1 /** @file
2 The implementation of IPsec.
3
4 (C) Copyright 2015 Hewlett-Packard Development Company, L.P.<BR>
5 Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.<BR>
6
7 This program and the accompanying materials
8 are licensed and made available under the terms and conditions of the BSD License
9 which accompanies this distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php.
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "IpSecImpl.h"
18 #include "IkeService.h"
19 #include "IpSecDebug.h"
20 #include "IpSecCryptIo.h"
21 #include "IpSecConfigImpl.h"
22
23 /**
24 Check if the specified Address is the Valid Address Range.
25
26 This function checks if the bytes after prefixed length are all Zero in this
27 Address. This Address is supposed to point to a range address. That means it
28 should gives the correct prefixed address and the bytes outside the prefixed are
29 zero.
30
31 @param[in] IpVersion The IP version.
32 @param[in] Address Points to EFI_IP_ADDRESS to be checked.
33 @param[in] PrefixLength The PrefixeLength of this address.
34
35 @retval TRUE The address is a vaild address range.
36 @retval FALSE The address is not a vaild address range.
37
38 **/
39 BOOLEAN
IpSecValidAddressRange(IN UINT8 IpVersion,IN EFI_IP_ADDRESS * Address,IN UINT8 PrefixLength)40 IpSecValidAddressRange (
41 IN UINT8 IpVersion,
42 IN EFI_IP_ADDRESS *Address,
43 IN UINT8 PrefixLength
44 )
45 {
46 UINT8 Div;
47 UINT8 Mod;
48 UINT8 Mask;
49 UINT8 AddrLen;
50 UINT8 *Addr;
51 EFI_IP_ADDRESS ZeroAddr;
52
53 if (PrefixLength == 0) {
54 return TRUE;
55 }
56
57 AddrLen = (UINT8) ((IpVersion == IP_VERSION_4) ? 32 : 128);
58
59 if (AddrLen <= PrefixLength) {
60 return FALSE;
61 }
62
63 Div = (UINT8) (PrefixLength / 8);
64 Mod = (UINT8) (PrefixLength % 8);
65 Addr = (UINT8 *) Address;
66 ZeroMem (&ZeroAddr, sizeof (EFI_IP_ADDRESS));
67
68 //
69 // Check whether the mod part of host scope is zero or not.
70 //
71 if (Mod > 0) {
72 Mask = (UINT8) (0xFF << (8 - Mod));
73
74 if ((Addr[Div] | Mask) != Mask) {
75 return FALSE;
76 }
77
78 Div++;
79 }
80 //
81 // Check whether the div part of host scope is zero or not.
82 //
83 if (CompareMem (
84 &Addr[Div],
85 &ZeroAddr,
86 sizeof (EFI_IP_ADDRESS) - Div
87 ) != 0) {
88 return FALSE;
89 }
90
91 return TRUE;
92 }
93
94 /**
95 Extrct the Address Range from a Address.
96
97 This function keep the prefix address and zero other part address.
98
99 @param[in] Address Point to a specified address.
100 @param[in] PrefixLength The prefix length.
101 @param[out] Range Contain the return Address Range.
102
103 **/
104 VOID
IpSecExtractAddressRange(IN EFI_IP_ADDRESS * Address,IN UINT8 PrefixLength,OUT EFI_IP_ADDRESS * Range)105 IpSecExtractAddressRange (
106 IN EFI_IP_ADDRESS *Address,
107 IN UINT8 PrefixLength,
108 OUT EFI_IP_ADDRESS *Range
109 )
110 {
111 UINT8 Div;
112 UINT8 Mod;
113 UINT8 Mask;
114 UINT8 *Addr;
115
116 if (PrefixLength == 0) {
117 return ;
118 }
119
120 Div = (UINT8) (PrefixLength / 8);
121 Mod = (UINT8) (PrefixLength % 8);
122 Addr = (UINT8 *) Range;
123
124 CopyMem (Range, Address, sizeof (EFI_IP_ADDRESS));
125
126 //
127 // Zero the mod part of host scope.
128 //
129 if (Mod > 0) {
130 Mask = (UINT8) (0xFF << (8 - Mod));
131 Addr[Div] = (UINT8) (Addr[Div] & Mask);
132 Div++;
133 }
134 //
135 // Zero the div part of host scope.
136 //
137 ZeroMem (&Addr[Div], sizeof (EFI_IP_ADDRESS) - Div);
138
139 }
140
141 /**
142 Checks if the IP Address in the address range of AddressInfos specified.
143
144 @param[in] IpVersion The IP version.
145 @param[in] IpAddr Point to EFI_IP_ADDRESS to be check.
146 @param[in] AddressInfo A list of EFI_IP_ADDRESS_INFO that is used to check
147 the IP Address is matched.
148 @param[in] AddressCount The total numbers of the AddressInfo.
149
150 @retval TRUE If the Specified IP Address is in the range of the AddressInfos specified.
151 @retval FALSE If the Specified IP Address is not in the range of the AddressInfos specified.
152
153 **/
154 BOOLEAN
IpSecMatchIpAddress(IN UINT8 IpVersion,IN EFI_IP_ADDRESS * IpAddr,IN EFI_IP_ADDRESS_INFO * AddressInfo,IN UINT32 AddressCount)155 IpSecMatchIpAddress (
156 IN UINT8 IpVersion,
157 IN EFI_IP_ADDRESS *IpAddr,
158 IN EFI_IP_ADDRESS_INFO *AddressInfo,
159 IN UINT32 AddressCount
160 )
161 {
162 EFI_IP_ADDRESS Range;
163 UINT32 Index;
164 BOOLEAN IsMatch;
165
166 IsMatch = FALSE;
167
168 for (Index = 0; Index < AddressCount; Index++) {
169 //
170 // Check whether the target address is in the address range
171 // if it's a valid range of address.
172 //
173 if (IpSecValidAddressRange (
174 IpVersion,
175 &AddressInfo[Index].Address,
176 AddressInfo[Index].PrefixLength
177 )) {
178 //
179 // Get the range of the target address belongs to.
180 //
181 ZeroMem (&Range, sizeof (EFI_IP_ADDRESS));
182 IpSecExtractAddressRange (
183 IpAddr,
184 AddressInfo[Index].PrefixLength,
185 &Range
186 );
187
188 if (CompareMem (
189 &Range,
190 &AddressInfo[Index].Address,
191 sizeof (EFI_IP_ADDRESS)
192 ) == 0) {
193 //
194 // The target address is in the address range.
195 //
196 IsMatch = TRUE;
197 break;
198 }
199 }
200
201 if (CompareMem (
202 IpAddr,
203 &AddressInfo[Index].Address,
204 sizeof (EFI_IP_ADDRESS)
205 ) == 0) {
206 //
207 // The target address is exact same as the address.
208 //
209 IsMatch = TRUE;
210 break;
211 }
212 }
213 return IsMatch;
214 }
215
216 /**
217 Check if the specified Protocol and Prot is supported by the specified SPD Entry.
218
219 This function is the subfunction of IPsecLookUpSpdEntry() that is used to
220 check if the sent/received IKE packet has the related SPD entry support.
221
222 @param[in] Protocol The Protocol to be checked.
223 @param[in] IpPayload Point to IP Payload to be check.
224 @param[in] SpdProtocol The Protocol supported by SPD.
225 @param[in] SpdLocalPort The Local Port in SPD.
226 @param[in] SpdRemotePort The Remote Port in SPD.
227 @param[in] IsOutbound Flag to indicate the is for IKE Packet sending or recieving.
228
229 @retval TRUE The Protocol and Port are supported by the SPD Entry.
230 @retval FALSE The Protocol and Port are not supported by the SPD Entry.
231
232 **/
233 BOOLEAN
IpSecMatchNextLayerProtocol(IN UINT8 Protocol,IN UINT8 * IpPayload,IN UINT16 SpdProtocol,IN UINT16 SpdLocalPort,IN UINT16 SpdRemotePort,IN BOOLEAN IsOutbound)234 IpSecMatchNextLayerProtocol (
235 IN UINT8 Protocol,
236 IN UINT8 *IpPayload,
237 IN UINT16 SpdProtocol,
238 IN UINT16 SpdLocalPort,
239 IN UINT16 SpdRemotePort,
240 IN BOOLEAN IsOutbound
241 )
242 {
243 BOOLEAN IsMatch;
244
245 if (SpdProtocol == EFI_IPSEC_ANY_PROTOCOL) {
246 return TRUE;
247 }
248
249 IsMatch = FALSE;
250
251 if (SpdProtocol == Protocol) {
252 switch (Protocol) {
253 case EFI_IP_PROTO_UDP:
254 case EFI_IP_PROTO_TCP:
255 //
256 // For udp and tcp, (0, 0) means no need to check local and remote
257 // port. The payload is passed from upper level, which means it should
258 // be in network order.
259 //
260 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
261 IsMatch = (BOOLEAN) (IsMatch ||
262 (IsOutbound &&
263 (BOOLEAN)(
264 NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdLocalPort &&
265 NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdRemotePort
266 )
267 ));
268
269 IsMatch = (BOOLEAN) (IsMatch ||
270 (!IsOutbound &&
271 (BOOLEAN)(
272 NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdLocalPort &&
273 NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdRemotePort
274 )
275 ));
276 break;
277
278 case EFI_IP_PROTO_ICMP:
279 //
280 // For icmpv4, type code is replaced with local port and remote port,
281 // and (0, 0) means no need to check.
282 //
283 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
284 IsMatch = (BOOLEAN) (IsMatch ||
285 (BOOLEAN) (((IP4_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
286 ((IP4_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
287 )
288 );
289 break;
290
291 case IP6_ICMP:
292 //
293 // For icmpv6, type code is replaced with local port and remote port,
294 // and (0, 0) means no need to check.
