of failure.
2131  *
2132  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2133  *	Description
2134  *		Apply an IPv6 Segment Routing action of type *action* to the
2135  *		packet associated to *skb*. Each action takes a parameter
2136  *		contained at address *param*, and of length *param_len* bytes.
2137  *		*action* can be one of:
2138  *
2139  *		**SEG6_LOCAL_ACTION_END_X**
2140  *			End.X action: Endpoint with Layer-3 cross-connect.
2141  *			Type of *param*: **struct in6_addr**.
2142  *		**SEG6_LOCAL_ACTION_END_T**
2143  *			End.T action: Endpoint with specific IPv6 table lookup.
2144  *			Type of *param*: **int**.
2145  *		**SEG6_LOCAL_ACTION_END_B6**
2146  *			End.B6 action: Endpoint bound to an SRv6 policy.
2147  *			Type of *param*: **struct ipv6_sr_hdr**.
2148  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2149  *			End.B6.Encap action: Endpoint bound to an SRv6
2150  *			encapsulation policy.
2151  *			Type of *param*: **struct ipv6_sr_hdr**.
2152  *
2153  * 		A call to this helper is susceptible to change the underlying
2154  * 		packet buffer. Therefore, at load time, all checks on pointers
2155  * 		previously done by the verifier are invalidated and must be
2156  * 		performed again, if the helper is used in combination with
2157  * 		direct packet access.
2158  *	Return
2159  * 		0 on success, or a negative error in case of failure.
2160  *
2161  * int bpf_rc_repeat(void *ctx)
2162  *	Description
2163  *		This helper is used in programs implementing IR decoding, to
2164  *		report a successfully decoded repeat key message. This delays
2165  *		the generation of a key up event for previously generated
2166  *		key down event.
2167  *
2168  *		Some IR protocols like NEC have a special IR message for
2169  *		repeating last button, for when a button is held down.
2170  *
2171  *		The *ctx* should point to the lirc sample as passed into
2172  *		the program.
2173  *
2174  *		This helper is only available is the kernel was compiled with
2175  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2176  *		"**y**".
2177  *	Return
2178  *		0
2179  *
2180  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2181  *	Description
2182  *		This helper is used in programs implementing IR decoding, to
2183  *		report a successfully decoded key press with *scancode*,
2184  *		*toggle* value in the given *protocol*. The scancode will be
2185  *		translated to a keycode using the rc keymap, and reported as
2186  *		an input key down event. After a period a key up event is
2187  *		generated. This period can be extended by calling either
2188  *		**bpf_rc_keydown**\ () again with the same values, or calling
2189  *		**bpf_rc_repeat**\ ().
2190  *
2191  *		Some protocols include a toggle bit, in case the button	was
2192  *		released and pressed again between consecutive scancodes.
2193  *
2194  *		The *ctx* should point to the lirc sample as passed into
2195  *		the program.
2196  *
2197  *		The *protocol* is the decoded protocol number (see
2198  *		**enum rc_proto** for some predefined values).
2199  *
2200  *		This helper is only available is the kernel was compiled with
2201  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2202  *		"**y**".
2203  *	Return
2204  *		0
2205  *
2206  * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2207  * 	Description
2208  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2209  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2210  * 		helper for cgroup v1 by providing a tag resp. identifier that
2211  * 		can be matched on or used for map lookups e.g. to implement
2212  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2213  * 		exposed in user space through the f_handle API in order to get
2214  * 		to the same 64-bit id.
2215  *
2216  * 		This helper can be used on TC egress path, but not on ingress,
2217  * 		and is available only if the kernel was compiled with the
2218  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2219  * 	Return
2220  * 		The id is returned or 0 in case the id could not be retrieved.
2221  *
2222  * u64 bpf_get_current_cgroup_id(void)
2223  * 	Return
2224  * 		A 64-bit integer containing the current cgroup id based
2225  * 		on the cgroup within which the current task is running.
2226  *
2227  * void *bpf_get_local_storage(void *map, u64 flags)
2228  *	Description
2229  *		Get the pointer to the local storage area.
2230  *		The type and the size of the local storage is defined
2231  *		by the *map* argument.
2232  *		The *flags* meaning is specific for each map type,
2233  *		and has to be 0 for cgroup local storage.
2234  *
2235  *		Depending on the BPF program type, a local storage area
2236  *		can be shared between multiple instances of the BPF program,
2237  *		running simultaneously.
2238  *
2239  *		A user should care about the synchronization by himself.
2240  *		For example, by using the **BPF_STX_XADD** instruction to alter
2241  *		the shared data.
2242  *	Return
2243  *		A pointer to the local storage area.
2244  *
2245  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2246  *	Description
2247  *		Select a **SO_REUSEPORT** socket from a
2248  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2249  *		It checks the selected socket is matching the incoming
2250  *		request in the socket buffer.
2251  *	Return
2252  *		0 on success, or a negative error in case of failure.
2253  *
2254  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2255  *	Description
2256  *		Return id of cgroup v2 that is ancestor of cgroup associated
2257  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2258  *		*ancestor_level* zero and each step down the hierarchy
2259  *		increments the level. If *ancestor_level* == level of cgroup
2260  *		associated with *skb*, then return value will be same as that
2261  *		of **bpf_skb_cgroup_id**\ ().
2262  *
2263  *		The helper is useful to implement policies based on cgroups
2264  *		that are upper in hierarchy than immediate cgroup associated
2265  *		with *skb*.
2266  *
2267  *		The format of returned id and helper limitations are same as in
2268  *		**bpf_skb_cgroup_id**\ ().
2269  *	Return
2270  *		The id is returned or 0 in case the id could not be retrieved.
2271  *
2272  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2273  *	Description
2274  *		Look for TCP socket matching *tuple*, optionally in a child
2275  *		network namespace *netns*. The return value must be checked,
2276  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2277  *
2278  *		The *ctx* should point to the context of the program, such as
2279  *		the skb or socket (depending on the hook in use). This is used
2280  *		to determine the base network namespace for the lookup.
2281  *
2282  *		*tuple_size* must be one of:
2283  *
2284  *		**sizeof**\ (*tuple*\ **->ipv4**)
2285  *			Look for an IPv4 socket.
2286  *		**sizeof**\ (*tuple*\ **->ipv6**)
2287  *			Look for an IPv6 socket.
2288  *
2289  *		If the *netns* is a negative signed 32-bit integer, then the
2290  *		socket lookup table in the netns associated with the *ctx* will
2291  *		will be used. For the TC hooks, this is the netns of the device
2292  *		in the skb. For socket hooks, this is the netns of the socket.
2293  *		If *netns* is any other signed 32-bit value greater than or
2294  *		equal to zero then it specifies the ID of the netns relative to
2295  *		the netns associated with the *ctx*. *netns* values beyond the
2296  *		range of 32-bit integers are reserved for future use.
2297  *
2298  *		All values for *flags* are reserved for future usage, and must
2299  *		be left at zero.
2300  *
2301  *		This helper is available only if the kernel was compiled with
2302  *		**CONFIG_NET** configuration option.
2303  *	Return
2304  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2305  *		For sockets with reuseport option, the **struct bpf_sock**
2306  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2307  *		tuple.
