• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111 
112 #include <openssl/ex_data.h>
113 #include <openssl/stack.h>
114 #include <openssl/thread.h>
115 
116 #include <assert.h>
117 #include <string.h>
118 
119 #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
120 #include <valgrind/memcheck.h>
121 #endif
122 
123 #if !defined(__cplusplus)
124 #if defined(_MSC_VER)
125 #define alignas(x) __declspec(align(x))
126 #define alignof __alignof
127 #else
128 #include <stdalign.h>
129 #endif
130 #endif
131 
132 #if defined(OPENSSL_THREADS) && \
133     (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
134 #include <pthread.h>
135 #define OPENSSL_PTHREADS
136 #endif
137 
138 #if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
139     defined(OPENSSL_WINDOWS)
140 #define OPENSSL_WINDOWS_THREADS
141 OPENSSL_MSVC_PRAGMA(warning(push, 3))
142 #include <windows.h>
OPENSSL_MSVC_PRAGMA(warning (pop))143 OPENSSL_MSVC_PRAGMA(warning(pop))
144 #endif
145 
146 #if defined(__cplusplus)
147 extern "C" {
148 #endif
149 
150 
151 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
152     defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
153 // OPENSSL_cpuid_setup initializes the platform-specific feature cache.
154 void OPENSSL_cpuid_setup(void);
155 #endif
156 
157 #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
158     !defined(OPENSSL_STATIC_ARMCAP)
159 // OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
160 // for unit tests. Any modifications to the value must be made after
161 // |CRYPTO_library_init| but before any other function call in BoringSSL.
162 OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
163 #endif
164 
165 
166 #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
167 #define BORINGSSL_HAS_UINT128
168 typedef __int128_t int128_t;
169 typedef __uint128_t uint128_t;
170 
171 // clang-cl supports __uint128_t but modulus and division don't work.
172 // https://crbug.com/787617.
173 #if !defined(_MSC_VER) || !defined(__clang__)
174 #define BORINGSSL_CAN_DIVIDE_UINT128
175 #endif
176 #endif
177 
178 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
179 
180 // Have a generic fall-through for different versions of C/C++.
181 #if defined(__cplusplus) && __cplusplus >= 201703L
182 #define OPENSSL_FALLTHROUGH [[fallthrough]]
183 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
184 #define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
185 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
186     __GNUC__ >= 7
187 #define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
188 #elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
189 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
190 #elif defined(__clang__)
191 #if __has_attribute(fallthrough) && __clang_major__ >= 5
192 // Clang 3.5, at least, complains about "error: declaration does not declare
193 // anything", possibily because we put a semicolon after this macro in
194 // practice. Thus limit it to >= Clang 5, which does work.
195 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
196 #else // clang versions that do not support fallthrough.
197 #define OPENSSL_FALLTHROUGH
198 #endif
199 #else // C++11 on gcc 6, and all other cases
200 #define OPENSSL_FALLTHROUGH
201 #endif
202 
203 // buffers_alias returns one if |a| and |b| alias and zero otherwise.
204 static inline int buffers_alias(const uint8_t *a, size_t a_len,
205                                 const uint8_t *b, size_t b_len) {
206   // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
207   // objects are undefined whereas pointer to integer conversions are merely
208   // implementation-defined. We assume the implementation defined it in a sane
209   // way.
210   uintptr_t a_u = (uintptr_t)a;
211   uintptr_t b_u = (uintptr_t)b;
212   return a_u + a_len > b_u && b_u + b_len > a_u;
213 }
214 
215 
216 // Constant-time utility functions.
217 //
218 // The following methods return a bitmask of all ones (0xff...f) for true and 0
219 // for false. This is useful for choosing a value based on the result of a
220 // conditional in constant time. For example,
221 //
222 // if (a < b) {
223 //   c = a;
224 // } else {
225 //   c = b;
226 // }
227 //
228 // can be written as
229 //
230 // crypto_word_t lt = constant_time_lt_w(a, b);
231 // c = constant_time_select_w(lt, a, b);
232 
233 // crypto_word_t is the type that most constant-time functions use. Ideally we
234 // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
235 // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
236 // bits. Since we want to be able to do constant-time operations on a
237 // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
238 // word length.