295 //
296 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
297
298 IsMatch = (BOOLEAN) (IsMatch ||
299 (BOOLEAN) (((IP6_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
300 ((IP6_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
301 )
302 );
303 break;
304
305 default:
306 IsMatch = TRUE;
307 break;
308 }
309 }
310
311 return IsMatch;
312 }
313
314 /**
315 Find the SAD through a specified SPD's SAD list.
316
317 @param[in] SadList SAD list related to a specified SPD entry.
318 @param[in] DestAddress The destination address used to find the SAD entry.
319 @param[in] IpVersion The IP version. Ip4 or Ip6.
320
321 @return The pointer to a certain SAD entry.
322
323 **/
324 IPSEC_SAD_ENTRY *
IpSecLookupSadBySpd(IN LIST_ENTRY * SadList,IN EFI_IP_ADDRESS * DestAddress,IN UINT8 IpVersion)325 IpSecLookupSadBySpd (
326 IN LIST_ENTRY *SadList,
327 IN EFI_IP_ADDRESS *DestAddress,
328 IN UINT8 IpVersion
329 )
330 {
331 LIST_ENTRY *Entry;
332 IPSEC_SAD_ENTRY *SadEntry;
333
334 NET_LIST_FOR_EACH (Entry, SadList) {
335
336 SadEntry = IPSEC_SAD_ENTRY_FROM_SPD (Entry);
337 //
338 // Find the right SAD entry which contains the appointed dest address.
339 //
340 if (IpSecMatchIpAddress (
341 IpVersion,
342 DestAddress,
343 SadEntry->Data->SpdSelector->RemoteAddress,
344 SadEntry->Data->SpdSelector->RemoteAddressCount
345 )){
346 return SadEntry;
347 }
348 }
349
350 return NULL;
351 }
352
353 /**
354 Find the SAD through whole SAD list.
355
356 @param[in] Spi The SPI used to search the SAD entry.
357 @param[in] DestAddress The destination used to search the SAD entry.
358 @param[in] IpVersion The IP version. Ip4 or Ip6.
359
360 @return the pointer to a certain SAD entry.
361
362 **/
363 IPSEC_SAD_ENTRY *
IpSecLookupSadBySpi(IN UINT32 Spi,IN EFI_IP_ADDRESS * DestAddress,IN UINT8 IpVersion)364 IpSecLookupSadBySpi (
365 IN UINT32 Spi,
366 IN EFI_IP_ADDRESS *DestAddress,
367 IN UINT8 IpVersion
368 )
369 {
370 LIST_ENTRY *Entry;
371 LIST_ENTRY *SadList;
372 IPSEC_SAD_ENTRY *SadEntry;
373
374 SadList = &mConfigData[IPsecConfigDataTypeSad];
375
376 NET_LIST_FOR_EACH (Entry, SadList) {
377
378 SadEntry = IPSEC_SAD_ENTRY_FROM_LIST (Entry);
379
380 //
381 // Find the right SAD entry which contain the appointed spi and dest addr.
382 //
383 if (SadEntry->Id->Spi == Spi) {
384 if (SadEntry->Data->Mode == EfiIPsecTunnel) {
385 if (CompareMem (
386 &DestAddress,
387 &SadEntry->Data->TunnelDestAddress,
388 sizeof (EFI_IP_ADDRESS)
389 )) {
390 return SadEntry;
391 }
392 } else {
393 if (SadEntry->Data->SpdSelector != NULL &&
394 IpSecMatchIpAddress (
395 IpVersion,
396 DestAddress,
397 SadEntry->Data->SpdSelector->RemoteAddress,
398 SadEntry->Data->SpdSelector->RemoteAddressCount
399 )
400 ) {
401 return SadEntry;
402 }
403 }
404 }
405 }
406 return NULL;
407 }
408
409 /**
410 Look up if there is existing SAD entry for specified IP packet sending.
411
412 This function is called by the IPsecProcess when there is some IP packet needed to
413 send out. This function checks if there is an existing SAD entry that can be serviced
414 to this IP packet sending. If no existing SAD entry could be used, this
415 function will invoke an IPsec Key Exchange Negotiation.
416
417 @param[in] Private Points to private data.
418 @param[in] NicHandle Points to a NIC handle.
419 @param[in] IpVersion The version of IP.
420 @param[in] IpHead The IP Header of packet to be sent out.
421 @param[in] IpPayload The IP Payload to be sent out.
422 @param[in] OldLastHead The Last protocol of the IP packet.
423 @param[in] SpdEntry Points to a related SPD entry.
424 @param[out] SadEntry Contains the Point of a related SAD entry.
425
426 @retval EFI_DEVICE_ERROR One of following conditions is TRUE:
427 - If don't find related UDP service.
428 - Sequence Number is used up.
429 - Extension Sequence Number is used up.
430 @retval EFI_NOT_READY No existing SAD entry could be used.
431 @retval EFI_SUCCESS Find the related SAD entry.
432
433 **/
434 EFI_STATUS
IpSecLookupSadEntry(IN IPSEC_PRIVATE_DATA * Private,IN EFI_HANDLE NicHandle,IN UINT8 IpVersion,IN VOID * IpHead,IN UINT8 * IpPayload,IN UINT8 OldLastHead,IN IPSEC_SPD_ENTRY * SpdEntry,OUT IPSEC_SAD_ENTRY ** SadEntry)435 IpSecLookupSadEntry (
436 IN IPSEC_PRIVATE_DATA *Private,
437 IN EFI_HANDLE NicHandle,
438 IN UINT8 IpVersion,
439 IN VOID *IpHead,
440 IN UINT8 *IpPayload,
441 IN UINT8 OldLastHead,
442 IN IPSEC_SPD_ENTRY *SpdEntry,
443 OUT IPSEC_SAD_ENTRY **SadEntry
444 )
445 {
446 IKE_UDP_SERVICE *UdpService;
447 IPSEC_SAD_ENTRY *Entry;
448 IPSEC_SAD_DATA *Data;
449 EFI_IP_ADDRESS DestIp;
450 UINT32 SeqNum32;
451
452 *SadEntry = NULL;
453 UdpService = IkeLookupUdp (Private, NicHandle, IpVersion);
454
455 if (UdpService == NULL) {
456 return EFI_DEVICE_ERROR;
457 }
458 //
459 // Parse the destination address from ip header.
460 //
461 ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
462 if (IpVersion == IP_VERSION_4) {
463 CopyMem (
464 &DestIp,
465 &((IP4_HEAD *) IpHead)->Dst,
466 sizeof (IP4_ADDR)
467 );
468 } else {
469 CopyMem (
470 &DestIp,
471 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
472 sizeof (EFI_IP_ADDRESS)
473 );
474 }
475
476 //
477 // Find the SAD entry in the spd.sas list according to the dest address.
478 //
479 Entry = IpSecLookupSadBySpd (&SpdEntry->Data->Sas, &DestIp, IpVersion);
480
481 if (Entry == NULL) {
482 if (OldLastHead != IP6_ICMP ||
483 (OldLastHead == IP6_ICMP && *IpPayload == ICMP_V6_ECHO_REQUEST)
484 ) {
485 //
486 // Start ike negotiation process except the request packet of ping.
487 //
488 if (SpdEntry->Data->ProcessingPolicy->Mode == EfiIPsecTunnel) {
489 IkeNegotiate (
490 UdpService,
491 SpdEntry,
492 &SpdEntry->Data->ProcessingPolicy->TunnelOption->RemoteTunnelAddress
493 );
494 } else {
495 IkeNegotiate (
496 UdpService,
497 SpdEntry,
498 &DestIp
499 );
500 }
501
502 }
503
504 return EFI_NOT_READY;
505 }
506
507 Data = Entry->Data;
508
509 if (!Data->ManualSet) {
510 if (Data->ESNEnabled) {
511 //
512 // Validate the 64bit sn number if 64bit sn enabled.
513 //
514 if ((UINT64) (Data->SequenceNumber + 1) == 0) {
515 //
516 // TODO: Re-negotiate SA
517 //
518 return EFI_DEVICE_ERROR;
519 }
520 } else {
521 //
522 // Validate the 32bit sn number if 64bit sn disabled.
523 //
524 SeqNum32 = (UINT32) Data->SequenceNumber;
525 if ((UINT32) (SeqNum32 + 1) == 0) {
526 //
527 // TODO: Re-negotiate SA
528 //
529 return EFI_DEVICE_ERROR;
530 }
531 }
532 }
533
534 *SadEntry = Entry;
535
536 return EFI_SUCCESS;
537 }
538
539 /**
540 Find a PAD entry according to a remote IP address.
541
542 @param[in] IpVersion The version of IP.
543 @param[in] IpAddr Points to remote IP address.
544
545 @return the pointer of related PAD entry.
546
547 **/
548 IPSEC_PAD_ENTRY *
IpSecLookupPadEntry(IN UINT8 IpVersion,IN EFI_IP_ADDRESS * IpAddr)549 IpSecLookupPadEntry (
550 IN UINT8 IpVersion,
551 IN EFI_IP_ADDRESS *IpAddr
552 )
553 {
554 LIST_ENTRY *PadList;
555 LIST_ENTRY *Entry;
556 EFI_IP_ADDRESS_INFO *IpAddrInfo;
557 IPSEC_PAD_ENTRY *PadEntry;
558
559 PadList = &mConfigData[IPsecConfigDataTypePad];
560
561 for (Entry = PadList->ForwardLink; Entry != PadList; Entry = Entry->ForwardLink) {
562
563 PadEntry = IPSEC_PAD_ENTRY_FROM_LIST (Entry);
564 IpAddrInfo = &PadEntry->Id->Id.IpAddress;
565 //
566 // Find the right pad entry which contain the appointed dest addr.
567 //
568 if (IpSecMatchIpAddress (IpVersion, IpAddr, IpAddrInfo, 1)) {
569 return PadEntry;
570 }
571 }
572
573 return NULL;
574 }
575
576 /**
577 Check if the specified IP packet can be serviced by this SPD entry.
578
579 @param[in] SpdEntry Point to SPD entry.
