• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Originally written by Bodo Moeller for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #ifndef OPENSSL_HEADER_EC_INTERNAL_H
69 #define OPENSSL_HEADER_EC_INTERNAL_H
70 
71 #include <openssl/base.h>
72 
73 #include <openssl/bn.h>
74 #include <openssl/ex_data.h>
75 #include <openssl/thread.h>
76 #include <openssl/type_check.h>
77 
78 #include "../bn/internal.h"
79 
80 #if defined(__cplusplus)
81 extern "C" {
82 #endif
83 
84 
85 // Cap the size of all field elements and scalars, including custom curves, to
86 // 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to
87 // be the largest fields anyone plausibly uses.
88 #define EC_MAX_BYTES 66
89 #define EC_MAX_WORDS ((EC_MAX_BYTES + BN_BYTES - 1) / BN_BYTES)
90 
91 OPENSSL_STATIC_ASSERT(EC_MAX_WORDS <= BN_SMALL_MAX_WORDS,
92                       "bn_*_small functions not usable");
93 
94 // An EC_SCALAR is an integer fully reduced modulo the order. Only the first
95 // |order->width| words are used. An |EC_SCALAR| is specific to an |EC_GROUP|
96 // and must not be mixed between groups.
97 typedef union {
98   // bytes is the representation of the scalar in little-endian order.
99   uint8_t bytes[EC_MAX_BYTES];
100   BN_ULONG words[EC_MAX_WORDS];
101 } EC_SCALAR;
102 
103 // An EC_FELEM represents a field element. Only the first |field->width| words
104 // are used. An |EC_FELEM| is specific to an |EC_GROUP| and must not be mixed
105 // between groups. Additionally, the representation (whether or not elements are
106 // represented in Montgomery-form) may vary between |EC_METHOD|s.
107 typedef union {
108   // bytes is the representation of the field element in little-endian order.
109   uint8_t bytes[EC_MAX_BYTES];
110   BN_ULONG words[EC_MAX_WORDS];
111 } EC_FELEM;
112 
113 // An EC_RAW_POINT represents an elliptic curve point. Unlike |EC_POINT|, it is
114 // a plain struct which can be stack-allocated and needs no cleanup. It is
115 // specific to an |EC_GROUP| and must not be mixed between groups.
116 typedef struct {
117   EC_FELEM X, Y, Z;
118   // X, Y, and Z are Jacobian projective coordinates. They represent
119   // (X/Z^2, Y/Z^3) if Z != 0 and the point at infinity otherwise.
120 } EC_RAW_POINT;
121 
122 struct ec_method_st {
123   int (*group_init)(EC_GROUP *);
124   void (*group_finish)(EC_GROUP *);
125   int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
126                          const BIGNUM *b, BN_CTX *);
127 
128   // point_get_affine_coordinates sets |*x| and |*y| to the affine coordinates
129   // of |p|. Either |x| or |y| may be NULL to omit it. It returns one on success
130   // and zero if |p| is the point at infinity.
131   //
132   // Note: unlike |EC_FELEM|s used as intermediate values internal to the
133   // |EC_METHOD|, |*x| and |*y| are not encoded in Montgomery form.
134   int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_RAW_POINT *p,
135                                       EC_FELEM *x, EC_FELEM *y);
136 
137   // add sets |r| to |a| + |b|.
138   void (*add)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a,
139               const EC_RAW_POINT *b);
140   // dbl sets |r| to |a| + |a|.
141   void (*dbl)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a);
142 
143   // mul sets |r| to |scalar|*|p|.
144   void (*mul)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *p,
145               const EC_SCALAR *scalar);
146   // mul_base sets |r| to |scalar|*generator.
147   void (*mul_base)(const EC_GROUP *group, EC_RAW_POINT *r,
148                    const EC_SCALAR *scalar);
149   // mul_public sets |r| to |g_scalar|*generator + |p_scalar|*|p|. It assumes
150   // that the inputs are public so there is no concern about leaking their
151   // values through timing.