239 #if defined(OPENSSL_64_BIT)
240 typedef uint64_t crypto_word_t;
241 #elif defined(OPENSSL_32_BIT)
242 typedef uint32_t crypto_word_t;
243 #else
244 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
245 #endif
246 
247 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
248 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
249 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
250 #define CONSTTIME_FALSE_8 ((uint8_t)0)
251 
252 // value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
253 // the returned value. This is used to mitigate compilers undoing constant-time
254 // code, until we can express our requirements directly in the language.
255 //
256 // Note the compiler is aware that |value_barrier_w| has no side effects and
257 // always has the same output for a given input. This allows it to eliminate
258 // dead code, move computations across loops, and vectorize.
259 static inline crypto_word_t value_barrier_w(crypto_word_t a) {
260 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
261   __asm__("" : "+r"(a) : /* no inputs */);
262 #endif
263   return a;
264 }
265 
266 // value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
267 static inline uint32_t value_barrier_u32(uint32_t a) {
268 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
269   __asm__("" : "+r"(a) : /* no inputs */);
270 #endif
271   return a;
272 }
273 
274 // value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
275 static inline uint64_t value_barrier_u64(uint64_t a) {
276 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
277   __asm__("" : "+r"(a) : /* no inputs */);
278 #endif
279   return a;
280 }
281 
282 // constant_time_msb_w returns the given value with the MSB copied to all the
283 // other bits.
284 static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
285   return 0u - (a >> (sizeof(a) * 8 - 1));
286 }
287 
288 // constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
289 static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
290                                                crypto_word_t b) {
291   // Consider the two cases of the problem:
292   //   msb(a) == msb(b): a < b iff the MSB of a - b is set.
293   //   msb(a) != msb(b): a < b iff the MSB of b is set.
294   //
295   // If msb(a) == msb(b) then the following evaluates as:
296   //   msb(a^((a^b)|((a-b)^a))) ==
297   //   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
298   //   msb(a^a^(a-b))           ==   (rearranging)
299   //   msb(a-b)                      (because ∀x. x^x == 0)
300   //
301   // Else, if msb(a) != msb(b) then the following evaluates as:
302   //   msb(a^((a^b)|((a-b)^a))) ==
303   //   msb(a^(�� | ((a-b)^a)))   ==   (because msb(a^b) == 1 and ��
304   //                                  represents a value s.t. msb(��) = 1)
305   //   msb(a^��)                 ==   (because ORing with 1 results in 1)
306   //   msb(b)
307   //
308   //
309   // Here is an SMT-LIB verification of this formula:
310   //
311   // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
312   //   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
313   // )
314   //
315   // (declare-fun a () (_ BitVec 32))
316   // (declare-fun b () (_ BitVec 32))
317   //
318   // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
319   // (check-sat)
320   // (get-model)
321   return constant_time_msb_w(a^((a^b)|((a-b)^a)));
322 }
323 
324 // constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
325 // mask.
326 static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
327   return (uint8_t)(constant_time_lt_w(a, b));
328 }
329 
330 // constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
331 static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
332                                                crypto_word_t b) {
333   return ~constant_time_lt_w(a, b);
334 }
335 
336 // constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
337 // mask.
338 static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
339   return (uint8_t)(constant_time_ge_w(a, b));
340 }
341 
342 // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
343 static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
344   // Here is an SMT-LIB verification of this formula:
345   //
346   // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
347   //   (bvand (bvnot a) (bvsub a #x00000001))
348   // )
349   //
350   // (declare-fun a () (_ BitVec 32))
351   //
352   // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
353   // (check-sat)
354   // (get-model)
355   return constant_time_msb_w(~a & (a - 1));
356 }
357 
358 // constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
359 // 8-bit mask.
360 static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
361   return (uint8_t)(constant_time_is_zero_w(a));
362 }
363 
364 // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
365 static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
366                                                crypto_word_t b) {
367   return constant_time_is_zero_w(a ^ b);
368 }
369 
370 // constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
371 // mask.