580 @param[in] IpVersion Version of IP.
581 @param[in] IpHead Point to IP header.
582 @param[in] IpPayload Point to IP payload.
583 @param[in] Protocol The Last protocol of IP packet.
584 @param[in] IsOutbound Traffic direction.
585 @param[out] Action The support action of SPD entry.
586
587 @retval EFI_SUCCESS Find the related SPD.
588 @retval EFI_NOT_FOUND Not find the related SPD entry;
589
590 **/
591 EFI_STATUS
IpSecLookupSpdEntry(IN IPSEC_SPD_ENTRY * SpdEntry,IN UINT8 IpVersion,IN VOID * IpHead,IN UINT8 * IpPayload,IN UINT8 Protocol,IN BOOLEAN IsOutbound,OUT EFI_IPSEC_ACTION * Action)592 IpSecLookupSpdEntry (
593 IN IPSEC_SPD_ENTRY *SpdEntry,
594 IN UINT8 IpVersion,
595 IN VOID *IpHead,
596 IN UINT8 *IpPayload,
597 IN UINT8 Protocol,
598 IN BOOLEAN IsOutbound,
599 OUT EFI_IPSEC_ACTION *Action
600 )
601 {
602 EFI_IPSEC_SPD_SELECTOR *SpdSel;
603 IP4_HEAD *Ip4;
604 EFI_IP6_HEADER *Ip6;
605 EFI_IP_ADDRESS SrcAddr;
606 EFI_IP_ADDRESS DstAddr;
607 BOOLEAN SpdMatch;
608
609 ASSERT (SpdEntry != NULL);
610 SpdSel = SpdEntry->Selector;
611 Ip4 = (IP4_HEAD *) IpHead;
612 Ip6 = (EFI_IP6_HEADER *) IpHead;
613
614 ZeroMem (&SrcAddr, sizeof (EFI_IP_ADDRESS));
615 ZeroMem (&DstAddr, sizeof (EFI_IP_ADDRESS));
616
617 //
618 // Parse the source and destination address from ip header.
619 //
620 if (IpVersion == IP_VERSION_4) {
621 CopyMem (&SrcAddr, &Ip4->Src, sizeof (IP4_ADDR));
622 CopyMem (&DstAddr, &Ip4->Dst, sizeof (IP4_ADDR));
623 } else {
624 CopyMem (&SrcAddr, &Ip6->SourceAddress, sizeof (EFI_IPv6_ADDRESS));
625 CopyMem (&DstAddr, &Ip6->DestinationAddress, sizeof (EFI_IPv6_ADDRESS));
626 }
627 //
628 // Check the local and remote addresses for outbound traffic
629 //
630 SpdMatch = (BOOLEAN)(IsOutbound &&
631 IpSecMatchIpAddress (
632 IpVersion,
633 &SrcAddr,
634 SpdSel->LocalAddress,
635 SpdSel->LocalAddressCount
636 ) &&
637 IpSecMatchIpAddress (
638 IpVersion,
639 &DstAddr,
640 SpdSel->RemoteAddress,
641 SpdSel->RemoteAddressCount
642 )
643 );
644
645 //
646 // Check the local and remote addresses for inbound traffic
647 //
648 SpdMatch = (BOOLEAN) (SpdMatch ||
649 (!IsOutbound &&
650 IpSecMatchIpAddress (
651 IpVersion,
652 &DstAddr,
653 SpdSel->LocalAddress,
654 SpdSel->LocalAddressCount
655 ) &&
656 IpSecMatchIpAddress (
657 IpVersion,
658 &SrcAddr,
659 SpdSel->RemoteAddress,
660 SpdSel->RemoteAddressCount
661 )
662 ));
663
664 //
665 // Check the next layer protocol and local and remote ports.
666 //
667 SpdMatch = (BOOLEAN) (SpdMatch &&
668 IpSecMatchNextLayerProtocol (
669 Protocol,
670 IpPayload,
671 SpdSel->NextLayerProtocol,
672 SpdSel->LocalPort,
673 SpdSel->RemotePort,
674 IsOutbound
675 )
676 );
677
678 if (SpdMatch) {
679 //
680 // Find the right SPD entry if match the 5 key elements.
681 //
682 *Action = SpdEntry->Data->Action;
683 return EFI_SUCCESS;
684 }
685
686 return EFI_NOT_FOUND;
687 }
688
689 /**
690 The call back function of NetbufFromExt.
691
692 @param[in] Arg The argument passed from the caller.
693
694 **/
695 VOID
696 EFIAPI
IpSecOnRecyclePacket(IN VOID * Arg)697 IpSecOnRecyclePacket (
698 IN VOID *Arg
699 )
700 {
701 }
702
703 /**
704 This is a Notification function. It is called when the related IP6_TXTOKEN_WRAP
705 is released.
706
707 @param[in] Event The related event.
708 @param[in] Context The data passed by the caller.
709
710 **/
711 VOID
712 EFIAPI
IpSecRecycleCallback(IN EFI_EVENT Event,IN VOID * Context)713 IpSecRecycleCallback (
714 IN EFI_EVENT Event,
715 IN VOID *Context
716 )
717 {
718 IPSEC_RECYCLE_CONTEXT *RecycleContext;
719
720 RecycleContext = (IPSEC_RECYCLE_CONTEXT *) Context;
721
722 if (RecycleContext->FragmentTable != NULL) {
723 FreePool (RecycleContext->FragmentTable);
724 }
725
726 if (RecycleContext->PayloadBuffer != NULL) {
727 FreePool (RecycleContext->PayloadBuffer);
728 }
729
730 FreePool (RecycleContext);
731 gBS->CloseEvent (Event);
732
733 }
734
735 /**
736 Calculate the extension hader of IP. The return length only doesn't contain
737 the fixed IP header length.
738
739 @param[in] IpHead Points to an IP head to be calculated.
740 @param[in] LastHead Points to the last header of the IP header.
741
742 @return The length of the extension header.
743
744 **/
745 UINT16
IpSecGetPlainExtHeadSize(IN VOID * IpHead,IN UINT8 * LastHead)746 IpSecGetPlainExtHeadSize (
747 IN VOID *IpHead,
748 IN UINT8 *LastHead
749 )
750 {
751 UINT16 Size;
752
753 Size = (UINT16) (LastHead - (UINT8 *) IpHead);
754
755 if (Size > sizeof (EFI_IP6_HEADER)) {
756 //
757 // * (LastHead+1) point the last header's length but not include the first
758 // 8 octers, so this formluation add 8 at the end.
759 //
760 Size = (UINT16) (Size - sizeof (EFI_IP6_HEADER) + *(LastHead + 1) + 8);
761 } else {
762 Size = 0;
763 }
764
765 return Size;
766 }
767
768 /**
769 Verify if the Authentication payload is correct.
770
771 @param[in] EspBuffer Points to the ESP wrapped buffer.
772 @param[in] EspSize The size of the ESP wrapped buffer.
773 @param[in] SadEntry The related SAD entry to store the authentication
774 algorithm key.
775 @param[in] IcvSize The length of ICV.
776
777 @retval EFI_SUCCESS The authentication data is correct.
778 @retval EFI_ACCESS_DENIED The authentication data is not correct.
779
780 **/
781 EFI_STATUS
IpSecEspAuthVerifyPayload(IN UINT8 * EspBuffer,IN UINTN EspSize,IN IPSEC_SAD_ENTRY * SadEntry,IN UINTN IcvSize)782 IpSecEspAuthVerifyPayload (
783 IN UINT8 *EspBuffer,
784 IN UINTN EspSize,
785 IN IPSEC_SAD_ENTRY *SadEntry,
786 IN UINTN IcvSize
787 )
788 {
789 EFI_STATUS Status;
790 UINTN AuthSize;
791 UINT8 IcvBuffer[12];
792 HASH_DATA_FRAGMENT HashFragment[1];
793
794 //
795 // Calculate the size of authentication payload.
796 //
797 AuthSize = EspSize - IcvSize;
798
799 //
800 // Calculate the icv buffer and size of the payload.
801 //
802 HashFragment[0].Data = EspBuffer;
803 HashFragment[0].DataSize = AuthSize;
804
805 Status = IpSecCryptoIoHmac (
806 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
807 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
808 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
809 HashFragment,
810 1,
811 IcvBuffer,
812 IcvSize
813 );
814 if (EFI_ERROR (Status)) {
815 return Status;
816 }
817
818 //
819 // Compare the calculated icv and the appended original icv.
820 //
821 if (CompareMem (EspBuffer + AuthSize, IcvBuffer, IcvSize) == 0) {
822 return EFI_SUCCESS;
823 }
824
825 DEBUG ((DEBUG_ERROR, "Error auth verify payload\n"));
826 return EFI_ACCESS_DENIED;
827 }
828
829 /**
830 Search the related SAD entry by the input .
831
832 @param[in] IpHead The pointer to IP header.
833 @param[in] IpVersion The version of IP (IP4 or IP6).
834 @param[in] Spi The SPI used to search the related SAD entry.
835
836
837 @retval NULL Not find the related SAD entry.
838 @retval IPSEC_SAD_ENTRY Return the related SAD entry.
839
840 **/
841 IPSEC_SAD_ENTRY *
IpSecFoundSadFromInboundPacket(UINT8 * IpHead,UINT8 IpVersion,UINT32 Spi)842 IpSecFoundSadFromInboundPacket (
843 UINT8 *IpHead,
844 UINT8 IpVersion,
845 UINT32 Spi
846 )
847 {
848 EFI_IP_ADDRESS DestIp;
849
850 //
851 // Parse destination address from ip header.