152   void (*mul_public)(const EC_GROUP *group, EC_RAW_POINT *r,
153                      const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
154                      const EC_SCALAR *p_scalar);
155 
156   // felem_mul and felem_sqr implement multiplication and squaring,
157   // respectively, so that the generic |EC_POINT_add| and |EC_POINT_dbl|
158   // implementations can work both with |EC_GFp_mont_method| and the tuned
159   // operations.
160   //
161   // TODO(davidben): This constrains |EC_FELEM|'s internal representation, adds
162   // many indirect calls in the middle of the generic code, and a bunch of
163   // conversions. If p224-64.c were easily convertable to Montgomery form, we
164   // could say |EC_FELEM| is always in Montgomery form. If we routed the rest of
165   // simple.c to |EC_METHOD|, we could give |EC_POINT| an |EC_METHOD|-specific
166   // representation and say |EC_FELEM| is purely a |EC_GFp_mont_method| type.
167   void (*felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
168                     const EC_FELEM *b);
169   void (*felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a);
170 
171   int (*bignum_to_felem)(const EC_GROUP *group, EC_FELEM *out,
172                          const BIGNUM *in);
173   int (*felem_to_bignum)(const EC_GROUP *group, BIGNUM *out,
174                          const EC_FELEM *in);
175 
176   // scalar_inv_montgomery sets |out| to |in|^-1, where both input and output
177   // are in Montgomery form.
178   void (*scalar_inv_montgomery)(const EC_GROUP *group, EC_SCALAR *out,
179                                 const EC_SCALAR *in);
180 
181   // scalar_inv_montgomery_vartime performs the same computation as
182   // |scalar_inv_montgomery|. It further assumes that the inputs are public so
183   // there is no concern about leaking their values through timing.
184   int (*scalar_inv_montgomery_vartime)(const EC_GROUP *group, EC_SCALAR *out,
185                                        const EC_SCALAR *in);
186 
187   // cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group
188   // order, with |r|. It returns one if the values match and zero if |p| is the
189   // point at infinity of the values do not match.
190   int (*cmp_x_coordinate)(const EC_GROUP *group, const EC_RAW_POINT *p,
191                           const EC_SCALAR *r);
192 } /* EC_METHOD */;
193 
194 const EC_METHOD *EC_GFp_mont_method(void);
195 
196 struct ec_group_st {
197   const EC_METHOD *meth;
198 
199   // Unlike all other |EC_POINT|s, |generator| does not own |generator->group|
200   // to avoid a reference cycle.
201   EC_POINT *generator;
202   BIGNUM order;
203 
204   int curve_name;  // optional NID for named curve
205 
206   BN_MONT_CTX *order_mont;  // data for ECDSA inverse
207 
208   // The following members are handled by the method functions,
209   // even if they appear generic
210 
211   BIGNUM field;  // For curves over GF(p), this is the modulus.
212 
213   EC_FELEM a, b;  // Curve coefficients.
214 
215   // a_is_minus3 is one if |a| is -3 mod |field| and zero otherwise. Point
216   // arithmetic is optimized for -3.
217   int a_is_minus3;
218 
219   // field_greater_than_order is one if |field| is greate than |order| and zero
220   // otherwise.
221   int field_greater_than_order;
222 
223   // field_minus_order, if |field_greater_than_order| is true, is |field| minus
224   // |order| represented as an |EC_FELEM|. Otherwise, it is zero.
225   //
226   // Note: unlike |EC_FELEM|s used as intermediate values internal to the
227   // |EC_METHOD|, this value is not encoded in Montgomery form.
228   EC_FELEM field_minus_order;
229 
230   CRYPTO_refcount_t references;
231 
232   BN_MONT_CTX *mont;  // Montgomery structure.
233 
234   EC_FELEM one;  // The value one.
235 } /* EC_GROUP */;
236 
237 struct ec_point_st {
238   // group is an owning reference to |group|, unless this is
239   // |group->generator|.