2308  *
2309  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2310  *	Description
2311  *		Look for UDP socket matching *tuple*, optionally in a child
2312  *		network namespace *netns*. The return value must be checked,
2313  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2314  *
2315  *		The *ctx* should point to the context of the program, such as
2316  *		the skb or socket (depending on the hook in use). This is used
2317  *		to determine the base network namespace for the lookup.
2318  *
2319  *		*tuple_size* must be one of:
2320  *
2321  *		**sizeof**\ (*tuple*\ **->ipv4**)
2322  *			Look for an IPv4 socket.
2323  *		**sizeof**\ (*tuple*\ **->ipv6**)
2324  *			Look for an IPv6 socket.
2325  *
2326  *		If the *netns* is a negative signed 32-bit integer, then the
2327  *		socket lookup table in the netns associated with the *ctx* will
2328  *		will be used. For the TC hooks, this is the netns of the device
2329  *		in the skb. For socket hooks, this is the netns of the socket.
2330  *		If *netns* is any other signed 32-bit value greater than or
2331  *		equal to zero then it specifies the ID of the netns relative to
2332  *		the netns associated with the *ctx*. *netns* values beyond the
2333  *		range of 32-bit integers are reserved for future use.
2334  *
2335  *		All values for *flags* are reserved for future usage, and must
2336  *		be left at zero.
2337  *
2338  *		This helper is available only if the kernel was compiled with
2339  *		**CONFIG_NET** configuration option.
2340  *	Return
2341  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2342  *		For sockets with reuseport option, the **struct bpf_sock**
2343  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2344  *		tuple.
2345  *
2346  * int bpf_sk_release(struct bpf_sock *sock)
2347  *	Description
2348  *		Release the reference held by *sock*. *sock* must be a
2349  *		non-**NULL** pointer that was returned from
2350  *		**bpf_sk_lookup_xxx**\ ().
2351  *	Return
2352  *		0 on success, or a negative error in case of failure.
2353  *
2354  * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2355  * 	Description
2356  * 		Push an element *value* in *map*. *flags* is one of:
2357  *
2358  * 		**BPF_EXIST**
2359  * 			If the queue/stack is full, the oldest element is
2360  * 			removed to make room for this.
2361  * 	Return
2362  * 		0 on success, or a negative error in case of failure.
2363  *
2364  * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2365  * 	Description
2366  * 		Pop an element from *map*.
2367  * 	Return
2368  * 		0 on success, or a negative error in case of failure.
2369  *
2370  * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2371  * 	Description
2372  * 		Get an element from *map* without removing it.
2373  * 	Return
2374  * 		0 on success, or a negative error in case of failure.
2375  *
2376  * int bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2377  *	Description
2378  *		For socket policies, insert *len* bytes into *msg* at offset
2379  *		*start*.
2380  *
2381  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2382  *		*msg* it may want to insert metadata or options into the *msg*.
2383  *		This can later be read and used by any of the lower layer BPF
2384  *		hooks.
2385  *
2386  *		This helper may fail if under memory pressure (a malloc
2387  *		fails) in these cases BPF programs will get an appropriate
2388  *		error and BPF programs will need to handle them.
2389  *	Return
2390  *		0 on success, or a negative error in case of failure.
2391  *
2392  * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2393  *	Description
2394  *		Will remove *len* bytes from a *msg* starting at byte *start*.
2395  *		This may result in **ENOMEM** errors under certain situations if
2396  *		an allocation and copy are required due to a full ring buffer.
2397  *		However, the helper will try to avoid doing the allocation
2398  *		if possible. Other errors can occur if input parameters are
2399  *		invalid either due to *start* byte not being valid part of *msg*
2400  *		payload and/or *pop* value being to large.
2401  *	Return
2402  *		0 on success, or a negative error in case of failure.
2403  *
2404  * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2405  *	Description
2406  *		This helper is used in programs implementing IR decoding, to
2407  *		report a successfully decoded pointer movement.
2408  *
2409  *		The *ctx* should point to the lirc sample as passed into
2410  *		the program.
2411  *
2412  *		This helper is only available is the kernel was compiled with
2413  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2414  *		"**y**".
2415  *	Return
2416  *		0
2417  *
2418  * int bpf_spin_lock(struct bpf_spin_lock *lock)
2419  *	Description
2420  *		Acquire a spinlock represented by the pointer *lock*, which is
2421  *		stored as part of a value of a map. Taking the lock allows to
2422  *		safely update the rest of the fields in that value. The
2423  *		spinlock can (and must) later be released with a call to
2424  *		**bpf_spin_unlock**\ (\ *lock*\ ).
2425  *
2426  *		Spinlocks in BPF programs come with a number of restrictions
2427  *		and constraints:
2428  *
2429  *		* **bpf_spin_lock** objects are only allowed inside maps of
2430  *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2431  *		  list could be extended in the future).
2432  *		* BTF description of the map is mandatory.
2433  *		* The BPF program can take ONE lock at a time, since taking two
2434  *		  or more could cause dead locks.
2435  *		* Only one **struct bpf_spin_lock** is allowed per map element.
2436  *		* When the lock is taken, calls (either BPF to BPF or helpers)
2437  *		  are not allowed.
2438  *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2439  *		  allowed inside a spinlock-ed region.
2440  *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
2441  *		  the lock, on all execution paths, before it returns.
2442  *		* The BPF program can access **struct bpf_spin_lock** only via
2443  *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2444  *		  helpers. Loading or storing data into the **struct
2445  *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2446  *		* To use the **bpf_spin_lock**\ () helper, the BTF description
2447  *		  of the map value must be a struct and have **struct
2448  *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
2449  *		  Nested lock inside another struct is not allowed.
2450  *		* The **struct bpf_spin_lock** *lock* field in a map value must
2451  *		  be aligned on a multiple of 4 bytes in that value.
2452  *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2453  *		  the **bpf_spin_lock** field to user space.
2454  *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2455  *		  a BPF program, do not update the **bpf_spin_lock** field.
2456  *		* **bpf_spin_lock** cannot be on the stack or inside a
2457  *		  networking packet (it can only be inside of a map values).
2458  *		* **bpf_spin_lock** is available to root only.
2459  *		* Tracing programs and socket filter programs cannot use
2460  *		  **bpf_spin_lock**\ () due to insufficient preemption checks
2461  *		  (but this may change in the future).
2462  *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2463  *	Return
2464  *		0
2465  *
2466  * int bpf_spin_unlock(struct bpf_spin_lock *lock)
2467  *	Description
2468  *		Release the *lock* previously locked by a call to
2469  *		**bpf_spin_lock**\ (\ *lock*\ ).
2470  *	Return
2471  *		0
2472  *
2473  * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2474  *	Description
2475  *		This helper gets a **struct bpf_sock** pointer such
2476  *		that all the fields in this **bpf_sock** can be accessed.
2477  *	Return
2478  *		A **struct bpf_sock** pointer on success, or **NULL** in
2479  *		case of failure.
2480  *
2481  * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2482  *	Description
2483  *		This helper gets a **struct bpf_tcp_sock** pointer from a
2484  *		**struct bpf_sock** pointer.
2485  *	Return
2486  *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2487  *		case of failure.
2488  *
2489  * int bpf_skb_ecn_set_ce(struct sk_buff *skb)
2490  *	Description
2491  *		Set ECN (Explicit Congestion Notification) field of IP header
2492  *		to **CE** (Congestion Encountered) if current value is **ECT**
2493  *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2494  *		and IPv4.
