• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #ifndef XLAT_TABLES_V2_H
8 #define XLAT_TABLES_V2_H
9 
10 #include <lib/xlat_tables/xlat_tables_defs.h>
11 #include <lib/xlat_tables/xlat_tables_v2_helpers.h>
12 
13 #ifndef __ASSEMBLER__
14 #include <stddef.h>
15 #include <stdint.h>
16 
17 #include <lib/xlat_tables/xlat_mmu_helpers.h>
18 
19 /*
20  * Default granularity size for an mmap_region_t.
21  * Useful when no specific granularity is required.
22  *
23  * By default, choose the biggest possible block size allowed by the
24  * architectural state and granule size in order to minimize the number of page
25  * tables required for the mapping.
26  */
27 #define REGION_DEFAULT_GRANULARITY	XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC)
28 
29 /* Helper macro to define an mmap_region_t. */
30 #define MAP_REGION(_pa, _va, _sz, _attr)	\
31 	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY)
32 
33 /* Helper macro to define an mmap_region_t with an identity mapping. */
34 #define MAP_REGION_FLAT(_adr, _sz, _attr)			\
35 	MAP_REGION(_adr, _adr, _sz, _attr)
36 
37 /*
38  * Helper macro to define entries for mmap_region_t. It allows to define 'pa'
39  * and sets 'va' to 0 for each region. To be used with mmap_add_alloc_va().
40  */
41 #define MAP_REGION_ALLOC_VA(pa, sz, attr)	MAP_REGION(pa, 0, sz, attr)
42 
43 /*
44  * Helper macro to define an mmap_region_t to map with the desired granularity
45  * of translation tables.
46  *
47  * The granularity value passed to this macro must be a valid block or page
48  * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB.
49  * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library
50  * is free to choose the granularity for this region. In this case, it is
51  * equivalent to the MAP_REGION() macro.
52  */
53 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr)			\
54 	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr)
55 
56 /*
57  * Shifts and masks to access fields of an mmap attribute
58  */
59 #define MT_TYPE_MASK		U(0x7)
60 #define MT_TYPE(_attr)		((_attr) & MT_TYPE_MASK)
61 /* Access permissions (RO/RW) */
62 #define MT_PERM_SHIFT		U(3)
63 /* Security state (SECURE/NS) */
64 #define MT_SEC_SHIFT		U(4)
65 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */
66 #define MT_EXECUTE_SHIFT	U(5)
67 /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */
68 #define MT_USER_SHIFT		U(6)
69 /* All other bits are reserved */
70 
71 /*
72  * Memory mapping attributes
73  */
74 
75 /*
76  * Memory types supported.
77  * These are organised so that, going down the list, the memory types are
78  * getting weaker; conversely going up the list the memory types are getting
79  * stronger.
80  */
81 #define MT_DEVICE		U(0)
82 #define MT_NON_CACHEABLE	U(1)
83 #define MT_MEMORY		U(2)
84 /* Values up to 7 are reserved to add new memory types in the future */
85 
86 #define MT_RO			(U(0) << MT_PERM_SHIFT)
87 #define MT_RW			(U(1) << MT_PERM_SHIFT)
88 
89 #define MT_SECURE		(U(0) << MT_SEC_SHIFT)
90 #define MT_NS			(U(1) << MT_SEC_SHIFT)
91 
92 /*
93  * Access permissions for instruction execution are only relevant for normal
94  * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially
95  * overridden) otherwise:
96  *  - Device memory is always marked as execute-never.
97  *  - Read-write normal memory is always marked as execute-never.
98  */
99 #define MT_EXECUTE		(U(0) << MT_EXECUTE_SHIFT)
100 #define MT_EXECUTE_NEVER	(U(1) << MT_EXECUTE_SHIFT)
101 
102 /*
103  * When mapping a region at EL0 or EL1, this attribute will be used to determine
104  * if a User mapping (EL0) will be created or a Privileged mapping (EL1).
105  */
106 #define MT_USER			(U(1) << MT_USER_SHIFT)
107 #define MT_PRIVILEGED		(U(0) << MT_USER_SHIFT)
108 
109 /* Compound attributes for most common usages */
110 #define MT_CODE			(MT_MEMORY | MT_RO | MT_EXECUTE)
111 #define MT_RO_DATA		(MT_MEMORY | MT_RO | MT_EXECUTE_NEVER)
112 #define MT_RW_DATA		(MT_MEMORY | MT_RW | MT_EXECUTE_NEVER)
113 
114 /*
115  * Structure for specifying a single region of memory.