240   EC_GROUP *group;
241   // raw is the group-specific point data. Functions that take |EC_POINT|
242   // typically check consistency with |EC_GROUP| while functions that take
243   // |EC_RAW_POINT| do not. Thus accesses to this field should be externally
244   // checked for consistency.
245   EC_RAW_POINT raw;
246 } /* EC_POINT */;
247 
248 EC_GROUP *ec_group_new(const EC_METHOD *meth);
249 
250 // ec_bignum_to_felem converts |in| to an |EC_FELEM|. It returns one on success
251 // and zero if |in| is out of range.
252 int ec_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, const BIGNUM *in);
253 
254 // ec_felem_to_bignum converts |in| to a |BIGNUM|. It returns one on success and
255 // zero on allocation failure.
256 int ec_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, const EC_FELEM *in);
257 
258 // ec_felem_neg sets |out| to -|a|.
259 void ec_felem_neg(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a);
260 
261 // ec_felem_add sets |out| to |a| + |b|.
262 void ec_felem_add(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a,
263                   const EC_FELEM *b);
264 
265 // ec_felem_add sets |out| to |a| - |b|.
266 void ec_felem_sub(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a,
267                   const EC_FELEM *b);
268 
269 // ec_felem_non_zero_mask returns all ones if |a| is non-zero and all zeros
270 // otherwise.
271 BN_ULONG ec_felem_non_zero_mask(const EC_GROUP *group, const EC_FELEM *a);
272 
273 // ec_felem_select, in constant time, sets |out| to |a| if |mask| is all ones
274 // and |b| if |mask| is all zeros.
275 void ec_felem_select(const EC_GROUP *group, EC_FELEM *out, BN_ULONG mask,
276                      const EC_FELEM *a, const EC_FELEM *b);
277 
278 // ec_felem_equal returns one if |a| and |b| are equal and zero otherwise. It
279 // treats |a| and |b| as public and does *not* run in constant time.
280 int ec_felem_equal(const EC_GROUP *group, const EC_FELEM *a, const EC_FELEM *b);
281 
282 // ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to
283 // |*out|. It returns one on success and zero if |in| is out of range.
284 OPENSSL_EXPORT int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
285                                        const BIGNUM *in);
286 
287 // ec_random_nonzero_scalar sets |out| to a uniformly selected random value from
288 // 1 to |group->order| - 1. It returns one on success and zero on error.
289 int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out,
290                              const uint8_t additional_data[32]);
291 
292 // ec_scalar_equal_vartime returns one if |a| and |b| are equal and zero
293 // otherwise. Both values are treated as public.
294 int ec_scalar_equal_vartime(const EC_GROUP *group, const EC_SCALAR *a,
295                             const EC_SCALAR *b);
296 
297 // ec_scalar_is_zero returns one if |a| is zero and zero otherwise.
298 int ec_scalar_is_zero(const EC_GROUP *group, const EC_SCALAR *a);
299 
300 // ec_scalar_add sets |r| to |a| + |b|.
301 void ec_scalar_add(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a,
302                    const EC_SCALAR *b);
303 
304 // ec_scalar_to_montgomery sets |r| to |a| in Montgomery form.
305 void ec_scalar_to_montgomery(const EC_GROUP *group, EC_SCALAR *r,
306                              const EC_SCALAR *a);
307 
308 // ec_scalar_to_montgomery sets |r| to |a| converted from Montgomery form.
309 void ec_scalar_from_montgomery(const EC_GROUP *group, EC_SCALAR *r,
310                                const EC_SCALAR *a);
311 
312 // ec_scalar_mul_montgomery sets |r| to |a| * |b| where inputs and outputs are
313 // in Montgomery form.
314 void ec_scalar_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r,
315                               const EC_SCALAR *a, const EC_SCALAR *b);
316 
317 // ec_scalar_mul_montgomery sets |r| to |a|^-1 where inputs and outputs are in
318 // Montgomery form.
