1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/ast/scopes.h"
6
7 #include <set>
8
9 #include "src/ast/ast.h"
10 #include "src/base/logging.h"
11 #include "src/base/optional.h"
12 #include "src/builtins/accessors.h"
13 #include "src/common/message-template.h"
14 #include "src/heap/local-factory-inl.h"
15 #include "src/init/bootstrapper.h"
16 #include "src/logging/counters.h"
17 #include "src/objects/module-inl.h"
18 #include "src/objects/objects-inl.h"
19 #include "src/objects/scope-info.h"
20 #include "src/objects/string-set-inl.h"
21 #include "src/parsing/parse-info.h"
22 #include "src/parsing/parser.h"
23 #include "src/parsing/preparse-data.h"
24 #include "src/zone/zone-list-inl.h"
25 #include "src/zone/zone.h"
26
27 namespace v8 {
28 namespace internal {
29
30 // ----------------------------------------------------------------------------
31 // Implementation of LocalsMap
32 //
33 // Note: We are storing the handle locations as key values in the hash map.
34 // When inserting a new variable via Declare(), we rely on the fact that
35 // the handle location remains alive for the duration of that variable
36 // use. Because a Variable holding a handle with the same location exists
37 // this is ensured.
38
39 static_assert(sizeof(VariableMap) == (sizeof(void*) + 2 * sizeof(uint32_t) +
40 sizeof(ZoneAllocationPolicy)),
41 "Empty base optimization didn't kick in for VariableMap");
42
VariableMap(Zone * zone)43 VariableMap::VariableMap(Zone* zone)
44 : ZoneHashMap(8, ZoneAllocationPolicy(zone)) {}
45
VariableMap(const VariableMap & other,Zone * zone)46 VariableMap::VariableMap(const VariableMap& other, Zone* zone)
47 : ZoneHashMap(other, ZoneAllocationPolicy(zone)) {}
48
Declare(Zone * zone,Scope * scope,const AstRawString * name,VariableMode mode,VariableKind kind,InitializationFlag initialization_flag,MaybeAssignedFlag maybe_assigned_flag,IsStaticFlag is_static_flag,bool * was_added)49 Variable* VariableMap::Declare(Zone* zone, Scope* scope,
50 const AstRawString* name, VariableMode mode,
51 VariableKind kind,
52 InitializationFlag initialization_flag,
53 MaybeAssignedFlag maybe_assigned_flag,
54 IsStaticFlag is_static_flag, bool* was_added) {
55 DCHECK_EQ(zone, allocator().zone());
56 // AstRawStrings are unambiguous, i.e., the same string is always represented
57 // by the same AstRawString*.
58 // FIXME(marja): fix the type of Lookup.
59 Entry* p = ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name),
60 name->Hash());
61 *was_added = p->value == nullptr;
62 if (*was_added) {
63 // The variable has not been declared yet -> insert it.
64 DCHECK_EQ(name, p->key);
65 Variable* variable =
66 zone->New<Variable>(scope, name, mode, kind, initialization_flag,
67 maybe_assigned_flag, is_static_flag);
68 p->value = variable;
69 }
70 return reinterpret_cast<Variable*>(p->value);
71 }
72
Remove(Variable * var)73 void VariableMap::Remove(Variable* var) {
74 const AstRawString* name = var->raw_name();
75 ZoneHashMap::Remove(const_cast<AstRawString*>(name), name->Hash());
76 }
77
Add(Variable * var)78 void VariableMap::Add(Variable* var) {
79 const AstRawString* name = var->raw_name();
80 Entry* p = ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name),
81 name->Hash());
82 DCHECK_NULL(p->value);
83 DCHECK_EQ(name, p->key);
84 p->value = var;
85 }
86
Lookup(const AstRawString * name)87 Variable* VariableMap::Lookup(const AstRawString* name) {
88 Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->Hash());
89 if (p != nullptr) {
90 DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
91 DCHECK_NOT_NULL(p->value);
92 return reinterpret_cast<Variable*>(p->value);
93 }
94 return nullptr;
95 }
96
97 // ----------------------------------------------------------------------------
98 // Implementation of Scope
99
Scope(Zone * zone)100 Scope::Scope(Zone* zone)
101 : outer_scope_(nullptr), variables_(zone), scope_type_(SCRIPT_SCOPE) {
102 SetDefaults();
103 }
104
Scope(Zone * zone,Scope * outer_scope,ScopeType scope_type)105 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type)
106 : outer_scope_(outer_scope), variables_(zone), scope_type_(scope_type) {
107 DCHECK_NE(SCRIPT_SCOPE, scope_type);
108 SetDefaults();
109 set_language_mode(outer_scope->language_mode());
110 private_name_lookup_skips_outer_class_ =
111 outer_scope->is_class_scope() &&
112 outer_scope->AsClassScope()->IsParsingHeritage();
113 outer_scope_->AddInnerScope(this);
114 }
115
DeclarationScope(Zone * zone,AstValueFactory * ast_value_factory,REPLMode repl_mode)116 DeclarationScope::DeclarationScope(Zone* zone,
117 AstValueFactory* ast_value_factory,
118 REPLMode repl_mode)
119 : Scope(zone),
120 function_kind_(repl_mode == REPLMode::kYes ? kAsyncFunction
121 : kNormalFunction),
122 params_(4, zone) {
123 DCHECK_EQ(scope_type_, SCRIPT_SCOPE);
124 SetDefaults();
125 is_repl_mode_scope_ = repl_mode == REPLMode::kYes;
126 receiver_ = DeclareDynamicGlobal(ast_value_factory->this_string(),
127 THIS_VARIABLE, this);
128 }
129
DeclarationScope(Zone * zone,Scope * outer_scope,ScopeType scope_type,FunctionKind function_kind)130 DeclarationScope::DeclarationScope(Zone* zone, Scope* outer_scope,
131 ScopeType scope_type,
132 FunctionKind function_kind)
133 : Scope(zone, outer_scope, scope_type),
134 function_kind_(function_kind),
135 params_(4, zone) {
136 DCHECK_NE(scope_type, SCRIPT_SCOPE);
137 SetDefaults();
138 }
139
ModuleScope(DeclarationScope * script_scope,AstValueFactory * avfactory)140 ModuleScope::ModuleScope(DeclarationScope* script_scope,
141 AstValueFactory* avfactory)
142 : DeclarationScope(avfactory->zone(), script_scope, MODULE_SCOPE, kModule),
143 module_descriptor_(avfactory->zone()->New<SourceTextModuleDescriptor>(
144 avfactory->zone())) {
145 set_language_mode(LanguageMode::kStrict);
146 DeclareThis(avfactory);
147 }
148
ModuleScope(Isolate * isolate,Handle<ScopeInfo> scope_info,AstValueFactory * avfactory)149 ModuleScope::ModuleScope(Isolate* isolate, Handle<ScopeInfo> scope_info,
150 AstValueFactory* avfactory)
151 : DeclarationScope(avfactory->zone(), MODULE_SCOPE, scope_info),
152 module_descriptor_(nullptr) {
153 set_language_mode(LanguageMode::kStrict);
154 }
155
ClassScope(Zone * zone,Scope * outer_scope,bool is_anonymous)156 ClassScope::ClassScope(Zone* zone, Scope* outer_scope, bool is_anonymous)
157 : Scope(zone, outer_scope, CLASS_SCOPE),
158 rare_data_and_is_parsing_heritage_(nullptr),
159 is_anonymous_class_(is_anonymous) {
160 set_language_mode(LanguageMode::kStrict);
161 }
162
ClassScope(Isolate * isolate,Zone * zone,AstValueFactory * ast_value_factory,Handle<ScopeInfo> scope_info)163 ClassScope::ClassScope(Isolate* isolate, Zone* zone,
164 AstValueFactory* ast_value_factory,
165 Handle<ScopeInfo> scope_info)
166 : Scope(zone, CLASS_SCOPE, scope_info),
167 rare_data_and_is_parsing_heritage_(nullptr) {
168 set_language_mode(LanguageMode::kStrict);
169 if (scope_info->HasClassBrand()) {
170 Variable* brand =
171 LookupInScopeInfo(ast_value_factory->dot_brand_string(), this);
172 DCHECK_NOT_NULL(brand);
173 EnsureRareData()->brand = brand;
174 }
175
176 // If the class variable is context-allocated and its index is
177 // saved for deserialization, deserialize it.
178 if (scope_info->HasSavedClassVariableIndex()) {
179 int index = scope_info->SavedClassVariableContextLocalIndex();
180 DCHECK_GE(index, 0);
181 DCHECK_LT(index, scope_info->ContextLocalCount());
182 String name = scope_info->ContextLocalName(index);
183 DCHECK_EQ(scope_info->ContextLocalMode(index), VariableMode::kConst);
184 DCHECK_EQ(scope_info->ContextLocalInitFlag(index),
185 InitializationFlag::kNeedsInitialization);
186 DCHECK_EQ(scope_info->ContextLocalMaybeAssignedFlag(index),
187 MaybeAssignedFlag::kMaybeAssigned);
188 Variable* var = DeclareClassVariable(
189 ast_value_factory, ast_value_factory->GetString(handle(name, isolate)),
190 kNoSourcePosition);
191 var->AllocateTo(VariableLocation::CONTEXT,
192 Context::MIN_CONTEXT_SLOTS + index);
193 }
194 }
195
Scope(Zone * zone,ScopeType scope_type,Handle<ScopeInfo> scope_info)196 Scope::Scope(Zone* zone, ScopeType scope_type, Handle<ScopeInfo> scope_info)
197 : outer_scope_(nullptr),
198 variables_(zone),
199 scope_info_(scope_info),
200 scope_type_(scope_type) {
201 DCHECK(!scope_info.is_null());
202 SetDefaults();
203 #ifdef DEBUG
204 already_resolved_ = true;
205 #endif
206 set_language_mode(scope_info->language_mode());
207 DCHECK_EQ(ContextHeaderLength(), num_heap_slots_);
208 private_name_lookup_skips_outer_class_ =
209 scope_info->PrivateNameLookupSkipsOuterClass();
210 // We don't really need to use the preparsed scope data; this is just to
211 // shorten the recursion in SetMustUsePreparseData.
212 must_use_preparsed_scope_data_ = true;
213 }
214
DeclarationScope(Zone * zone,ScopeType scope_type,Handle<ScopeInfo> scope_info)215 DeclarationScope::DeclarationScope(Zone* zone, ScopeType scope_type,
216 Handle<ScopeInfo> scope_info)
217 : Scope(zone, scope_type, scope_info),
218 function_kind_(scope_info->function_kind()),
219 params_(0, zone) {
220 DCHECK_NE(scope_type, SCRIPT_SCOPE);
221 SetDefaults();
222 if (scope_info->SloppyEvalCanExtendVars()) {
223 DCHECK(!is_eval_scope());
224 sloppy_eval_can_extend_vars_ = true;
225 }
226 }
227
Scope(Zone * zone,const AstRawString * catch_variable_name,MaybeAssignedFlag maybe_assigned,Handle<ScopeInfo> scope_info)228 Scope::Scope(Zone* zone, const AstRawString* catch_variable_name,
229 MaybeAssignedFlag maybe_assigned, Handle<ScopeInfo> scope_info)
230 : outer_scope_(nullptr),
231 variables_(zone),
232 scope_info_(scope_info),
233 scope_type_(CATCH_SCOPE) {
234 SetDefaults();
235 #ifdef DEBUG
236 already_resolved_ = true;
237 #endif
238 // Cache the catch variable, even though it's also available via the
239 // scope_info, as the parser expects that a catch scope always has the catch
240 // variable as first and only variable.
241 bool was_added;
242 Variable* variable =
243 Declare(zone, catch_variable_name, VariableMode::kVar, NORMAL_VARIABLE,
244 kCreatedInitialized, maybe_assigned, &was_added);
245 DCHECK(was_added);
246 AllocateHeapSlot(variable);
247 }
248
SetDefaults()249 void DeclarationScope::SetDefaults() {
250 is_declaration_scope_ = true;
251 has_simple_parameters_ = true;
252 is_asm_module_ = false;
253 force_eager_compilation_ = false;
254 has_arguments_parameter_ = false;
255 scope_uses_super_property_ = false;
256 has_checked_syntax_ = false;
257 has_this_reference_ = false;
258 has_this_declaration_ =
259 (is_function_scope() && !is_arrow_scope()) || is_module_scope();
260 needs_private_name_context_chain_recalc_ = false;
261 has_rest_ = false;
262 receiver_ = nullptr;
263 new_target_ = nullptr;
264 function_ = nullptr;
265 arguments_ = nullptr;
266 rare_data_ = nullptr;
267 should_eager_compile_ = false;
268 was_lazily_parsed_ = false;
269 is_skipped_function_ = false;
270 preparse_data_builder_ = nullptr;
271 #ifdef DEBUG
272 DeclarationScope* outer_declaration_scope =
273 outer_scope_ ? outer_scope_->GetDeclarationScope() : nullptr;
274 is_being_lazily_parsed_ =
275 outer_declaration_scope ? outer_declaration_scope->is_being_lazily_parsed_
276 : false;
277 #endif
278 }
279
SetDefaults()280 void Scope::SetDefaults() {
281 #ifdef DEBUG
282 scope_name_ = nullptr;
283 already_resolved_ = false;
284 needs_migration_ = false;
285 #endif
286 inner_scope_ = nullptr;
287 sibling_ = nullptr;
288 unresolved_list_.Clear();
289
290 start_position_ = kNoSourcePosition;
291 end_position_ = kNoSourcePosition;
292
293 calls_eval_ = false;
294 sloppy_eval_can_extend_vars_ = false;
295 scope_nonlinear_ = false;
296 is_hidden_ = false;
297 is_debug_evaluate_scope_ = false;
298
299 inner_scope_calls_eval_ = false;
300 force_context_allocation_for_parameters_ = false;
301
302 is_declaration_scope_ = false;
303
304 private_name_lookup_skips_outer_class_ = false;
305
306 must_use_preparsed_scope_data_ = false;
307 is_repl_mode_scope_ = false;
308
309 deserialized_scope_uses_external_cache_ = false;
310
311 num_stack_slots_ = 0;
312 num_heap_slots_ = ContextHeaderLength();
313
314 set_language_mode(LanguageMode::kSloppy);
315 }
316
HasSimpleParameters()317 bool Scope::HasSimpleParameters() {
318 DeclarationScope* scope = GetClosureScope();
319 return !scope->is_function_scope() || scope->has_simple_parameters();
320 }
321
set_should_eager_compile()322 void DeclarationScope::set_should_eager_compile() {
323 should_eager_compile_ = !was_lazily_parsed_;
324 }
325
set_is_asm_module()326 void DeclarationScope::set_is_asm_module() { is_asm_module_ = true; }
327
IsAsmModule() const328 bool Scope::IsAsmModule() const {
329 return is_function_scope() && AsDeclarationScope()->is_asm_module();
330 }
331
ContainsAsmModule() const332 bool Scope::ContainsAsmModule() const {
333 if (IsAsmModule()) return true;
334
335 // Check inner scopes recursively
336 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
337 // Don't check inner functions which won't be eagerly compiled.
338 if (!scope->is_function_scope() ||
339 scope->AsDeclarationScope()->ShouldEagerCompile()) {
340 if (scope->ContainsAsmModule()) return true;
341 }
342 }
343
344 return false;
345 }
346
DeserializeScopeChain(Isolate * isolate,Zone * zone,ScopeInfo scope_info,DeclarationScope * script_scope,AstValueFactory * ast_value_factory,DeserializationMode deserialization_mode)347 Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
348 ScopeInfo scope_info,
349 DeclarationScope* script_scope,
350 AstValueFactory* ast_value_factory,
351 DeserializationMode deserialization_mode) {
352 // Reconstruct the outer scope chain from a closure's context chain.
353 Scope* current_scope = nullptr;
354 Scope* innermost_scope = nullptr;
355 Scope* outer_scope = nullptr;
356 bool cache_scope_found = false;
357 while (!scope_info.is_null()) {
358 if (scope_info.scope_type() == WITH_SCOPE) {
359 if (scope_info.IsDebugEvaluateScope()) {
360 outer_scope = zone->New<DeclarationScope>(zone, FUNCTION_SCOPE,
361 handle(scope_info, isolate));
362 outer_scope->set_is_debug_evaluate_scope();
363 } else {
364 // For scope analysis, debug-evaluate is equivalent to a with scope.