2495  *	Return
2496  *		1 if the **CE** flag is set (either by the current helper call
2497  *		or because it was already present), 0 if it is not set.
2498  *
2499  * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2500  *	Description
2501  *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2502  *		**bpf_sk_release**\ () is unnecessary and not allowed.
2503  *	Return
2504  *		A **struct bpf_sock** pointer on success, or **NULL** in
2505  *		case of failure.
2506  *
2507  * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2508  *	Description
2509  *		Look for TCP socket matching *tuple*, optionally in a child
2510  *		network namespace *netns*. The return value must be checked,
2511  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2512  *
2513  *		This function is identical to **bpf_sk_lookup_tcp**\ (), except
2514  *		that it also returns timewait or request sockets. Use
2515  *		**bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2516  *		full structure.
2517  *
2518  *		This helper is available only if the kernel was compiled with
2519  *		**CONFIG_NET** configuration option.
2520  *	Return
2521  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2522  *		For sockets with reuseport option, the **struct bpf_sock**
2523  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2524  *		tuple.
2525  *
2526  * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2527  * 	Description
2528  * 		Check whether *iph* and *th* contain a valid SYN cookie ACK for
2529  * 		the listening socket in *sk*.
2530  *
2531  * 		*iph* points to the start of the IPv4 or IPv6 header, while
2532  * 		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2533  * 		**sizeof**\ (**struct ip6hdr**).
2534  *
2535  * 		*th* points to the start of the TCP header, while *th_len*
2536  * 		contains **sizeof**\ (**struct tcphdr**).
2537  *
2538  * 	Return
2539  * 		0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2540  * 		error otherwise.
2541  *
2542  * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2543  *	Description
2544  *		Get name of sysctl in /proc/sys/ and copy it into provided by
2545  *		program buffer *buf* of size *buf_len*.
2546  *
2547  *		The buffer is always NUL terminated, unless it's zero-sized.
2548  *
2549  *		If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2550  *		copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2551  *		only (e.g. "tcp_mem").
2552  *	Return
2553  *		Number of character copied (not including the trailing NUL).
2554  *
2555  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2556  *		truncated name in this case).
2557  *
2558  * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2559  *	Description
2560  *		Get current value of sysctl as it is presented in /proc/sys
2561  *		(incl. newline, etc), and copy it as a string into provided
2562  *		by program buffer *buf* of size *buf_len*.
2563  *
2564  *		The whole value is copied, no matter what file position user
2565  *		space issued e.g. sys_read at.
2566  *
2567  *		The buffer is always NUL terminated, unless it's zero-sized.
2568  *	Return
2569  *		Number of character copied (not including the trailing NUL).
2570  *
2571  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2572  *		truncated name in this case).
2573  *
2574  *		**-EINVAL** if current value was unavailable, e.g. because
2575  *		sysctl is uninitialized and read returns -EIO for it.
2576  *
2577  * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2578  *	Description
2579  *		Get new value being written by user space to sysctl (before
2580  *		the actual write happens) and copy it as a string into
2581  *		provided by program buffer *buf* of size *buf_len*.
2582  *
2583  *		User space may write new value at file position > 0.
2584  *
2585  *		The buffer is always NUL terminated, unless it's zero-sized.
2586  *	Return
2587  *		Number of character copied (not including the trailing NUL).
2588  *
2589  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2590  *		truncated name in this case).
2591  *
2592  *		**-EINVAL** if sysctl is being read.
2593  *
2594  * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2595  *	Description
2596  *		Override new value being written by user space to sysctl with
2597  *		value provided by program in buffer *buf* of size *buf_len*.
2598  *
2599  *		*buf* should contain a string in same form as provided by user
2600  *		space on sysctl write.
2601  *
2602  *		User space may write new value at file position > 0. To override
2603  *		the whole sysctl value file position should be set to zero.
2604  *	Return
2605  *		0 on success.
2606  *
2607  *		**-E2BIG** if the *buf_len* is too big.
2608  *
2609  *		**-EINVAL** if sysctl is being read.
2610  *
2611  * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2612  *	Description
2613  *		Convert the initial part of the string from buffer *buf* of
2614  *		size *buf_len* to a long integer according to the given base
2615  *		and save the result in *res*.
2616  *
2617  *		The string may begin with an arbitrary amount of white space
2618  *		(as determined by **isspace**\ (3)) followed by a single
2619  *		optional '**-**' sign.
2620  *
2621  *		Five least significant bits of *flags* encode base, other bits
2622  *		are currently unused.
2623  *
2624  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2625  *		similar to user space **strtol**\ (3).
2626  *	Return
2627  *		Number of characters consumed on success. Must be positive but
2628  *		no more than *buf_len*.
2629  *
2630  *		**-EINVAL** if no valid digits were found or unsupported base
2631  *		was provided.
2632  *
2633  *		**-ERANGE** if resulting value was out of range.
2634  *
2635  * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2636  *	Description
2637  *		Convert the initial part of the string from buffer *buf* of
2638  *		size *buf_len* to an unsigned long integer according to the
2639  *		given base and save the result in *res*.
2640  *
2641  *		The string may begin with an arbitrary amount of white space
2642  *		(as determined by **isspace**\ (3)).
2643  *
2644  *		Five least significant bits of *flags* encode base, other bits
2645  *		are currently unused.
2646  *
2647  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2648  *		similar to user space **strtoul**\ (3).
2649  *	Return
2650  *		Number of characters consumed on success. Must be positive but
2651  *		no more than *buf_len*.
2652  *
2653  *		**-EINVAL** if no valid digits were found or unsupported base
2654  *		was provided.
2655  *
2656  *		**-ERANGE** if resulting value was out of range.
2657  *
2658  * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags)
2659  *	Description
2660  *		Get a bpf-local-storage from a *sk*.
2661  *
2662  *		Logically, it could be thought of getting the value from
2663  *		a *map* with *sk* as the **key**.  From this
2664  *		perspective,  the usage is not much different from
2665  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2666  *		helper enforces the key must be a full socket and the map must
2667  *		be a **BPF_MAP_TYPE_SK_STORAGE** also.
2668  *
2669  *		Underneath, the value is stored locally at *sk* instead of
2670  *		the *map*.  The *map* is used as the bpf-local-storage
2671  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
2672  *		searched against all bpf-local-storages residing at *sk*.
2673  *
2674  *		An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2675  *		used such that a new bpf-local-storage will be
2676  *		created if one does not exist.  *value* can be used
2677  *		together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2678  *		the initial value of a bpf-local-storage.  If *value* is
2679  *		**NULL**, the new bpf-local-storage will be zero initialized.
2680  *	Return
2681  *		A bpf-local-storage pointer is returned on success.
2682  *
2683  *		**NULL** if not found or there was an error in adding
2684  *		a new bpf-local-storage.
2685  *
2686  * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)
2687  *	Description
2688  *		Delete a bpf-local-storage from a *sk*.
2689  *	Return
2690  *		0 on success.
2691  *
2692  *		**-ENOENT** if the bpf-local-storage cannot be found.
2693  *
2694  * int bpf_send_signal(u32 sig)
2695  *	Description
2696  *		Send signal *sig* to the current task.
2697  *	Return
2698  *		0 on success or successfully queued.