852 //
853 ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
854 if (IpVersion == IP_VERSION_4) {
855 CopyMem (
856 &DestIp,
857 &((IP4_HEAD *) IpHead)->Dst,
858 sizeof (IP4_ADDR)
859 );
860 } else {
861 CopyMem (
862 &DestIp,
863 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
864 sizeof (EFI_IPv6_ADDRESS)
865 );
866 }
867
868 //
869 // Lookup SAD entry according to the spi and dest address.
870 //
871 return IpSecLookupSadBySpi (Spi, &DestIp, IpVersion);
872 }
873
874 /**
875 Validate the IP6 extension header format for both the packets we received
876 and that we will transmit.
877
878 @param[in] NextHeader The next header field in IPv6 basic header.
879 @param[in] ExtHdrs The first bye of the option.
880 @param[in] ExtHdrsLen The length of the whole option.
881 @param[out] LastHeader The pointer of NextHeader of the last extension
882 header processed by IP6.
883 @param[out] RealExtsLen The length of extension headers processed by IP6 layer.
884 This is an optional parameter that may be NULL.
885
886 @retval TRUE The option is properly formated.
887 @retval FALSE The option is malformated.
888
889 **/
890 BOOLEAN
IpSecIsIp6ExtsValid(IN UINT8 * NextHeader,IN UINT8 * ExtHdrs,IN UINT32 ExtHdrsLen,OUT UINT8 ** LastHeader,OUT UINT32 * RealExtsLen OPTIONAL)891 IpSecIsIp6ExtsValid (
892 IN UINT8 *NextHeader,
893 IN UINT8 *ExtHdrs,
894 IN UINT32 ExtHdrsLen,
895 OUT UINT8 **LastHeader,
896 OUT UINT32 *RealExtsLen OPTIONAL
897 )
898 {
899 UINT32 Pointer;
900 UINT8 *Option;
901 UINT8 OptionLen;
902 UINT8 CountD;
903 UINT8 CountF;
904 UINT8 CountA;
905
906 if (RealExtsLen != NULL) {
907 *RealExtsLen = 0;
908 }
909
910 *LastHeader = NextHeader;
911
912 if (ExtHdrs == NULL && ExtHdrsLen == 0) {
913 return TRUE;
914 }
915
916 if ((ExtHdrs == NULL && ExtHdrsLen != 0) || (ExtHdrs != NULL && ExtHdrsLen == 0)) {
917 return FALSE;
918 }
919
920 Pointer = 0;
921 CountD = 0;
922 CountF = 0;
923 CountA = 0;
924
925 while (Pointer <= ExtHdrsLen) {
926
927 switch (*NextHeader) {
928 case IP6_HOP_BY_HOP:
929 if (Pointer != 0) {
930 return FALSE;
931 }
932
933 //
934 // Fall through
935 //
936 case IP6_DESTINATION:
937 if (*NextHeader == IP6_DESTINATION) {
938 CountD++;
939 }
940
941 if (CountD > 2) {
942 return FALSE;
943 }
944
945 NextHeader = ExtHdrs + Pointer;
946
947 Pointer++;
948 Option = ExtHdrs + Pointer;
949 OptionLen = (UINT8) ((*Option + 1) * 8 - 2);
950 Option++;
951 Pointer++;
952
953 Pointer = Pointer + OptionLen;
954 break;
955
956 case IP6_FRAGMENT:
957 if (++CountF > 1) {
958 return FALSE;
959 }
960 //
961 // RFC2402, AH header should after fragment header.
962 //
963 if (CountA > 1) {
964 return FALSE;
965 }
966
967 NextHeader = ExtHdrs + Pointer;
968 Pointer = Pointer + 8;
969 break;
970
971 case IP6_AH:
972 if (++CountA > 1) {
973 return FALSE;
974 }
975
976 Option = ExtHdrs + Pointer;
977 NextHeader = Option;
978 Option++;
979 //
980 // RFC2402, Payload length is specified in 32-bit words, minus "2".
981 //
982 OptionLen = (UINT8) ((*Option + 2) * 4);
983 Pointer = Pointer + OptionLen;
984 break;
985
986 default:
987 *LastHeader = NextHeader;
988 if (RealExtsLen != NULL) {
989 *RealExtsLen = Pointer;
990 }
991
992 return TRUE;
993 }
994 }
995
996 *LastHeader = NextHeader;
997
998 if (RealExtsLen != NULL) {
999 *RealExtsLen = Pointer;
1000 }
1001
1002 return TRUE;
1003 }
1004
1005 /**
1006 The actual entry to process the tunnel header and inner header for tunnel mode
1007 outbound traffic.
1008
1009 This function is the subfunction of IpSecEspInboundPacket(). It change the destination
1010 Ip address to the station address and recalculate the uplayyer's checksum.
1011
1012
1013 @param[in, out] IpHead Points to the IP header containing the ESP header
1014 to be trimed on input, and without ESP header
1015 on return.
1016 @param[in] IpPayload The decrypted Ip payload. It start from the inner
1017 header.
1018 @param[in] IpVersion The version of IP.
1019 @param[in] SadData Pointer of the relevant SAD.
1020 @param[in, out] LastHead The Last Header in IP header on return.
1021
1022 **/
1023 VOID
IpSecTunnelInboundPacket(IN OUT UINT8 * IpHead,IN UINT8 * IpPayload,IN UINT8 IpVersion,IN IPSEC_SAD_DATA * SadData,IN OUT UINT8 * LastHead)1024 IpSecTunnelInboundPacket (
1025 IN OUT UINT8 *IpHead,
1026 IN UINT8 *IpPayload,
1027 IN UINT8 IpVersion,
1028 IN IPSEC_SAD_DATA *SadData,
1029 IN OUT UINT8 *LastHead
1030 )
1031 {
1032 EFI_UDP_HEADER *UdpHeader;
1033 TCP_HEAD *TcpHeader;
1034 UINT16 *Checksum;
1035 UINT16 PseudoChecksum;
1036 UINT16 PacketChecksum;
1037 UINT32 OptionLen;
1038 IP6_ICMP_HEAD *Icmp6Head;
1039
1040 Checksum = NULL;
1041
1042 if (IpVersion == IP_VERSION_4) {
1043 //
1044 // Zero OutIP header use this to indicate the input packet is under
1045 // IPsec Tunnel protected.
1046 //
1047 ZeroMem (
1048 (IP4_HEAD *)IpHead,
1049 sizeof (IP4_HEAD)
1050 );
1051 CopyMem (
1052 &((IP4_HEAD *)IpPayload)->Dst,
1053 &SadData->TunnelDestAddress.v4,
1054 sizeof (EFI_IPv4_ADDRESS)
1055 );
1056
1057 //
1058 // Recalculate IpHeader Checksum
1059 //
1060 if (((IP4_HEAD *)(IpPayload))->Checksum != 0 ) {
1061 ((IP4_HEAD *)(IpPayload))->Checksum = 0;
1062 ((IP4_HEAD *)(IpPayload))->Checksum = (UINT16) (~NetblockChecksum (
1063 (UINT8 *)IpPayload,
1064 ((IP4_HEAD *)IpPayload)->HeadLen << 2
1065 ));
1066
1067
1068 }
1069
1070 //
1071 // Recalcualte PseudoChecksum
1072 //
1073 switch (((IP4_HEAD *)IpPayload)->Protocol) {
1074 case EFI_IP_PROTO_UDP :
1075 UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
1076 Checksum = & UdpHeader->Checksum;
1077 *Checksum = 0;
1078 break;
1079
1080 case EFI_IP_PROTO_TCP:
1081 TcpHeader = (TCP_HEAD *) ((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
1082 Checksum = &TcpHeader->Checksum;
1083 *Checksum = 0;
1084 break;
1085
1086 default:
1087 break;
1088 }
1089 PacketChecksum = NetblockChecksum (
1090 (UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2),
1091 NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)
1092 );
1093 PseudoChecksum = NetPseudoHeadChecksum (
1094 ((IP4_HEAD *)IpPayload)->Src,
1095 ((IP4_HEAD *)IpPayload)->Dst,
1096 ((IP4_HEAD *)IpPayload)->Protocol,
1097 0
1098 );
1099
1100 if (Checksum != NULL) {
1101 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1102 *Checksum = (UINT16) ~(NetAddChecksum (*Checksum, HTONS((UINT16)(NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)))));
1103 }
1104 }else {
1105 //
1106 // Zero OutIP header use this to indicate the input packet is under
1107 // IPsec Tunnel protected.
1108 //
1109 ZeroMem (
1110 IpHead,
1111 sizeof (EFI_IP6_HEADER)
1112 );
1113 CopyMem (
1114 &((EFI_IP6_HEADER*)IpPayload)->DestinationAddress,
1115 &SadData->TunnelDestAddress.v6,
1116 sizeof (EFI_IPv6_ADDRESS)
1117 );
1118
1119 //
1120 // Get the Extension Header and Header length.
