• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: (GPL-2.0 or BSD-2-Clause) */
2 /*
3  * FSE : Finite State Entropy codec
4  * Public Prototypes declaration
5  * Copyright (C) 2013-2016, Yann Collet.
6  *
7  * You can contact the author at :
8  * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
9  */
10 #ifndef FSE_H
11 #define FSE_H
12 
13 /*-*****************************************
14 *  Dependencies
15 ******************************************/
16 #include <linux/types.h> /* size_t, ptrdiff_t */
17 
18 /*-*****************************************
19 *  FSE_PUBLIC_API : control library symbols visibility
20 ******************************************/
21 #define FSE_PUBLIC_API
22 
23 /*------   Version   ------*/
24 #define FSE_VERSION_MAJOR 0
25 #define FSE_VERSION_MINOR 9
26 #define FSE_VERSION_RELEASE 0
27 
28 #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
29 #define FSE_QUOTE(str) #str
30 #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
31 #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
32 
33 #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR * 100 * 100 + FSE_VERSION_MINOR * 100 + FSE_VERSION_RELEASE)
34 FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
35 
36 /*-*****************************************
37 *  Tool functions
38 ******************************************/
39 FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
40 
41 /* Error Management */
42 FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
43 
44 /*-*****************************************
45 *  FSE detailed API
46 ******************************************/
47 /*!
48 FSE_compress() does the following:
49 1. count symbol occurrence from source[] into table count[]
50 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
51 3. save normalized counters to memory buffer using writeNCount()
52 4. build encoding table 'CTable' from normalized counters
53 5. encode the data stream using encoding table 'CTable'
54 
55 FSE_decompress() does the following:
56 1. read normalized counters with readNCount()
57 2. build decoding table 'DTable' from normalized counters
58 3. decode the data stream using decoding table 'DTable'
59 
60 The following API allows targeting specific sub-functions for advanced tasks.
61 For example, it's possible to compress several blocks using the same 'CTable',
62 or to save and provide normalized distribution using external method.
63 */
64 
65 /* *** COMPRESSION *** */
66 /*! FSE_optimalTableLog():
67 	dynamically downsize 'tableLog' when conditions are met.
68 	It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
69 	@return : recommended tableLog (necessarily <= 'maxTableLog') */
70 FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
71 
72 /*! FSE_normalizeCount():
73 	normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
74 	'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
75 	@return : tableLog,
76 			  or an errorCode, which can be tested using FSE_isError() */
77 FSE_PUBLIC_API size_t FSE_normalizeCount(short *normalizedCounter, unsigned tableLog, const unsigned *count, size_t srcSize, unsigned maxSymbolValue);
78 
79 /*! FSE_NCountWriteBound():
80 	Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
81 	Typically useful for allocation purpose. */
82 FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
83 
84 /*! FSE_writeNCount():
85 	Compactly save 'normalizedCounter' into 'buffer'.
86 	@return : size of the compressed table,
87 			  or an errorCode, which can be tested using FSE_isError(). */
88 FSE_PUBLIC_API size_t FSE_writeNCount(void *buffer, size_t bufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
89 
90 /*! Constructor and Destructor of FSE_CTable.
91 	Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
92 typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
93 
94 /*! FSE_compress_usingCTable():
95 	Compress `src` using `ct` into `dst` which must be already allocated.
96 	@return : size of compressed data (<= `dstCapacity`),
97 			  or 0 if compressed data could not fit into `dst`,
98 			  or an errorCode, which can be tested using FSE_isError() */
99 FSE_PUBLIC_API size_t FSE_compress_usingCTable(void *dst, size_t dstCapacity, const void *src, size_t srcSize, const FSE_CTable *ct);
100 
101 /*!
102 Tutorial :
103 ----------
104 The first step is to count all symbols. FSE_count() does this job very fast.
105 Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
106 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
107 maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
108 FSE_count() will return the number of occurrence of the most frequent symbol.
109 This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
110 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
111 
112 The next step is to normalize the frequencies.
113 FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
114 It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
115 You can use 'tableLog'==0 to mean "use default tableLog value".
116 If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
117 which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
118 
119 The result of FSE_normalizeCount() will be saved into a table,
120 called 'normalizedCounter', which is a table of signed short.