2699  *
2700  *		**-EBUSY** if work queue under nmi is full.
2701  *
2702  *		**-EINVAL** if *sig* is invalid.
2703  *
2704  *		**-EPERM** if no permission to send the *sig*.
2705  *
2706  *		**-EAGAIN** if bpf program can try again.
2707  *
2708  * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2709  *	Description
2710  *		Try to issue a SYN cookie for the packet with corresponding
2711  *		IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
2712  *
2713  *		*iph* points to the start of the IPv4 or IPv6 header, while
2714  *		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2715  *		**sizeof**\ (**struct ip6hdr**).
2716  *
2717  *		*th* points to the start of the TCP header, while *th_len*
2718  *		contains the length of the TCP header.
2719  *
2720  *	Return
2721  *		On success, lower 32 bits hold the generated SYN cookie in
2722  *		followed by 16 bits which hold the MSS value for that cookie,
2723  *		and the top 16 bits are unused.
2724  *
2725  *		On failure, the returned value is one of the following:
2726  *
2727  *		**-EINVAL** SYN cookie cannot be issued due to error
2728  *
2729  *		**-ENOENT** SYN cookie should not be issued (no SYN flood)
2730  *
2731  *		**-EOPNOTSUPP** kernel configuration does not enable SYN cookies
2732  *
2733  *		**-EPROTONOSUPPORT** IP packet version is not 4 or 6
2734  *
2735  * int bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2736  * 	Description
2737  * 		Write raw *data* blob into a special BPF perf event held by
2738  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2739  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
2740  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2741  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2742  *
2743  * 		The *flags* are used to indicate the index in *map* for which
2744  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
2745  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2746  * 		to indicate that the index of the current CPU core should be
2747  * 		used.
2748  *
2749  * 		The value to write, of *size*, is passed through eBPF stack and
2750  * 		pointed by *data*.
2751  *
2752  * 		*ctx* is a pointer to in-kernel struct sk_buff.
2753  *
2754  * 		This helper is similar to **bpf_perf_event_output**\ () but
2755  * 		restricted to raw_tracepoint bpf programs.
2756  * 	Return
2757  * 		0 on success, or a negative error in case of failure.
2758  *
2759  * int bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
2760  * 	Description
2761  * 		Safely attempt to read *size* bytes from user space address
2762  * 		*unsafe_ptr* and store the data in *dst*.
2763  * 	Return
2764  * 		0 on success, or a negative error in case of failure.
2765  *
2766  * int bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2767  * 	Description
2768  * 		Safely attempt to read *size* bytes from kernel space address
2769  * 		*unsafe_ptr* and store the data in *dst*.
2770  * 	Return
2771  * 		0 on success, or a negative error in case of failure.
2772  *
2773  * int bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
2774  * 	Description
2775  * 		Copy a NUL terminated string from an unsafe user address
2776  * 		*unsafe_ptr* to *dst*. The *size* should include the
2777  * 		terminating NUL byte. In case the string length is smaller than
2778  * 		*size*, the target is not padded with further NUL bytes. If the
2779  * 		string length is larger than *size*, just *size*-1 bytes are
2780  * 		copied and the last byte is set to NUL.
2781  *
2782  * 		On success, the length of the copied string is returned. This
2783  * 		makes this helper useful in tracing programs for reading
2784  * 		strings, and more importantly to get its length at runtime. See
2785  * 		the following snippet:
2786  *
2787  * 		::
2788  *
2789  * 			SEC("kprobe/sys_open")
2790  * 			void bpf_sys_open(struct pt_regs *ctx)
2791  * 			{
2792  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
2793  * 			        int res = bpf_probe_read_user_str(buf, sizeof(buf),
2794  * 				                                  ctx->di);
2795  *
2796  * 				// Consume buf, for example push it to
2797  * 				// userspace via bpf_perf_event_output(); we
2798  * 				// can use res (the string length) as event
2799  * 				// size, after checking its boundaries.
2800  * 			}
2801  *
2802  * 		In comparison, using **bpf_probe_read_user()** helper here
2803  * 		instead to read the string would require to estimate the length
2804  * 		at compile time, and would often result in copying more memory
2805  * 		than necessary.
2806  *
2807  * 		Another useful use case is when parsing individual process
2808  * 		arguments or individual environment variables navigating
2809  * 		*current*\ **->mm->arg_start** and *current*\
2810  * 		**->mm->env_start**: using this helper and the return value,
2811  * 		one can quickly iterate at the right offset of the memory area.
2812  * 	Return
2813  * 		On success, the strictly positive length of the string,
2814  * 		including the trailing NUL character. On error, a negative
2815  * 		value.
2816  *
2817  * int bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
2818  * 	Description
2819  * 		Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
2820  * 		to *dst*. Same semantics as with bpf_probe_read_user_str() apply.
2821  * 	Return
2822  * 		On success, the strictly positive length of the string,	including
2823  * 		the trailing NUL character. On error, a negative value.
2824  */
2825 #define __BPF_FUNC_MAPPER(FN)		\
2826 	FN(unspec),			\
2827 	FN(map_lookup_elem),		\
2828 	FN(map_update_elem),		\
2829 	FN(map_delete_elem),		\
2830 	FN(probe_read),			\
2831 	FN(ktime_get_ns),		\
2832 	FN(trace_printk),		\
2833 	FN(get_prandom_u32),		\
2834 	FN(get_smp_processor_id),	\
2835 	FN(skb_store_bytes),		\
2836 	FN(l3_csum_replace),		\
2837 	FN(l4_csum_replace),		\
2838 	FN(tail_call),			\
2839 	FN(clone_redirect),		\
2840 	FN(get_current_pid_tgid),	\
2841 	FN(get_current_uid_gid),	\
2842 	FN(get_current_comm),		\
2843 	FN(get_cgroup_classid),		\
2844 	FN(skb_vlan_push),		\
2845 	FN(skb_vlan_pop),		\
2846 	FN(skb_get_tunnel_key),		\
2847 	FN(skb_set_tunnel_key),		\
2848 	FN(perf_event_read),		\
2849 	FN(redirect),			\
2850 	FN(get_route_realm),		\
2851 	FN(perf_event_output),		\
2852 	FN(skb_load_bytes),		\
2853 	FN(get_stackid),		\
2854 	FN(csum_diff),			\
2855 	FN(skb_get_tunnel_opt),		\
