1 /* 2 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #ifndef XLAT_TABLES_V2_H 8 #define XLAT_TABLES_V2_H 9 10 #include <lib/xlat_tables/xlat_tables_defs.h> 11 #include <lib/xlat_tables/xlat_tables_v2_helpers.h> 12 13 #ifndef __ASSEMBLER__ 14 #include <stddef.h> 15 #include <stdint.h> 16 17 #include <lib/xlat_tables/xlat_mmu_helpers.h> 18 19 /* 20 * Default granularity size for an mmap_region_t. 21 * Useful when no specific granularity is required. 22 * 23 * By default, choose the biggest possible block size allowed by the 24 * architectural state and granule size in order to minimize the number of page 25 * tables required for the mapping. 26 */ 27 #define REGION_DEFAULT_GRANULARITY XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC) 28 29 /* Helper macro to define an mmap_region_t. */ 30 #define MAP_REGION(_pa, _va, _sz, _attr) \ 31 MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY) 32 33 /* Helper macro to define an mmap_region_t with an identity mapping. */ 34 #define MAP_REGION_FLAT(_adr, _sz, _attr) \ 35 MAP_REGION(_adr, _adr, _sz, _attr) 36 37 /* 38 * Helper macro to define entries for mmap_region_t. It allows to define 'pa' 39 * and sets 'va' to 0 for each region. To be used with mmap_add_alloc_va(). 40 */ 41 #define MAP_REGION_ALLOC_VA(pa, sz, attr) MAP_REGION(pa, 0, sz, attr) 42 43 /* 44 * Helper macro to define an mmap_region_t to map with the desired granularity 45 * of translation tables. 46 * 47 * The granularity value passed to this macro must be a valid block or page 48 * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB. 49 * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library 50 * is free to choose the granularity for this region. In this case, it is 51 * equivalent to the MAP_REGION() macro. 52 */ 53 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr) \ 54 MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr) 55 56 /* 57 * Shifts and masks to access fields of an mmap attribute 58 */ 59 #define MT_TYPE_MASK U(0x7) 60 #define MT_TYPE(_attr) ((_attr) & MT_TYPE_MASK) 61 /* Access permissions (RO/RW) */ 62 #define MT_PERM_SHIFT U(3) 63 /* Security state (SECURE/NS) */ 64 #define MT_SEC_SHIFT U(4) 65 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */ 66 #define MT_EXECUTE_SHIFT U(5) 67 /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */ 68 #define MT_USER_SHIFT U(6) 69 /* All other bits are reserved */ 70 71 /* 72 * Memory mapping attributes 73 */ 74 75 /* 76 * Memory types supported. 77 * These are organised so that, going down the list, the memory types are 78 * getting weaker; conversely going up the list the memory types are getting 79 * stronger. 80 */ 81 #define MT_DEVICE U(0) 82 #define MT_NON_CACHEABLE U(1) 83 #define MT_MEMORY U(2) 84 /* Values up to 7 are reserved to add new memory types in the future */ 85 86 #define MT_RO (U(0) << MT_PERM_SHIFT) 87 #define MT_RW (U(1) << MT_PERM_SHIFT) 88 89 #define MT_SECURE (U(0) << MT_SEC_SHIFT) 90 #define MT_NS (U(1) << MT_SEC_SHIFT) 91 92 /* 93 * Access permissions for instruction execution are only relevant for normal 94 * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially 95 * overridden) otherwise: 96 * - Device memory is always marked as execute-never. 97 * - Read-write normal memory is always marked as execute-never. 98 */ 99 #define MT_EXECUTE (U(0) << MT_EXECUTE_SHIFT) 100 #define MT_EXECUTE_NEVER (U(1) << MT_EXECUTE_SHIFT) 101 102 /* 103 * When mapping a region at EL0 or EL1, this attribute will be used to determine 104 * if a User mapping (EL0) will be created or a Privileged mapping (EL1). 105 */ 106 #define MT_USER (U(1) << MT_USER_SHIFT) 107 #define MT_PRIVILEGED (U(0) << MT_USER_SHIFT) 108 109 /* Compound attributes for most common usages */ 110 #define MT_CODE (MT_MEMORY | MT_RO | MT_EXECUTE) 111 #define MT_RO_DATA (MT_MEMORY | MT_RO | MT_EXECUTE_NEVER) 112 #define MT_RW_DATA (MT_MEMORY | MT_RW | MT_EXECUTE_NEVER) 113 114 /* 115 * Structure for specifying a single region of memory. 116 */ 117 typedef struct mmap_region { 118 unsigned long long base_pa; 119 uintptr_t base_va; 120 size_t size; 121 unsigned int attr; 122 /* Desired granularity. See the MAP_REGION2() macro for more details. */ 123 size_t granularity; 124 } mmap_region_t; 125 126 /* 127 * Translation regimes supported by this library. EL_REGIME_INVALID tells the 128 * library to detect it at runtime. 129 */ 130 #define EL1_EL0_REGIME 1 131 #define EL2_REGIME 2 132 #define EL3_REGIME 3 133 #define EL_REGIME_INVALID -1 134 135 /* 136 * Declare the translation context type. 137 * Its definition is private. 