121 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
122 The return value is tableLog if everything proceeded as expected.
123 It is 0 if there is a single symbol within distribution.
124 If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
125 
126 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
127 'buffer' must be already allocated.
128 For guaranteed success, buffer size must be at least FSE_headerBound().
129 The result of the function is the number of bytes written into 'buffer'.
130 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
131 
132 'normalizedCounter' can then be used to create the compression table 'CTable'.
133 The space required by 'CTable' must be already allocated, using FSE_createCTable().
134 You can then use FSE_buildCTable() to fill 'CTable'.
135 If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
136 
137 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
138 Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
139 The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
140 If it returns '0', compressed data could not fit into 'dst'.
141 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
142 */
143 
144 /* *** DECOMPRESSION *** */
145 
146 /*! FSE_readNCount():
147 	Read compactly saved 'normalizedCounter' from 'rBuffer'.
148 	@return : size read from 'rBuffer',
149 			  or an errorCode, which can be tested using FSE_isError().
150 			  maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
151 FSE_PUBLIC_API size_t FSE_readNCount(short *normalizedCounter, unsigned *maxSymbolValuePtr, unsigned *tableLogPtr, const void *rBuffer, size_t rBuffSize);
152 
153 /*! Constructor and Destructor of FSE_DTable.
154 	Note that its size depends on 'tableLog' */
155 typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
156 
157 /*! FSE_buildDTable():
158 	Builds 'dt', which must be already allocated, using FSE_createDTable().
159 	return : 0, or an errorCode, which can be tested using FSE_isError() */
160 FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable *dt, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize);
161 
162 /*! FSE_decompress_usingDTable():
163 	Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
164 	into `dst` which must be already allocated.
165 	@return : size of regenerated data (necessarily <= `dstCapacity`),
166 			  or an errorCode, which can be tested using FSE_isError() */
167 FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void *dst, size_t dstCapacity, const void *cSrc, size_t cSrcSize, const FSE_DTable *dt);
168 
169 /*!
170 Tutorial :
171 ----------
172 (Note : these functions only decompress FSE-compressed blocks.
173  If block is uncompressed, use memcpy() instead
174  If block is a single repeated byte, use memset() instead )
175 
176 The first step is to obtain the normalized frequencies of symbols.
177 This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
178 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
179 In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
180 or size the table to handle worst case situations (typically 256).
181 FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
182 The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
183 Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
184 If there is an error, the function will return an error code, which can be tested using FSE_isError().
185 
186 The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
187 This is performed by the function FSE_buildDTable().
188 The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
189 If there is an error, the function will return an error code, which can be tested using FSE_isError().
190 
191 `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
192 `cSrcSize` must be strictly correct, otherwise decompression will fail.
193 FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
194 If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
195 */
196 
197 /* *** Dependency *** */
198 #include "bitstream.h"
199 
200 /* *****************************************
201 *  Static allocation
202 *******************************************/
203 /* FSE buffer bounds */
204 #define FSE_NCOUNTBOUND 512
205 #define FSE_BLOCKBOUND(size) (size + (size >> 7))
206 #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
207 
208 /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
209 #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1 << (maxTableLog - 1)) + ((maxSymbolValue + 1) * 2))
210 #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1 << maxTableLog))
211 
212 /* *****************************************
213 *  FSE advanced API
214 *******************************************/
215 /* FSE_count_wksp() :
216  * Same as FSE_count(), but using an externally provided scratch buffer.
217  * `workSpace` size must be table of >= `1024` unsigned
218  */
219 size_t FSE_count_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace);
220 
221 /* FSE_countFast_wksp() :
222  * Same as FSE_countFast(), but using an externally provided scratch buffer.
223  * `workSpace` must be a table of minimum `1024` unsigned
224  */
225 size_t FSE_countFast_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize, unsigned *workSpace);
226 
227 /*! FSE_count_simple
228  * Same as FSE_countFast(), but does not use any additional memory (not even on stack).
229  * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` (presuming it's also the size of `count`).