2856 	FN(skb_set_tunnel_opt),		\
2857 	FN(skb_change_proto),		\
2858 	FN(skb_change_type),		\
2859 	FN(skb_under_cgroup),		\
2860 	FN(get_hash_recalc),		\
2861 	FN(get_current_task),		\
2862 	FN(probe_write_user),		\
2863 	FN(current_task_under_cgroup),	\
2864 	FN(skb_change_tail),		\
2865 	FN(skb_pull_data),		\
2866 	FN(csum_update),		\
2867 	FN(set_hash_invalid),		\
2868 	FN(get_numa_node_id),		\
2869 	FN(skb_change_head),		\
2870 	FN(xdp_adjust_head),		\
2871 	FN(probe_read_str),		\
2872 	FN(get_socket_cookie),		\
2873 	FN(get_socket_uid),		\
2874 	FN(set_hash),			\
2875 	FN(setsockopt),			\
2876 	FN(skb_adjust_room),		\
2877 	FN(redirect_map),		\
2878 	FN(sk_redirect_map),		\
2879 	FN(sock_map_update),		\
2880 	FN(xdp_adjust_meta),		\
2881 	FN(perf_event_read_value),	\
2882 	FN(perf_prog_read_value),	\
2883 	FN(getsockopt),			\
2884 	FN(override_return),		\
2885 	FN(sock_ops_cb_flags_set),	\
2886 	FN(msg_redirect_map),		\
2887 	FN(msg_apply_bytes),		\
2888 	FN(msg_cork_bytes),		\
2889 	FN(msg_pull_data),		\
2890 	FN(bind),			\
2891 	FN(xdp_adjust_tail),		\
2892 	FN(skb_get_xfrm_state),		\
2893 	FN(get_stack),			\
2894 	FN(skb_load_bytes_relative),	\
2895 	FN(fib_lookup),			\
2896 	FN(sock_hash_update),		\
2897 	FN(msg_redirect_hash),		\
2898 	FN(sk_redirect_hash),		\
2899 	FN(lwt_push_encap),		\
2900 	FN(lwt_seg6_store_bytes),	\
2901 	FN(lwt_seg6_adjust_srh),	\
2902 	FN(lwt_seg6_action),		\
2903 	FN(rc_repeat),			\
2904 	FN(rc_keydown),			\
2905 	FN(skb_cgroup_id),		\
2906 	FN(get_current_cgroup_id),	\
2907 	FN(get_local_storage),		\
2908 	FN(sk_select_reuseport),	\
2909 	FN(skb_ancestor_cgroup_id),	\
2910 	FN(sk_lookup_tcp),		\
2911 	FN(sk_lookup_udp),		\
2912 	FN(sk_release),			\
2913 	FN(map_push_elem),		\
2914 	FN(map_pop_elem),		\
2915 	FN(map_peek_elem),		\
2916 	FN(msg_push_data),		\
2917 	FN(msg_pop_data),		\
2918 	FN(rc_pointer_rel),		\
2919 	FN(spin_lock),			\
2920 	FN(spin_unlock),		\
2921 	FN(sk_fullsock),		\
2922 	FN(tcp_sock),			\
2923 	FN(skb_ecn_set_ce),		\
2924 	FN(get_listener_sock),		\
2925 	FN(skc_lookup_tcp),		\
2926 	FN(tcp_check_syncookie),	\
2927 	FN(sysctl_get_name),		\
2928 	FN(sysctl_get_current_value),	\
2929 	FN(sysctl_get_new_value),	\
2930 	FN(sysctl_set_new_value),	\
2931 	FN(strtol),			\
2932 	FN(strtoul),			\
2933 	FN(sk_storage_get),		\
2934 	FN(sk_storage_delete),		\
2935 	FN(send_signal),		\
2936 	FN(tcp_gen_syncookie),		\
2937 	FN(skb_output),			\
2938 	FN(probe_read_user),		\
2939 	FN(probe_read_kernel),		\
2940 	FN(probe_read_user_str),	\
2941 	FN(probe_read_kernel_str),
2942 
2943 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
2944  * function eBPF program intends to call
2945  */
2946 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
2947 enum bpf_func_id {
2948 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
2949 	__BPF_FUNC_MAX_ID,
2950 };
2951 #undef __BPF_ENUM_FN
2952 
2953 /* All flags used by eBPF helper functions, placed here. */
2954 
2955 /* BPF_FUNC_skb_store_bytes flags. */
2956 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
2957 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
2958 
2959 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2960  * First 4 bits are for passing the header field size.
2961  */
2962 #define BPF_F_HDR_FIELD_MASK		0xfULL
2963 
2964 /* BPF_FUNC_l4_csum_replace flags. */
2965 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
2966 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
2967 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
2968 
2969 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2970 #define BPF_F_INGRESS			(1ULL << 0)
2971 
2972 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2973 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
2974 
2975 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
2976 #define BPF_F_SKIP_FIELD_MASK		0xffULL
2977 #define BPF_F_USER_STACK		(1ULL << 8)
2978 /* flags used by BPF_FUNC_get_stackid only. */
2979 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
2980 #define BPF_F_REUSE_STACKID		(1ULL << 10)
2981 /* flags used by BPF_FUNC_get_stack only. */
2982 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
2983 
2984 /* BPF_FUNC_skb_set_tunnel_key flags. */
2985 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
2986 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
2987 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
2988 
2989 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2990  * BPF_FUNC_perf_event_read_value flags.
2991  */
2992 #define BPF_F_INDEX_MASK		0xffffffffULL
2993 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
2994 /* BPF_FUNC_perf_event_output for sk_buff input context. */
2995 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
2996 
2997 /* Current network namespace */
2998 #define BPF_F_CURRENT_NETNS		(-1L)
2999 
3000 /* BPF_FUNC_skb_adjust_room flags. */
3001 #define BPF_F_ADJ_ROOM_FIXED_GSO	(1ULL << 0)
3002 
3003 #define BPF_ADJ_ROOM_ENCAP_L2_MASK	0xff
3004 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT	56
3005 
3006 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4	(1ULL << 1)
3007 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6	(1ULL << 2)
3008 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE	(1ULL << 3)
3009 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP	(1ULL << 4)
3010 #define BPF_F_ADJ_ROOM_ENCAP_L2(len)	(((__u64)len & \
3011 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) \
3012 					 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
3013 
3014 /* BPF_FUNC_sysctl_get_name flags. */
3015 #define BPF_F_SYSCTL_BASE_NAME		(1ULL << 0)
3016 
3017 /* BPF_FUNC_sk_storage_get flags */
3018 #define BPF_SK_STORAGE_GET_F_CREATE	(1ULL << 0)
3019 
3020 /* Mode for BPF_FUNC_skb_adjust_room helper. */
3021 enum bpf_adj_room_mode {
3022 	BPF_ADJ_ROOM_NET,
3023 	BPF_ADJ_ROOM_MAC,
3024 };
3025 
3026 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
3027 enum bpf_hdr_start_off {
3028 	BPF_HDR_START_MAC,
3029 	BPF_HDR_START_NET,
3030 };
3031 
3032 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
3033 enum bpf_lwt_encap_mode {
3034 	BPF_LWT_ENCAP_SEG6,
3035 	BPF_LWT_ENCAP_SEG6_INLINE,
3036 	BPF_LWT_ENCAP_IP,
3037 };
3038 
3039 #define __bpf_md_ptr(type, name)	\
3040 union {					\
3041 	type name;			\
3042 	__u64 :64;			\
3043 } __attribute__((aligned(8)))
3044 
3045 /* user accessible mirror of in-kernel sk_buff.