1121 //
1122 IpSecIsIp6ExtsValid (
1123 &((EFI_IP6_HEADER *)IpPayload)->NextHeader,
1124 IpPayload + sizeof (EFI_IP6_HEADER),
1125 ((EFI_IP6_HEADER *)IpPayload)->PayloadLength,
1126 &LastHead,
1127 &OptionLen
1128 );
1129
1130 //
1131 // Recalcualte PseudoChecksum
1132 //
1133 switch (*LastHead) {
1134 case EFI_IP_PROTO_UDP:
1135 UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1136 Checksum = &UdpHeader->Checksum;
1137 *Checksum = 0;
1138 break;
1139
1140 case EFI_IP_PROTO_TCP:
1141 TcpHeader = (TCP_HEAD *)(IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1142 Checksum = &TcpHeader->Checksum;
1143 *Checksum = 0;
1144 break;
1145
1146 case IP6_ICMP:
1147 Icmp6Head = (IP6_ICMP_HEAD *) (IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1148 Checksum = &Icmp6Head->Checksum;
1149 *Checksum = 0;
1150 break;
1151 }
1152 PacketChecksum = NetblockChecksum (
1153 IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen,
1154 NTOHS(((EFI_IP6_HEADER *)IpPayload)->PayloadLength) - OptionLen
1155 );
1156 PseudoChecksum = NetIp6PseudoHeadChecksum (
1157 &((EFI_IP6_HEADER *)IpPayload)->SourceAddress,
1158 &((EFI_IP6_HEADER *)IpPayload)->DestinationAddress,
1159 *LastHead,
1160 0
1161 );
1162
1163 if (Checksum != NULL) {
1164 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1165 *Checksum = (UINT16) ~(NetAddChecksum (
1166 *Checksum,
1167 HTONS ((UINT16)((NTOHS (((EFI_IP6_HEADER *)(IpPayload))->PayloadLength)) - OptionLen))
1168 ));
1169 }
1170 }
1171 }
1172
1173 /**
1174 The actual entry to create inner header for tunnel mode inbound traffic.
1175
1176 This function is the subfunction of IpSecEspOutboundPacket(). It create
1177 the sending packet by encrypting its payload and inserting ESP header in the orginal
1178 IP header, then return the IpHeader and IPsec protected Fragmentable.
1179
1180 @param[in, out] IpHead Points to IP header containing the orginal IP header
1181 to be processed on input, and inserted ESP header
1182 on return.
1183 @param[in] IpVersion The version of IP.
1184 @param[in] SadData The related SAD data.
1185 @param[in, out] LastHead The Last Header in IP header.
1186 @param[in] OptionsBuffer Pointer to the options buffer.
1187 @param[in] OptionsLength Length of the options buffer.
1188 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
1189 IPsec on input, and with IPsec protected
1190 on return.
1191 @param[in] FragmentCount The number of fragments.
1192
1193 **/
1194 UINT8 *
IpSecTunnelOutboundPacket(IN OUT UINT8 * IpHead,IN UINT8 IpVersion,IN IPSEC_SAD_DATA * SadData,IN OUT UINT8 * LastHead,IN VOID ** OptionsBuffer,IN UINT32 * OptionsLength,IN OUT EFI_IPSEC_FRAGMENT_DATA ** FragmentTable,IN UINT32 * FragmentCount)1195 IpSecTunnelOutboundPacket (
1196 IN OUT UINT8 *IpHead,
1197 IN UINT8 IpVersion,
1198 IN IPSEC_SAD_DATA *SadData,
1199 IN OUT UINT8 *LastHead,
1200 IN VOID **OptionsBuffer,
1201 IN UINT32 *OptionsLength,
1202 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1203 IN UINT32 *FragmentCount
1204 )
1205 {
1206 UINT8 *InnerHead;
1207 NET_BUF *Packet;
1208 UINT16 PacketChecksum;
1209 UINT16 *Checksum;
1210 UINT16 PseudoChecksum;
1211 IP6_ICMP_HEAD *IcmpHead;
1212
1213 Checksum = NULL;
1214 if (OptionsLength == NULL) {
1215 return NULL;
1216 }
1217
1218 if (IpVersion == IP_VERSION_4) {
1219 InnerHead = AllocateZeroPool (sizeof (IP4_HEAD) + *OptionsLength);
1220 if (InnerHead == NULL) {
1221 return NULL;
1222 }
1223
1224 CopyMem (
1225 InnerHead,
1226 IpHead,
1227 sizeof (IP4_HEAD)
1228 );
1229 CopyMem (
1230 InnerHead + sizeof (IP4_HEAD),
1231 *OptionsBuffer,
1232 *OptionsLength
1233 );
1234 } else {
1235 InnerHead = AllocateZeroPool (sizeof (EFI_IP6_HEADER) + *OptionsLength);
1236 if (InnerHead == NULL) {
1237 return NULL;
1238 }
1239
1240 CopyMem (
1241 InnerHead,
1242 IpHead,
1243 sizeof (EFI_IP6_HEADER)
1244 );
1245 CopyMem (
1246 InnerHead + sizeof (EFI_IP6_HEADER),
1247 *OptionsBuffer,
1248 *OptionsLength
1249 );
1250 }
1251 if (OptionsBuffer != NULL) {
1252 if (*OptionsLength != 0) {
1253
1254 *OptionsBuffer = NULL;
1255 *OptionsLength = 0;
1256 }
1257 }
1258
1259 //
1260 // 2. Reassamlbe Fragment into Packet
1261 //
1262 Packet = NetbufFromExt (
1263 (NET_FRAGMENT *)(*FragmentTable),
1264 *FragmentCount,
1265 0,
1266 0,
1267 IpSecOnRecyclePacket,
1268 NULL
1269 );
1270 if (Packet == NULL) {
1271 FreePool (InnerHead);
1272 return NULL;
1273 }
1274
1275 //
1276 // 3. Check the Last Header, if it is TCP, UDP or ICMP recalcualate its pesudo
1277 // CheckSum.
1278 //
1279 switch (*LastHead) {
1280 case EFI_IP_PROTO_UDP:
1281 Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, 0);
1282 ASSERT (Packet->Udp != NULL);
1283 Checksum = &Packet->Udp->Checksum;
1284 *Checksum = 0;
1285 break;
1286
1287 case EFI_IP_PROTO_TCP:
1288 Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, 0);
1289 ASSERT (Packet->Tcp != NULL);
1290 Checksum = &Packet->Tcp->Checksum;
1291 *Checksum = 0;
1292 break;
1293
1294 case IP6_ICMP:
1295 IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL);
1296 ASSERT (IcmpHead != NULL);
1297 Checksum = &IcmpHead->Checksum;
1298 *Checksum = 0;
1299 break;
1300
1301 default:
1302 break;
1303 }
1304
1305 PacketChecksum = NetbufChecksum (Packet);
1306
1307 if (IpVersion == IP_VERSION_4) {
1308 //
1309 // Replace the source address of Inner Header.
1310 //
1311 CopyMem (
1312 &((IP4_HEAD *)InnerHead)->Src,
1313 &SadData->SpdSelector->LocalAddress[0].Address.v4,
1314 sizeof (EFI_IPv4_ADDRESS)
1315 );
1316
1317 PacketChecksum = NetbufChecksum (Packet);
1318 PseudoChecksum = NetPseudoHeadChecksum (
1319 ((IP4_HEAD *)InnerHead)->Src,
1320 ((IP4_HEAD *)InnerHead)->Dst,
1321 *LastHead,
1322 0
1323 );
1324
1325 } else {
1326 //
1327 // Replace the source address of Inner Header.
1328 //
1329 CopyMem (
1330 &((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
1331 &(SadData->SpdSelector->LocalAddress[0].Address.v6),
1332 sizeof (EFI_IPv6_ADDRESS)
1333 );
1334 PacketChecksum = NetbufChecksum (Packet);
1335 PseudoChecksum = NetIp6PseudoHeadChecksum (
1336 &((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
1337 &((EFI_IP6_HEADER *)InnerHead)->DestinationAddress,
1338 *LastHead,
1339 0
1340 );
1341
1342 }
1343 if (Checksum != NULL) {
1344 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1345 *Checksum = (UINT16) ~(NetAddChecksum ((UINT16)*Checksum, HTONS ((UINT16) Packet->TotalSize)));
1346 }
1347
1348 if (Packet != NULL) {
1349 NetbufFree (Packet);
1350 }
1351 return InnerHead;
1352 }
1353
1354 /**
1355 The actual entry to relative function processes the inbound traffic of ESP header.
1356
1357 This function is the subfunction of IpSecProtectInboundPacket(). It checks the
1358 received packet security property and trim the ESP header and then returns without
1359 an IPsec protected IP Header and FramgmentTable.
1360
1361 @param[in] IpVersion The version of IP.
1362 @param[in, out] IpHead Points to the IP header containing the ESP header
1363 to be trimed on input, and without ESP header
1364 on return.
1365 @param[out] LastHead The Last Header in IP header on return.
1366 @param[in, out] OptionsBuffer Pointer to the options buffer.
1367 @param[in, out] OptionsLength Length of the options buffer.
1368 @param[in, out] FragmentTable Pointer to a list of fragments in the form of IPsec
1369 protected on input, and without IPsec protected
1370 on return.
1371 @param[in, out] FragmentCount The number of fragments.
1372 @param[out] SpdSelector Pointer to contain the address of SPD selector on return.
1373 @param[out] RecycleEvent The event for recycling of resources.
1374
1375 @retval EFI_SUCCESS The operation was successful.
1376 @retval EFI_ACCESS_DENIED One or more following conditions is TRUE:
1377 - ESP header was not found or mal-format.
1378 - The related SAD entry was not found.
1379 - The related SAD entry does not support the ESP protocol.
1380 @retval EFI_OUT_OF_RESOURCES The required system resource can't be allocated.
1381
1382 **/
1383 EFI_STATUS
IpSecEspInboundPacket(IN UINT8 IpVersion,IN OUT VOID * IpHead,OUT UINT8 * LastHead,IN OUT VOID ** OptionsBuffer,IN OUT UINT32 * OptionsLength,IN OUT EFI_IPSEC_FRAGMENT_DATA ** FragmentTable,IN OUT UINT32 * FragmentCount,OUT EFI_IPSEC_SPD_SELECTOR ** SpdSelector,OUT EFI_EVENT * RecycleEvent)1384 IpSecEspInboundPacket (
1385 IN UINT8 IpVersion,
1386 IN OUT VOID *IpHead,
1387 OUT UINT8 *LastHead,
1388 IN OUT VOID **OptionsBuffer,
1389 IN OUT UINT32 *OptionsLength,
1390 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1391 IN OUT UINT32 *FragmentCount,
1392 OUT EFI_IPSEC_SPD_SELECTOR **SpdSelector,
1393 OUT EFI_EVENT *RecycleEvent
1394 )
1395 {
1396 EFI_STATUS Status;
1397 NET_BUF *Payload;
1398 UINTN EspSize;
1399 UINTN IvSize;
1400 UINTN BlockSize;
1401 UINTN MiscSize;
1402 UINTN PlainPayloadSize;
1403 UINTN PaddingSize;
1404 UINTN IcvSize;
1405 UINT8 *ProcessBuffer;
1406 EFI_ESP_HEADER *EspHeader;
1407 EFI_ESP_TAIL *EspTail;
1408 EFI_IPSEC_SA_ID *SaId;
1409 IPSEC_SAD_DATA *SadData;
1410 IPSEC_SAD_ENTRY *SadEntry;
1411 IPSEC_RECYCLE_CONTEXT *RecycleContext;
1412 UINT8 NextHeader;
1413 UINT16 IpSecHeadSize;
1414 UINT8 *InnerHead;
1415
1416 Status = EFI_SUCCESS;
1417 Payload = NULL;
1418 ProcessBuffer = NULL;
1419 RecycleContext = NULL;
1420 *RecycleEvent = NULL;
1421 PlainPayloadSize = 0;
1422 NextHeader = 0;
1423
1424 //
1425 // Build netbuf from fragment table first.