230 */
231 size_t FSE_count_simple(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize);
232 
233 unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
234 /**< same as FSE_optimalTableLog(), which used `minus==2` */
235 
236 size_t FSE_buildCTable_raw(FSE_CTable *ct, unsigned nbBits);
237 /**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
238 
239 size_t FSE_buildCTable_rle(FSE_CTable *ct, unsigned char symbolValue);
240 /**< build a fake FSE_CTable, designed to compress always the same symbolValue */
241 
242 /* FSE_buildCTable_wksp() :
243  * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
244  * `wkspSize` must be >= `(1<<tableLog)`.
245  */
246 size_t FSE_buildCTable_wksp(FSE_CTable *ct, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workSpace, size_t wkspSize);
247 
248 size_t FSE_buildDTable_raw(FSE_DTable *dt, unsigned nbBits);
249 /**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
250 
251 size_t FSE_buildDTable_rle(FSE_DTable *dt, unsigned char symbolValue);
252 /**< build a fake FSE_DTable, designed to always generate the same symbolValue */
253 
254 size_t FSE_decompress_wksp(void *dst, size_t dstCapacity, const void *cSrc, size_t cSrcSize, unsigned maxLog, void *workspace, size_t workspaceSize);
255 /**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DTABLE_SIZE_U32(maxLog)` */
256 
257 /* *****************************************
258 *  FSE symbol compression API
259 *******************************************/
260 /*!
261    This API consists of small unitary functions, which highly benefit from being inlined.
262    Hence their body are included in next section.
263 */
264 typedef struct {
265 	ptrdiff_t value;
266 	const void *stateTable;
267 	const void *symbolTT;
268 	unsigned stateLog;
269 } FSE_CState_t;
270 
271 static void FSE_initCState(FSE_CState_t *CStatePtr, const FSE_CTable *ct);
272 
273 static void FSE_encodeSymbol(BIT_CStream_t *bitC, FSE_CState_t *CStatePtr, unsigned symbol);
274 
275 static void FSE_flushCState(BIT_CStream_t *bitC, const FSE_CState_t *CStatePtr);
276 
277 /**<
278 These functions are inner components of FSE_compress_usingCTable().
279 They allow the creation of custom streams, mixing multiple tables and bit sources.
280 
281 A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
282 So the first symbol you will encode is the last you will decode, like a LIFO stack.
283 
284 You will need a few variables to track your CStream. They are :
285 
286 FSE_CTable    ct;         // Provided by FSE_buildCTable()
287 BIT_CStream_t bitStream;  // bitStream tracking structure
288 FSE_CState_t  state;      // State tracking structure (can have several)
289 
290 
291 The first thing to do is to init bitStream and state.
292 	size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
293 	FSE_initCState(&state, ct);
294 
295 Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
296 You can then encode your input data, byte after byte.
297 FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
298 Remember decoding will be done in reverse direction.
299 	FSE_encodeByte(&bitStream, &state, symbol);
300 
301 At any time, you can also add any bit sequence.
302 Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
303 	BIT_addBits(&bitStream, bitField, nbBits);
304 
305 The above methods don't commit data to memory, they just store it into local register, for speed.
306 Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
307 Writing data to memory is a manual operation, performed by the flushBits function.
308 	BIT_flushBits(&bitStream);
309 
310 Your last FSE encoding operation shall be to flush your last state value(s).
311 	FSE_flushState(&bitStream, &state);
312 
313 Finally, you must close the bitStream.
314 The function returns the size of CStream in bytes.
315 If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
316 If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
317 	size_t size = BIT_closeCStream(&bitStream);
318 */
319 
320 /* *****************************************
321 *  FSE symbol decompression API
322 *******************************************/
323 typedef struct {
324 	size_t state;
325 	const void *table; /* precise table may vary, depending on U16 */
326 } FSE_DState_t;
327 
328 static void FSE_initDState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD, const FSE_DTable *dt);
329 
330 static unsigned char FSE_decodeSymbol(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD);
331 
332 static unsigned FSE_endOfDState(const FSE_DState_t *DStatePtr);
333 
334 /**<
335 Let's now decompose FSE_decompress_usingDTable() into its unitary components.
336 You will decode FSE-encoded symbols from the bitStream,
337 and also any other bitFields you put in, **in reverse order**.