319 void ec_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r,
320                               const EC_SCALAR *a);
321 
322 // ec_scalar_inv_montgomery_vartime performs the same actions as
323 // |ec_scalar_inv_montgomery|, but in variable time.
324 int ec_scalar_inv_montgomery_vartime(const EC_GROUP *group, EC_SCALAR *r,
325                                      const EC_SCALAR *a);
326 
327 // ec_point_mul_scalar sets |r| to |p| * |scalar|. Both inputs are considered
328 // secret.
329 int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r,
330                         const EC_RAW_POINT *p, const EC_SCALAR *scalar);
331 
332 // ec_point_mul_scalar_base sets |r| to generator * |scalar|. |scalar| is
333 // treated as secret.
334 int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r,
335                              const EC_SCALAR *scalar);
336 
337 // ec_point_mul_scalar_public performs the same computation as
338 // ec_point_mul_scalar.  It further assumes that the inputs are public so
339 // there is no concern about leaking their values through timing.
340 OPENSSL_EXPORT int ec_point_mul_scalar_public(const EC_GROUP *group,
341                                               EC_RAW_POINT *r,
342                                               const EC_SCALAR *g_scalar,
343                                               const EC_RAW_POINT *p,
344                                               const EC_SCALAR *p_scalar);
345 
346 // ec_cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group
347 // order, with |r|. It returns one if the values match and zero if |p| is the
348 // point at infinity of the values do not match.
349 int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
350                         const EC_SCALAR *r);
351 
352 // ec_get_x_coordinate_as_scalar sets |*out| to |p|'s x-coordinate, modulo
353 // |group->order|. It returns one on success and zero if |p| is the point at
354 // infinity.
355 int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out,
356                                   const EC_RAW_POINT *p);
357 
358 // ec_point_get_affine_coordinate_bytes writes |p|'s affine coordinates to
359 // |out_x| and |out_y|, each of which must have at must |max_out| bytes. It sets
360 // |*out_len| to the number of bytes written in each buffer. Coordinates are
361 // written big-endian and zero-padded to the size of the field.
362 //
363 // Either of |out_x| or |out_y| may be NULL to omit that coordinate. This
364 // function returns one on success and zero on failure.
365 int ec_point_get_affine_coordinate_bytes(const EC_GROUP *group, uint8_t *out_x,
366                                          uint8_t *out_y, size_t *out_len,
367                                          size_t max_out, const EC_RAW_POINT *p);
368 
369 // ec_field_element_to_scalar reduces |r| modulo |group->order|. |r| must
370 // previously have been reduced modulo |group->field|.
371 int ec_field_element_to_scalar(const EC_GROUP *group, BIGNUM *r);
372 
373 void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r,
374                      const EC_RAW_POINT *p, const EC_SCALAR *scalar);
375 void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_RAW_POINT *r,
376                           const EC_SCALAR *scalar);
377 
378 // ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of
379 // |scalar| to |out|. |out| must have room for |bits| + 1 elements, each of
380 // which will be either zero or odd with an absolute value less than  2^w
381 // satisfying
382 //     scalar = \sum_j out[j]*2^j
383 // where at most one of any  w+1  consecutive digits is non-zero
384 // with the exception that the most significant digit may be only
385 // w-1 zeros away from that next non-zero digit.