138 */ 139 typedef struct xlat_ctx xlat_ctx_t; 140 141 /* 142 * Statically allocate a translation context and associated structures. Also 143 * initialize them. 144 * 145 * _ctx_name: 146 * Prefix for the translation context variable. 147 * E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'. 148 * Useful to distinguish multiple contexts from one another. 149 * 150 * _mmap_count: 151 * Number of mmap_region_t to allocate. 152 * Would typically be MAX_MMAP_REGIONS for the translation context describing 153 * the BL image currently executing. 154 * 155 * _xlat_tables_count: 156 * Number of sub-translation tables to allocate. 157 * Would typically be MAX_XLAT_TABLES for the translation context describing 158 * the BL image currently executing. 159 * Note that this is only for sub-tables ; at the initial lookup level, there 160 * is always a single table. 161 * 162 * _virt_addr_space_size, _phy_addr_space_size: 163 * Size (in bytes) of the virtual (resp. physical) address space. 164 * Would typically be PLAT_VIRT_ADDR_SPACE_SIZE 165 * (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the 166 * BL image currently executing. 167 */ 168 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \ 169 _virt_addr_space_size, _phy_addr_space_size) \ 170 REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ 171 (_xlat_tables_count), \ 172 (_virt_addr_space_size), \ 173 (_phy_addr_space_size), \ 174 EL_REGIME_INVALID, "xlat_table") 175 176 /* 177 * Same as REGISTER_XLAT_CONTEXT plus the additional parameters: 178 * 179 * _xlat_regime: 180 * Specify the translation regime managed by this xlat_ctx_t instance. The 181 * values are the one from the EL*_REGIME definitions. 182 * 183 * _section_name: 184 * Specify the name of the section where the translation tables have to be 185 * placed by the linker. 186 */ 187 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \ 188 _virt_addr_space_size, _phy_addr_space_size, \ 189 _xlat_regime, _section_name) \ 190 REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ 191 (_xlat_tables_count), \ 192 (_virt_addr_space_size), \ 193 (_phy_addr_space_size), \ 194 (_xlat_regime), (_section_name)) 195 196 /****************************************************************************** 197 * Generic translation table APIs. 198 * Each API comes in 2 variants: 199 * - one that acts on the current translation context for this BL image 200 * - another that acts on the given translation context instead. This variant 201 * is named after the 1st version, with an additional '_ctx' suffix. 202 *****************************************************************************/ 203 204 /* 205 * Initialize translation tables from the current list of mmap regions. Calling 206 * this function marks the transition point after which static regions can no 207 * longer be added. 208 */ 209 void init_xlat_tables(void); 210 void init_xlat_tables_ctx(xlat_ctx_t *ctx); 211 212 /* 213 * Fill all fields of a dynamic translation tables context. It must be done 214 * either statically with REGISTER_XLAT_CONTEXT() or at runtime with this 215 * function. 216 */ 217 void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max, 218 uintptr_t va_max, struct mmap_region *mmap, 219 unsigned int mmap_num, uint64_t **tables, 220 unsigned int tables_num, uint64_t *base_table, 221 int xlat_regime, int *mapped_regions); 222 223 /* 224 * Add a static region with defined base PA and base VA. This function can only 225 * be used before initializing the translation tables. The region cannot be 226 * removed afterwards. 227 */ 228 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, 229 size_t size, unsigned int attr); 230 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 231 232 /* 233 * Add an array of static regions with defined base PA and base VA. This 234 * function can only be used before initializing the translation tables. The 235 * regions cannot be removed afterwards. 236 */ 237 void mmap_add(const mmap_region_t *mm); 238 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 239 240 /* 241 * Add a region with defined base PA. Returns base VA calculated using the 242 * highest existing region in the mmap array even if it fails to allocate the 243 * region. 244 */ 245 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va, 246 size_t size, unsigned int attr); 247 void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 248 249 /* 250 * Add an array of static regions with defined base PA, and fill the base VA 251 * field on the array of structs. This function can only be used before 252 * initializing the translation tables. The regions cannot be removed afterwards. 