338 
339 You will need a few variables to track your bitStream. They are :
340 
341 BIT_DStream_t DStream;    // Stream context
342 FSE_DState_t  DState;     // State context. Multiple ones are possible
343 FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
344 
345 The first thing to do is to init the bitStream.
346 	errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
347 
348 You should then retrieve your initial state(s)
349 (in reverse flushing order if you have several ones) :
350 	errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
351 
352 You can then decode your data, symbol after symbol.
353 For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
354 Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
355 	unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
356 
357 You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
358 Note : maximum allowed nbBits is 25, for 32-bits compatibility
359 	size_t bitField = BIT_readBits(&DStream, nbBits);
360 
361 All above operations only read from local register (which size depends on size_t).
362 Refueling the register from memory is manually performed by the reload method.
363 	endSignal = FSE_reloadDStream(&DStream);
364 
365 BIT_reloadDStream() result tells if there is still some more data to read from DStream.
366 BIT_DStream_unfinished : there is still some data left into the DStream.
367 BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
368 BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
369 BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
370 
371 When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
372 to properly detect the exact end of stream.
373 After each decoded symbol, check if DStream is fully consumed using this simple test :
374 	BIT_reloadDStream(&DStream) >= BIT_DStream_completed
375 
376 When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
377 Checking if DStream has reached its end is performed by :
378 	BIT_endOfDStream(&DStream);
379 Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
380 	FSE_endOfDState(&DState);
381 */
382 
383 /* *****************************************
384 *  FSE unsafe API
385 *******************************************/
386 static unsigned char FSE_decodeSymbolFast(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD);
387 /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
388 
389 /* *****************************************
390 *  Implementation of inlined functions
391 *******************************************/
392 typedef struct {
393 	int deltaFindState;
394 	U32 deltaNbBits;
395 } FSE_symbolCompressionTransform; /* total 8 bytes */
396 
FSE_initCState(FSE_CState_t * statePtr,const FSE_CTable * ct)397 ZSTD_STATIC void FSE_initCState(FSE_CState_t *statePtr, const FSE_CTable *ct)
398 {
399 	const void *ptr = ct;
400 	const U16 *u16ptr = (const U16 *)ptr;
401 	const U32 tableLog = ZSTD_read16(ptr);
402 	statePtr->value = (ptrdiff_t)1 << tableLog;
403 	statePtr->stateTable = u16ptr + 2;
404 	statePtr->symbolTT = ((const U32 *)ct + 1 + (tableLog ? (1 << (tableLog - 1)) : 1));
405 	statePtr->stateLog = tableLog;
406 }
407 
408 /*! FSE_initCState2() :
409 *   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
410 *   uses the smallest state value possible, saving the cost of this symbol */
FSE_initCState2(FSE_CState_t * statePtr,const FSE_CTable * ct,U32 symbol)411 ZSTD_STATIC void FSE_initCState2(FSE_CState_t *statePtr, const FSE_CTable *ct, U32 symbol)
412 {
413 	FSE_initCState(statePtr, ct);
414 	{
415 		const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform *)(statePtr->symbolTT))[symbol];
416 		const U16 *stateTable = (const U16 *)(statePtr->stateTable);
417 		U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1 << 15)) >> 16);
418 		statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
419 		statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
420 	}
421 }
422 
FSE_encodeSymbol(BIT_CStream_t * bitC,FSE_CState_t * statePtr,U32 symbol)423 ZSTD_STATIC void FSE_encodeSymbol(BIT_CStream_t *bitC, FSE_CState_t *statePtr, U32 symbol)
424 {
425 	const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform *)(statePtr->symbolTT))[symbol];
426 	const U16 *const stateTable = (const U16 *)(statePtr->stateTable);
427 	U32 nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
428 	BIT_addBits(bitC, statePtr->value, nbBitsOut);
429 	statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
430 }
431 