116  */
117 typedef struct mmap_region {
118 	unsigned long long	base_pa;
119 	uintptr_t		base_va;
120 	size_t			size;
121 	unsigned int		attr;
122 	/* Desired granularity. See the MAP_REGION2() macro for more details. */
123 	size_t			granularity;
124 } mmap_region_t;
125 
126 /*
127  * Translation regimes supported by this library. EL_REGIME_INVALID tells the
128  * library to detect it at runtime.
129  */
130 #define EL1_EL0_REGIME		1
131 #define EL2_REGIME		2
132 #define EL3_REGIME		3
133 #define EL_REGIME_INVALID	-1
134 
135 /*
136  * Declare the translation context type.
137  * Its definition is private.
138  */
139 typedef struct xlat_ctx xlat_ctx_t;
140 
141 /*
142  * Statically allocate a translation context and associated structures. Also
143  * initialize them.
144  *
145  * _ctx_name:
146  *   Prefix for the translation context variable.
147  *   E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'.
148  *   Useful to distinguish multiple contexts from one another.
149  *
150  * _mmap_count:
151  *   Number of mmap_region_t to allocate.
152  *   Would typically be MAX_MMAP_REGIONS for the translation context describing
153  *   the BL image currently executing.
154  *
155  * _xlat_tables_count:
156  *   Number of sub-translation tables to allocate.
157  *   Would typically be MAX_XLAT_TABLES for the translation context describing
158  *   the BL image currently executing.
159  *   Note that this is only for sub-tables ; at the initial lookup level, there
160  *   is always a single table.
161  *
162  * _virt_addr_space_size, _phy_addr_space_size:
163  *   Size (in bytes) of the virtual (resp. physical) address space.
164  *   Would typically be PLAT_VIRT_ADDR_SPACE_SIZE
165  *   (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the
166  *   BL image currently executing.
167  */
168 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \
169 			_virt_addr_space_size, _phy_addr_space_size)	\
170 	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
171 					 (_xlat_tables_count),		\
172 					 (_virt_addr_space_size),	\
173 					 (_phy_addr_space_size),	\
174 					 EL_REGIME_INVALID, "xlat_table")
175 
176 /*
177  * Same as REGISTER_XLAT_CONTEXT plus the additional parameters:
178  *
179  * _xlat_regime:
180  *   Specify the translation regime managed by this xlat_ctx_t instance. The
181  *   values are the one from the EL*_REGIME definitions.
182  *
183  * _section_name:
184  *   Specify the name of the section where the translation tables have to be
185  *   placed by the linker.
186  */
187 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \
188 			_virt_addr_space_size, _phy_addr_space_size,	\
189 			_xlat_regime, _section_name)			\
190 	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
191 					 (_xlat_tables_count),		\
192 					 (_virt_addr_space_size),	\
193 					 (_phy_addr_space_size),	\
194 					 (_xlat_regime), (_section_name))
195 
196 /******************************************************************************
197  * Generic translation table APIs.
198  * Each API comes in 2 variants:
199  * - one that acts on the current translation context for this BL image
200  * - another that acts on the given translation context instead. This variant
201  *   is named after the 1st version, with an additional '_ctx' suffix.
202  *****************************************************************************/
203 
204 /*
205  * Initialize translation tables from the current list of mmap regions. Calling
206  * this function marks the transition point after which static regions can no
207  * longer be added.
208  */
209 void init_xlat_tables(void);
210 void init_xlat_tables_ctx(xlat_ctx_t *ctx);
211 
212 /*
213  * Fill all fields of a dynamic translation tables context. It must be done
214  * either statically with REGISTER_XLAT_CONTEXT() or at runtime with this
215  * function.
216  */
217 void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max,
218 			    uintptr_t va_max, struct mmap_region *mmap,
219 			    unsigned int mmap_num, uint64_t **tables,
220 			    unsigned int tables_num, uint64_t *base_table,
221 			    int xlat_regime, int *mapped_regions);
222 
223 /*
224  * Add a static region with defined base PA and base VA. This function can only
225  * be used before initializing the translation tables. The region cannot be
226  * removed afterwards.
227  */
228 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
229 		     size_t size, unsigned int attr);
230 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
231 
232 /*
233  * Add an array of static regions with defined base PA and base VA. This
234  * function can only be used before initializing the translation tables. The
235  * regions cannot be removed afterwards.