253 */ 254 void mmap_add_alloc_va(mmap_region_t *mm); 255 256 #if PLAT_XLAT_TABLES_DYNAMIC 257 /* 258 * Add a dynamic region with defined base PA and base VA. This type of region 259 * can be added and removed even after the translation tables are initialized. 260 * 261 * Returns: 262 * 0: Success. 263 * EINVAL: Invalid values were used as arguments. 264 * ERANGE: Memory limits were surpassed. 265 * ENOMEM: Not enough space in the mmap array or not enough free xlat tables. 266 * EPERM: It overlaps another region in an invalid way. 267 */ 268 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, 269 size_t size, unsigned int attr); 270 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 271 272 /* 273 * Add a dynamic region with defined base PA. Returns base VA calculated using 274 * the highest existing region in the mmap array even if it fails to allocate 275 * the region. 276 * 277 * mmap_add_dynamic_region_alloc_va() returns the allocated VA in 'base_va'. 278 * mmap_add_dynamic_region_alloc_va_ctx() returns it in 'mm->base_va'. 279 * 280 * It returns the same error values as mmap_add_dynamic_region(). 281 */ 282 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa, 283 uintptr_t *base_va, 284 size_t size, unsigned int attr); 285 int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 286 287 /* 288 * Remove a region with the specified base VA and size. Only dynamic regions can 289 * be removed, and they can be removed even if the translation tables are 290 * initialized. 291 * 292 * Returns: 293 * 0: Success. 294 * EINVAL: The specified region wasn't found. 295 * EPERM: Trying to remove a static region. 296 */ 297 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size); 298 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, 299 uintptr_t base_va, 300 size_t size); 301 302 #endif /* PLAT_XLAT_TABLES_DYNAMIC */ 303 304 /* 305 * Change the memory attributes of the memory region starting from a given 306 * virtual address in a set of translation tables. 307 * 308 * This function can only be used after the translation tables have been 309 * initialized. 310 * 311 * The base address of the memory region must be aligned on a page boundary. 312 * The size of this memory region must be a multiple of a page size. 313 * The memory region must be already mapped by the given translation tables 314 * and it must be mapped at the granularity of a page. 315 * 316 * Return 0 on success, a negative value on error. 317 * 318 * In case of error, the memory attributes remain unchanged and this function 319 * has no effect. 320 * 321 * ctx 322 * Translation context to work on. 323 * base_va: 324 * Virtual address of the 1st page to change the attributes of. 325 * size: 326 * Size in bytes of the memory region. 327 * attr: 328 * New attributes of the page tables. The attributes that can be changed are 329 * data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE) 330 * and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts 331 * that are used in the EL1&0 translation regime. Also, note that this 332 * function doesn't allow to remap a region as RW and executable, or to remap 333 * device memory as executable. 334 * 335 * NOTE: The caller of this function must be able to write to the translation 336 * tables, i.e. the memory where they are stored must be mapped with read-write 337 * access permissions. This function assumes it is the case. If this is not 338 * the case then this function might trigger a data abort exception. 339 * 340 * NOTE2: The caller is responsible for making sure that the targeted 341 * translation tables are not modified by any other code while this function is 342 * executing. 343 */ 344 int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va, 345 size_t size, uint32_t attr); 346 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr); 347 348 /* 349 * Query the memory attributes of a memory page in a set of translation tables. 350 * 351 * Return 0 on success, a negative error code on error. 352 * On success, the attributes are stored into *attr. 353 * 354 * ctx 355 * Translation context to work on. 356 * base_va 357 * Virtual address of the page to get the attributes of. 358 * There are no alignment restrictions on this address. The attributes of the 359 * memory page it lies within are returned. 360 * attr 361 * Output parameter where to store the attributes of the targeted memory page. 362 */ 363 int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va, 364 uint32_t *attr); 365 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr); 366 367 #endif /*__ASSEMBLER__*/ 368 #endif /* XLAT_TABLES_V2_H */ 369