365 outer_scope =
366 zone->New<Scope>(zone, WITH_SCOPE, handle(scope_info, isolate));
367 }
368
369 } else if (scope_info.scope_type() == SCRIPT_SCOPE) {
370 // If we reach a script scope, it's the outermost scope. Install the
371 // scope info of this script context onto the existing script scope to
372 // avoid nesting script scopes.
373 if (deserialization_mode == DeserializationMode::kIncludingVariables) {
374 script_scope->SetScriptScopeInfo(handle(scope_info, isolate));
375 }
376 if (scope_info.IsReplModeScope()) script_scope->set_is_repl_mode_scope();
377 DCHECK(!scope_info.HasOuterScopeInfo());
378 break;
379 } else if (scope_info.scope_type() == FUNCTION_SCOPE) {
380 outer_scope = zone->New<DeclarationScope>(zone, FUNCTION_SCOPE,
381 handle(scope_info, isolate));
382 if (scope_info.IsAsmModule()) {
383 outer_scope->AsDeclarationScope()->set_is_asm_module();
384 }
385 } else if (scope_info.scope_type() == EVAL_SCOPE) {
386 outer_scope = zone->New<DeclarationScope>(zone, EVAL_SCOPE,
387 handle(scope_info, isolate));
388 } else if (scope_info.scope_type() == CLASS_SCOPE) {
389 outer_scope = zone->New<ClassScope>(isolate, zone, ast_value_factory,
390 handle(scope_info, isolate));
391 } else if (scope_info.scope_type() == BLOCK_SCOPE) {
392 if (scope_info.is_declaration_scope()) {
393 outer_scope = zone->New<DeclarationScope>(zone, BLOCK_SCOPE,
394 handle(scope_info, isolate));
395 } else {
396 outer_scope =
397 zone->New<Scope>(zone, BLOCK_SCOPE, handle(scope_info, isolate));
398 }
399 } else if (scope_info.scope_type() == MODULE_SCOPE) {
400 outer_scope = zone->New<ModuleScope>(isolate, handle(scope_info, isolate),
401 ast_value_factory);
402 } else {
403 DCHECK_EQ(scope_info.scope_type(), CATCH_SCOPE);
404 DCHECK_EQ(scope_info.ContextLocalCount(), 1);
405 DCHECK_EQ(scope_info.ContextLocalMode(0), VariableMode::kVar);
406 DCHECK_EQ(scope_info.ContextLocalInitFlag(0), kCreatedInitialized);
407 String name = scope_info.ContextLocalName(0);
408 MaybeAssignedFlag maybe_assigned =
409 scope_info.ContextLocalMaybeAssignedFlag(0);
410 outer_scope = zone->New<Scope>(
411 zone, ast_value_factory->GetString(handle(name, isolate)),
412 maybe_assigned, handle(scope_info, isolate));
413 }
414 if (deserialization_mode == DeserializationMode::kScopesOnly) {
415 outer_scope->scope_info_ = Handle<ScopeInfo>::null();
416 }
417
418 if (cache_scope_found) {
419 outer_scope->set_deserialized_scope_uses_external_cache();
420 } else {
421 DCHECK(!cache_scope_found);
422 cache_scope_found =
423 outer_scope->is_declaration_scope() && !outer_scope->is_eval_scope();
424 }
425
426 if (current_scope != nullptr) {
427 outer_scope->AddInnerScope(current_scope);
428 }
429 current_scope = outer_scope;
430 if (innermost_scope == nullptr) innermost_scope = current_scope;
431 scope_info = scope_info.HasOuterScopeInfo() ? scope_info.OuterScopeInfo()
432 : ScopeInfo();
433 }
434
435 if (deserialization_mode == DeserializationMode::kIncludingVariables &&
436 script_scope->scope_info_.is_null()) {
437 script_scope->SetScriptScopeInfo(
438 ReadOnlyRoots(isolate).global_this_binding_scope_info_handle());
439 }
440
441 if (innermost_scope == nullptr) return script_scope;
442 script_scope->AddInnerScope(current_scope);
443 return innermost_scope;
444 }
445
AsDeclarationScope()446 DeclarationScope* Scope::AsDeclarationScope() {
447 DCHECK(is_declaration_scope());
448 return static_cast<DeclarationScope*>(this);
449 }
450
AsDeclarationScope() const451 const DeclarationScope* Scope::AsDeclarationScope() const {
452 DCHECK(is_declaration_scope());
453 return static_cast<const DeclarationScope*>(this);
454 }
455
AsModuleScope()456 ModuleScope* Scope::AsModuleScope() {
457 DCHECK(is_module_scope());
458 return static_cast<ModuleScope*>(this);
459 }
460
AsModuleScope() const461 const ModuleScope* Scope::AsModuleScope() const {
462 DCHECK(is_module_scope());
463 return static_cast<const ModuleScope*>(this);
464 }
465
AsClassScope()466 ClassScope* Scope::AsClassScope() {
467 DCHECK(is_class_scope());
468 return static_cast<ClassScope*>(this);
469 }
470
AsClassScope() const471 const ClassScope* Scope::AsClassScope() const {
472 DCHECK(is_class_scope());
473 return static_cast<const ClassScope*>(this);
474 }
475
DeclareSloppyBlockFunction(SloppyBlockFunctionStatement * sloppy_block_function)476 void DeclarationScope::DeclareSloppyBlockFunction(
477 SloppyBlockFunctionStatement* sloppy_block_function) {
478 sloppy_block_functions_.Add(sloppy_block_function);
479 }
480
HoistSloppyBlockFunctions(AstNodeFactory * factory)481 void DeclarationScope::HoistSloppyBlockFunctions(AstNodeFactory* factory) {
482 DCHECK(is_sloppy(language_mode()));
483 DCHECK(is_function_scope() || is_eval_scope() || is_script_scope() ||
484 (is_block_scope() && outer_scope()->is_function_scope()));
485 DCHECK(HasSimpleParameters() || is_block_scope() || is_being_lazily_parsed_);
486 DCHECK_EQ(factory == nullptr, is_being_lazily_parsed_);
487
488 if (sloppy_block_functions_.is_empty()) return;
489
490 // In case of complex parameters the current scope is the body scope and the
491 // parameters are stored in the outer scope.
492 Scope* parameter_scope = HasSimpleParameters() ? this : outer_scope_;
493 DCHECK(parameter_scope->is_function_scope() || is_eval_scope() ||
494 is_script_scope());
495
496 DeclarationScope* decl_scope = GetNonEvalDeclarationScope();
497 Scope* outer_scope = decl_scope->outer_scope();
498
499 // For each variable which is used as a function declaration in a sloppy
500 // block,
501 for (SloppyBlockFunctionStatement* sloppy_block_function :
502 sloppy_block_functions_) {
503 const AstRawString* name = sloppy_block_function->name();
504
505 // If the variable wouldn't conflict with a lexical declaration
506 // or parameter,
507
508 // Check if there's a conflict with a parameter.
509 Variable* maybe_parameter = parameter_scope->LookupLocal(name);
510 if (maybe_parameter != nullptr && maybe_parameter->is_parameter()) {
511 continue;
512 }
513
514 // Check if there's a conflict with a lexical declaration
515 Scope* query_scope = sloppy_block_function->scope()->outer_scope();
516 Variable* var = nullptr;
517 bool should_hoist = true;
518
519 // It is not sufficient to just do a Lookup on query_scope: for
520 // example, that does not prevent hoisting of the function in
521 // `{ let e; try {} catch (e) { function e(){} } }`
522 //
523 // Don't use a generic cache scope, as the cache scope would be the outer
524 // scope and we terminate the iteration there anyway.
525 do {
526 var = query_scope->LookupInScopeOrScopeInfo(name, query_scope);
527 if (var != nullptr && IsLexicalVariableMode(var->mode())) {
528 should_hoist = false;
529 break;
530 }
531 query_scope = query_scope->outer_scope();
532 } while (query_scope != outer_scope);
533
534 if (!should_hoist) continue;
535
536 if (factory) {
537 DCHECK(!is_being_lazily_parsed_);
538 int pos = sloppy_block_function->position();
539 bool ok = true;
540 bool was_added;
541 auto declaration = factory->NewVariableDeclaration(pos);
542 // Based on the preceding checks, it doesn't matter what we pass as
543 // sloppy_mode_block_scope_function_redefinition.
544 Variable* var = DeclareVariable(
545 declaration, name, pos, VariableMode::kVar, NORMAL_VARIABLE,
546 Variable::DefaultInitializationFlag(VariableMode::kVar), &was_added,
547 nullptr, &ok);
548 DCHECK(ok);
549 VariableProxy* source =
550 factory->NewVariableProxy(sloppy_block_function->var());
551 VariableProxy* target = factory->NewVariableProxy(var);
552 Assignment* assignment = factory->NewAssignment(
553 sloppy_block_function->init(), target, source, pos);
554 assignment->set_lookup_hoisting_mode(LookupHoistingMode::kLegacySloppy);
555 Statement* statement = factory->NewExpressionStatement(assignment, pos);
556 sloppy_block_function->set_statement(statement);
557 } else {
558 DCHECK(is_being_lazily_parsed_);
559 bool was_added;
560 Variable* var = DeclareVariableName(name, VariableMode::kVar, &was_added);
561 if (sloppy_block_function->init() == Token::ASSIGN) {
562 var->SetMaybeAssigned();
563 }
564 }
565 }
566 }
567
Analyze(ParseInfo * info)568 bool DeclarationScope::Analyze(ParseInfo* info) {
569 RuntimeCallTimerScope runtimeTimer(
570 info->runtime_call_stats(), RuntimeCallCounterId::kCompileScopeAnalysis,
571 RuntimeCallStats::kThreadSpecific);
572 DCHECK_NOT_NULL(info->literal());
573 DeclarationScope* scope = info->literal()->scope();
574
575 base::Optional<AllowHandleDereference> allow_deref;
576 #ifdef DEBUG
577 if (scope->outer_scope() && !scope->outer_scope()->scope_info_.is_null()) {
578 allow_deref.emplace();
579 }
580 #endif
581
582 if (scope->is_eval_scope() && is_sloppy(scope->language_mode())) {
583 AstNodeFactory factory(info->ast_value_factory(), info->zone());
584 scope->HoistSloppyBlockFunctions(&factory);
585 }
586
587 // We are compiling one of four cases:
588 // 1) top-level code,
589 // 2) a function/eval/module on the top-level
590 // 3) a function/eval in a scope that was already resolved.
591 DCHECK(scope->is_script_scope() || scope->outer_scope()->is_script_scope() ||
592 scope->outer_scope()->already_resolved_);
593
594 // The outer scope is never lazy.
595 scope->set_should_eager_compile();
596
597 if (scope->must_use_preparsed_scope_data_) {
598 DCHECK_EQ(scope->scope_type_, ScopeType::FUNCTION_SCOPE);
599 allow_deref.emplace();
600 info->consumed_preparse_data()->RestoreScopeAllocationData(
601 scope, info->ast_value_factory(), info->zone());
602 }
603
604 if (!scope->AllocateVariables(info)) return false;
605 scope->GetScriptScope()->RewriteReplGlobalVariables();
606
607 #ifdef DEBUG
608 if (FLAG_print_scopes) {
609 PrintF("Global scope:\n");
610 scope->Print();
611 }
612 scope->CheckScopePositions();
613 scope->CheckZones();
614 #endif
615
616 return true;
617 }
618
DeclareThis(AstValueFactory * ast_value_factory)619 void DeclarationScope::DeclareThis(AstValueFactory* ast_value_factory) {
620 DCHECK(has_this_declaration());
621
622 bool derived_constructor = IsDerivedConstructor(function_kind_);
623
624 receiver_ = zone()->New<Variable>(
625 this, ast_value_factory->this_string(),
626 derived_constructor ? VariableMode::kConst : VariableMode::kVar,
627 THIS_VARIABLE,
628 derived_constructor ? kNeedsInitialization : kCreatedInitialized,
629 kNotAssigned);
630 }
631
DeclareArguments(AstValueFactory * ast_value_factory)632 void DeclarationScope::DeclareArguments(AstValueFactory* ast_value_factory) {
633 DCHECK(is_function_scope());
634 DCHECK(!is_arrow_scope());
635
636 // Declare 'arguments' variable which exists in all non arrow functions. Note
637 // that it might never be accessed, in which case it won't be allocated during
638 // variable allocation.
639 bool was_added;
640 arguments_ =
641 Declare(zone(), ast_value_factory->arguments_string(), VariableMode::kVar,
642 NORMAL_VARIABLE, kCreatedInitialized, kNotAssigned, &was_added);
643 if (!was_added && IsLexicalVariableMode(arguments_->mode())) {
644 // Check if there's lexically declared variable named arguments to avoid
645 // redeclaration. See ES#sec-functiondeclarationinstantiation, step 20.
646 arguments_ = nullptr;
647 }
648 }
649
DeclareDefaultFunctionVariables(AstValueFactory * ast_value_factory)650 void DeclarationScope::DeclareDefaultFunctionVariables(
651 AstValueFactory* ast_value_factory) {
652 DCHECK(is_function_scope());
653 DCHECK(!is_arrow_scope());
654
655 DeclareThis(ast_value_factory);
656 bool was_added;
657 new_target_ = Declare(zone(), ast_value_factory->new_target_string(),
658 VariableMode::kConst, NORMAL_VARIABLE,
659 kCreatedInitialized, kNotAssigned, &was_added);
660 DCHECK(was_added);
661
662 if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
663 IsAccessorFunction(function_kind_)) {
664 EnsureRareData()->this_function = Declare(
665 zone(), ast_value_factory->this_function_string(), VariableMode::kConst,
666 NORMAL_VARIABLE, kCreatedInitialized, kNotAssigned, &was_added);
667 DCHECK(was_added);
668 }
669 }
670
DeclareFunctionVar(const AstRawString * name,Scope * cache)671 Variable* DeclarationScope::DeclareFunctionVar(const AstRawString* name,
672 Scope* cache) {
673 DCHECK(is_function_scope());
674 DCHECK_NULL(function_);
675 if (cache == nullptr) cache = this;
676 DCHECK(this->IsOuterScopeOf(cache));
677 DCHECK_NULL(cache->variables_.Lookup(name));
678 VariableKind kind = is_sloppy(language_mode()) ? SLOPPY_FUNCTION_NAME_VARIABLE
679 : NORMAL_VARIABLE;
680 function_ = zone()->New<Variable>(this, name, VariableMode::kConst, kind,
681 kCreatedInitialized);
682 if (sloppy_eval_can_extend_vars()) {
683 cache->NonLocal(name, VariableMode::kDynamic);
684 } else {
685 cache->variables_.Add(function_);
686 }
687 return function_;
688 }
689
DeclareGeneratorObjectVar(const AstRawString * name)690 Variable* DeclarationScope::DeclareGeneratorObjectVar(
691 const AstRawString* name) {
692 DCHECK(is_function_scope() || is_module_scope() || is_repl_mode_scope());
693 DCHECK_NULL(generator_object_var());
694
695 Variable* result = EnsureRareData()->generator_object =
696 NewTemporary(name, kNotAssigned);
697 result->set_is_used();
698 return result;
699 }
700
FinalizeBlockScope()701 Scope* Scope::FinalizeBlockScope() {
702 DCHECK(is_block_scope());
703 #ifdef DEBUG
704 DCHECK_NE(sibling_, this);
705 #endif
706
707 if (variables_.occupancy() > 0 ||
708 (is_declaration_scope() &&
709 AsDeclarationScope()->sloppy_eval_can_extend_vars())) {
710 return this;
711 }
712
713 DCHECK(!is_class_scope());
714
715 // Remove this scope from outer scope.
716 outer_scope()->RemoveInnerScope(this);
717
718 // Reparent inner scopes.