1426 //
1427 Payload = NetbufFromExt (
1428 (NET_FRAGMENT *) *FragmentTable,
1429 *FragmentCount,
1430 0,
1431 sizeof (EFI_ESP_HEADER),
1432 IpSecOnRecyclePacket,
1433 NULL
1434 );
1435 if (Payload == NULL) {
1436 Status = EFI_OUT_OF_RESOURCES;
1437 goto ON_EXIT;
1438 }
1439
1440 //
1441 // Get the esp size and esp header from netbuf.
1442 //
1443 EspSize = Payload->TotalSize;
1444 EspHeader = (EFI_ESP_HEADER *) NetbufGetByte (Payload, 0, NULL);
1445
1446 if (EspHeader == NULL) {
1447 Status = EFI_ACCESS_DENIED;
1448 goto ON_EXIT;
1449 }
1450
1451 //
1452 // Parse destination address from ip header and found the related SAD Entry.
1453 //
1454 SadEntry = IpSecFoundSadFromInboundPacket (
1455 IpHead,
1456 IpVersion,
1457 NTOHL (EspHeader->Spi)
1458 );
1459
1460 if (SadEntry == NULL) {
1461 Status = EFI_ACCESS_DENIED;
1462 goto ON_EXIT;
1463 }
1464
1465 SaId = SadEntry->Id;
1466 SadData = SadEntry->Data;
1467
1468 //
1469 // Only support esp protocol currently.
1470 //
1471 if (SaId->Proto != EfiIPsecESP) {
1472 Status = EFI_ACCESS_DENIED;
1473 goto ON_EXIT;
1474 }
1475
1476 if (!SadData->ManualSet) {
1477 //
1478 // TODO: Check SA lifetime and sequence number
1479 //
1480 }
1481
1482 //
1483 // Allocate buffer for decryption and authentication.
1484 //
1485 ProcessBuffer = AllocateZeroPool (EspSize);
1486 if (ProcessBuffer == NULL) {
1487 Status = EFI_OUT_OF_RESOURCES;
1488 goto ON_EXIT;
1489 }
1490
1491 NetbufCopy (Payload, 0, (UINT32) EspSize, ProcessBuffer);
1492
1493 //
1494 // Get the IcvSize for authentication and BlockSize/IvSize for Decryption.
1495 //
1496 IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
1497 IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1498 BlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1499
1500 //
1501 // Make sure the ESP packet is not mal-formt.
1502 // 1. Check whether the Espsize is larger than ESP header + IvSize + EspTail + IcvSize.
1503 // 2. Check whether the left payload size is multiple of IvSize.
1504 //
1505 MiscSize = sizeof (EFI_ESP_HEADER) + IvSize + IcvSize;
1506 if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL))) {
1507 Status = EFI_ACCESS_DENIED;
1508 goto ON_EXIT;
1509 }
1510 if ((EspSize - MiscSize) % BlockSize != 0) {
1511 Status = EFI_ACCESS_DENIED;
1512 goto ON_EXIT;
1513 }
1514
1515 //
1516 // Authenticate the ESP packet.
1517 //
1518 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1519 Status = IpSecEspAuthVerifyPayload (
1520 ProcessBuffer,
1521 EspSize,
1522 SadEntry,
1523 IcvSize
1524 );
1525 if (EFI_ERROR (Status)) {
1526 goto ON_EXIT;
1527 }
1528 }
1529 //
1530 // Decrypt the payload by the SAD entry if it has decrypt key.
1531 //
1532 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1533 Status = IpSecCryptoIoDecrypt (
1534 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
1535 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
1536 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
1537 ProcessBuffer + sizeof (EFI_ESP_HEADER),
1538 ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize,
1539 EspSize - sizeof (EFI_ESP_HEADER) - IvSize - IcvSize,
1540 ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize
1541 );
1542 if (EFI_ERROR (Status)) {
1543 goto ON_EXIT;
1544 }
1545 }
1546
1547 //
1548 // Parse EspTail and compute the plain payload size.
1549 //
1550 EspTail = (EFI_ESP_TAIL *) (ProcessBuffer + EspSize - IcvSize - sizeof (EFI_ESP_TAIL));
1551 PaddingSize = EspTail->PaddingLength;
1552 NextHeader = EspTail->NextHeader;
1553
1554 if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL) + PaddingSize)) {
1555 Status = EFI_ACCESS_DENIED;
1556 goto ON_EXIT;
1557 }
1558 PlainPayloadSize = EspSize - MiscSize - sizeof (EFI_ESP_TAIL) - PaddingSize;
1559
1560 //
1561 // TODO: handle anti-replay window
1562 //
1563 //
1564 // Decryption and authentication with esp has been done, so it's time to
1565 // reload the new packet, create recycle event and fixup ip header.
1566 //
1567 RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
1568 if (RecycleContext == NULL) {
1569 Status = EFI_OUT_OF_RESOURCES;
1570 goto ON_EXIT;
1571 }
1572
1573 Status = gBS->CreateEvent (
1574 EVT_NOTIFY_SIGNAL,
1575 TPL_NOTIFY,
1576 IpSecRecycleCallback,
1577 RecycleContext,
1578 RecycleEvent
1579 );
1580 if (EFI_ERROR (Status)) {
1581 goto ON_EXIT;
1582 }
1583
1584 //
1585 // The caller will take responsible to handle the original fragment table
1586 //
1587 *FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
1588 if (*FragmentTable == NULL) {
1589 Status = EFI_OUT_OF_RESOURCES;
1590 goto ON_EXIT;
1591 }
1592
1593 RecycleContext->PayloadBuffer = ProcessBuffer;
1594 RecycleContext->FragmentTable = *FragmentTable;
1595
1596 //
1597 // If Tunnel, recalculate upper-layyer PesudoCheckSum and trim the out
1598 //
1599 if (SadData->Mode == EfiIPsecTunnel) {
1600 InnerHead = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
1601 IpSecTunnelInboundPacket (
1602 IpHead,
1603 InnerHead,
1604 IpVersion,
1605 SadData,
1606 LastHead
1607 );
1608
1609 if (IpVersion == IP_VERSION_4) {
1610 (*FragmentTable)[0].FragmentBuffer = InnerHead ;
1611 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1612
1613 }else {
1614 (*FragmentTable)[0].FragmentBuffer = InnerHead;
1615 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1616 }
1617 } else {
1618 (*FragmentTable)[0].FragmentBuffer = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
1619 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1620 }
1621
1622 *FragmentCount = 1;
1623
1624 //
1625 // Update the total length field in ip header since processed by esp.
1626 //
1627 if (SadData->Mode != EfiIPsecTunnel) {
1628 if (IpVersion == IP_VERSION_4) {
1629 ((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + PlainPayloadSize));
1630 } else {
1631 IpSecHeadSize = IpSecGetPlainExtHeadSize (IpHead, LastHead);
1632 ((EFI_IP6_HEADER *) IpHead)->PayloadLength = HTONS ((UINT16)(IpSecHeadSize + PlainPayloadSize));
1633 }
1634 //
1635 // Update the next layer field in ip header since esp header inserted.
1636 //
1637 *LastHead = NextHeader;
1638 }
1639
1640
1641 //
1642 // Update the SPD association of the SAD entry.
1643 //
1644 *SpdSelector = SadData->SpdSelector;
1645
1646 ON_EXIT:
1647 if (Payload != NULL) {
1648 NetbufFree (Payload);
1649 }
1650
1651 if (EFI_ERROR (Status)) {
1652 if (ProcessBuffer != NULL) {
1653 FreePool (ProcessBuffer);
1654 }
1655
1656 if (RecycleContext != NULL) {
1657 FreePool (RecycleContext);
1658 }
1659
1660 if (*RecycleEvent != NULL) {
1661 gBS->CloseEvent (*RecycleEvent);
1662 }
1663 }
1664
1665 return Status;
1666 }
1667
1668 /**
1669 The actual entry to the relative function processes the output traffic using the ESP protocol.
1670
1671 This function is the subfunction of IpSecProtectOutboundPacket(). It protected
1672 the sending packet by encrypting its payload and inserting ESP header in the orginal
1673 IP header, then return the IpHeader and IPsec protected Fragmentable.
1674
1675 @param[in] IpVersion The version of IP.
1676 @param[in, out] IpHead Points to IP header containing the orginal IP header
1677 to be processed on input, and inserted ESP header
1678 on return.
1679 @param[in, out] LastHead The Last Header in IP header.
1680 @param[in, out] OptionsBuffer Pointer to the options buffer.
1681 @param[in, out] OptionsLength Length of the options buffer.
1682 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
1683 IPsec on input, and with IPsec protected
1684 on return.
1685 @param[in, out] FragmentCount The number of fragments.
1686 @param[in] SadEntry The related SAD entry.
1687 @param[out] RecycleEvent The event for recycling of resources.
