• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // This file defines the operations used in the standard MLIR TensorFlow dialect
17 // after control dependences are raise to the standard form.
18 
19 #ifndef TENSORFLOW_COMPILER_MLIR_TENSORFLOW_IR_TF_OPS_H_
20 #define TENSORFLOW_COMPILER_MLIR_TENSORFLOW_IR_TF_OPS_H_
21 
22 #include "mlir/Analysis/CallInterfaces.h"  // TF:llvm-project
23 #include "mlir/Dialect/Traits.h"  // TF:llvm-project
24 #include "mlir/IR/Attributes.h"  // TF:llvm-project
25 #include "mlir/IR/Builders.h"  // TF:llvm-project
26 #include "mlir/IR/Dialect.h"  // TF:llvm-project
27 #include "mlir/IR/Matchers.h"  // TF:llvm-project
28 #include "mlir/IR/Module.h"  // TF:llvm-project
29 #include "mlir/IR/OpImplementation.h"  // TF:llvm-project
30 #include "mlir/IR/StandardTypes.h"  // TF:llvm-project
31 #include "mlir/IR/TypeUtilities.h"  // TF:llvm-project
32 #include "tensorflow/compiler/mlir/tensorflow/ir/tf_traits.h"
33 #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h"
34 
35 namespace mlir {
36 namespace TF {
37 
38 class TensorFlowDialect : public Dialect {
39  public:
40   TensorFlowDialect(MLIRContext *context);
41 
getDialectNamespace()42   static StringRef getDialectNamespace() { return "tf"; }
43 
44   // Gradient attribute ("tf.gradient") in the list of NamedAttributes in a
45   // function references to its gradient function. This attribute in TensorFlow
46   // Dialect is used to model TF GradientDef. GetGradientAttrName() returns the
47   // string description of gradient attribute.
GetGradientAttrName()48   static StringRef GetGradientAttrName() { return "tf.gradient"; }
49 
50   // This attribute marks if a function is stateful.
51   // Returns the string description of stateful attribute.
GetStatefulAttrName()52   static StringRef GetStatefulAttrName() { return "tf.signature.is_stateful"; }
53 
54   // Parse a type registered to this dialect.
55   Type parseType(DialectAsmParser &parser) const override;
56 
57   // Prints a type registered to this dialect.
58   void printType(Type ty, DialectAsmPrinter &os) const override;
59 
60   // Parses resource type with potential subtypes.
61   Type ParseResourceType(DialectAsmParser &parser, Location loc) const;
62 
63   // Prints resource type with potential subtypes.
64   void PrintResourceType(ResourceType ty, DialectAsmPrinter &os) const;
65 
66   // Parse and print variant type. It may have subtypes inferred using shape
67   // inference.
68   Type ParseVariantType(DialectAsmParser &parser, Location loc) const;
69   void PrintVariantType(VariantType ty, DialectAsmPrinter &os) const;
70 
71   // Registered hook to materialize a constant operation from a given attribute
72   // value with the desired resultant type.
73   Operation *materializeConstant(OpBuilder &builder, Attribute value, Type type,
74                                  Location loc) override;
75 };
76 
77 // TODO(b/131258166): TensorFlow's mutex.h defines a `mutex_lock` macro, whose
78 // purpose is to catch bug on `tensorflow::mutex_lock`. We don't use
79 // `tensorflow::mutex_lock` here but we have ops (`tf.MutexLock` and
80 // `tf.ConsumeMutexLock`) with getter methods named as `mutex_lock()`. Need to
81 // undefine here to avoid expanding the getter symbol as macro when including
82 // both mutex.h and this header file.
83 #undef mutex_lock
84 
85 #define GET_OP_CLASSES
86 #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h.inc"
87 
88 }  // namespace TF
89 }  // namespace mlir
90 
91 #endif  // TENSORFLOW_COMPILER_MLIR_TENSORFLOW_IR_TF_OPS_H_
92