• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1syntax = "proto3";
2
3package tensorflow;
4option cc_enable_arenas = true;
5option java_outer_classname = "FunctionProtos";
6option java_multiple_files = true;
7option java_package = "org.tensorflow.framework";
8option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework";
9import "tensorflow/core/framework/attr_value.proto";
10import "tensorflow/core/framework/node_def.proto";
11import "tensorflow/core/framework/op_def.proto";
12
13// A library is a set of named functions.
14message FunctionDefLibrary {
15  repeated FunctionDef function = 1;
16  repeated GradientDef gradient = 2;
17}
18
19// A function can be instantiated when the runtime can bind every attr
20// with a value. When a GraphDef has a call to a function, it must
21// have binding for every attr defined in the signature.
22//
23// TODO(zhifengc):
24//   * device spec, etc.
25message FunctionDef {
26  // The definition of the function's name, arguments, return values,
27  // attrs etc.
28  OpDef signature = 1;
29
30  // Attributes specific to this function definition.
31  map<string, AttrValue> attr = 5;
32
33  // Attributes for function arguments. These attributes are the same set of
34  // valid attributes as to _Arg nodes.
35  message ArgAttrs {
36    map<string, AttrValue> attr = 1;
37  }
38  map<uint32, ArgAttrs> arg_attr = 7;
39
40  // Unique IDs for each resource argument, used to track aliasing resources. If
41  // Argument A and Argument B alias each other, then
42  // resource_arg_unique_ids[A.index] == resource_arg_unique_ids[B.index].
43  //
44  // If this field is empty, none of the arguments could alias; otherwise, every
45  // resource argument should have an entry in this field.
46  //
47  // When instantiated, the unique IDs will be attached to the _Arg nodes'
48  // "_resource_arg_unique_id" attribute.
49  map<uint32, uint32> resource_arg_unique_id = 8;
50
51  // NOTE: field id 2 deleted on Jan 11, 2017, GraphDef version 21.
52  reserved 2;
53
54  // In both of the following fields, there is the need to specify an
55  // output that is used as either the input to another node (in
56  // `node_def`) or as a return value of the function (in `ret`).
57  // Unlike the NodeDefs in GraphDef, we need to be able to specify a
58  // list in some cases (instead of just single outputs).  Also, we
59  // need to be able to deal with lists of unknown length (so the
60  // output index may not be known at function definition time).  So
61  // we use the following format instead:
62  // * "fun_in" where "fun_in" is the name of a function input arg in
63  //   the `signature` field above.  This represents that input, whether
64  //   it is a single tensor or a list.
65  // * "fun_in:0" gives the first element of a function input arg (a
66  //   non-list input is considered a list of length 1 for these
67  //   purposes).
68  // * "node:out" where "node" is the name of a node in `node_def` and
69  //   "out" is the name one of its op's output arguments (the name
70  //   comes from the OpDef of the node's op). This represents that
71  //   node's output, whether it is a single tensor or a list.
72  //   Note: We enforce that an op's output arguments are never
73  //   renamed in the backwards-compatibility test.
74  // * "node:out:0" gives the first element of a node output arg (a
75  //   non-list output is considered a list of length 1 for these
76  //   purposes).
77  //
78  // NOT CURRENTLY SUPPORTED (but may be in the future):
79  // * "node:out:-1" gives last element in a node output list
80  // * "node:out:1:" gives a list with all but the first element in a
81  //   node output list
82  // * "node:out::-1" gives a list with all but the last element in a
83  //   node output list
84
85  // The body of the function.  Unlike the NodeDefs in a GraphDef, attrs
86  // may have values of type `placeholder` and the `input` field uses
87  // the "output" format above.
88
89  // By convention, "op" in node_def is resolved by consulting with a
90  // user-defined library first. If not resolved, "func" is assumed to
91  // be a builtin op.
92  repeated NodeDef node_def = 3;
93
94  // A mapping from the output arg names from `signature` to the
95  // outputs from `node_def` that should be returned by the function.
96  map<string, string> ret = 4;
97
98  // A mapping from control output names from `signature` to node names in
99  // `node_def` which should be control outputs of this function.
100  map<string, string> control_ret = 6;
101}
102
103// GradientDef defines the gradient function of a function defined in
104// a function library.
105//
106// A gradient function g (specified by gradient_func) for a function f
107// (specified by function_name) must follow the following:
108//
109// The function 'f' must be a numerical function which takes N inputs
110// and produces M outputs. Its gradient function 'g', which is a
111// function taking N + M inputs and produces N outputs.
112//
113// I.e. if we have
114//    (y1, y2, ..., y_M) = f(x1, x2, ..., x_N),
115// then, g is
116//    (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N,
117//                                      dL/dy1, dL/dy2, ..., dL/dy_M),
118// where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the
119// loss function). dL/dx_i is the partial derivative of L with respect
120// to x_i.
121message GradientDef {
122  string function_name = 1;  // The function name.
123  string gradient_func = 2;  // The gradient function's name.
124}
125