1688
1689 @retval EFI_SUCCESS The operation was successful.
1690 @retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
1691
1692 **/
1693 EFI_STATUS
IpSecEspOutboundPacket(IN UINT8 IpVersion,IN OUT VOID * IpHead,IN OUT UINT8 * LastHead,IN OUT VOID ** OptionsBuffer,IN OUT UINT32 * OptionsLength,IN OUT EFI_IPSEC_FRAGMENT_DATA ** FragmentTable,IN OUT UINT32 * FragmentCount,IN IPSEC_SAD_ENTRY * SadEntry,OUT EFI_EVENT * RecycleEvent)1694 IpSecEspOutboundPacket (
1695 IN UINT8 IpVersion,
1696 IN OUT VOID *IpHead,
1697 IN OUT UINT8 *LastHead,
1698 IN OUT VOID **OptionsBuffer,
1699 IN OUT UINT32 *OptionsLength,
1700 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1701 IN OUT UINT32 *FragmentCount,
1702 IN IPSEC_SAD_ENTRY *SadEntry,
1703 OUT EFI_EVENT *RecycleEvent
1704 )
1705 {
1706 EFI_STATUS Status;
1707 UINTN Index;
1708 EFI_IPSEC_SA_ID *SaId;
1709 IPSEC_SAD_DATA *SadData;
1710 IPSEC_RECYCLE_CONTEXT *RecycleContext;
1711 UINT8 *ProcessBuffer;
1712 UINTN BytesCopied;
1713 INTN EncryptBlockSize;// Size of encryption block, 4 bytes aligned and >= 4
1714 UINTN EspSize; // Total size of esp wrapped ip payload
1715 UINTN IvSize; // Size of IV, optional, might be 0
1716 UINTN PlainPayloadSize;// Original IP payload size
1717 UINTN PaddingSize; // Size of padding
1718 UINTN EncryptSize; // Size of data to be encrypted, start after IV and
1719 // stop before ICV
1720 UINTN IcvSize; // Size of ICV, optional, might be 0
1721 UINT8 *RestOfPayload; // Start of Payload after IV
1722 UINT8 *Padding; // Start address of padding
1723 EFI_ESP_HEADER *EspHeader; // Start address of ESP frame
1724 EFI_ESP_TAIL *EspTail; // Address behind padding
1725 UINT8 *InnerHead;
1726 HASH_DATA_FRAGMENT HashFragment[1];
1727
1728 Status = EFI_ACCESS_DENIED;
1729 SaId = SadEntry->Id;
1730 SadData = SadEntry->Data;
1731 ProcessBuffer = NULL;
1732 RecycleContext = NULL;
1733 *RecycleEvent = NULL;
1734 InnerHead = NULL;
1735
1736 if (!SadData->ManualSet &&
1737 SadData->AlgoInfo.EspAlgoInfo.EncKey == NULL &&
1738 SadData->AlgoInfo.EspAlgoInfo.AuthKey == NULL
1739 ) {
1740 //
1741 // Invalid manual SAD entry configuration.
1742 //
1743 goto ON_EXIT;
1744 }
1745
1746 //
1747 // Create OutHeader according to Inner Header
1748 //
1749 if (SadData->Mode == EfiIPsecTunnel) {
1750 InnerHead = IpSecTunnelOutboundPacket (
1751 IpHead,
1752 IpVersion,
1753 SadData,
1754 LastHead,
1755 OptionsBuffer,
1756 OptionsLength,
1757 FragmentTable,
1758 FragmentCount
1759 );
1760
1761 if (InnerHead == NULL) {
1762 return EFI_INVALID_PARAMETER;
1763 }
1764
1765 }
1766
1767 //
1768 // Calculate enctrypt block size, need iv by default and 4 bytes alignment.
1769 //
1770 EncryptBlockSize = 4;
1771
1772 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1773 EncryptBlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1774
1775 if (EncryptBlockSize < 0 || (EncryptBlockSize != 1 && EncryptBlockSize % 4 != 0)) {
1776 goto ON_EXIT;
1777 }
1778 }
1779
1780 //
1781 // Calculate the plain payload size according to the fragment table.
1782 //
1783 PlainPayloadSize = 0;
1784 for (Index = 0; Index < *FragmentCount; Index++) {
1785 PlainPayloadSize += (*FragmentTable)[Index].FragmentLength;
1786 }
1787
1788 //
1789 // Add IPHeader size for Tunnel Mode
1790 //
1791 if (SadData->Mode == EfiIPsecTunnel) {
1792 if (IpVersion == IP_VERSION_4) {
1793 PlainPayloadSize += sizeof (IP4_HEAD);
1794 } else {
1795 PlainPayloadSize += sizeof (EFI_IP6_HEADER);
1796 }
1797 //
1798 // OPtions should be encryption into it
1799 //
1800 PlainPayloadSize += *OptionsLength;
1801 }
1802
1803
1804 //
1805 // Calculate icv size, optional by default and 4 bytes alignment.
1806 //
1807 IcvSize = 0;
1808 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1809 IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
1810 if (IcvSize % 4 != 0) {
1811 goto ON_EXIT;
1812 }
1813 }
1814
1815 //
1816 // Calcuate the total size of esp wrapped ip payload.
1817 //
1818 IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1819 EncryptSize = (PlainPayloadSize + sizeof (EFI_ESP_TAIL) + EncryptBlockSize - 1) / EncryptBlockSize * EncryptBlockSize;
1820 PaddingSize = EncryptSize - PlainPayloadSize - sizeof (EFI_ESP_TAIL);
1821 EspSize = sizeof (EFI_ESP_HEADER) + IvSize + EncryptSize + IcvSize;
1822
1823 ProcessBuffer = AllocateZeroPool (EspSize);
1824 if (ProcessBuffer == NULL) {
1825 Status = EFI_OUT_OF_RESOURCES;
1826 goto ON_EXIT;
1827 }
1828
1829 //
1830 // Calculate esp header and esp tail including header, payload and padding.
1831 //
1832 EspHeader = (EFI_ESP_HEADER *) ProcessBuffer;
1833 RestOfPayload = (UINT8 *) (EspHeader + 1) + IvSize;
1834 Padding = RestOfPayload + PlainPayloadSize;
1835 EspTail = (EFI_ESP_TAIL *) (Padding + PaddingSize);
1836
1837 //
1838 // Fill the sn and spi fields in esp header.
1839 //
1840 EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber + 1);
1841 //EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber);
1842 EspHeader->Spi = HTONL (SaId->Spi);
1843
1844 //
1845 // Copy the rest of payload (after iv) from the original fragment buffer.
1846 //
1847 BytesCopied = 0;
1848
1849 //
1850 // For Tunnel Mode
1851 //
1852 if (SadData->Mode == EfiIPsecTunnel) {
1853 if (IpVersion == IP_VERSION_4) {
1854 //
1855 // HeadLen, Total Length
1856 //
1857 ((IP4_HEAD *)InnerHead)->HeadLen = (UINT8) ((sizeof (IP4_HEAD) + *OptionsLength) >> 2);
1858 ((IP4_HEAD *)InnerHead)->TotalLen = HTONS ((UINT16) PlainPayloadSize);
1859 ((IP4_HEAD *)InnerHead)->Checksum = 0;
1860 ((IP4_HEAD *)InnerHead)->Checksum = (UINT16) (~NetblockChecksum (
1861 (UINT8 *)InnerHead,
1862 sizeof(IP4_HEAD)
1863 ));
1864 CopyMem (
1865 RestOfPayload + BytesCopied,
1866 InnerHead,
1867 sizeof (IP4_HEAD) + *OptionsLength
1868 );
1869 BytesCopied += sizeof (IP4_HEAD) + *OptionsLength;
1870
1871 } else {
1872 ((EFI_IP6_HEADER *)InnerHead)->PayloadLength = HTONS ((UINT16) (PlainPayloadSize - sizeof (EFI_IP6_HEADER)));
1873 CopyMem (
1874 RestOfPayload + BytesCopied,
1875 InnerHead,
1876 sizeof (EFI_IP6_HEADER) + *OptionsLength
1877 );
1878 BytesCopied += sizeof (EFI_IP6_HEADER) + *OptionsLength;
1879 }
1880 }
1881
1882 for (Index = 0; Index < *FragmentCount; Index++) {
1883 CopyMem (
1884 (RestOfPayload + BytesCopied),
1885 (*FragmentTable)[Index].FragmentBuffer,
1886 (*FragmentTable)[Index].FragmentLength
1887 );
1888 BytesCopied += (*FragmentTable)[Index].FragmentLength;
1889 }
1890 //
1891 // Fill the padding buffer by natural number sequence.
1892 //
1893 for (Index = 0; Index < PaddingSize; Index++) {
1894 Padding[Index] = (UINT8) (Index + 1);
1895 }
1896 //
1897 // Fill the padding length and next header fields in esp tail.
1898 //
1899 EspTail->PaddingLength = (UINT8) PaddingSize;
1900 EspTail->NextHeader = *LastHead;
1901
1902 //
1903 // Fill the next header for Tunnel mode.
1904 //
1905 if (SadData->Mode == EfiIPsecTunnel) {
1906 if (IpVersion == IP_VERSION_4) {
1907 EspTail->NextHeader = 4;
1908 } else {
1909 EspTail->NextHeader = 41;
1910 }
1911 }
1912
1913 //
1914 // Generate iv at random by crypt library.
1915 //
1916 Status = IpSecGenerateIv (
1917 (UINT8 *) (EspHeader + 1),
1918 IvSize
1919 );
1920
1921
1922 if (EFI_ERROR (Status)) {
1923 goto ON_EXIT;
1924 }
1925
1926 //
1927 // Encryption the payload (after iv) by the SAD entry if has encrypt key.