719 if (inner_scope_ != nullptr) {
720 Scope* scope = inner_scope_;
721 scope->outer_scope_ = outer_scope();
722 while (scope->sibling_ != nullptr) {
723 scope = scope->sibling_;
724 scope->outer_scope_ = outer_scope();
725 }
726 scope->sibling_ = outer_scope()->inner_scope_;
727 outer_scope()->inner_scope_ = inner_scope_;
728 inner_scope_ = nullptr;
729 }
730
731 // Move unresolved variables
732 if (!unresolved_list_.is_empty()) {
733 outer_scope()->unresolved_list_.Prepend(std::move(unresolved_list_));
734 unresolved_list_.Clear();
735 }
736
737 if (inner_scope_calls_eval_) outer_scope()->inner_scope_calls_eval_ = true;
738
739 // No need to propagate sloppy_eval_can_extend_vars_, since if it was relevant
740 // to this scope we would have had to bail out at the top.
741 DCHECK(!is_declaration_scope() ||
742 !AsDeclarationScope()->sloppy_eval_can_extend_vars());
743
744 // This block does not need a context.
745 num_heap_slots_ = 0;
746
747 // Mark scope as removed by making it its own sibling.
748 #ifdef DEBUG
749 sibling_ = this;
750 #endif
751
752 return nullptr;
753 }
754
AddLocal(Variable * var)755 void DeclarationScope::AddLocal(Variable* var) {
756 DCHECK(!already_resolved_);
757 // Temporaries are only placed in ClosureScopes.
758 DCHECK_EQ(GetClosureScope(), this);
759 locals_.Add(var);
760 }
761
Reparent(DeclarationScope * new_parent)762 void Scope::Snapshot::Reparent(DeclarationScope* new_parent) {
763 DCHECK(!IsCleared());
764 DCHECK_EQ(new_parent, outer_scope_and_calls_eval_.GetPointer()->inner_scope_);
765 DCHECK_EQ(new_parent->outer_scope_, outer_scope_and_calls_eval_.GetPointer());
766 DCHECK_EQ(new_parent, new_parent->GetClosureScope());
767 DCHECK_NULL(new_parent->inner_scope_);
768 DCHECK(new_parent->unresolved_list_.is_empty());
769 Scope* inner_scope = new_parent->sibling_;
770 if (inner_scope != top_inner_scope_) {
771 for (; inner_scope->sibling() != top_inner_scope_;
772 inner_scope = inner_scope->sibling()) {
773 inner_scope->outer_scope_ = new_parent;
774 if (inner_scope->inner_scope_calls_eval_) {
775 new_parent->inner_scope_calls_eval_ = true;
776 }
777 DCHECK_NE(inner_scope, new_parent);
778 }
779 inner_scope->outer_scope_ = new_parent;
780 if (inner_scope->inner_scope_calls_eval_) {
781 new_parent->inner_scope_calls_eval_ = true;
782 }
783 new_parent->inner_scope_ = new_parent->sibling_;
784 inner_scope->sibling_ = nullptr;
785 // Reset the sibling rather than the inner_scope_ since we
786 // want to keep new_parent there.
787 new_parent->sibling_ = top_inner_scope_;
788 }
789
790 Scope* outer_scope_ = outer_scope_and_calls_eval_.GetPointer();
791 new_parent->unresolved_list_.MoveTail(&outer_scope_->unresolved_list_,
792 top_unresolved_);
793
794 // Move temporaries allocated for complex parameter initializers.
795 DeclarationScope* outer_closure = outer_scope_->GetClosureScope();
796 for (auto it = top_local_; it != outer_closure->locals()->end(); ++it) {
797 Variable* local = *it;
798 DCHECK_EQ(VariableMode::kTemporary, local->mode());
799 DCHECK_EQ(local->scope(), local->scope()->GetClosureScope());
800 DCHECK_NE(local->scope(), new_parent);
801 local->set_scope(new_parent);
802 }
803 new_parent->locals_.MoveTail(outer_closure->locals(), top_local_);
804 outer_closure->locals_.Rewind(top_local_);
805
806 // Move eval calls since Snapshot's creation into new_parent.
807 if (outer_scope_and_calls_eval_->calls_eval_) {
808 new_parent->RecordDeclarationScopeEvalCall();
809 new_parent->inner_scope_calls_eval_ = true;
810 }
811
812 // We are in the arrow function case. The calls eval we may have recorded
813 // is intended for the inner scope and we should simply restore the
814 // original "calls eval" flag of the outer scope.
815 RestoreEvalFlag();
816 Clear();
817 }
818
ReplaceOuterScope(Scope * outer)819 void Scope::ReplaceOuterScope(Scope* outer) {
820 DCHECK_NOT_NULL(outer);
821 DCHECK_NOT_NULL(outer_scope_);
822 DCHECK(!already_resolved_);
823 outer_scope_->RemoveInnerScope(this);
824 outer->AddInnerScope(this);
825 outer_scope_ = outer;
826 }
827
LookupInScopeInfo(const AstRawString * name,Scope * cache)828 Variable* Scope::LookupInScopeInfo(const AstRawString* name, Scope* cache) {
829 DCHECK(!scope_info_.is_null());
830 DCHECK(this->IsOuterScopeOf(cache));
831 DCHECK(!cache->deserialized_scope_uses_external_cache());
832 // The case where where the cache can be another scope is when the cache scope
833 // is the last scope that doesn't use an external cache.
834 DCHECK_IMPLIES(
835 cache != this,
836 cache->outer_scope()->deserialized_scope_uses_external_cache());
837 DCHECK_NULL(cache->variables_.Lookup(name));
838 DisallowHeapAllocation no_gc;
839
840 String name_handle = *name->string();
841 ScopeInfo scope_info = *scope_info_;
842 // The Scope is backed up by ScopeInfo. This means it cannot operate in a
843 // heap-independent mode, and all strings must be internalized immediately. So
844 // it's ok to get the Handle<String> here.
845 bool found = false;
846
847 VariableLocation location;
848 int index;
849 VariableMode mode;
850 InitializationFlag init_flag;
851 MaybeAssignedFlag maybe_assigned_flag;
852 IsStaticFlag is_static_flag;
853
854 {
855 location = VariableLocation::CONTEXT;
856 index =
857 ScopeInfo::ContextSlotIndex(scope_info, name_handle, &mode, &init_flag,
858 &maybe_assigned_flag, &is_static_flag);
859 found = index >= 0;
860 }
861
862 if (!found && is_module_scope()) {
863 location = VariableLocation::MODULE;
864 index = scope_info.ModuleIndex(name_handle, &mode, &init_flag,
865 &maybe_assigned_flag);
866 found = index != 0;
867 }
868
869 if (!found) {
870 index = scope_info.FunctionContextSlotIndex(name_handle);
871 if (index < 0) return nullptr; // Nowhere found.
872 Variable* var = AsDeclarationScope()->DeclareFunctionVar(name, cache);
873 DCHECK_EQ(VariableMode::kConst, var->mode());
874 var->AllocateTo(VariableLocation::CONTEXT, index);
875 return cache->variables_.Lookup(name);
876 }
877
878 if (!is_module_scope()) {
879 DCHECK_NE(index, scope_info.ReceiverContextSlotIndex());
880 }
881
882 bool was_added;
883 Variable* var = cache->variables_.Declare(
884 zone(), this, name, mode, NORMAL_VARIABLE, init_flag, maybe_assigned_flag,
885 IsStaticFlag::kNotStatic, &was_added);
886 DCHECK(was_added);
887 var->AllocateTo(location, index);
888 return var;
889 }
890
DeclareParameter(const AstRawString * name,VariableMode mode,bool is_optional,bool is_rest,AstValueFactory * ast_value_factory,int position)891 Variable* DeclarationScope::DeclareParameter(const AstRawString* name,
892 VariableMode mode,
893 bool is_optional, bool is_rest,
894 AstValueFactory* ast_value_factory,
895 int position) {
896 DCHECK(!already_resolved_);
897 DCHECK(is_function_scope() || is_module_scope());
898 DCHECK(!has_rest_);
899 DCHECK(!is_optional || !is_rest);
900 DCHECK(!is_being_lazily_parsed_);
901 DCHECK(!was_lazily_parsed_);
902 Variable* var;
903 if (mode == VariableMode::kTemporary) {
904 var = NewTemporary(name);
905 } else {
906 var = LookupLocal(name);
907 DCHECK_EQ(mode, VariableMode::kVar);
908 DCHECK(var->is_parameter());
909 }
910 has_rest_ = is_rest;
911 var->set_initializer_position(position);
912 params_.Add(var, zone());
913 if (!is_rest) ++num_parameters_;
914 if (name == ast_value_factory->arguments_string()) {
915 has_arguments_parameter_ = true;
916 }
917 // Params are automatically marked as used to make sure that the debugger and
918 // function.arguments sees them.
919 // TODO(verwaest): Reevaluate whether we always need to do this, since
920 // strict-mode function.arguments does not make the arguments available.
921 var->set_is_used();
922 return var;
923 }
924
RecordParameter(bool is_rest)925 void DeclarationScope::RecordParameter(bool is_rest) {
926 DCHECK(!already_resolved_);
927 DCHECK(is_function_scope() || is_module_scope());
928 DCHECK(is_being_lazily_parsed_);
929 DCHECK(!has_rest_);
930 has_rest_ = is_rest;
931 if (!is_rest) ++num_parameters_;
932 }
933
DeclareLocal(const AstRawString * name,VariableMode mode,VariableKind kind,bool * was_added,InitializationFlag init_flag)934 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
935 VariableKind kind, bool* was_added,
936 InitializationFlag init_flag) {
937 DCHECK(!already_resolved_);
938 // Private methods should be declared with ClassScope::DeclarePrivateName()
939 DCHECK(!IsPrivateMethodOrAccessorVariableMode(mode));
940 // This function handles VariableMode::kVar, VariableMode::kLet, and
941 // VariableMode::kConst modes. VariableMode::kDynamic variables are
942 // introduced during variable allocation, and VariableMode::kTemporary
943 // variables are allocated via NewTemporary().
944 DCHECK(IsDeclaredVariableMode(mode));
945 DCHECK_IMPLIES(GetDeclarationScope()->is_being_lazily_parsed(),
946 mode == VariableMode::kVar || mode == VariableMode::kLet ||
947 mode == VariableMode::kConst);
948 DCHECK(!GetDeclarationScope()->was_lazily_parsed());
949 Variable* var =
950 Declare(zone(), name, mode, kind, init_flag, kNotAssigned, was_added);
951
952 // Pessimistically assume that top-level variables will be assigned and used.
953 //
954 // Top-level variables in a script can be accessed by other scripts or even
955 // become global properties. While this does not apply to top-level variables
956 // in a module (assuming they are not exported), we must still mark these as
957 // assigned because they might be accessed by a lazily parsed top-level
958 // function, which, for efficiency, we preparse without variable tracking.
959 if (is_script_scope() || is_module_scope()) {
960 if (mode != VariableMode::kConst) var->SetMaybeAssigned();
961 var->set_is_used();
962 }
963
964 return var;
965 }
966
DeclareVariable(Declaration * declaration,const AstRawString * name,int pos,VariableMode mode,VariableKind kind,InitializationFlag init,bool * was_added,bool * sloppy_mode_block_scope_function_redefinition,bool * ok)967 Variable* Scope::DeclareVariable(
968 Declaration* declaration, const AstRawString* name, int pos,
969 VariableMode mode, VariableKind kind, InitializationFlag init,
970 bool* was_added, bool* sloppy_mode_block_scope_function_redefinition,
971 bool* ok) {
972 // Private methods should be declared with ClassScope::DeclarePrivateName()
973 DCHECK(!IsPrivateMethodOrAccessorVariableMode(mode));
974 DCHECK(IsDeclaredVariableMode(mode));
975 DCHECK(!already_resolved_);
976 DCHECK(!GetDeclarationScope()->is_being_lazily_parsed());
977 DCHECK(!GetDeclarationScope()->was_lazily_parsed());
978
979 if (mode == VariableMode::kVar && !is_declaration_scope()) {
980 return GetDeclarationScope()->DeclareVariable(
981 declaration, name, pos, mode, kind, init, was_added,
982 sloppy_mode_block_scope_function_redefinition, ok);
983 }
984 DCHECK(!is_catch_scope());
985 DCHECK(!is_with_scope());
986 DCHECK(is_declaration_scope() ||
987 (IsLexicalVariableMode(mode) && is_block_scope()));
988
989 DCHECK_NOT_NULL(name);
990
991 Variable* var = LookupLocal(name);
992 // Declare the variable in the declaration scope.
993 *was_added = var == nullptr;
994 if (V8_LIKELY(*was_added)) {
995 if (V8_UNLIKELY(is_eval_scope() && is_sloppy(language_mode()) &&
996 mode == VariableMode::kVar)) {
997 // In a var binding in a sloppy direct eval, pollute the enclosing scope
998 // with this new binding by doing the following:
999 // The proxy is bound to a lookup variable to force a dynamic declaration
1000 // using the DeclareEvalVar or DeclareEvalFunction runtime functions.
1001 DCHECK_EQ(NORMAL_VARIABLE, kind);
1002 var = NonLocal(name, VariableMode::kDynamic);
1003 // Mark the var as used in case anyone outside the eval wants to use it.
1004 var->set_is_used();
1005 } else {
1006 // Declare the name.
1007 var = DeclareLocal(name, mode, kind, was_added, init);
1008 DCHECK(*was_added);
1009 }
1010 } else {
1011 var->SetMaybeAssigned();
1012 if (V8_UNLIKELY(IsLexicalVariableMode(mode) ||
1013 IsLexicalVariableMode(var->mode()))) {
1014 // The name was declared in this scope before; check for conflicting
1015 // re-declarations. We have a conflict if either of the declarations is
1016 // not a var (in script scope, we also have to ignore legacy const for
1017 // compatibility). There is similar code in runtime.cc in the Declare
1018 // functions. The function CheckConflictingVarDeclarations checks for
1019 // var and let bindings from different scopes whereas this is a check
1020 // for conflicting declarations within the same scope. This check also
1021 // covers the special case
1022 //
1023 // function () { let x; { var x; } }
1024 //
1025 // because the var declaration is hoisted to the function scope where
1026 // 'x' is already bound.
1027 //
1028 // In harmony we treat re-declarations as early errors. See ES5 16 for a
1029 // definition of early errors.
1030 //
1031 // Allow duplicate function decls for web compat, see bug 4693.
1032 *ok = var->is_sloppy_block_function() &&
1033 kind == SLOPPY_BLOCK_FUNCTION_VARIABLE;
1034 *sloppy_mode_block_scope_function_redefinition = *ok;
1035 }
1036 }
1037 DCHECK_NOT_NULL(var);
1038
1039 // We add a declaration node for every declaration. The compiler
1040 // will only generate code if necessary. In particular, declarations
1041 // for inner local variables that do not represent functions won't
1042 // result in any generated code.
1043 //
1044 // This will lead to multiple declaration nodes for the
1045 // same variable if it is declared several times. This is not a
1046 // semantic issue, but it may be a performance issue since it may
1047 // lead to repeated DeclareEvalVar or DeclareEvalFunction calls.
1048 decls_.Add(declaration);
1049 declaration->set_var(var);
1050 return var;
1051 }
1052
DeclareVariableName(const AstRawString * name,VariableMode mode,bool * was_added,VariableKind kind)1053 Variable* Scope::DeclareVariableName(const AstRawString* name,
1054 VariableMode mode, bool* was_added,
1055 VariableKind kind) {
1056 DCHECK(IsDeclaredVariableMode(mode));
1057 DCHECK(!already_resolved_);
1058 DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
1059 // Private methods should be declared with ClassScope::DeclarePrivateName()
1060 DCHECK(!IsPrivateMethodOrAccessorVariableMode(mode));
1061 if (mode == VariableMode::kVar && !is_declaration_scope()) {
1062 return GetDeclarationScope()->DeclareVariableName(name, mode, was_added,
1063 kind);
1064 }
1065 DCHECK(!is_with_scope());
1066 DCHECK(!is_eval_scope());
1067 DCHECK(is_declaration_scope() || IsLexicalVariableMode(mode));
1068 DCHECK(scope_info_.is_null());
1069
1070 // Declare the variable in the declaration scope.