3046  * new fields can only be added to the end of this structure
3047  */
3048 struct __sk_buff {
3049 	__u32 len;
3050 	__u32 pkt_type;
3051 	__u32 mark;
3052 	__u32 queue_mapping;
3053 	__u32 protocol;
3054 	__u32 vlan_present;
3055 	__u32 vlan_tci;
3056 	__u32 vlan_proto;
3057 	__u32 priority;
3058 	__u32 ingress_ifindex;
3059 	__u32 ifindex;
3060 	__u32 tc_index;
3061 	__u32 cb[5];
3062 	__u32 hash;
3063 	__u32 tc_classid;
3064 	__u32 data;
3065 	__u32 data_end;
3066 	__u32 napi_id;
3067 
3068 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
3069 	__u32 family;
3070 	__u32 remote_ip4;	/* Stored in network byte order */
3071 	__u32 local_ip4;	/* Stored in network byte order */
3072 	__u32 remote_ip6[4];	/* Stored in network byte order */
3073 	__u32 local_ip6[4];	/* Stored in network byte order */
3074 	__u32 remote_port;	/* Stored in network byte order */
3075 	__u32 local_port;	/* stored in host byte order */
3076 	/* ... here. */
3077 
3078 	__u32 data_meta;
3079 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
3080 	__u64 tstamp;
3081 	__u32 wire_len;
3082 	__u32 gso_segs;
3083 	__bpf_md_ptr(struct bpf_sock *, sk);
3084 };
3085 
3086 struct bpf_tunnel_key {
3087 	__u32 tunnel_id;
3088 	union {
3089 		__u32 remote_ipv4;
3090 		__u32 remote_ipv6[4];
3091 	};
3092 	__u8 tunnel_tos;
3093 	__u8 tunnel_ttl;
3094 	__u16 tunnel_ext;	/* Padding, future use. */
3095 	__u32 tunnel_label;
3096 };
3097 
3098 /* user accessible mirror of in-kernel xfrm_state.
3099  * new fields can only be added to the end of this structure
3100  */
3101 struct bpf_xfrm_state {
3102 	__u32 reqid;
3103 	__u32 spi;	/* Stored in network byte order */
3104 	__u16 family;
3105 	__u16 ext;	/* Padding, future use. */
3106 	union {
3107 		__u32 remote_ipv4;	/* Stored in network byte order */
3108 		__u32 remote_ipv6[4];	/* Stored in network byte order */
3109 	};
3110 };
3111 
3112 /* Generic BPF return codes which all BPF program types may support.
3113  * The values are binary compatible with their TC_ACT_* counter-part to
3114  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
3115  * programs.
3116  *
3117  * XDP is handled seprately, see XDP_*.
3118  */
3119 enum bpf_ret_code {
3120 	BPF_OK = 0,
3121 	/* 1 reserved */
3122 	BPF_DROP = 2,
3123 	/* 3-6 reserved */
3124 	BPF_REDIRECT = 7,
3125 	/* >127 are reserved for prog type specific return codes.
3126 	 *
3127 	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
3128 	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
3129 	 *    changed and should be routed based on its new L3 header.
3130 	 *    (This is an L3 redirect, as opposed to L2 redirect
3131 	 *    represented by BPF_REDIRECT above).
3132 	 */
3133 	BPF_LWT_REROUTE = 128,
3134 };
3135 
3136 struct bpf_sock {
3137 	__u32 bound_dev_if;
3138 	__u32 family;
3139 	__u32 type;
3140 	__u32 protocol;
3141 	__u32 mark;
3142 	__u32 priority;
3143 	/* IP address also allows 1 and 2 bytes access */
3144 	__u32 src_ip4;
3145 	__u32 src_ip6[4];
3146 	__u32 src_port;		/* host byte order */
3147 	__u32 dst_port;		/* network byte order */
3148 	__u32 dst_ip4;
3149 	__u32 dst_ip6[4];
3150 	__u32 state;
3151 };
3152 
3153 struct bpf_tcp_sock {
3154 	__u32 snd_cwnd;		/* Sending congestion window		*/
3155 	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
3156 	__u32 rtt_min;
3157 	__u32 snd_ssthresh;	/* Slow start size threshold		*/
3158 	__u32 rcv_nxt;		/* What we want to receive next		*/
3159 	__u32 snd_nxt;		/* Next sequence we send		*/
3160 	__u32 snd_una;		/* First byte we want an ack for	*/
3161 	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
3162 	__u32 ecn_flags;	/* ECN status bits.			*/
3163 	__u32 rate_delivered;	/* saved rate sample: packets delivered */
3164 	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
3165 	__u32 packets_out;	/* Packets which are "in flight"	*/
3166 	__u32 retrans_out;	/* Retransmitted packets out		*/
3167 	__u32 total_retrans;	/* Total retransmits for entire connection */
3168 	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
3169 				 * total number of segments in.
3170 				 */
3171 	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
3172 				 * total number of data segments in.
3173 				 */
3174 	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
3175 				 * The total number of segments sent.
3176 				 */
3177 	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
3178 				 * total number of data segments sent.
3179 				 */
3180 	__u32 lost_out;		/* Lost packets			*/
3181 	__u32 sacked_out;	/* SACK'd packets			*/
3182 	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
3183 				 * sum(delta(rcv_nxt)), or how many bytes
3184 				 * were acked.
3185 				 */
3186 	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
3187 				 * sum(delta(snd_una)), or how many bytes
3188 				 * were acked.
3189 				 */
3190 	__u32 dsack_dups;	/* RFC4898 tcpEStatsStackDSACKDups
3191 				 * total number of DSACK blocks received
3192 				 */
3193 	__u32 delivered;	/* Total data packets delivered incl. rexmits */
3194 	__u32 delivered_ce;	/* Like the above but only ECE marked packets */
3195 	__u32 icsk_retransmits;	/* Number of unrecovered [RTO] timeouts */
3196 };
3197 
3198 struct bpf_sock_tuple {
3199 	union {
3200 		struct {
3201 			__be32 saddr;
3202 			__be32 daddr;
3203 			__be16 sport;
3204 			__be16 dport;
3205 		} ipv4;
3206 		struct {
3207 			__be32 saddr[4];
3208 			__be32 daddr[4];
3209 			__be16 sport;
3210 			__be16 dport;
3211 		} ipv6;
3212 	};
3213 };
3214 
3215 struct bpf_xdp_sock {
3216 	__u32 queue_id;
3217 };
3218 
3219 #define XDP_PACKET_HEADROOM 256
3220 
3221 /* User return codes for XDP prog type.
3222  * A valid XDP program must return one of these defined values. All other
3223  * return codes are reserved for future use. Unknown return codes will
3224  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
3225  */
3226 enum xdp_action {
3227 	XDP_ABORTED = 0,
3228 	XDP_DROP,
3229 	XDP_PASS,
3230 	XDP_TX,
3231 	XDP_REDIRECT,
3232 };
3233 
3234 /* user accessible metadata for XDP packet hook
3235  * new fields must be added to the end of this structure
3236  */
3237 struct xdp_md {
3238 	__u32 data;
3239 	__u32 data_end;
3240 	__u32 data_meta;
3241 	/* Below access go through struct xdp_rxq_info */
3242 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
3243 	__u32 rx_queue_index;  /* rxq->queue_index  */
3244 };
3245 
3246 enum sk_action {
3247 	SK_DROP = 0,
3248 	SK_PASS,
3249 };
3250 
3251 /* user accessible metadata for SK_MSG packet hook, new fields must
3252  * be added to the end of this structure
3253  */
3254 struct sk_msg_md {
3255 	__bpf_md_ptr(void *, data);
3256 	__bpf_md_ptr(void *, data_end);
3257 
3258 	__u32 family;
3259 	__u32 remote_ip4;	/* Stored in network byte order */
3260 	__u32 local_ip4;	/* Stored in network byte order */
3261 	__u32 remote_ip6[4];	/* Stored in network byte order */
3262 	__u32 local_ip6[4];	/* Stored in network byte order */
3263 	__u32 remote_port;	/* Stored in network byte order */
3264 	__u32 local_port;	/* stored in host byte order */
3265 	__u32 size;		/* Total size of sk_msg */
3266 };
3267 
3268 struct sk_reuseport_md {
3269 	/*
3270 	 * Start of directly accessible data. It begins from
3271 	 * the tcp/udp header.