1928 //
1929 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1930 Status = IpSecCryptoIoEncrypt (
1931 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
1932 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
1933 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
1934 (UINT8 *)(EspHeader + 1),
1935 RestOfPayload,
1936 EncryptSize,
1937 RestOfPayload
1938 );
1939
1940 if (EFI_ERROR (Status)) {
1941 goto ON_EXIT;
1942 }
1943 }
1944
1945 //
1946 // Authenticate the esp wrapped buffer by the SAD entry if it has auth key.
1947 //
1948 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1949
1950 HashFragment[0].Data = ProcessBuffer;
1951 HashFragment[0].DataSize = EspSize - IcvSize;
1952 Status = IpSecCryptoIoHmac (
1953 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
1954 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
1955 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
1956 HashFragment,
1957 1,
1958 ProcessBuffer + EspSize - IcvSize,
1959 IcvSize
1960 );
1961 if (EFI_ERROR (Status)) {
1962 goto ON_EXIT;
1963 }
1964 }
1965
1966 //
1967 // Encryption and authentication with esp has been done, so it's time to
1968 // reload the new packet, create recycle event and fixup ip header.
1969 //
1970 RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
1971 if (RecycleContext == NULL) {
1972 Status = EFI_OUT_OF_RESOURCES;
1973 goto ON_EXIT;
1974 }
1975
1976 Status = gBS->CreateEvent (
1977 EVT_NOTIFY_SIGNAL,
1978 TPL_NOTIFY,
1979 IpSecRecycleCallback,
1980 RecycleContext,
1981 RecycleEvent
1982 );
1983 if (EFI_ERROR (Status)) {
1984 goto ON_EXIT;
1985 }
1986 //
1987 // Caller take responsible to handle the original fragment table.
1988 //
1989 *FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
1990 if (*FragmentTable == NULL) {
1991 Status = EFI_OUT_OF_RESOURCES;
1992 goto ON_EXIT;
1993 }
1994
1995 RecycleContext->FragmentTable = *FragmentTable;
1996 RecycleContext->PayloadBuffer = ProcessBuffer;
1997 (*FragmentTable)[0].FragmentBuffer = ProcessBuffer;
1998 (*FragmentTable)[0].FragmentLength = (UINT32) EspSize;
1999 *FragmentCount = 1;
2000
2001 //
2002 // Update the total length field in ip header since processed by esp.
2003 //
2004 if (IpVersion == IP_VERSION_4) {
2005 ((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + EspSize));
2006 } else {
2007 ((EFI_IP6_HEADER *) IpHead)->PayloadLength = (UINT16) (IpSecGetPlainExtHeadSize (IpHead, LastHead) + EspSize);
2008 }
2009
2010 //
2011 // If tunnel mode, it should change the outer Ip header with tunnel source address
2012 // and destination tunnel address.
2013 //
2014 if (SadData->Mode == EfiIPsecTunnel) {
2015 if (IpVersion == IP_VERSION_4) {
2016 CopyMem (
2017 &((IP4_HEAD *) IpHead)->Src,
2018 &SadData->TunnelSourceAddress.v4,
2019 sizeof (EFI_IPv4_ADDRESS)
2020 );
2021 CopyMem (
2022 &((IP4_HEAD *) IpHead)->Dst,
2023 &SadData->TunnelDestAddress.v4,
2024 sizeof (EFI_IPv4_ADDRESS)
2025 );
2026 } else {
2027 CopyMem (
2028 &((EFI_IP6_HEADER *) IpHead)->SourceAddress,
2029 &SadData->TunnelSourceAddress.v6,
2030 sizeof (EFI_IPv6_ADDRESS)
2031 );
2032 CopyMem (
2033 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
2034 &SadData->TunnelDestAddress.v6,
2035 sizeof (EFI_IPv6_ADDRESS)
2036 );
2037 }
2038 }
2039
2040 //
2041 // Update the next layer field in ip header since esp header inserted.
2042 //
2043 *LastHead = IPSEC_ESP_PROTOCOL;
2044
2045 //
2046 // Increase the sn number in SAD entry according to rfc4303.
2047 //
2048 SadData->SequenceNumber++;
2049
2050 ON_EXIT:
2051 if (EFI_ERROR (Status)) {
2052 if (ProcessBuffer != NULL) {
2053 FreePool (ProcessBuffer);
2054 }
2055
2056 if (RecycleContext != NULL) {
2057 FreePool (RecycleContext);
2058 }
2059
2060 if (*RecycleEvent != NULL) {
2061 gBS->CloseEvent (*RecycleEvent);
2062 }
2063 }
2064
2065 return Status;
2066 }
2067
2068 /**
2069 This function processes the inbound traffic with IPsec.
2070
2071 It checks the received packet security property, trims the ESP/AH header, and then
2072 returns without an IPsec protected IP Header and FragmentTable.
2073
2074 @param[in] IpVersion The version of IP.
2075 @param[in, out] IpHead Points to IP header containing the ESP/AH header
2076 to be trimed on input, and without ESP/AH header
2077 on return.
2078 @param[in, out] LastHead The Last Header in IP header on return.
2079 @param[in, out] OptionsBuffer Pointer to the options buffer.
2080 @param[in, out] OptionsLength Length of the options buffer.
2081 @param[in, out] FragmentTable Pointer to a list of fragments in form of IPsec
2082 protected on input, and without IPsec protected
2083 on return.
2084 @param[in, out] FragmentCount The number of fragments.
2085 @param[out] SpdEntry Pointer to contain the address of SPD entry on return.
2086 @param[out] RecycleEvent The event for recycling of resources.
2087
2088 @retval EFI_SUCCESS The operation was successful.
2089 @retval EFI_UNSUPPORTED The IPSEC protocol is not supported.
2090
2091 **/
2092 EFI_STATUS
IpSecProtectInboundPacket(IN UINT8 IpVersion,IN OUT VOID * IpHead,IN OUT UINT8 * LastHead,IN OUT VOID ** OptionsBuffer,IN OUT UINT32 * OptionsLength,IN OUT EFI_IPSEC_FRAGMENT_DATA ** FragmentTable,IN OUT UINT32 * FragmentCount,OUT EFI_IPSEC_SPD_SELECTOR ** SpdEntry,OUT EFI_EVENT * RecycleEvent)2093 IpSecProtectInboundPacket (
2094 IN UINT8 IpVersion,
2095 IN OUT VOID *IpHead,
2096 IN OUT UINT8 *LastHead,
2097 IN OUT VOID **OptionsBuffer,
2098 IN OUT UINT32 *OptionsLength,
2099 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
2100 IN OUT UINT32 *FragmentCount,
2101 OUT EFI_IPSEC_SPD_SELECTOR **SpdEntry,
2102 OUT EFI_EVENT *RecycleEvent
2103 )
2104 {
2105 if (*LastHead == IPSEC_ESP_PROTOCOL) {
2106 //
2107 // Process the esp ipsec header of the inbound traffic.
2108 //
2109 return IpSecEspInboundPacket (
2110 IpVersion,
2111 IpHead,
2112 LastHead,
2113 OptionsBuffer,
2114 OptionsLength,
2115 FragmentTable,
2116 FragmentCount,
2117 SpdEntry,
2118 RecycleEvent
2119 );
2120 }
2121 //
2122 // The other protocols are not supported.
2123 //
2124 return EFI_UNSUPPORTED;
2125 }
2126
2127 /**
2128 This fucntion processes the output traffic with IPsec.
2129
2130 It protected the sending packet by encrypting it payload and inserting ESP/AH header
2131 in the orginal IP header, then return the IpHeader and IPsec protected Fragmentable.
2132
2133 @param[in] IpVersion The version of IP.
2134 @param[in, out] IpHead Point to IP header containing the orginal IP header
2135 to be processed on input, and inserted ESP/AH header
2136 on return.
2137 @param[in, out] LastHead The Last Header in IP header.
2138 @param[in, out] OptionsBuffer Pointer to the options buffer.
2139 @param[in, out] OptionsLength Length of the options buffer.
2140 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
2141 IPsec on input, and with IPsec protected
2142 on return.
2143 @param[in, out] FragmentCount Number of fragments.
2144 @param[in] SadEntry Related SAD entry.
2145 @param[out] RecycleEvent Event for recycling of resources.
2146
2147 @retval EFI_SUCCESS The operation is successful.
2148 @retval EFI_UNSUPPORTED If the IPSEC protocol is not supported.
2149
2150 **/
2151 EFI_STATUS
IpSecProtectOutboundPacket(IN UINT8 IpVersion,IN OUT VOID * IpHead,IN OUT UINT8 * LastHead,IN OUT VOID ** OptionsBuffer,IN OUT UINT32 * OptionsLength,IN OUT EFI_IPSEC_FRAGMENT_DATA ** FragmentTable,IN OUT UINT32 * FragmentCount,IN IPSEC_SAD_ENTRY * SadEntry,OUT EFI_EVENT * RecycleEvent)2152 IpSecProtectOutboundPacket (
2153 IN UINT8 IpVersion,
2154 IN OUT VOID *IpHead,
2155 IN OUT UINT8 *LastHead,
2156 IN OUT VOID **OptionsBuffer,
2157 IN OUT UINT32 *OptionsLength,
2158 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
2159 IN OUT UINT32 *FragmentCount,
2160 IN IPSEC_SAD_ENTRY *SadEntry,
2161 OUT EFI_EVENT *RecycleEvent
2162 )
2163 {
2164 if (SadEntry->Id->Proto == EfiIPsecESP) {
2165 //
2166 // Process the esp ipsec header of the outbound traffic.
2167 //
2168 return IpSecEspOutboundPacket (
2169 IpVersion,
2170 IpHead,
2171 LastHead,
2172 OptionsBuffer,
2173 OptionsLength,
2174 FragmentTable,
2175 FragmentCount,
2176 SadEntry,
2177 RecycleEvent
2178 );
2179 }
2180 //
2181 // The other protocols are not supported.
2182 //
2183 return EFI_UNSUPPORTED;
2184 }
2185