1071 Variable* var = DeclareLocal(name, mode, kind, was_added);
1072 if (!*was_added) {
1073 if (IsLexicalVariableMode(mode) || IsLexicalVariableMode(var->mode())) {
1074 if (!var->is_sloppy_block_function() ||
1075 kind != SLOPPY_BLOCK_FUNCTION_VARIABLE) {
1076 // Duplicate functions are allowed in the sloppy mode, but if this is
1077 // not a function declaration, it's an error. This is an error PreParser
1078 // hasn't previously detected.
1079 return nullptr;
1080 }
1081 // Sloppy block function redefinition.
1082 }
1083 var->SetMaybeAssigned();
1084 }
1085 var->set_is_used();
1086 return var;
1087 }
1088
DeclareCatchVariableName(const AstRawString * name)1089 Variable* Scope::DeclareCatchVariableName(const AstRawString* name) {
1090 DCHECK(!already_resolved_);
1091 DCHECK(is_catch_scope());
1092 DCHECK(scope_info_.is_null());
1093
1094 bool was_added;
1095 Variable* result = Declare(zone(), name, VariableMode::kVar, NORMAL_VARIABLE,
1096 kCreatedInitialized, kNotAssigned, &was_added);
1097 DCHECK(was_added);
1098 return result;
1099 }
1100
AddUnresolved(VariableProxy * proxy)1101 void Scope::AddUnresolved(VariableProxy* proxy) {
1102 DCHECK(!already_resolved_);
1103 DCHECK(!proxy->is_resolved());
1104 unresolved_list_.Add(proxy);
1105 }
1106
DeclareDynamicGlobal(const AstRawString * name,VariableKind kind,Scope * cache)1107 Variable* DeclarationScope::DeclareDynamicGlobal(const AstRawString* name,
1108 VariableKind kind,
1109 Scope* cache) {
1110 DCHECK(is_script_scope());
1111 bool was_added;
1112 return cache->variables_.Declare(
1113 zone(), this, name, VariableMode::kDynamicGlobal, kind,
1114 kCreatedInitialized, kNotAssigned, IsStaticFlag::kNotStatic, &was_added);
1115 // TODO(neis): Mark variable as maybe-assigned?
1116 }
1117
RemoveUnresolved(VariableProxy * var)1118 bool Scope::RemoveUnresolved(VariableProxy* var) {
1119 return unresolved_list_.Remove(var);
1120 }
1121
DeleteUnresolved(VariableProxy * var)1122 void Scope::DeleteUnresolved(VariableProxy* var) {
1123 DCHECK(unresolved_list_.Contains(var));
1124 var->mark_removed_from_unresolved();
1125 }
1126
NewTemporary(const AstRawString * name)1127 Variable* Scope::NewTemporary(const AstRawString* name) {
1128 return NewTemporary(name, kMaybeAssigned);
1129 }
1130
NewTemporary(const AstRawString * name,MaybeAssignedFlag maybe_assigned)1131 Variable* Scope::NewTemporary(const AstRawString* name,
1132 MaybeAssignedFlag maybe_assigned) {
1133 DeclarationScope* scope = GetClosureScope();
1134 Variable* var = zone()->New<Variable>(scope, name, VariableMode::kTemporary,
1135 NORMAL_VARIABLE, kCreatedInitialized);
1136 scope->AddLocal(var);
1137 if (maybe_assigned == kMaybeAssigned) var->SetMaybeAssigned();
1138 return var;
1139 }
1140
CheckConflictingVarDeclarations(bool * allowed_catch_binding_var_redeclaration)1141 Declaration* DeclarationScope::CheckConflictingVarDeclarations(
1142 bool* allowed_catch_binding_var_redeclaration) {
1143 if (has_checked_syntax_) return nullptr;
1144 for (Declaration* decl : decls_) {
1145 // Lexical vs lexical conflicts within the same scope have already been
1146 // captured in Parser::Declare. The only conflicts we still need to check
1147 // are lexical vs nested var.
1148 if (decl->IsVariableDeclaration() &&
1149 decl->AsVariableDeclaration()->AsNested() != nullptr) {
1150 Scope* current = decl->AsVariableDeclaration()->AsNested()->scope();
1151 DCHECK(decl->var()->mode() == VariableMode::kVar ||
1152 decl->var()->mode() == VariableMode::kDynamic);
1153 // Iterate through all scopes until the declaration scope.
1154 do {
1155 // There is a conflict if there exists a non-VAR binding.
1156 Variable* other_var = current->LookupLocal(decl->var()->raw_name());
1157 if (current->is_catch_scope()) {
1158 *allowed_catch_binding_var_redeclaration |= other_var != nullptr;
1159 current = current->outer_scope();
1160 continue;
1161 }
1162 if (other_var != nullptr) {
1163 DCHECK(IsLexicalVariableMode(other_var->mode()));
1164 return decl;
1165 }
1166 current = current->outer_scope();
1167 } while (current != this);
1168 }
1169 }
1170
1171 if (V8_LIKELY(!is_eval_scope())) return nullptr;
1172 if (!is_sloppy(language_mode())) return nullptr;
1173
1174 // Var declarations in sloppy eval are hoisted to the first non-eval
1175 // declaration scope. Check for conflicts between the eval scope that
1176 // declaration scope.
1177 Scope* end = outer_scope()->GetNonEvalDeclarationScope()->outer_scope();
1178
1179 for (Declaration* decl : decls_) {
1180 if (IsLexicalVariableMode(decl->var()->mode())) continue;
1181 Scope* current = outer_scope_;
1182 // Iterate through all scopes until and including the declaration scope.
1183 do {
1184 // There is a conflict if there exists a non-VAR binding up to the
1185 // declaration scope in which this sloppy-eval runs.
1186 //
1187 // Use the current scope as the cache, since the general cache would be
1188 // the end scope.
1189 Variable* other_var =
1190 current->LookupInScopeOrScopeInfo(decl->var()->raw_name(), current);
1191 if (other_var != nullptr && !current->is_catch_scope()) {
1192 // If this is a VAR, then we know that it doesn't conflict with
1193 // anything, so we can't conflict with anything either. The one
1194 // exception is the binding variable in catch scopes, which is handled
1195 // by the if above.
1196 if (!IsLexicalVariableMode(other_var->mode())) break;
1197 return decl;
1198 }
1199 current = current->outer_scope();
1200 } while (current != end);
1201 }
1202 return nullptr;
1203 }
1204
FindVariableDeclaredIn(Scope * scope,VariableMode mode_limit)1205 const AstRawString* Scope::FindVariableDeclaredIn(Scope* scope,
1206 VariableMode mode_limit) {
1207 const VariableMap& variables = scope->variables_;
1208 for (ZoneHashMap::Entry* p = variables.Start(); p != nullptr;
1209 p = variables.Next(p)) {
1210 const AstRawString* name = static_cast<const AstRawString*>(p->key);
1211 Variable* var = LookupLocal(name);
1212 if (var != nullptr && var->mode() <= mode_limit) return name;
1213 }
1214 return nullptr;
1215 }
1216
DeserializeReceiver(AstValueFactory * ast_value_factory)1217 void DeclarationScope::DeserializeReceiver(AstValueFactory* ast_value_factory) {
1218 if (is_script_scope()) {
1219 DCHECK_NOT_NULL(receiver_);
1220 return;
1221 }
1222 DCHECK(has_this_declaration());
1223 DeclareThis(ast_value_factory);
1224 if (is_debug_evaluate_scope()) {
1225 receiver_->AllocateTo(VariableLocation::LOOKUP, -1);
1226 } else {
1227 receiver_->AllocateTo(VariableLocation::CONTEXT,
1228 scope_info_->ReceiverContextSlotIndex());
1229 }
1230 }
1231
AllocateVariables(ParseInfo * info)1232 bool DeclarationScope::AllocateVariables(ParseInfo* info) {
1233 // Module variables must be allocated before variable resolution
1234 // to ensure that UpdateNeedsHoleCheck() can detect import variables.
1235 if (is_module_scope()) AsModuleScope()->AllocateModuleVariables();
1236
1237 PrivateNameScopeIterator private_name_scope_iter(this);
1238 if (!private_name_scope_iter.Done() &&
1239 !private_name_scope_iter.GetScope()->ResolvePrivateNames(info)) {
1240 DCHECK(info->pending_error_handler()->has_pending_error());
1241 return false;
1242 }
1243
1244 if (!ResolveVariablesRecursively(info->scope())) {
1245 DCHECK(info->pending_error_handler()->has_pending_error());
1246 return false;
1247 }
1248
1249 // Don't allocate variables of preparsed scopes.
1250 if (!was_lazily_parsed()) AllocateVariablesRecursively();
1251
1252 return true;
1253 }
1254
HasThisReference() const1255 bool Scope::HasThisReference() const {
1256 if (is_declaration_scope() && AsDeclarationScope()->has_this_reference()) {
1257 return true;
1258 }
1259
1260 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
1261 if (!scope->is_declaration_scope() ||
1262 !scope->AsDeclarationScope()->has_this_declaration()) {
1263 if (scope->HasThisReference()) return true;
1264 }
1265 }
1266
1267 return false;
1268 }
1269
AllowsLazyParsingWithoutUnresolvedVariables(const Scope * outer) const1270 bool Scope::AllowsLazyParsingWithoutUnresolvedVariables(
1271 const Scope* outer) const {
1272 // If none of the outer scopes need to decide whether to context allocate
1273 // specific variables, we can preparse inner functions without unresolved
1274 // variables. Otherwise we need to find unresolved variables to force context
1275 // allocation of the matching declarations. We can stop at the outer scope for
1276 // the parse, since context allocation of those variables is already
1277 // guaranteed to be correct.
1278 for (const Scope* s = this; s != outer; s = s->outer_scope_) {
1279 // Eval forces context allocation on all outer scopes, so we don't need to
1280 // look at those scopes. Sloppy eval makes top-level non-lexical variables
1281 // dynamic, whereas strict-mode requires context allocation.
1282 if (s->is_eval_scope()) return is_sloppy(s->language_mode());
1283 // Catch scopes force context allocation of all variables.
1284 if (s->is_catch_scope()) continue;
1285 // With scopes do not introduce variables that need allocation.
1286 if (s->is_with_scope()) continue;
1287 DCHECK(s->is_module_scope() || s->is_block_scope() ||
1288 s->is_function_scope());
1289 return false;
1290 }
1291 return true;
1292 }
1293
AllowsLazyCompilation() const1294 bool DeclarationScope::AllowsLazyCompilation() const {
1295 // Functions which force eager compilation and class member initializer
1296 // functions are not lazily compilable.
1297 return !force_eager_compilation_ &&
1298 !IsClassMembersInitializerFunction(function_kind());
1299 }
1300
ContextChainLength(Scope * scope) const1301 int Scope::ContextChainLength(Scope* scope) const {
1302 int n = 0;
1303 for (const Scope* s = this; s != scope; s = s->outer_scope_) {
1304 DCHECK_NOT_NULL(s); // scope must be in the scope chain
1305 if (s->NeedsContext()) n++;
1306 }
1307 return n;
1308 }
1309
ContextChainLengthUntilOutermostSloppyEval() const1310 int Scope::ContextChainLengthUntilOutermostSloppyEval() const {
1311 int result = 0;
1312 int length = 0;
1313
1314 for (const Scope* s = this; s != nullptr; s = s->outer_scope()) {
1315 if (!s->NeedsContext()) continue;
1316 length++;
1317 if (s->is_declaration_scope() &&
1318 s->AsDeclarationScope()->sloppy_eval_can_extend_vars()) {
1319 result = length;
1320 }
1321 }
1322
1323 return result;
1324 }
1325
GetDeclarationScope()1326 DeclarationScope* Scope::GetDeclarationScope() {
1327 Scope* scope = this;
1328 while (!scope->is_declaration_scope()) {
1329 scope = scope->outer_scope();
1330 }
1331 return scope->AsDeclarationScope();
1332 }
1333
GetNonEvalDeclarationScope()1334 DeclarationScope* Scope::GetNonEvalDeclarationScope() {
1335 Scope* scope = this;
1336 while (!scope->is_declaration_scope() || scope->is_eval_scope()) {
1337 scope = scope->outer_scope();
1338 }
1339 return scope->AsDeclarationScope();
1340 }
1341
GetClosureScope() const1342 const DeclarationScope* Scope::GetClosureScope() const {
1343 const Scope* scope = this;
1344 while (!scope->is_declaration_scope() || scope->is_block_scope()) {
1345 scope = scope->outer_scope();
1346 }
1347 return scope->AsDeclarationScope();
1348 }
1349
GetClosureScope()1350 DeclarationScope* Scope::GetClosureScope() {
1351 Scope* scope = this;
1352 while (!scope->is_declaration_scope() || scope->is_block_scope()) {
1353 scope = scope->outer_scope();
1354 }
1355 return scope->AsDeclarationScope();
1356 }
1357
NeedsScopeInfo() const1358 bool Scope::NeedsScopeInfo() const {
1359 DCHECK(!already_resolved_);
1360 DCHECK(GetClosureScope()->ShouldEagerCompile());
1361 // The debugger expects all functions to have scope infos.
1362 // TODO(jochen|yangguo): Remove this requirement.
1363 if (is_function_scope()) return true;
1364 return NeedsContext();
1365 }
1366
ShouldBanArguments()1367 bool Scope::ShouldBanArguments() {
1368 return GetReceiverScope()->should_ban_arguments();
1369 }
1370
GetReceiverScope()1371 DeclarationScope* Scope::GetReceiverScope() {
1372 Scope* scope = this;
1373 while (!scope->is_declaration_scope() ||
1374 (!scope->is_script_scope() &&
1375 !scope->AsDeclarationScope()->has_this_declaration())) {
1376 scope = scope->outer_scope();
1377 }
1378 return scope->AsDeclarationScope();
1379 }
1380
GetScriptScope()1381 DeclarationScope* Scope::GetScriptScope() {
1382 Scope* scope = this;
1383 while (!scope->is_script_scope()) {
1384 scope = scope->outer_scope();
1385 }
1386 return scope->AsDeclarationScope();
1387 }
1388
GetOuterScopeWithContext()1389 Scope* Scope::GetOuterScopeWithContext() {
1390 Scope* scope = outer_scope_;
1391 while (scope && !scope->NeedsContext()) {
1392 scope = scope->outer_scope();
1393 }
1394 return scope;
1395 }
1396
1397 namespace {
WasLazilyParsed(Scope * scope)1398 bool WasLazilyParsed(Scope* scope) {
1399 return scope->is_declaration_scope() &&
1400 scope->AsDeclarationScope()->was_lazily_parsed();
1401 }
1402
1403 } // namespace
1404
1405 template <typename FunctionType>
ForEach(FunctionType callback)1406 void Scope::ForEach(FunctionType callback) {
1407 Scope* scope = this;
1408 while (true) {
1409 Iteration iteration = callback(scope);
1410 // Try to descend into inner scopes first.
1411 if ((iteration == Iteration::kDescend) && scope->inner_scope_ != nullptr) {
1412 scope = scope->inner_scope_;
1413 } else {
1414 // Find the next outer scope with a sibling.
1415 while (scope->sibling_ == nullptr) {
1416 if (scope == this) return;
1417 scope = scope->outer_scope_;
1418 }
1419 if (scope == this) return;
1420 scope = scope->sibling_;
1421 }
1422 }
1423 }
1424
IsOuterScopeOf(Scope * other) const1425 bool Scope::IsOuterScopeOf(Scope* other) const {
1426 Scope* scope = other;
1427 while (scope) {
1428 if (scope == this) return true;
1429 scope = scope->outer_scope();
1430 }
1431 return false;
1432 }
1433
CollectNonLocals(DeclarationScope * max_outer_scope,Isolate * isolate,Handle<StringSet> * non_locals)1434 void Scope::CollectNonLocals(DeclarationScope* max_outer_scope,
1435 Isolate* isolate, Handle<StringSet>* non_locals) {
1436 this->ForEach([max_outer_scope, isolate, non_locals](Scope* scope) {
1437 // Module variables must be allocated before variable resolution
1438 // to ensure that UpdateNeedsHoleCheck() can detect import variables.