3272 	 */
3273 	__bpf_md_ptr(void *, data);
3274 	/* End of directly accessible data */
3275 	__bpf_md_ptr(void *, data_end);
3276 	/*
3277 	 * Total length of packet (starting from the tcp/udp header).
3278 	 * Note that the directly accessible bytes (data_end - data)
3279 	 * could be less than this "len".  Those bytes could be
3280 	 * indirectly read by a helper "bpf_skb_load_bytes()".
3281 	 */
3282 	__u32 len;
3283 	/*
3284 	 * Eth protocol in the mac header (network byte order). e.g.
3285 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
3286 	 */
3287 	__u32 eth_protocol;
3288 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
3289 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
3290 	__u32 hash;		/* A hash of the packet 4 tuples */
3291 };
3292 
3293 #define BPF_TAG_SIZE	8
3294 
3295 struct bpf_prog_info {
3296 	__u32 type;
3297 	__u32 id;
3298 	__u8  tag[BPF_TAG_SIZE];
3299 	__u32 jited_prog_len;
3300 	__u32 xlated_prog_len;
3301 	__aligned_u64 jited_prog_insns;
3302 	__aligned_u64 xlated_prog_insns;
3303 	__u64 load_time;	/* ns since boottime */
3304 	__u32 created_by_uid;
3305 	__u32 nr_map_ids;
3306 	__aligned_u64 map_ids;
3307 	char name[BPF_OBJ_NAME_LEN];
3308 	__u32 ifindex;
3309 	__u32 gpl_compatible:1;
3310 	__u32 :31; /* alignment pad */
3311 	__u64 netns_dev;
3312 	__u64 netns_ino;
3313 	__u32 nr_jited_ksyms;
3314 	__u32 nr_jited_func_lens;
3315 	__aligned_u64 jited_ksyms;
3316 	__aligned_u64 jited_func_lens;
3317 	__u32 btf_id;
3318 	__u32 func_info_rec_size;
3319 	__aligned_u64 func_info;
3320 	__u32 nr_func_info;
3321 	__u32 nr_line_info;
3322 	__aligned_u64 line_info;
3323 	__aligned_u64 jited_line_info;
3324 	__u32 nr_jited_line_info;
3325 	__u32 line_info_rec_size;
3326 	__u32 jited_line_info_rec_size;
3327 	__u32 nr_prog_tags;
3328 	__aligned_u64 prog_tags;
3329 	__u64 run_time_ns;
3330 	__u64 run_cnt;
3331 } __attribute__((aligned(8)));
3332 
3333 struct bpf_map_info {
3334 	__u32 type;
3335 	__u32 id;
3336 	__u32 key_size;
3337 	__u32 value_size;
3338 	__u32 max_entries;
3339 	__u32 map_flags;
3340 	char  name[BPF_OBJ_NAME_LEN];
3341 	__u32 ifindex;
3342 	__u32 :32;
3343 	__u64 netns_dev;
3344 	__u64 netns_ino;
3345 	__u32 btf_id;
3346 	__u32 btf_key_type_id;
3347 	__u32 btf_value_type_id;
3348 } __attribute__((aligned(8)));
3349 
3350 struct bpf_btf_info {
3351 	__aligned_u64 btf;
3352 	__u32 btf_size;
3353 	__u32 id;
3354 } __attribute__((aligned(8)));
3355 
3356 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
3357  * by user and intended to be used by socket (e.g. to bind to, depends on
3358  * attach attach type).
3359  */
3360 struct bpf_sock_addr {
3361 	__u32 user_family;	/* Allows 4-byte read, but no write. */
3362 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
3363 				 * Stored in network byte order.
3364 				 */
3365 	__u32 user_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
3366 				 * Stored in network byte order.
3367 				 */
3368 	__u32 user_port;	/* Allows 4-byte read and write.
3369 				 * Stored in network byte order
3370 				 */
3371 	__u32 family;		/* Allows 4-byte read, but no write */
3372 	__u32 type;		/* Allows 4-byte read, but no write */
3373 	__u32 protocol;		/* Allows 4-byte read, but no write */
3374 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read and 4-byte write.
3375 				 * Stored in network byte order.
3376 				 */
3377 	__u32 msg_src_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
3378 				 * Stored in network byte order.
3379 				 */
3380 	__bpf_md_ptr(struct bpf_sock *, sk);
3381 };
3382 
3383 /* User bpf_sock_ops struct to access socket values and specify request ops
3384  * and their replies.
3385  * Some of this fields are in network (bigendian) byte order and may need
3386  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
3387  * New fields can only be added at the end of this structure
3388  */
3389 struct bpf_sock_ops {
3390 	__u32 op;
3391 	union {
3392 		__u32 args[4];		/* Optionally passed to bpf program */
3393 		__u32 reply;		/* Returned by bpf program	    */
3394 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
3395 	};
3396 	__u32 family;
3397 	__u32 remote_ip4;	/* Stored in network byte order */
3398 	__u32 local_ip4;	/* Stored in network byte order */
3399 	__u32 remote_ip6[4];	/* Stored in network byte order */
3400 	__u32 local_ip6[4];	/* Stored in network byte order */
3401 	__u32 remote_port;	/* Stored in network byte order */
3402 	__u32 local_port;	/* stored in host byte order */
3403 	__u32 is_fullsock;	/* Some TCP fields are only valid if
3404 				 * there is a full socket. If not, the
3405 				 * fields read as zero.
3406 				 */
3407 	__u32 snd_cwnd;
3408 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
3409 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
3410 	__u32 state;
3411 	__u32 rtt_min;
3412 	__u32 snd_ssthresh;
3413 	__u32 rcv_nxt;
3414 	__u32 snd_nxt;
3415 	__u32 snd_una;
3416 	__u32 mss_cache;
3417 	__u32 ecn_flags;
3418 	__u32 rate_delivered;
3419 	__u32 rate_interval_us;
3420 	__u32 packets_out;
3421 	__u32 retrans_out;
3422 	__u32 total_retrans;
3423 	__u32 segs_in;
3424 	__u32 data_segs_in;
3425 	__u32 segs_out;
3426 	__u32 data_segs_out;
3427 	__u32 lost_out;
3428 	__u32 sacked_out;
3429 	__u32 sk_txhash;
3430 	__u64 bytes_received;
3431 	__u64 bytes_acked;
3432 	__bpf_md_ptr(struct bpf_sock *, sk);
3433 };
3434 
3435 /* Definitions for bpf_sock_ops_cb_flags */
3436 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
3437 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
3438 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
3439 #define BPF_SOCK_OPS_RTT_CB_FLAG	(1<<3)
3440 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0xF		/* Mask of all currently
3441 							 * supported cb flags
3442 							 */
3443 
3444 /* List of known BPF sock_ops operators.