FSE_flushCState(BIT_CStream_t * bitC,const FSE_CState_t * statePtr)432 ZSTD_STATIC void FSE_flushCState(BIT_CStream_t *bitC, const FSE_CState_t *statePtr)
433 {
434 	BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
435 	BIT_flushBits(bitC);
436 }
437 
438 /* ======    Decompression    ====== */
439 
440 typedef struct {
441 	U16 tableLog;
442 	U16 fastMode;
443 } FSE_DTableHeader; /* sizeof U32 */
444 
445 typedef struct {
446 	unsigned short newState;
447 	unsigned char symbol;
448 	unsigned char nbBits;
449 } FSE_decode_t; /* size == U32 */
450 
FSE_initDState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD,const FSE_DTable * dt)451 ZSTD_STATIC void FSE_initDState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD, const FSE_DTable *dt)
452 {
453 	const void *ptr = dt;
454 	const FSE_DTableHeader *const DTableH = (const FSE_DTableHeader *)ptr;
455 	DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
456 	BIT_reloadDStream(bitD);
457 	DStatePtr->table = dt + 1;
458 }
459 
FSE_peekSymbol(const FSE_DState_t * DStatePtr)460 ZSTD_STATIC BYTE FSE_peekSymbol(const FSE_DState_t *DStatePtr)
461 {
462 	FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
463 	return DInfo.symbol;
464 }
465 
FSE_updateState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)466 ZSTD_STATIC void FSE_updateState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
467 {
468 	FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
469 	U32 const nbBits = DInfo.nbBits;
470 	size_t const lowBits = BIT_readBits(bitD, nbBits);
471 	DStatePtr->state = DInfo.newState + lowBits;
472 }
473 
FSE_decodeSymbol(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)474 ZSTD_STATIC BYTE FSE_decodeSymbol(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
475 {
476 	FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
477 	U32 const nbBits = DInfo.nbBits;
478 	BYTE const symbol = DInfo.symbol;
479 	size_t const lowBits = BIT_readBits(bitD, nbBits);
480 
481 	DStatePtr->state = DInfo.newState + lowBits;
482 	return symbol;
483 }
484 
485 /*! FSE_decodeSymbolFast() :
486 	unsafe, only works if no symbol has a probability > 50% */
FSE_decodeSymbolFast(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)487 ZSTD_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
488 {
489 	FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
490 	U32 const nbBits = DInfo.nbBits;
491 	BYTE const symbol = DInfo.symbol;
492 	size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
493 
494 	DStatePtr->state = DInfo.newState + lowBits;
495 	return symbol;
496 }
497 
FSE_endOfDState(const FSE_DState_t * DStatePtr)498 ZSTD_STATIC unsigned FSE_endOfDState(const FSE_DState_t *DStatePtr) { return DStatePtr->state == 0; }
499 
500 /* **************************************************************
501 *  Tuning parameters
502 ****************************************************************/
503 /*!MEMORY_USAGE :
504 *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
505 *  Increasing memory usage improves compression ratio
506 *  Reduced memory usage can improve speed, due to cache effect
507 *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
508 #ifndef FSE_MAX_MEMORY_USAGE
509 #define FSE_MAX_MEMORY_USAGE 14
510 #endif
511 #ifndef FSE_DEFAULT_MEMORY_USAGE
512 #define FSE_DEFAULT_MEMORY_USAGE 13
513 #endif
514 
515 /*!FSE_MAX_SYMBOL_VALUE :
516 *  Maximum symbol value authorized.
517 *  Required for proper stack allocation */
518 #ifndef FSE_MAX_SYMBOL_VALUE
519 #define FSE_MAX_SYMBOL_VALUE 255
520 #endif
521 
522 /* **************************************************************
523 *  template functions type & suffix
524 ****************************************************************/
525 #define FSE_FUNCTION_TYPE BYTE
526 #define FSE_FUNCTION_EXTENSION
527 #define FSE_DECODE_TYPE FSE_decode_t
528 
529 /* ***************************************************************
530 *  Constants
531 *****************************************************************/
532 #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE - 2)
533 #define FSE_MAX_TABLESIZE (1U << FSE_MAX_TABLELOG)
534 #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE - 1)
535 #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE - 2)
536 #define FSE_MIN_TABLELOG 5
537 
538 #define FSE_TABLELOG_ABSOLUTE_MAX 15
539 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
540 #error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
541 #endif
542 
543 #define FSE_TABLESTEP(tableSize) ((tableSize >> 1) + (tableSize >> 3) + 3)
544 
545 #endif /* FSE_H */
546