236  */
237 void mmap_add(const mmap_region_t *mm);
238 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
239 
240 /*
241  * Add a region with defined base PA. Returns base VA calculated using the
242  * highest existing region in the mmap array even if it fails to allocate the
243  * region.
244  */
245 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va,
246 			      size_t size, unsigned int attr);
247 void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
248 
249 /*
250  * Add an array of static regions with defined base PA, and fill the base VA
251  * field on the array of structs. This function can only be used before
252  * initializing the translation tables. The regions cannot be removed afterwards.
253  */
254 void mmap_add_alloc_va(mmap_region_t *mm);
255 
256 #if PLAT_XLAT_TABLES_DYNAMIC
257 /*
258  * Add a dynamic region with defined base PA and base VA. This type of region
259  * can be added and removed even after the translation tables are initialized.
260  *
261  * Returns:
262  *        0: Success.
263  *   EINVAL: Invalid values were used as arguments.
264  *   ERANGE: Memory limits were surpassed.
265  *   ENOMEM: Not enough space in the mmap array or not enough free xlat tables.
266  *    EPERM: It overlaps another region in an invalid way.
267  */
268 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
269 			    size_t size, unsigned int attr);
270 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
271 
272 /*
273  * Add a dynamic region with defined base PA. Returns base VA calculated using
274  * the highest existing region in the mmap array even if it fails to allocate
275  * the region.
276  *
277  * mmap_add_dynamic_region_alloc_va() returns the allocated VA in 'base_va'.
278  * mmap_add_dynamic_region_alloc_va_ctx() returns it in 'mm->base_va'.
279  *
280  * It returns the same error values as mmap_add_dynamic_region().
281  */
282 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa,
283 				     uintptr_t *base_va,
284 				     size_t size, unsigned int attr);
285 int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
286 
287 /*
288  * Remove a region with the specified base VA and size. Only dynamic regions can
289  * be removed, and they can be removed even if the translation tables are
290  * initialized.
291  *
292  * Returns:
293  *        0: Success.
294  *   EINVAL: The specified region wasn't found.
295  *    EPERM: Trying to remove a static region.
296  */
297 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size);
298 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx,
299 				uintptr_t base_va,
300 				size_t size);
301 
302 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
303 
304 /*
305  * Change the memory attributes of the memory region starting from a given
306  * virtual address in a set of translation tables.
307  *
308  * This function can only be used after the translation tables have been
309  * initialized.
310  *
311  * The base address of the memory region must be aligned on a page boundary.
312  * The size of this memory region must be a multiple of a page size.
313  * The memory region must be already mapped by the given translation tables
314  * and it must be mapped at the granularity of a page.
315  *
316  * Return 0 on success, a negative value on error.
317  *
318  * In case of error, the memory attributes remain unchanged and this function
319  * has no effect.
320  *
321  * ctx
322  *   Translation context to work on.
323  * base_va:
324  *   Virtual address of the 1st page to change the attributes of.
325  * size:
326  *   Size in bytes of the memory region.
327  * attr:
328  *   New attributes of the page tables. The attributes that can be changed are
329  *   data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE)
330  *   and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts
331  *   that are used in the EL1&0 translation regime. Also, note that this
332  *   function doesn't allow to remap a region as RW and executable, or to remap
333  *   device memory as executable.
334  *
335  * NOTE: The caller of this function must be able to write to the translation
336  * tables, i.e. the memory where they are stored must be mapped with read-write
337  * access permissions. This function assumes it is the case. If this is not
338  * the case then this function might trigger a data abort exception.
339  *
340  * NOTE2: The caller is responsible for making sure that the targeted
341  * translation tables are not modified by any other code while this function is
342  * executing.
343  */
344 int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
345 				   size_t size, uint32_t attr);
346 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr);
347 
348 /*
349  * Query the memory attributes of a memory page in a set of translation tables.
350  *
351  * Return 0 on success, a negative error code on error.
352  * On success, the attributes are stored into *attr.
353  *
354  * ctx
355  *   Translation context to work on.
356  * base_va
357  *   Virtual address of the page to get the attributes of.
358  *   There are no alignment restrictions on this address. The attributes of the
359  *   memory page it lies within are returned.
360  * attr
361  *   Output parameter where to store the attributes of the targeted memory page.
362  */
363 int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
364 				uint32_t *attr);
365 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr);
366 
367 #endif /*__ASSEMBLER__*/
368 #endif /* XLAT_TABLES_V2_H */
369