3445  * New entries can only be added at the end
3446  */
3447 enum {
3448 	BPF_SOCK_OPS_VOID,
3449 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
3450 					 * -1 if default value should be used
3451 					 */
3452 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
3453 					 * window (in packets) or -1 if default
3454 					 * value should be used
3455 					 */
3456 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
3457 					 * active connection is initialized
3458 					 */
3459 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
3460 						 * active connection is
3461 						 * established
3462 						 */
3463 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
3464 						 * passive connection is
3465 						 * established
3466 						 */
3467 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
3468 					 * needs ECN
3469 					 */
3470 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
3471 					 * based on the path and may be
3472 					 * dependent on the congestion control
3473 					 * algorithm. In general it indicates
3474 					 * a congestion threshold. RTTs above
3475 					 * this indicate congestion
3476 					 */
3477 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
3478 					 * Arg1: value of icsk_retransmits
3479 					 * Arg2: value of icsk_rto
3480 					 * Arg3: whether RTO has expired
3481 					 */
3482 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
3483 					 * Arg1: sequence number of 1st byte
3484 					 * Arg2: # segments
3485 					 * Arg3: return value of
3486 					 *       tcp_transmit_skb (0 => success)
3487 					 */
3488 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
3489 					 * Arg1: old_state
3490 					 * Arg2: new_state
3491 					 */
3492 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
3493 					 * socket transition to LISTEN state.
3494 					 */
3495 	BPF_SOCK_OPS_RTT_CB,		/* Called on every RTT.
3496 					 */
3497 };
3498 
3499 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
3500  * changes between the TCP and BPF versions. Ideally this should never happen.
3501  * If it does, we need to add code to convert them before calling
3502  * the BPF sock_ops function.
3503  */
3504 enum {
3505 	BPF_TCP_ESTABLISHED = 1,
3506 	BPF_TCP_SYN_SENT,
3507 	BPF_TCP_SYN_RECV,
3508 	BPF_TCP_FIN_WAIT1,
3509 	BPF_TCP_FIN_WAIT2,
3510 	BPF_TCP_TIME_WAIT,
3511 	BPF_TCP_CLOSE,
3512 	BPF_TCP_CLOSE_WAIT,
3513 	BPF_TCP_LAST_ACK,
3514 	BPF_TCP_LISTEN,
3515 	BPF_TCP_CLOSING,	/* Now a valid state */
3516 	BPF_TCP_NEW_SYN_RECV,
3517 
3518 	BPF_TCP_MAX_STATES	/* Leave at the end! */
3519 };
3520 
3521 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
3522 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
3523 
3524 struct bpf_perf_event_value {
3525 	__u64 counter;
3526 	__u64 enabled;
3527 	__u64 running;
3528 };
3529 
3530 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
3531 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
3532 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
3533 
3534 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
3535 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
3536 
3537 struct bpf_cgroup_dev_ctx {
3538 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
3539 	__u32 access_type;
3540 	__u32 major;
3541 	__u32 minor;
3542 };
3543 
3544 struct bpf_raw_tracepoint_args {
3545 	__u64 args[0];
3546 };
3547 
3548 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
3549  * OUTPUT:  Do lookup from egress perspective; default is ingress
3550  */
3551 #define BPF_FIB_LOOKUP_DIRECT  (1U << 0)
3552 #define BPF_FIB_LOOKUP_OUTPUT  (1U << 1)
3553 
3554 enum {
3555 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
3556 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
3557 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
3558 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
3559 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
3560 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
3561 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
3562 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
3563 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
3564 };
3565 
3566 struct bpf_fib_lookup {
3567 	/* input:  network family for lookup (AF_INET, AF_INET6)
3568 	 * output: network family of egress nexthop
3569 	 */
3570 	__u8	family;
3571 
3572 	/* set if lookup is to consider L4 data - e.g., FIB rules */
3573 	__u8	l4_protocol;
3574 	__be16	sport;
3575 	__be16	dport;
3576 
3577 	/* total length of packet from network header - used for MTU check */
3578 	__u16	tot_len;
3579 
3580 	/* input: L3 device index for lookup
3581 	 * output: device index from FIB lookup
3582 	 */
3583 	__u32	ifindex;
3584 
3585 	union {
3586 		/* inputs to lookup */
3587 		__u8	tos;		/* AF_INET  */
3588 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
3589 
3590 		/* output: metric of fib result (IPv4/IPv6 only) */
3591 		__u32	rt_metric;
3592 	};
3593 
3594 	union {
3595 		__be32		ipv4_src;
3596 		__u32		ipv6_src[4];  /* in6_addr; network order */
3597 	};
3598 
3599 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
3600 	 * network header. output: bpf_fib_lookup sets to gateway address
3601 	 * if FIB lookup returns gateway route
3602 	 */
3603 	union {
3604 		__be32		ipv4_dst;
3605 		__u32		ipv6_dst[4];  /* in6_addr; network order */
3606 	};
3607 
3608 	/* output */
3609 	__be16	h_vlan_proto;
3610 	__be16	h_vlan_TCI;
3611 	__u8	smac[6];     /* ETH_ALEN */
3612 	__u8	dmac[6];     /* ETH_ALEN */
3613 };
3614 
3615 enum bpf_task_fd_type {
3616 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
3617 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
3618 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
3619 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
3620 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
3621 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
3622 };
3623 
3624 #define BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG		(1U << 0)
3625 #define BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL		(1U << 1)
3626 #define BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP		(1U << 2)
3627 
3628 struct bpf_flow_keys {
3629 	__u16	nhoff;
3630 	__u16	thoff;
3631 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
3632 	__u8	is_frag;
3633 	__u8	is_first_frag;
3634 	__u8	is_encap;
3635 	__u8	ip_proto;
3636 	__be16	n_proto;
3637 	__be16	sport;
3638 	__be16	dport;
3639 	union {
3640 		struct {
3641 			__be32	ipv4_src;
3642 			__be32	ipv4_dst;
3643 		};
3644 		struct {
3645 			__u32	ipv6_src[4];	/* in6_addr; network order */
3646 			__u32	ipv6_dst[4];	/* in6_addr; network order */
3647 		};
3648 	};
3649 	__u32	flags;
3650 	__be32	flow_label;
3651 };
3652 
3653 struct bpf_func_info {
3654 	__u32	insn_off;
3655 	__u32	type_id;
3656 };
3657 
3658 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
3659 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
3660 
3661 struct bpf_line_info {
3662 	__u32	insn_off;
3663 	__u32	file_name_off;
3664 	__u32	line_off;
3665 	__u32	line_col;
3666 };
3667 
3668 struct bpf_spin_lock {
3669 	__u32	val;
3670 };
3671 
3672 struct bpf_sysctl {
3673 	__u32	write;		/* Sysctl is being read (= 0) or written (= 1).
3674 				 * Allows 1,2,4-byte read, but no write.
3675 				 */
3676 	__u32	file_pos;	/* Sysctl file position to read from, write to.
3677 				 * Allows 1,2,4-byte read an 4-byte write.
3678 				 */
3679 };
3680 
3681 struct bpf_sockopt {
3682 	__bpf_md_ptr(struct bpf_sock *, sk);
3683 	__bpf_md_ptr(void *, optval);
3684 	__bpf_md_ptr(void *, optval_end);
3685 
3686 	__s32	level;
3687 	__s32	optname;
3688 	__s32	optlen;
3689 	__s32	retval;
3690 };
3691 
3692 #endif /* _UAPI__LINUX_BPF_H__ */
3693