372 static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
373   return (uint8_t)(constant_time_eq_w(a, b));
374 }
375 
376 // constant_time_eq_int acts like |constant_time_eq_w| but works on int
377 // values.
378 static inline crypto_word_t constant_time_eq_int(int a, int b) {
379   return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
380 }
381 
382 // constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
383 // mask.
384 static inline uint8_t constant_time_eq_int_8(int a, int b) {
385   return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
386 }
387 
388 // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
389 // 1s or all 0s (as returned by the methods above), the select methods return
390 // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
391 static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
392                                                    crypto_word_t a,
393                                                    crypto_word_t b) {
394   // Clang recognizes this pattern as a select. While it usually transforms it
395   // to a cmov, it sometimes further transforms it into a branch, which we do
396   // not want.
397   //
398   // Adding barriers to both |mask| and |~mask| breaks the relationship between
399   // the two, which makes the compiler stick with bitmasks.
400   return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
401 }
402 
403 // constant_time_select_8 acts like |constant_time_select| but operates on
404 // 8-bit values.
405 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
406                                              uint8_t b) {
407   return (uint8_t)(constant_time_select_w(mask, a, b));
408 }
409 
410 // constant_time_select_int acts like |constant_time_select| but operates on
411 // ints.
412 static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
413   return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
414                                       (crypto_word_t)(b)));
415 }
416 
417 #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
418 
419 // CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
420 // of memory as secret. Secret data is tracked as it flows to registers and
421 // other parts of a memory. If secret data is used as a condition for a branch,
422 // or as a memory index, it will trigger warnings in valgrind.
423 #define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
424 
425 // CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
426 // region of memory as public. Public data is not subject to constant-time
427 // rules.
428 #define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
429 
430 #else
431 
432 #define CONSTTIME_SECRET(x, y)
433 #define CONSTTIME_DECLASSIFY(x, y)
434 
435 #endif  // BORINGSSL_CONSTANT_TIME_VALIDATION
436 
437 
438 // Thread-safe initialisation.
439 
440 #if !defined(OPENSSL_THREADS)
441 typedef uint32_t CRYPTO_once_t;
442 #define CRYPTO_ONCE_INIT 0
443 #elif defined(OPENSSL_WINDOWS_THREADS)
444 typedef INIT_ONCE CRYPTO_once_t;
445 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
446 #elif defined(OPENSSL_PTHREADS)
447 typedef pthread_once_t CRYPTO_once_t;
448 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
449 #else
450 #error "Unknown threading library"
451 #endif
452 
453 // CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
454 // concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
455 // then they will block until |init| completes, but |init| will have only been
456 // called once.
457 //
458 // The |once| argument must be a |CRYPTO_once_t| that has been initialised with
459 // the value |CRYPTO_ONCE_INIT|.
460 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
461 
462 
463 // Reference counting.
464 
465 // CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
466 #define CRYPTO_REFCOUNT_MAX 0xffffffff
467 
468 // CRYPTO_refcount_inc atomically increments the value at |*count| unless the
469 // value would overflow. It's safe for multiple threads to concurrently call
470 // this or |CRYPTO_refcount_dec_and_test_zero| on the same
471 // |CRYPTO_refcount_t|.
472 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
473 
474 // CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
475 //   if it's zero, it crashes the address space.
476 //   if it's the maximum value, it returns zero.
477 //   otherwise, it atomically decrements it and returns one iff the resulting
478 //       value is zero.
479 //
480 // It's safe for multiple threads to concurrently call this or
481 // |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
482 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
483 
484 
485 // Locks.
486 //
487 // Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
488 // structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
489 // a global lock. A global lock must be initialised to the value
490 // |CRYPTO_STATIC_MUTEX_INIT|.
491 //
492 // |CRYPTO_MUTEX| can appear in public structures and so is defined in
493 // thread.h as a structure large enough to fit the real type. The global lock is
494 // a different type so it may be initialized with platform initializer macros.
495 
496 #if !defined(OPENSSL_THREADS)
497 struct CRYPTO_STATIC_MUTEX {
498   char padding;  // Empty structs have different sizes in C and C++.