386 void ec_compute_wNAF(const EC_GROUP *group, int8_t *out,
387                      const EC_SCALAR *scalar, size_t bits, int w);
388 
389 void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r,
390                             const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
391                             const EC_SCALAR *p_scalar);
392 
393 // method functions in simple.c
394 int ec_GFp_simple_group_init(EC_GROUP *);
395 void ec_GFp_simple_group_finish(EC_GROUP *);
396 int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
397                                   const BIGNUM *b, BN_CTX *);
398 int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
399                                   BIGNUM *b);
400 void ec_GFp_simple_point_init(EC_RAW_POINT *);
401 void ec_GFp_simple_point_copy(EC_RAW_POINT *, const EC_RAW_POINT *);
402 void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_RAW_POINT *);
403 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_RAW_POINT *,
404                                                const BIGNUM *x,
405                                                const BIGNUM *y);
406 void ec_GFp_mont_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a,
407                      const EC_RAW_POINT *b);
408 void ec_GFp_mont_dbl(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a);
409 void ec_GFp_simple_invert(const EC_GROUP *, EC_RAW_POINT *);
410 int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_RAW_POINT *);
411 int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_RAW_POINT *);
412 int ec_GFp_simple_cmp(const EC_GROUP *, const EC_RAW_POINT *a,
413                       const EC_RAW_POINT *b);
414 void ec_simple_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r,
415                                      const EC_SCALAR *a);
416 
417 int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group, EC_SCALAR *r,
418                                            const EC_SCALAR *a);
419 
420 int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
421                                    const EC_SCALAR *r);
422 
423 // method functions in montgomery.c
424 int ec_GFp_mont_group_init(EC_GROUP *);
425 int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
426                                 const BIGNUM *b, BN_CTX *);
427 void ec_GFp_mont_group_finish(EC_GROUP *);
428 void ec_GFp_mont_felem_mul(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
429                            const EC_FELEM *b);
430 void ec_GFp_mont_felem_sqr(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a);
431 
432 int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out,
433                                 const BIGNUM *in);
434 int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out,
435                                 const EC_FELEM *in);
436 
437 void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
438 
439 const EC_METHOD *EC_GFp_nistp224_method(void);
440 const EC_METHOD *EC_GFp_nistp256_method(void);
441 
442 // EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with
443 // x86-64 optimized P256. See http://eprint.iacr.org/2013/816.
444 const EC_METHOD *EC_GFp_nistz256_method(void);
445 
446 // An EC_WRAPPED_SCALAR is an |EC_SCALAR| with a parallel |BIGNUM|
447 // representation. It exists to support the |EC_KEY_get0_private_key| API.
448 typedef struct {
449   BIGNUM bignum;
450   EC_SCALAR scalar;
451 } EC_WRAPPED_SCALAR;
452 
453 struct ec_key_st {
454   EC_GROUP *group;
455 
456   EC_POINT *pub_key;
457   EC_WRAPPED_SCALAR *priv_key;
458 
459   // fixed_k may contain a specific value of 'k', to be used in ECDSA signing.
460   // This is only for the FIPS power-on tests.
461   BIGNUM *fixed_k;
462 
463   unsigned int enc_flag;
464   point_conversion_form_t conv_form;
465 
466   CRYPTO_refcount_t references;
467 
468   ECDSA_METHOD *ecdsa_meth;
469 
470   CRYPTO_EX_DATA ex_data;
471 } /* EC_KEY */;
472 
473 struct built_in_curve {
474   int nid;
475   const uint8_t *oid;
476   uint8_t oid_len;
477   // comment is a human-readable string describing the curve.
478   const char *comment;
479   // param_len is the number of bytes needed to store a field element.
480   uint8_t param_len;
481   // params points to an array of 6*|param_len| bytes which hold the field
482   // elements of the following (in big-endian order): prime, a, b, generator x,
483   // generator y, order.
484   const uint8_t *params;
485   const EC_METHOD *method;
486 };
487 
488 #define OPENSSL_NUM_BUILT_IN_CURVES 4
489 
490 struct built_in_curves {
491   struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES];
492 };
493 
494 // OPENSSL_built_in_curves returns a pointer to static information about
495 // standard curves. The array is terminated with an entry where |nid| is
496 // |NID_undef|.
497 const struct built_in_curves *OPENSSL_built_in_curves(void);
498 
499 #if defined(__cplusplus)
500 }  // extern C
501 #endif
502 
503 #endif  // OPENSSL_HEADER_EC_INTERNAL_H
504