1439 if (scope->is_module_scope()) {
1440 scope->AsModuleScope()->AllocateModuleVariables();
1441 }
1442
1443 // Lazy parsed declaration scopes are already partially analyzed. If there
1444 // are unresolved references remaining, they just need to be resolved in
1445 // outer scopes.
1446 Scope* lookup = WasLazilyParsed(scope) ? scope->outer_scope() : scope;
1447
1448 for (VariableProxy* proxy : scope->unresolved_list_) {
1449 DCHECK(!proxy->is_resolved());
1450 Variable* var =
1451 Lookup<kParsedScope>(proxy, lookup, max_outer_scope->outer_scope());
1452 if (var == nullptr) {
1453 *non_locals = StringSet::Add(isolate, *non_locals, proxy->name());
1454 } else {
1455 // In this case we need to leave scopes in a way that they can be
1456 // allocated. If we resolved variables from lazy parsed scopes, we need
1457 // to context allocate the var.
1458 scope->ResolveTo(proxy, var);
1459 if (!var->is_dynamic() && lookup != scope)
1460 var->ForceContextAllocation();
1461 }
1462 }
1463
1464 // Clear unresolved_list_ as it's in an inconsistent state.
1465 scope->unresolved_list_.Clear();
1466 return Iteration::kDescend;
1467 });
1468 }
1469
AnalyzePartially(DeclarationScope * max_outer_scope,AstNodeFactory * ast_node_factory,UnresolvedList * new_unresolved_list,bool maybe_in_arrowhead)1470 void Scope::AnalyzePartially(DeclarationScope* max_outer_scope,
1471 AstNodeFactory* ast_node_factory,
1472 UnresolvedList* new_unresolved_list,
1473 bool maybe_in_arrowhead) {
1474 this->ForEach([max_outer_scope, ast_node_factory, new_unresolved_list,
1475 maybe_in_arrowhead](Scope* scope) {
1476 DCHECK_IMPLIES(scope->is_declaration_scope(),
1477 !scope->AsDeclarationScope()->was_lazily_parsed());
1478
1479 for (VariableProxy* proxy = scope->unresolved_list_.first();
1480 proxy != nullptr; proxy = proxy->next_unresolved()) {
1481 if (proxy->is_removed_from_unresolved()) continue;
1482 DCHECK(!proxy->is_resolved());
1483 Variable* var =
1484 Lookup<kParsedScope>(proxy, scope, max_outer_scope->outer_scope());
1485 if (var == nullptr) {
1486 // Don't copy unresolved references to the script scope, unless it's a
1487 // reference to a private name or method. In that case keep it so we
1488 // can fail later.
1489 if (!max_outer_scope->outer_scope()->is_script_scope() ||
1490 maybe_in_arrowhead) {
1491 VariableProxy* copy = ast_node_factory->CopyVariableProxy(proxy);
1492 new_unresolved_list->Add(copy);
1493 }
1494 } else {
1495 var->set_is_used();
1496 if (proxy->is_assigned()) var->SetMaybeAssigned();
1497 }
1498 }
1499
1500 // Clear unresolved_list_ as it's in an inconsistent state.
1501 scope->unresolved_list_.Clear();
1502 return Iteration::kDescend;
1503 });
1504 }
1505
CollectNonLocals(Isolate * isolate,Handle<StringSet> non_locals)1506 Handle<StringSet> DeclarationScope::CollectNonLocals(
1507 Isolate* isolate, Handle<StringSet> non_locals) {
1508 Scope::CollectNonLocals(this, isolate, &non_locals);
1509 return non_locals;
1510 }
1511
ResetAfterPreparsing(AstValueFactory * ast_value_factory,bool aborted)1512 void DeclarationScope::ResetAfterPreparsing(AstValueFactory* ast_value_factory,
1513 bool aborted) {
1514 DCHECK(is_function_scope());
1515
1516 // Reset all non-trivial members.
1517 params_.DropAndClear();
1518 decls_.Clear();
1519 locals_.Clear();
1520 inner_scope_ = nullptr;
1521 unresolved_list_.Clear();
1522 sloppy_block_functions_.Clear();
1523 rare_data_ = nullptr;
1524 has_rest_ = false;
1525 function_ = nullptr;
1526
1527 DCHECK_NE(zone(), ast_value_factory->zone());
1528 // Make sure this scope and zone aren't used for allocation anymore.
1529 {
1530 // Get the zone, while variables_ is still valid
1531 Zone* zone = this->zone();
1532 variables_.Invalidate();
1533 zone->ReleaseMemory();
1534 }
1535
1536 if (aborted) {
1537 // Prepare scope for use in the outer zone.
1538 variables_ = VariableMap(ast_value_factory->zone());
1539 if (!IsArrowFunction(function_kind_)) {
1540 has_simple_parameters_ = true;
1541 DeclareDefaultFunctionVariables(ast_value_factory);
1542 }
1543 }
1544
1545 #ifdef DEBUG
1546 needs_migration_ = false;
1547 is_being_lazily_parsed_ = false;
1548 #endif
1549
1550 was_lazily_parsed_ = !aborted;
1551 }
1552
IsSkippableFunctionScope()1553 bool Scope::IsSkippableFunctionScope() {
1554 // Lazy non-arrow function scopes are skippable. Lazy functions are exactly
1555 // those Scopes which have their own PreparseDataBuilder object. This
1556 // logic ensures that the scope allocation data is consistent with the
1557 // skippable function data (both agree on where the lazy function boundaries
1558 // are).
1559 if (!is_function_scope()) return false;
1560 DeclarationScope* declaration_scope = AsDeclarationScope();
1561 return !declaration_scope->is_arrow_scope() &&
1562 declaration_scope->preparse_data_builder() != nullptr;
1563 }
1564
SavePreparseData(Parser * parser)1565 void Scope::SavePreparseData(Parser* parser) {
1566 this->ForEach([parser](Scope* scope) {
1567 if (scope->IsSkippableFunctionScope()) {
1568 scope->AsDeclarationScope()->SavePreparseDataForDeclarationScope(parser);
1569 }
1570 return Iteration::kDescend;
1571 });
1572 }
1573
SavePreparseDataForDeclarationScope(Parser * parser)1574 void DeclarationScope::SavePreparseDataForDeclarationScope(Parser* parser) {
1575 if (preparse_data_builder_ == nullptr) return;
1576 preparse_data_builder_->SaveScopeAllocationData(this, parser);
1577 }
1578
AnalyzePartially(Parser * parser,AstNodeFactory * ast_node_factory,bool maybe_in_arrowhead)1579 void DeclarationScope::AnalyzePartially(Parser* parser,
1580 AstNodeFactory* ast_node_factory,
1581 bool maybe_in_arrowhead) {
1582 DCHECK(!force_eager_compilation_);
1583 UnresolvedList new_unresolved_list;
1584 if (!IsArrowFunction(function_kind_) &&
1585 (!outer_scope_->is_script_scope() || maybe_in_arrowhead ||
1586 (preparse_data_builder_ != nullptr &&
1587 preparse_data_builder_->HasInnerFunctions()))) {
1588 // Try to resolve unresolved variables for this Scope and migrate those
1589 // which cannot be resolved inside. It doesn't make sense to try to resolve
1590 // them in the outer Scopes here, because they are incomplete.
1591 Scope::AnalyzePartially(this, ast_node_factory, &new_unresolved_list,
1592 maybe_in_arrowhead);
1593
1594 // Migrate function_ to the right Zone.
1595 if (function_ != nullptr) {
1596 function_ = ast_node_factory->CopyVariable(function_);
1597 }
1598
1599 SavePreparseData(parser);
1600 }
1601
1602 #ifdef DEBUG
1603 if (FLAG_print_scopes) {
1604 PrintF("Inner function scope:\n");
1605 Print();
1606 }
1607 #endif
1608
1609 ResetAfterPreparsing(ast_node_factory->ast_value_factory(), false);
1610
1611 unresolved_list_ = std::move(new_unresolved_list);
1612 }
1613
RewriteReplGlobalVariables()1614 void DeclarationScope::RewriteReplGlobalVariables() {
1615 DCHECK(is_script_scope());
1616 if (!is_repl_mode_scope()) return;
1617
1618 for (VariableMap::Entry* p = variables_.Start(); p != nullptr;
1619 p = variables_.Next(p)) {
1620 Variable* var = reinterpret_cast<Variable*>(p->value);
1621 var->RewriteLocationForRepl();
1622 }
1623 }
1624
1625 #ifdef DEBUG
1626 namespace {
1627
Header(ScopeType scope_type,FunctionKind function_kind,bool is_declaration_scope)1628 const char* Header(ScopeType scope_type, FunctionKind function_kind,
1629 bool is_declaration_scope) {
1630 switch (scope_type) {
1631 case EVAL_SCOPE: return "eval";
1632 case FUNCTION_SCOPE:
1633 if (IsGeneratorFunction(function_kind)) return "function*";
1634 if (IsAsyncFunction(function_kind)) return "async function";
1635 if (IsArrowFunction(function_kind)) return "arrow";
1636 return "function";
1637 case MODULE_SCOPE: return "module";
1638 case SCRIPT_SCOPE: return "global";
1639 case CATCH_SCOPE: return "catch";
1640 case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
1641 case CLASS_SCOPE:
1642 return "class";
1643 case WITH_SCOPE: return "with";
1644 }
1645 UNREACHABLE();
1646 }
1647
Indent(int n,const char * str)1648 void Indent(int n, const char* str) { PrintF("%*s%s", n, "", str); }
1649
PrintName(const AstRawString * name)1650 void PrintName(const AstRawString* name) {
1651 PrintF("%.*s", name->length(), name->raw_data());
1652 }
1653
PrintLocation(Variable * var)1654 void PrintLocation(Variable* var) {
1655 switch (var->location()) {
1656 case VariableLocation::UNALLOCATED:
1657 break;
1658 case VariableLocation::PARAMETER:
1659 PrintF("parameter[%d]", var->index());
1660 break;
1661 case VariableLocation::LOCAL:
1662 PrintF("local[%d]", var->index());
1663 break;
1664 case VariableLocation::CONTEXT:
1665 PrintF("context[%d]", var->index());
1666 break;
1667 case VariableLocation::LOOKUP:
1668 PrintF("lookup");
1669 break;
1670 case VariableLocation::MODULE:
1671 PrintF("module");
1672 break;
1673 case VariableLocation::REPL_GLOBAL:
1674 PrintF("repl global[%d]", var->index());
1675 break;
1676 }
1677 }
1678
PrintVar(int indent,Variable * var)1679 void PrintVar(int indent, Variable* var) {
1680 Indent(indent, VariableMode2String(var->mode()));
1681 PrintF(" ");
1682 if (var->raw_name()->IsEmpty())
1683 PrintF(".%p", reinterpret_cast<void*>(var));
1684 else
1685 PrintName(var->raw_name());
1686 PrintF("; // (%p) ", reinterpret_cast<void*>(var));
1687 PrintLocation(var);
1688 bool comma = !var->IsUnallocated();
1689 if (var->has_forced_context_allocation()) {
1690 if (comma) PrintF(", ");
1691 PrintF("forced context allocation");
1692 comma = true;
1693 }
1694 if (var->maybe_assigned() == kNotAssigned) {
1695 if (comma) PrintF(", ");
1696 PrintF("never assigned");
1697 comma = true;
1698 }
1699 if (var->initialization_flag() == kNeedsInitialization &&
1700 !var->binding_needs_init()) {
1701 if (comma) PrintF(", ");
1702 PrintF("hole initialization elided");
1703 }
1704 PrintF("\n");
1705 }
1706
PrintMap(int indent,const char * label,VariableMap * map,bool locals,Variable * function_var)1707 void PrintMap(int indent, const char* label, VariableMap* map, bool locals,
1708 Variable* function_var) {
1709 bool printed_label = false;
1710 for (VariableMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
1711 Variable* var = reinterpret_cast<Variable*>(p->value);
1712 if (var == function_var) continue;
1713 bool local = !IsDynamicVariableMode(var->mode());
1714 if ((locals ? local : !local) &&
1715 (var->is_used() || !var->IsUnallocated())) {
1716 if (!printed_label) {
1717 Indent(indent, label);
1718 printed_label = true;
1719 }
1720 PrintVar(indent, var);
1721 }
1722 }
1723 }
1724
1725 } // anonymous namespace
1726
PrintParameters()1727 void DeclarationScope::PrintParameters() {
1728 PrintF(" (");
1729 for (int i = 0; i < params_.length(); i++) {
1730 if (i > 0) PrintF(", ");
1731 const AstRawString* name = params_[i]->raw_name();
1732 if (name->IsEmpty()) {
1733 PrintF(".%p", reinterpret_cast<void*>(params_[i]));
1734 } else {
1735 PrintName(name);
1736 }
1737 }
1738 PrintF(")");
1739 }
1740
Print(int n)1741 void Scope::Print(int n) {
1742 int n0 = (n > 0 ? n : 0);
1743 int n1 = n0 + 2; // indentation
1744
1745 // Print header.
1746 FunctionKind function_kind = is_function_scope()
1747 ? AsDeclarationScope()->function_kind()
1748 : kNormalFunction;
1749 Indent(n0, Header(scope_type_, function_kind, is_declaration_scope()));
1750 if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
1751 PrintF(" ");
1752 PrintName(scope_name_);
1753 }
1754
1755 // Print parameters, if any.
1756 Variable* function = nullptr;
1757 if (is_function_scope()) {
1758 AsDeclarationScope()->PrintParameters();
1759 function = AsDeclarationScope()->function_var();
1760 }
1761
1762 PrintF(" { // (%p) (%d, %d)\n", reinterpret_cast<void*>(this),
1763 start_position(), end_position());
1764 if (is_hidden()) {
1765 Indent(n1, "// is hidden\n");
1766 }
1767
1768 // Function name, if any (named function literals, only).
1769 if (function != nullptr) {
1770 Indent(n1, "// (local) function name: ");
1771 PrintName(function->raw_name());
1772 PrintF("\n");
1773 }
1774
1775 // Scope info.
1776 if (is_strict(language_mode())) {
1777 Indent(n1, "// strict mode scope\n");
1778 }
1779 if (IsAsmModule()) Indent(n1, "// scope is an asm module\n");
1780 if (is_declaration_scope() &&
1781 AsDeclarationScope()->sloppy_eval_can_extend_vars()) {
1782 Indent(n1, "// scope calls sloppy 'eval'\n");
1783 }
1784 if (is_declaration_scope() && AsDeclarationScope()->NeedsHomeObject()) {
1785 Indent(n1, "// scope needs home object\n");
1786 }
1787 if (private_name_lookup_skips_outer_class()) {
1788 Indent(n1, "// scope skips outer class for #-names\n");
1789 }
1790 if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
1791 if (is_declaration_scope()) {
1792 DeclarationScope* scope = AsDeclarationScope();
1793 if (scope->was_lazily_parsed()) Indent(n1, "// lazily parsed\n");
1794 if (scope->ShouldEagerCompile()) Indent(n1, "// will be compiled\n");
1795 if (scope->needs_private_name_context_chain_recalc()) {
1796 Indent(n1, "// needs #-name context chain recalc\n");
1797 }
1798 }
1799 if (num_stack_slots_ > 0) {
1800 Indent(n1, "// ");
1801 PrintF("%d stack slots\n", num_stack_slots_);
1802 }
1803 if (num_heap_slots_ > 0) {
1804 Indent(n1, "// ");
1805 PrintF("%d heap slots\n", num_heap_slots_);
1806 }
1807
1808 // Print locals.
1809 if (function != nullptr) {
1810 Indent(n1, "// function var:\n");
1811 PrintVar(n1, function);
1812 }
1813
1814 // Print temporaries.