499 };
500 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
501 #elif defined(OPENSSL_WINDOWS_THREADS)
502 struct CRYPTO_STATIC_MUTEX {
503   SRWLOCK lock;
504 };
505 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
506 #elif defined(OPENSSL_PTHREADS)
507 struct CRYPTO_STATIC_MUTEX {
508   pthread_rwlock_t lock;
509 };
510 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
511 #else
512 #error "Unknown threading library"
513 #endif
514 
515 // CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
516 // |CRYPTO_STATIC_MUTEX|.
517 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
518 
519 // CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
520 // read lock, but none may have a write lock.
521 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
522 
523 // CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
524 // of lock on it.
525 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
526 
527 // CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
528 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
529 
530 // CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
531 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
532 
533 // CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
534 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
535 
536 // CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
537 // have a read lock, but none may have a write lock. The |lock| variable does
538 // not need to be initialised by any function, but must have been statically
539 // initialised with |CRYPTO_STATIC_MUTEX_INIT|.
540 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
541     struct CRYPTO_STATIC_MUTEX *lock);
542 
543 // CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
544 // any type of lock on it.  The |lock| variable does not need to be initialised
545 // by any function, but must have been statically initialised with
546 // |CRYPTO_STATIC_MUTEX_INIT|.
547 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
548     struct CRYPTO_STATIC_MUTEX *lock);
549 
550 // CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
551 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
552     struct CRYPTO_STATIC_MUTEX *lock);
553 
554 // CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
555 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
556     struct CRYPTO_STATIC_MUTEX *lock);
557 
558 #if defined(__cplusplus)
559 extern "C++" {
560 
561 BSSL_NAMESPACE_BEGIN
562 
563 namespace internal {
564 
565 // MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
566 template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
567 class MutexLockBase {
568  public:
569   explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
570     assert(mu_ != nullptr);
571     LockFunc(mu_);
572   }
573   ~MutexLockBase() { ReleaseFunc(mu_); }
574   MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
575   MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
576       delete;
577 
578  private:
579   CRYPTO_MUTEX *const mu_;
580 };
581 
582 }  // namespace internal
583 
584 using MutexWriteLock =
585     internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
586 using MutexReadLock =
587     internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
588 
589 BSSL_NAMESPACE_END
590 
591 }  // extern "C++"
592 #endif  // defined(__cplusplus)
593 
594 
595 // Thread local storage.
596 
597 // thread_local_data_t enumerates the types of thread-local data that can be
598 // stored.
599 typedef enum {
600   OPENSSL_THREAD_LOCAL_ERR = 0,
601   OPENSSL_THREAD_LOCAL_RAND,
602   OPENSSL_THREAD_LOCAL_TEST,
603   NUM_OPENSSL_THREAD_LOCALS,
604 } thread_local_data_t;
605 
606 // thread_local_destructor_t is the type of a destructor function that will be
607 // called when a thread exits and its thread-local storage needs to be freed.
608 typedef void (*thread_local_destructor_t)(void *);
609 
610 // CRYPTO_get_thread_local gets the pointer value that is stored for the
611 // current thread for the given index, or NULL if none has been set.
612 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
613 
614 // CRYPTO_set_thread_local sets a pointer value for the current thread at the
615 // given index. This function should only be called once per thread for a given
616 // |index|: rather than update the pointer value itself, update the data that
617 // is pointed to.
618 //
619 // The destructor function will be called when a thread exits to free this
620 // thread-local data. All calls to |CRYPTO_set_thread_local| with the same
621 // |index| should have the same |destructor| argument. The destructor may be
622 // called with a NULL argument if a thread that never set a thread-local
623 // pointer for |index|, exits. The destructor may be called concurrently with
624 // different arguments.
625 //
626 // This function returns one on success or zero on error. If it returns zero
627 // then |destructor| has been called with |value| already.
628 OPENSSL_EXPORT int CRYPTO_set_thread_local(
629     thread_local_data_t index, void *value,
630     thread_local_destructor_t destructor);
631 
632 
633 // ex_data
634 
635 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
636 
637 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
638 
639 // CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
640 // supports ex_data. It should defined as a static global within the module
641 // which defines that type.