1815 {
1816 bool printed_header = false;
1817 for (Variable* local : locals_) {
1818 if (local->mode() != VariableMode::kTemporary) continue;
1819 if (!printed_header) {
1820 printed_header = true;
1821 Indent(n1, "// temporary vars:\n");
1822 }
1823 PrintVar(n1, local);
1824 }
1825 }
1826
1827 if (variables_.occupancy() > 0) {
1828 PrintMap(n1, "// local vars:\n", &variables_, true, function);
1829 PrintMap(n1, "// dynamic vars:\n", &variables_, false, function);
1830 }
1831
1832 if (is_class_scope()) {
1833 ClassScope* class_scope = AsClassScope();
1834 if (class_scope->GetRareData() != nullptr) {
1835 PrintMap(n1, "// private name vars:\n",
1836 &(class_scope->GetRareData()->private_name_map), true, function);
1837 Variable* brand = class_scope->brand();
1838 if (brand != nullptr) {
1839 Indent(n1, "// brand var:\n");
1840 PrintVar(n1, brand);
1841 }
1842 }
1843 if (class_scope->class_variable() != nullptr) {
1844 Indent(n1, "// class var");
1845 PrintF("%s%s:\n",
1846 class_scope->class_variable()->is_used() ? ", used" : ", unused",
1847 class_scope->should_save_class_variable_index()
1848 ? ", index saved"
1849 : ", index not saved");
1850 PrintVar(n1, class_scope->class_variable());
1851 }
1852 }
1853
1854 // Print inner scopes (disable by providing negative n).
1855 if (n >= 0) {
1856 for (Scope* scope = inner_scope_; scope != nullptr;
1857 scope = scope->sibling_) {
1858 PrintF("\n");
1859 scope->Print(n1);
1860 }
1861 }
1862
1863 Indent(n0, "}\n");
1864 }
1865
CheckScopePositions()1866 void Scope::CheckScopePositions() {
1867 this->ForEach([](Scope* scope) {
1868 // Visible leaf scopes must have real positions.
1869 if (!scope->is_hidden() && scope->inner_scope_ == nullptr) {
1870 DCHECK_NE(kNoSourcePosition, scope->start_position());
1871 DCHECK_NE(kNoSourcePosition, scope->end_position());
1872 }
1873 return Iteration::kDescend;
1874 });
1875 }
1876
CheckZones()1877 void Scope::CheckZones() {
1878 DCHECK(!needs_migration_);
1879 this->ForEach([](Scope* scope) {
1880 if (WasLazilyParsed(scope)) {
1881 DCHECK_NULL(scope->zone());
1882 DCHECK_NULL(scope->inner_scope_);
1883 return Iteration::kContinue;
1884 }
1885 return Iteration::kDescend;
1886 });
1887 }
1888 #endif // DEBUG
1889
NonLocal(const AstRawString * name,VariableMode mode)1890 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
1891 // Declare a new non-local.
1892 DCHECK(IsDynamicVariableMode(mode));
1893 bool was_added;
1894 Variable* var = variables_.Declare(zone(), this, name, mode, NORMAL_VARIABLE,
1895 kCreatedInitialized, kNotAssigned,
1896 IsStaticFlag::kNotStatic, &was_added);
1897 // Allocate it by giving it a dynamic lookup.
1898 var->AllocateTo(VariableLocation::LOOKUP, -1);
1899 return var;
1900 }
1901
1902 // static
1903 template <Scope::ScopeLookupMode mode>
Lookup(VariableProxy * proxy,Scope * scope,Scope * outer_scope_end,Scope * cache_scope,bool force_context_allocation)1904 Variable* Scope::Lookup(VariableProxy* proxy, Scope* scope,
1905 Scope* outer_scope_end, Scope* cache_scope,
1906 bool force_context_allocation) {
1907 // If we have already passed the cache scope in earlier recursions, we should
1908 // first quickly check if the current scope uses the cache scope before
1909 // continuing.
1910 if (mode == kDeserializedScope &&
1911 scope->deserialized_scope_uses_external_cache()) {
1912 Variable* var = cache_scope->variables_.Lookup(proxy->raw_name());
1913 if (var != nullptr) return var;
1914 }
1915
1916 while (true) {
1917 DCHECK_IMPLIES(mode == kParsedScope, !scope->is_debug_evaluate_scope_);
1918 // Short-cut: whenever we find a debug-evaluate scope, just look everything
1919 // up dynamically. Debug-evaluate doesn't properly create scope info for the
1920 // lookups it does. It may not have a valid 'this' declaration, and anything
1921 // accessed through debug-evaluate might invalidly resolve to
1922 // stack-allocated variables.
1923 // TODO(yangguo): Remove once debug-evaluate creates proper ScopeInfo for
1924 // the scopes in which it's evaluating.
1925 if (mode == kDeserializedScope &&
1926 V8_UNLIKELY(scope->is_debug_evaluate_scope_)) {
1927 DCHECK(scope->deserialized_scope_uses_external_cache() ||
1928 scope == cache_scope);
1929 return cache_scope->NonLocal(proxy->raw_name(), VariableMode::kDynamic);
1930 }
1931
1932 // Try to find the variable in this scope.
1933 Variable* var;
1934 if (mode == kParsedScope) {
1935 var = scope->LookupLocal(proxy->raw_name());
1936 } else {
1937 DCHECK_EQ(mode, kDeserializedScope);
1938 bool external_cache = scope->deserialized_scope_uses_external_cache();
1939 if (!external_cache) {
1940 // Check the cache on each deserialized scope, up to the main cache
1941 // scope when we get to it (we may still have deserialized scopes
1942 // in-between the initial and cache scopes so we can't just check the
1943 // cache before the loop).
1944 Variable* var = scope->variables_.Lookup(proxy->raw_name());
1945 if (var != nullptr) return var;
1946 }
1947 var = scope->LookupInScopeInfo(proxy->raw_name(),
1948 external_cache ? cache_scope : scope);
1949 }
1950
1951 // We found a variable and we are done. (Even if there is an 'eval' in this
1952 // scope which introduces the same variable again, the resulting variable
1953 // remains the same.)
1954 //
1955 // For sloppy eval though, we skip dynamic variable to avoid resolving to a
1956 // variable when the variable and proxy are in the same eval execution. The
1957 // variable is not available on subsequent lazy executions of functions in
1958 // the eval, so this avoids inner functions from looking up different
1959 // variables during eager and lazy compilation.
1960 //
1961 // TODO(leszeks): Maybe we want to restrict this to e.g. lookups of a proxy
1962 // living in a different scope to the current one, or some other
1963 // optimisation.
1964 if (var != nullptr &&
1965 !(scope->is_eval_scope() && var->mode() == VariableMode::kDynamic)) {
1966 if (mode == kParsedScope && force_context_allocation &&
1967 !var->is_dynamic()) {
1968 var->ForceContextAllocation();
1969 }
1970 return var;
1971 }
1972
1973 if (scope->outer_scope_ == outer_scope_end) break;
1974
1975 DCHECK(!scope->is_script_scope());
1976 if (V8_UNLIKELY(scope->is_with_scope())) {
1977 return LookupWith(proxy, scope, outer_scope_end, cache_scope,
1978 force_context_allocation);
1979 }
1980 if (V8_UNLIKELY(
1981 scope->is_declaration_scope() &&
1982 scope->AsDeclarationScope()->sloppy_eval_can_extend_vars())) {
1983 return LookupSloppyEval(proxy, scope, outer_scope_end, cache_scope,
1984 force_context_allocation);
1985 }
1986
1987 force_context_allocation |= scope->is_function_scope();
1988 scope = scope->outer_scope_;
1989
1990 // TODO(verwaest): Separate through AnalyzePartially.
1991 if (mode == kParsedScope && !scope->scope_info_.is_null()) {
1992 DCHECK_NULL(cache_scope);
1993 Scope* cache_scope = scope->GetNonEvalDeclarationScope();
1994 return Lookup<kDeserializedScope>(proxy, scope, outer_scope_end,
1995 cache_scope);
1996 }
1997 }
1998
1999 // We may just be trying to find all free variables. In that case, don't
2000 // declare them in the outer scope.
2001 // TODO(marja): Separate Lookup for preparsed scopes better.
2002 if (mode == kParsedScope && !scope->is_script_scope()) {
2003 return nullptr;
2004 }
2005
2006 // No binding has been found. Declare a variable on the global object.
2007 return scope->AsDeclarationScope()->DeclareDynamicGlobal(
2008 proxy->raw_name(), NORMAL_VARIABLE,
2009 mode == kDeserializedScope ? cache_scope : scope);
2010 }
2011
2012 template Variable* Scope::Lookup<Scope::kParsedScope>(
2013 VariableProxy* proxy, Scope* scope, Scope* outer_scope_end,
2014 Scope* cache_scope, bool force_context_allocation);
2015 template Variable* Scope::Lookup<Scope::kDeserializedScope>(
2016 VariableProxy* proxy, Scope* scope, Scope* outer_scope_end,
2017 Scope* cache_scope, bool force_context_allocation);
2018
LookupWith(VariableProxy * proxy,Scope * scope,Scope * outer_scope_end,Scope * cache_scope,bool force_context_allocation)2019 Variable* Scope::LookupWith(VariableProxy* proxy, Scope* scope,
2020 Scope* outer_scope_end, Scope* cache_scope,
2021 bool force_context_allocation) {
2022 DCHECK(scope->is_with_scope());
2023
2024 Variable* var =
2025 scope->outer_scope_->scope_info_.is_null()
2026 ? Lookup<kParsedScope>(proxy, scope->outer_scope_, outer_scope_end,
2027 nullptr, force_context_allocation)
2028 : Lookup<kDeserializedScope>(proxy, scope->outer_scope_,
2029 outer_scope_end, cache_scope);
2030
2031 if (var == nullptr) return var;
2032
2033 // The current scope is a with scope, so the variable binding can not be
2034 // statically resolved. However, note that it was necessary to do a lookup
2035 // in the outer scope anyway, because if a binding exists in an outer
2036 // scope, the associated variable has to be marked as potentially being
2037 // accessed from inside of an inner with scope (the property may not be in
2038 // the 'with' object).
2039 if (!var->is_dynamic() && var->IsUnallocated()) {
2040 DCHECK(!scope->already_resolved_);
2041 var->set_is_used();
2042 var->ForceContextAllocation();
2043 if (proxy->is_assigned()) var->SetMaybeAssigned();
2044 }
2045 Scope* target_scope;
2046 if (scope->deserialized_scope_uses_external_cache()) {
2047 DCHECK_NOT_NULL(cache_scope);
2048 cache_scope->variables_.Remove(var);
2049 target_scope = cache_scope;
2050 } else {
2051 target_scope = scope;
2052 }
2053 Variable* dynamic =
2054 target_scope->NonLocal(proxy->raw_name(), VariableMode::kDynamic);
2055 dynamic->set_local_if_not_shadowed(var);
2056 return dynamic;
2057 }
2058
LookupSloppyEval(VariableProxy * proxy,Scope * scope,Scope * outer_scope_end,Scope * cache_scope,bool force_context_allocation)2059 Variable* Scope::LookupSloppyEval(VariableProxy* proxy, Scope* scope,
2060 Scope* outer_scope_end, Scope* cache_scope,
2061 bool force_context_allocation) {
2062 DCHECK(scope->is_declaration_scope() &&
2063 scope->AsDeclarationScope()->sloppy_eval_can_extend_vars());
2064
2065 // If we're compiling eval, it's possible that the outer scope is the first
2066 // ScopeInfo-backed scope. We use the next declaration scope as the cache for
2067 // this case, to avoid complexity around sloppy block function hoisting and
2068 // conflict detection through catch scopes in the eval.
2069 Scope* entry_cache = cache_scope == nullptr
2070 ? scope->outer_scope()->GetNonEvalDeclarationScope()
2071 : cache_scope;
2072 Variable* var =
2073 scope->outer_scope_->scope_info_.is_null()
2074 ? Lookup<kParsedScope>(proxy, scope->outer_scope_, outer_scope_end,
2075 nullptr, force_context_allocation)
2076 : Lookup<kDeserializedScope>(proxy, scope->outer_scope_,
2077 outer_scope_end, entry_cache);
2078 if (var == nullptr) return var;
2079
2080 // We may not want to use the cache scope, change it back to the given scope
2081 // if necessary.
2082 if (!scope->deserialized_scope_uses_external_cache()) {
2083 // For a deserialized scope, we'll be replacing the cache_scope.
2084 DCHECK_IMPLIES(!scope->scope_info_.is_null(), cache_scope != nullptr);
2085 cache_scope = scope;
2086 }
2087
2088 // A variable binding may have been found in an outer scope, but the current
2089 // scope makes a sloppy 'eval' call, so the found variable may not be the
2090 // correct one (the 'eval' may introduce a binding with the same name). In
2091 // that case, change the lookup result to reflect this situation. Only
2092 // scopes that can host var bindings (declaration scopes) need be considered
2093 // here (this excludes block and catch scopes), and variable lookups at
2094 // script scope are always dynamic.
2095 if (var->IsGlobalObjectProperty()) {
2096 Scope* target = cache_scope == nullptr ? scope : cache_scope;
2097 var = target->NonLocal(proxy->raw_name(), VariableMode::kDynamicGlobal);
2098 }
2099
2100 if (var->is_dynamic()) return var;
2101
2102 Variable* invalidated = var;
2103 if (cache_scope != nullptr) cache_scope->variables_.Remove(invalidated);
2104
2105 Scope* target = cache_scope == nullptr ? scope : cache_scope;
2106 var = target->NonLocal(proxy->raw_name(), VariableMode::kDynamicLocal);
2107 var->set_local_if_not_shadowed(invalidated);
2108
2109 return var;
2110 }
2111
ResolveVariable(VariableProxy * proxy)2112 void Scope::ResolveVariable(VariableProxy* proxy) {
2113 DCHECK(!proxy->is_resolved());
2114 Variable* var = Lookup<kParsedScope>(proxy, this, nullptr);
2115 DCHECK_NOT_NULL(var);
2116 ResolveTo(proxy, var);
2117 }
2118
2119 namespace {
2120
SetNeedsHoleCheck(Variable * var,VariableProxy * proxy)2121 void SetNeedsHoleCheck(Variable* var, VariableProxy* proxy) {
2122 proxy->set_needs_hole_check();
2123 var->ForceHoleInitialization();
2124 }
2125
UpdateNeedsHoleCheck(Variable * var,VariableProxy * proxy,Scope * scope)2126 void UpdateNeedsHoleCheck(Variable* var, VariableProxy* proxy, Scope* scope) {
2127 if (var->mode() == VariableMode::kDynamicLocal) {
2128 // Dynamically introduced variables never need a hole check (since they're
2129 // VariableMode::kVar bindings, either from var or function declarations),
2130 // but the variable they shadow might need a hole check, which we want to do
2131 // if we decide that no shadowing variable was dynamically introoduced.
2132 DCHECK_EQ(kCreatedInitialized, var->initialization_flag());
2133 return UpdateNeedsHoleCheck(var->local_if_not_shadowed(), proxy, scope);
2134 }
2135
2136 if (var->initialization_flag() == kCreatedInitialized) return;
2137
2138 // It's impossible to eliminate module import hole checks here, because it's
2139 // unknown at compilation time whether the binding referred to in the
2140 // exporting module itself requires hole checks.
2141 if (var->location() == VariableLocation::MODULE && !var->IsExport()) {
2142 return SetNeedsHoleCheck(var, proxy);
2143 }
2144
2145 // Check if the binding really needs an initialization check. The check
2146 // can be skipped in the following situation: we have a VariableMode::kLet or
2147 // VariableMode::kConst binding, both the Variable and the VariableProxy have
2148 // the same declaration scope (i.e. they are both in global code, in the same
2149 // function or in the same eval code), the VariableProxy is in the source
2150 // physically located after the initializer of the variable, and that the
2151 // initializer cannot be skipped due to a nonlinear scope.
2152 //
2153 // The condition on the closure scopes is a conservative check for
2154 // nested functions that access a binding and are called before the
2155 // binding is initialized:
2156 // function() { f(); let x = 1; function f() { x = 2; } }
2157 //
2158 // The check cannot be skipped on non-linear scopes, namely switch
2159 // scopes, to ensure tests are done in cases like the following:
2160 // switch (1) { case 0: let x = 2; case 1: f(x); }
2161 // The scope of the variable needs to be checked, in case the use is
2162 // in a sub-block which may be linear.
2163 if (var->scope()->GetClosureScope() != scope->GetClosureScope()) {
2164 return SetNeedsHoleCheck(var, proxy);
2165 }
2166
2167 // We should always have valid source positions.
2168 DCHECK_NE(var->initializer_position(), kNoSourcePosition);
2169 DCHECK_NE(proxy->position(), kNoSourcePosition);
2170
2171 if (var->scope()->is_nonlinear() ||
2172 var->initializer_position() >= proxy->position()) {
2173 return SetNeedsHoleCheck(var, proxy);
2174 }
2175 }
2176
2177 } // anonymous namespace
2178
ResolveTo(VariableProxy * proxy,Variable * var)2179 void Scope::ResolveTo(VariableProxy* proxy, Variable* var) {
2180 DCHECK_NOT_NULL(var);
2181 UpdateNeedsHoleCheck(var, proxy, this);
2182 proxy->BindTo(var);
2183 }
2184
ResolvePreparsedVariable(VariableProxy * proxy,Scope * scope,Scope * end)2185 void Scope::ResolvePreparsedVariable(VariableProxy* proxy, Scope* scope,
2186 Scope* end) {
2187 // Resolve the variable in all parsed scopes to force context allocation.
2188 for (; scope != end; scope = scope->outer_scope_) {
2189 Variable* var = scope->LookupLocal(proxy->raw_name());
2190 if (var != nullptr) {
2191 var->set_is_used();
2192 if (!var->is_dynamic()) {
2193 var->ForceContextAllocation();
2194 if (proxy->is_assigned()) var->SetMaybeAssigned();
2195 return;
2196 }
2197 }
2198 }
2199 }
2200
ResolveVariablesRecursively(Scope * end)2201 bool Scope::ResolveVariablesRecursively(Scope* end) {
2202 // Lazy parsed declaration scopes are already partially analyzed. If there are
2203 // unresolved references remaining, they just need to be resolved in outer
2204 // scopes.
2205 if (WasLazilyParsed(this)) {
2206 DCHECK_EQ(variables_.occupancy(), 0);
2207 // Resolve in all parsed scopes except for the script scope.
2208 if (!end->is_script_scope()) end = end->outer_scope();
2209
2210 for (VariableProxy* proxy : unresolved_list_) {
2211 ResolvePreparsedVariable(proxy, outer_scope(), end);
2212 }
2213 } else {
2214 // Resolve unresolved variables for this scope.
2215 for (VariableProxy* proxy : unresolved_list_) {
2216 ResolveVariable(proxy);
2217 }
2218
2219 // Resolve unresolved variables for inner scopes.
2220 for (Scope* scope = inner_scope_; scope != nullptr;
2221 scope = scope->sibling_) {
2222 if (!scope->ResolveVariablesRecursively(end)) return false;
2223 }
2224 }
2225 return true;
2226 }
2227
MustAllocate(Variable * var)2228 bool Scope::MustAllocate(Variable* var) {
2229 DCHECK(var->location() != VariableLocation::MODULE);
2230 // Give var a read/write use if there is a chance it might be accessed
2231 // via an eval() call. This is only possible if the variable has a
2232 // visible name.
2233 if (!var->raw_name()->IsEmpty() &&
2234 (inner_scope_calls_eval_ || is_catch_scope() || is_script_scope())) {
2235 var->set_is_used();
2236 if (inner_scope_calls_eval_ && !var->is_this()) var->SetMaybeAssigned();
2237 }
2238 DCHECK(!var->has_forced_context_allocation() || var->is_used());
2239 // Global variables do not need to be allocated.
2240 return !var->IsGlobalObjectProperty() && var->is_used();
2241 }
2242
2243
MustAllocateInContext(Variable * var)2244 bool Scope::MustAllocateInContext(Variable* var) {
2245 // If var is accessed from an inner scope, or if there is a possibility
2246 // that it might be accessed from the current or an inner scope (through
2247 // an eval() call or a runtime with lookup), it must be allocated in the
2248 // context.
2249 //
2250 // Temporary variables are always stack-allocated. Catch-bound variables are
2251 // always context-allocated.
2252 VariableMode mode = var->mode();
2253 if (mode == VariableMode::kTemporary) return false;
2254 if (is_catch_scope()) return true;
2255 if (is_script_scope() || is_eval_scope()) {
2256 if (IsLexicalVariableMode(mode)) {
2257 return true;
2258 }
2259 }
2260 return var->has_forced_context_allocation() || inner_scope_calls_eval_;
2261 }
2262
AllocateStackSlot(Variable * var)2263 void Scope::AllocateStackSlot(Variable* var) {
2264 if (is_block_scope()) {
2265 outer_scope()->GetDeclarationScope()->AllocateStackSlot(var);
2266 } else {
2267 var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
2268 }
2269 }
2270
2271
AllocateHeapSlot(Variable * var)2272 void Scope::AllocateHeapSlot(Variable* var) {
2273 var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
2274 }
2275
AllocateParameterLocals()2276 void DeclarationScope::AllocateParameterLocals() {
2277 DCHECK(is_function_scope());
2278
2279 bool has_mapped_arguments = false;
2280 if (arguments_ != nullptr) {
2281 DCHECK(!is_arrow_scope());
2282 if (MustAllocate(arguments_) && !has_arguments_parameter_) {
2283 // 'arguments' is used and does not refer to a function
2284 // parameter of the same name. If the arguments object
2285 // aliases formal parameters, we conservatively allocate
2286 // them specially in the loop below.
2287 has_mapped_arguments =
2288 GetArgumentsType() == CreateArgumentsType::kMappedArguments;
2289 } else {
2290 // 'arguments' is unused. Tell the code generator that it does not need to
2291 // allocate the arguments object by nulling out arguments_.
2292 arguments_ = nullptr;
2293 }
2294 }
2295
2296 // The same parameter may occur multiple times in the parameters_ list.
2297 // If it does, and if it is not copied into the context object, it must
2298 // receive the highest parameter index for that parameter; thus iteration
2299 // order is relevant!
2300 for (int i = num_parameters() - 1; i >= 0; --i) {
2301 Variable* var = params_[i];
2302 DCHECK_NOT_NULL(var);
2303 DCHECK(!has_rest_ || var != rest_parameter());
2304 DCHECK_EQ(this, var->scope());
2305 if (has_mapped_arguments) {
2306 var->set_is_used();
2307 var->SetMaybeAssigned();
2308 var->ForceContextAllocation();
2309 }
2310 AllocateParameter(var, i);
2311 }
2312 }
2313
AllocateParameter(Variable * var,int index)2314 void DeclarationScope::AllocateParameter(Variable* var, int index) {
2315 if (!MustAllocate(var)) return;
2316 if (has_forced_context_allocation_for_parameters() ||
2317 MustAllocateInContext(var)) {
2318 DCHECK(var->IsUnallocated() || var->IsContextSlot());
2319 if (var->IsUnallocated()) AllocateHeapSlot(var);
2320 } else {
2321 DCHECK(var->IsUnallocated() || var->IsParameter());
2322 if (var->IsUnallocated()) {
2323 var->AllocateTo(VariableLocation::PARAMETER, index);
2324 }
2325 }
2326 }
2327
AllocateReceiver()2328 void DeclarationScope::AllocateReceiver() {
2329 if (!has_this_declaration()) return;
2330 DCHECK_NOT_NULL(receiver());
2331 DCHECK_EQ(receiver()->scope(), this);
2332 AllocateParameter(receiver(), -1);
2333 }
2334
AllocateNonParameterLocal(Variable * var)2335 void Scope::AllocateNonParameterLocal(Variable* var) {
2336 DCHECK_EQ(var->scope(), this);
2337 if (var->IsUnallocated() && MustAllocate(var)) {
2338 if (MustAllocateInContext(var)) {
2339 AllocateHeapSlot(var);
2340 DCHECK_IMPLIES(is_catch_scope(),
2341 var->index() == Context::THROWN_OBJECT_INDEX);
2342 } else {
2343 AllocateStackSlot(var);
2344 }
2345 }
2346 }
2347
AllocateNonParameterLocalsAndDeclaredGlobals()2348 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals() {
2349 if (is_declaration_scope() && AsDeclarationScope()->is_arrow_scope()) {
2350 // In arrow functions, allocate non-temporaries first and then all the
2351 // temporaries to make the local variable ordering stable when reparsing to
2352 // collect source positions.
2353 for (Variable* local : locals_) {
2354 if (local->mode() != VariableMode::kTemporary)
2355 AllocateNonParameterLocal(local);
2356 }
2357
2358 for (Variable* local : locals_) {
2359 if (local->mode() == VariableMode::kTemporary)
2360 AllocateNonParameterLocal(local);
2361 }
2362 } else {
2363 for (Variable* local : locals_) {
2364 AllocateNonParameterLocal(local);
2365 }
2366 }
2367
2368 if (is_declaration_scope()) {
2369 AsDeclarationScope()->AllocateLocals();
2370 }
2371 }
2372
AllocateLocals()2373 void DeclarationScope::AllocateLocals() {
2374 // For now, function_ must be allocated at the very end. If it gets
2375 // allocated in the context, it must be the last slot in the context,
2376 // because of the current ScopeInfo implementation (see
2377 // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
2378 if (function_ != nullptr && MustAllocate(function_)) {
2379 AllocateNonParameterLocal(function_);
2380 } else {
2381 function_ = nullptr;
2382 }
2383
2384 DCHECK(!has_rest_ || !MustAllocate(rest_parameter()) ||
2385 !rest_parameter()->IsUnallocated());
2386
2387 if (new_target_ != nullptr && !MustAllocate(new_target_)) {
2388 new_target_ = nullptr;
2389 }
2390
2391 NullifyRareVariableIf(RareVariable::kThisFunction,
2392 [=](Variable* var) { return !MustAllocate(var); });
2393 }
2394
AllocateModuleVariables()2395 void ModuleScope::AllocateModuleVariables() {
2396 for (const auto& it : module()->regular_imports()) {
2397 Variable* var = LookupLocal(it.first);
2398 var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
2399 DCHECK(!var->IsExport());
2400 }
2401
2402 for (const auto& it : module()->regular_exports()) {
2403 Variable* var = LookupLocal(it.first);
2404 var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
2405 DCHECK(var->IsExport());
2406 }
2407 }
2408
AllocateVariablesRecursively()2409 void Scope::AllocateVariablesRecursively() {
2410 this->ForEach([](Scope* scope) -> Iteration {
2411 DCHECK(!scope->already_resolved_);
2412 if (WasLazilyParsed(scope)) return Iteration::kContinue;
2413 DCHECK_EQ(scope->ContextHeaderLength(), scope->num_heap_slots_);
2414
2415 // Allocate variables for this scope.
2416 // Parameters must be allocated first, if any.
2417 if (scope->is_declaration_scope()) {
2418 if (scope->is_function_scope()) {
2419 scope->AsDeclarationScope()->AllocateParameterLocals();
2420 }
2421 scope->AsDeclarationScope()->AllocateReceiver();
2422 }
2423 scope->AllocateNonParameterLocalsAndDeclaredGlobals();
2424
2425 // Force allocation of a context for this scope if necessary. For a 'with'
2426 // scope and for a function scope that makes an 'eval' call we need a
2427 // context, even if no local variables were statically allocated in the
2428 // scope. Likewise for modules and function scopes representing asm.js
2429 // modules. Also force a context, if the scope is stricter than the outer
2430 // scope.
2431 bool must_have_context =
2432 scope->is_with_scope() || scope->is_module_scope() ||
2433 scope->IsAsmModule() || scope->ForceContextForLanguageMode() ||
2434 (scope->is_function_scope() &&
2435 scope->AsDeclarationScope()->sloppy_eval_can_extend_vars()) ||
2436 (scope->is_block_scope() && scope->is_declaration_scope() &&
2437 scope->AsDeclarationScope()->sloppy_eval_can_extend_vars());
2438
2439 // If we didn't allocate any locals in the local context, then we only
2440 // need the minimal number of slots if we must have a context.
2441 if (scope->num_heap_slots_ == scope->ContextHeaderLength() &&
2442 !must_have_context) {
2443 scope->num_heap_slots_ = 0;
2444 }
2445
2446 // Allocation done.
2447 DCHECK(scope->num_heap_slots_ == 0 ||
2448 scope->num_heap_slots_ >= scope->ContextHeaderLength());
2449 return Iteration::kDescend;
2450 });
2451 }
2452
2453 template <typename LocalIsolate>
AllocateScopeInfosRecursively(LocalIsolate * isolate,MaybeHandle<ScopeInfo> outer_scope)2454 void Scope::AllocateScopeInfosRecursively(LocalIsolate* isolate,
2455 MaybeHandle<ScopeInfo> outer_scope) {
2456 DCHECK(scope_info_.is_null());
2457 MaybeHandle<ScopeInfo> next_outer_scope = outer_scope;
2458
2459 if (NeedsScopeInfo()) {
2460 scope_info_ = ScopeInfo::Create(isolate, zone(), this, outer_scope);
2461 // The ScopeInfo chain should mirror the context chain, so we only link to
2462 // the next outer scope that needs a context.
2463 if (NeedsContext()) next_outer_scope = scope_info_;
2464 }
2465
2466 // Allocate ScopeInfos for inner scopes.
2467 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
2468 if (!scope->is_function_scope() ||
2469 scope->AsDeclarationScope()->ShouldEagerCompile()) {
2470 scope->AllocateScopeInfosRecursively(isolate, next_outer_scope);
2471 }
2472 }
2473 }
2474
2475 template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Scope::
2476 AllocateScopeInfosRecursively<Isolate>(Isolate* isolate,
2477 MaybeHandle<ScopeInfo> outer_scope);
2478 template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Scope::
2479 AllocateScopeInfosRecursively<LocalIsolate>(
2480 LocalIsolate* isolate, MaybeHandle<ScopeInfo> outer_scope);
2481
RecalcPrivateNameContextChain()2482 void DeclarationScope::RecalcPrivateNameContextChain() {
2483 // The outermost scope in a class heritage expression is marked to skip the
2484 // class scope during private name resolution. It is possible, however, that
2485 // either the class scope won't require a Context and ScopeInfo, or the
2486 // outermost scope in the heritage position won't. Simply copying the bit from
2487 // full parse into the ScopeInfo will break lazy compilation. In the former
2488 // case the scope that is marked to skip its outer scope will incorrectly skip
2489 // a different class scope than the one we intended to skip. In the latter
2490 // case variables resolved through an inner scope will incorrectly check the
2491 // class scope since we lost the skip bit from the outermost heritage scope.
2492 //
2493 // This method fixes both cases by, in outermost to innermost order, copying
2494 // the value of the skip bit from outer scopes that don't require a Context.
2495 DCHECK(needs_private_name_context_chain_recalc_);
2496 this->ForEach([](Scope* scope) {
2497 Scope* outer = scope->outer_scope();
2498 if (!outer) return Iteration::kDescend;
2499 if (!outer->NeedsContext()) {
2500 scope->private_name_lookup_skips_outer_class_ =
2501 outer->private_name_lookup_skips_outer_class();
2502 }
2503 if (!scope->is_function_scope() ||
2504 scope->AsDeclarationScope()->ShouldEagerCompile()) {
2505 return Iteration::kDescend;
2506 }
2507 return Iteration::kContinue;
2508 });
2509 }
2510
RecordNeedsPrivateNameContextChainRecalc()2511 void DeclarationScope::RecordNeedsPrivateNameContextChainRecalc() {
2512 DCHECK_EQ(GetClosureScope(), this);
2513 DeclarationScope* scope;
2514 for (scope = this; scope != nullptr;
2515 scope = scope->outer_scope() != nullptr
2516 ? scope->outer_scope()->GetClosureScope()
2517 : nullptr) {
2518 if (scope->needs_private_name_context_chain_recalc_) return;
2519 scope->needs_private_name_context_chain_recalc_ = true;
2520 }
2521 }
2522
2523 // static
2524 template <typename LocalIsolate>
AllocateScopeInfos(ParseInfo * info,LocalIsolate * isolate)2525 void DeclarationScope::AllocateScopeInfos(ParseInfo* info,
2526 LocalIsolate* isolate) {
2527 DeclarationScope* scope = info->literal()->scope();
2528
2529 // No one else should have allocated a scope info for this scope yet.