642 typedef struct {
643   struct CRYPTO_STATIC_MUTEX lock;
644   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
645   // num_reserved is one if the ex_data index zero is reserved for legacy
646   // |TYPE_get_app_data| functions.
647   uint8_t num_reserved;
648 } CRYPTO_EX_DATA_CLASS;
649 
650 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
651 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
652     {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
653 
654 // CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
655 // it to |*out_index|. Each class of object should provide a wrapper function
656 // that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
657 // zero otherwise.
658 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
659                                            int *out_index, long argl,
660                                            void *argp,
661                                            CRYPTO_EX_free *free_func);
662 
663 // CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
664 // of object should provide a wrapper function.
665 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
666 
667 // CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
668 // if no such index exists. Each class of object should provide a wrapper
669 // function.
670 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
671 
672 // CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
673 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
674 
675 // CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
676 // object of the given class.
677 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
678                                         void *obj, CRYPTO_EX_DATA *ad);
679 
680 
681 // Endianness conversions.
682 
683 #if defined(__GNUC__) && __GNUC__ >= 2
684 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
685   return __builtin_bswap32(x);
686 }
687 
688 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
689   return __builtin_bswap64(x);
690 }
691 #elif defined(_MSC_VER)
692 OPENSSL_MSVC_PRAGMA(warning(push, 3))
693 #include <stdlib.h>
694 OPENSSL_MSVC_PRAGMA(warning(pop))
695 #pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
696 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
697   return _byteswap_ulong(x);
698 }
699 
700 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
701   return _byteswap_uint64(x);
702 }
703 #else
704 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
705   x = (x >> 16) | (x << 16);
706   x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
707   return x;
708 }
709 
710 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
711   return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
712 }
713 #endif
714 
715 
716 // Language bug workarounds.
717 //
718 // Most C standard library functions are undefined if passed NULL, even when the
719 // corresponding length is zero. This gives them (and, in turn, all functions
720 // which call them) surprising behavior on empty arrays. Some compilers will
721 // miscompile code due to this rule. See also
722 // https://www.imperialviolet.org/2016/06/26/nonnull.html
723 //
724 // These wrapper functions behave the same as the corresponding C standard
725 // functions, but behave as expected when passed NULL if the length is zero.
726 //
727 // Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
728 
729 // C++ defines |memchr| as a const-correct overload.
730 #if defined(__cplusplus)
731 extern "C++" {
732 
733 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
734   if (n == 0) {
735     return NULL;
736   }
737 
738   return memchr(s, c, n);
739 }
740 
741 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
742   if (n == 0) {
743     return NULL;
744   }
745 
746   return memchr(s, c, n);
747 }
748 
749 }  // extern "C++"
750 #else  // __cplusplus
751 
752 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
753   if (n == 0) {
754     return NULL;
755   }
756 
757   return memchr(s, c, n);
758 }
759 
760 #endif  // __cplusplus
761 
762 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
763   if (n == 0) {
764     return 0;
765   }
766 
767   return memcmp(s1, s2, n);
768 }
769 
770 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
771   if (n == 0) {
772     return dst;
773   }
774 
775   return memcpy(dst, src, n);
776 }
777 
778 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
779   if (n == 0) {
780     return dst;
781   }
782 
783   return memmove(dst, src, n);
784 }
785 
786 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
787   if (n == 0) {
788     return dst;
789   }
790 
791   return memset(dst, c, n);
792 }
793 
794 #if defined(BORINGSSL_FIPS)
795 // BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
796 // fails. It prevents any further cryptographic operations by the current
797 // process.
798 void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
799 #endif
800 
801 // boringssl_fips_self_test runs the FIPS KAT-based self tests. It returns one
802 // on success and zero on error. The argument is the integrity hash of the FIPS
803 // module and may be used to check and write flag files to suppress duplicate
804 // self-tests. If |module_hash_len| is zero then no flag file will be checked
805 // nor written and tests will always be run.
806 int boringssl_fips_self_test(const uint8_t *module_hash,
807                              size_t module_hash_len);
808 
809 
810 #if defined(__cplusplus)
811 }  // extern C
812 #endif
813 
814 #endif  // OPENSSL_HEADER_CRYPTO_INTERNAL_H
815