2530 DCHECK(scope->scope_info_.is_null());
2531
2532 MaybeHandle<ScopeInfo> outer_scope;
2533 if (scope->outer_scope_ != nullptr) {
2534 DCHECK((std::is_same<Isolate, v8::internal::Isolate>::value));
2535 outer_scope = scope->outer_scope_->scope_info_;
2536 }
2537
2538 if (scope->needs_private_name_context_chain_recalc()) {
2539 scope->RecalcPrivateNameContextChain();
2540 }
2541 scope->AllocateScopeInfosRecursively(isolate, outer_scope);
2542
2543 // The debugger expects all shared function infos to contain a scope info.
2544 // Since the top-most scope will end up in a shared function info, make sure
2545 // it has one, even if it doesn't need a scope info.
2546 // TODO(jochen|yangguo): Remove this requirement.
2547 if (scope->scope_info_.is_null()) {
2548 scope->scope_info_ =
2549 ScopeInfo::Create(isolate, scope->zone(), scope, outer_scope);
2550 }
2551
2552 // Ensuring that the outer script scope has a scope info avoids having
2553 // special case for native contexts vs other contexts.
2554 if (info->script_scope() && info->script_scope()->scope_info_.is_null()) {
2555 info->script_scope()->scope_info_ = isolate->factory()->empty_scope_info();
2556 }
2557 }
2558
2559 template V8_EXPORT_PRIVATE void DeclarationScope::AllocateScopeInfos(
2560 ParseInfo* info, Isolate* isolate);
2561 template V8_EXPORT_PRIVATE void DeclarationScope::AllocateScopeInfos(
2562 ParseInfo* info, LocalIsolate* isolate);
2563
ContextLocalCount() const2564 int Scope::ContextLocalCount() const {
2565 if (num_heap_slots() == 0) return 0;
2566 Variable* function =
2567 is_function_scope() ? AsDeclarationScope()->function_var() : nullptr;
2568 bool is_function_var_in_context =
2569 function != nullptr && function->IsContextSlot();
2570 return num_heap_slots() - ContextHeaderLength() -
2571 (is_function_var_in_context ? 1 : 0);
2572 }
2573
IsComplementaryAccessorPair(VariableMode a,VariableMode b)2574 bool IsComplementaryAccessorPair(VariableMode a, VariableMode b) {
2575 switch (a) {
2576 case VariableMode::kPrivateGetterOnly:
2577 return b == VariableMode::kPrivateSetterOnly;
2578 case VariableMode::kPrivateSetterOnly:
2579 return b == VariableMode::kPrivateGetterOnly;
2580 default:
2581 return false;
2582 }
2583 }
2584
DeclarePrivateName(const AstRawString * name,VariableMode mode,IsStaticFlag is_static_flag,bool * was_added)2585 Variable* ClassScope::DeclarePrivateName(const AstRawString* name,
2586 VariableMode mode,
2587 IsStaticFlag is_static_flag,
2588 bool* was_added) {
2589 Variable* result = EnsureRareData()->private_name_map.Declare(
2590 zone(), this, name, mode, NORMAL_VARIABLE,
2591 InitializationFlag::kNeedsInitialization, MaybeAssignedFlag::kNotAssigned,
2592 is_static_flag, was_added);
2593 if (*was_added) {
2594 locals_.Add(result);
2595 has_static_private_methods_ |=
2596 (result->is_static() &&
2597 IsPrivateMethodOrAccessorVariableMode(result->mode()));
2598 } else if (IsComplementaryAccessorPair(result->mode(), mode) &&
2599 result->is_static_flag() == is_static_flag) {
2600 *was_added = true;
2601 result->set_mode(VariableMode::kPrivateGetterAndSetter);
2602 }
2603 result->ForceContextAllocation();
2604 return result;
2605 }
2606
LookupLocalPrivateName(const AstRawString * name)2607 Variable* ClassScope::LookupLocalPrivateName(const AstRawString* name) {
2608 RareData* rare_data = GetRareData();
2609 if (rare_data == nullptr) {
2610 return nullptr;
2611 }
2612 return rare_data->private_name_map.Lookup(name);
2613 }
2614
GetUnresolvedPrivateNameTail()2615 UnresolvedList::Iterator ClassScope::GetUnresolvedPrivateNameTail() {
2616 RareData* rare_data = GetRareData();
2617 if (rare_data == nullptr) {
2618 return UnresolvedList::Iterator();
2619 }
2620 return rare_data->unresolved_private_names.end();
2621 }
2622
ResetUnresolvedPrivateNameTail(UnresolvedList::Iterator tail)2623 void ClassScope::ResetUnresolvedPrivateNameTail(UnresolvedList::Iterator tail) {
2624 RareData* rare_data = GetRareData();
2625 if (rare_data == nullptr ||
2626 rare_data->unresolved_private_names.end() == tail) {
2627 return;
2628 }
2629
2630 bool tail_is_empty = tail == UnresolvedList::Iterator();
2631 if (tail_is_empty) {
2632 // If the saved tail is empty, the list used to be empty, so clear it.
2633 rare_data->unresolved_private_names.Clear();
2634 } else {
2635 rare_data->unresolved_private_names.Rewind(tail);
2636 }
2637 }
2638
MigrateUnresolvedPrivateNameTail(AstNodeFactory * ast_node_factory,UnresolvedList::Iterator tail)2639 void ClassScope::MigrateUnresolvedPrivateNameTail(
2640 AstNodeFactory* ast_node_factory, UnresolvedList::Iterator tail) {
2641 RareData* rare_data = GetRareData();
2642 if (rare_data == nullptr ||
2643 rare_data->unresolved_private_names.end() == tail) {
2644 return;
2645 }
2646 UnresolvedList migrated_names;
2647
2648 // If the saved tail is empty, the list used to be empty, so we should
2649 // migrate everything after the head.
2650 bool tail_is_empty = tail == UnresolvedList::Iterator();
2651 UnresolvedList::Iterator it =
2652 tail_is_empty ? rare_data->unresolved_private_names.begin() : tail;
2653
2654 for (; it != rare_data->unresolved_private_names.end(); ++it) {
2655 VariableProxy* proxy = *it;
2656 VariableProxy* copy = ast_node_factory->CopyVariableProxy(proxy);
2657 migrated_names.Add(copy);
2658 }
2659
2660 // Replace with the migrated copies.
2661 if (tail_is_empty) {
2662 rare_data->unresolved_private_names.Clear();
2663 } else {
2664 rare_data->unresolved_private_names.Rewind(tail);
2665 }
2666 rare_data->unresolved_private_names.Append(std::move(migrated_names));
2667 }
2668
LookupPrivateNameInScopeInfo(const AstRawString * name)2669 Variable* ClassScope::LookupPrivateNameInScopeInfo(const AstRawString* name) {
2670 DCHECK(!scope_info_.is_null());
2671 DCHECK_NULL(LookupLocalPrivateName(name));
2672 DisallowHeapAllocation no_gc;
2673
2674 String name_handle = *name->string();
2675 VariableMode mode;
2676 InitializationFlag init_flag;
2677 MaybeAssignedFlag maybe_assigned_flag;
2678 IsStaticFlag is_static_flag;
2679 int index =
2680 ScopeInfo::ContextSlotIndex(*scope_info_, name_handle, &mode, &init_flag,
2681 &maybe_assigned_flag, &is_static_flag);
2682 if (index < 0) {
2683 return nullptr;
2684 }
2685
2686 DCHECK(IsConstVariableMode(mode));
2687 DCHECK_EQ(init_flag, InitializationFlag::kNeedsInitialization);
2688 DCHECK_EQ(maybe_assigned_flag, MaybeAssignedFlag::kNotAssigned);
2689
2690 // Add the found private name to the map to speed up subsequent
2691 // lookups for the same name.
2692 bool was_added;
2693 Variable* var = DeclarePrivateName(name, mode, is_static_flag, &was_added);
2694 DCHECK(was_added);
2695 var->AllocateTo(VariableLocation::CONTEXT, index);
2696 return var;
2697 }
2698
LookupPrivateName(VariableProxy * proxy)2699 Variable* ClassScope::LookupPrivateName(VariableProxy* proxy) {
2700 DCHECK(!proxy->is_resolved());
2701
2702 for (PrivateNameScopeIterator scope_iter(this); !scope_iter.Done();
2703 scope_iter.Next()) {
2704 ClassScope* scope = scope_iter.GetScope();
2705 // Try finding it in the private name map first, if it can't be found,
2706 // try the deseralized scope info.
2707 Variable* var = scope->LookupLocalPrivateName(proxy->raw_name());
2708 if (var == nullptr && !scope->scope_info_.is_null()) {
2709 var = scope->LookupPrivateNameInScopeInfo(proxy->raw_name());
2710 }
2711 if (var != nullptr) {
2712 return var;
2713 }
2714 }
2715 return nullptr;
2716 }
2717
ResolvePrivateNames(ParseInfo * info)2718 bool ClassScope::ResolvePrivateNames(ParseInfo* info) {
2719 RareData* rare_data = GetRareData();
2720 if (rare_data == nullptr || rare_data->unresolved_private_names.is_empty()) {
2721 return true;
2722 }
2723
2724 UnresolvedList& list = rare_data->unresolved_private_names;
2725 for (VariableProxy* proxy : list) {
2726 Variable* var = LookupPrivateName(proxy);
2727 if (var == nullptr) {
2728 // It's only possible to fail to resolve private names here if
2729 // this is at the top level or the private name is accessed through eval.
2730 DCHECK(info->flags().is_eval() || outer_scope_->is_script_scope());
2731 Scanner::Location loc = proxy->location();
2732 info->pending_error_handler()->ReportMessageAt(
2733 loc.beg_pos, loc.end_pos,
2734 MessageTemplate::kInvalidPrivateFieldResolution, proxy->raw_name());
2735 return false;
2736 } else {
2737 proxy->BindTo(var);
2738 }
2739 }
2740
2741 // By now all unresolved private names should be resolved so
2742 // clear the list.
2743 list.Clear();
2744 return true;
2745 }
2746
ResolvePrivateNamesPartially()2747 VariableProxy* ClassScope::ResolvePrivateNamesPartially() {
2748 RareData* rare_data = GetRareData();
2749 if (rare_data == nullptr || rare_data->unresolved_private_names.is_empty()) {
2750 return nullptr;
2751 }
2752
2753 PrivateNameScopeIterator private_name_scope_iter(this);
2754 private_name_scope_iter.Next();
2755 UnresolvedList& unresolved = rare_data->unresolved_private_names;
2756 bool has_private_names = rare_data->private_name_map.capacity() > 0;
2757
2758 // If the class itself does not have private names, nor does it have
2759 // an outer private name scope, then we are certain any private name access
2760 // inside cannot be resolved.
2761 if (!has_private_names && private_name_scope_iter.Done() &&
2762 !unresolved.is_empty()) {
2763 return unresolved.first();
2764 }
2765
2766 for (VariableProxy* proxy = unresolved.first(); proxy != nullptr;) {
2767 DCHECK(proxy->IsPrivateName());
2768 VariableProxy* next = proxy->next_unresolved();
2769 unresolved.Remove(proxy);
2770 Variable* var = nullptr;
2771
2772 // If we can find private name in the current class scope, we can bind
2773 // them immediately because it's going to shadow any outer private names.
2774 if (has_private_names) {
2775 var = LookupLocalPrivateName(proxy->raw_name());
2776 if (var != nullptr) {
2777 var->set_is_used();
2778 proxy->BindTo(var);
2779 // If the variable being accessed is a static private method, we need to
2780 // save the class variable in the context to check that the receiver is
2781 // the class during runtime.
2782 has_explicit_static_private_methods_access_ |=
2783 (var->is_static() &&
2784 IsPrivateMethodOrAccessorVariableMode(var->mode()));
2785 }
2786 }
2787
2788 // If the current scope does not have declared private names,
2789 // try looking from the outer class scope later.
2790 if (var == nullptr) {
2791 // There's no outer private name scope so we are certain that the variable
2792 // cannot be resolved later.
2793 if (private_name_scope_iter.Done()) {
2794 return proxy;
2795 }
2796
2797 // The private name may be found later in the outer private name scope, so
2798 // push it to the outer sopce.
2799 private_name_scope_iter.AddUnresolvedPrivateName(proxy);
2800 }
2801
2802 proxy = next;
2803 }
2804
2805 DCHECK(unresolved.is_empty());
2806 return nullptr;
2807 }
2808
DeclareBrandVariable(AstValueFactory * ast_value_factory,IsStaticFlag is_static_flag,int class_token_pos)2809 Variable* ClassScope::DeclareBrandVariable(AstValueFactory* ast_value_factory,
2810 IsStaticFlag is_static_flag,
2811 int class_token_pos) {
2812 DCHECK_IMPLIES(GetRareData() != nullptr, GetRareData()->brand == nullptr);
2813 bool was_added;
2814 Variable* brand = Declare(zone(), ast_value_factory->dot_brand_string(),
2815 VariableMode::kConst, NORMAL_VARIABLE,
2816 InitializationFlag::kNeedsInitialization,
2817 MaybeAssignedFlag::kNotAssigned, &was_added);
2818 DCHECK(was_added);
2819 brand->set_is_static_flag(is_static_flag);
2820 brand->ForceContextAllocation();
2821 brand->set_is_used();
2822 EnsureRareData()->brand = brand;
2823 brand->set_initializer_position(class_token_pos);
2824 return brand;
2825 }
2826
DeclareClassVariable(AstValueFactory * ast_value_factory,const AstRawString * name,int class_token_pos)2827 Variable* ClassScope::DeclareClassVariable(AstValueFactory* ast_value_factory,
2828 const AstRawString* name,
2829 int class_token_pos) {
2830 DCHECK_NULL(class_variable_);
2831 bool was_added;
2832 class_variable_ =
2833 Declare(zone(), name == nullptr ? ast_value_factory->dot_string() : name,
2834 VariableMode::kConst, NORMAL_VARIABLE,
2835 InitializationFlag::kNeedsInitialization,
2836 MaybeAssignedFlag::kMaybeAssigned, &was_added);
2837 DCHECK(was_added);
2838 class_variable_->set_initializer_position(class_token_pos);
2839 return class_variable_;
2840 }
2841
PrivateNameScopeIterator(Scope * start)2842 PrivateNameScopeIterator::PrivateNameScopeIterator(Scope* start)
2843 : start_scope_(start), current_scope_(start) {
2844 if (!start->is_class_scope() || start->AsClassScope()->IsParsingHeritage()) {
2845 Next();
2846 }
2847 }
2848
Next()2849 void PrivateNameScopeIterator::Next() {
2850 DCHECK(!Done());
2851 Scope* inner = current_scope_;
2852 Scope* scope = inner->outer_scope();
2853 while (scope != nullptr) {
2854 if (scope->is_class_scope()) {
2855 if (!inner->private_name_lookup_skips_outer_class()) {
2856 current_scope_ = scope;
2857 return;
2858 }
2859 skipped_any_scopes_ = true;
2860 }
2861 inner = scope;
2862 scope = scope->outer_scope();
2863 }
2864 current_scope_ = nullptr;
2865 }
2866
AddUnresolvedPrivateName(VariableProxy * proxy)2867 void PrivateNameScopeIterator::AddUnresolvedPrivateName(VariableProxy* proxy) {
2868 // During a reparse, current_scope_->already_resolved_ may be true here,
2869 // because the class scope is deserialized while the function scope inside may
2870 // be new.
2871 DCHECK(!proxy->is_resolved());
2872 DCHECK(proxy->IsPrivateName());
2873 GetScope()->EnsureRareData()->unresolved_private_names.Add(proxy);
2874 // Any closure scope that contain uses of private names that skips over a
2875 // class scope due to heritage expressions need private name context chain
2876 // recalculation, since not all scopes require a Context or ScopeInfo. See
2877 // comment in DeclarationScope::RecalcPrivateNameContextChain.
2878 if (V8_UNLIKELY(skipped_any_scopes_)) {
2879 start_scope_->GetClosureScope()->RecordNeedsPrivateNameContextChainRecalc();
2880 }
2881 }
2882
2883 } // namespace internal
2884 } // namespace v8
2885