1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/heap/factory.h"
6
7 #include <algorithm> // For copy
8 #include <memory> // For shared_ptr<>
9 #include <string>
10 #include <utility> // For move
11
12 #include "src/ast/ast-source-ranges.h"
13 #include "src/base/bits.h"
14 #include "src/builtins/accessors.h"
15 #include "src/builtins/constants-table-builder.h"
16 #include "src/codegen/compilation-cache.h"
17 #include "src/codegen/compiler.h"
18 #include "src/common/globals.h"
19 #include "src/diagnostics/basic-block-profiler.h"
20 #include "src/execution/isolate-inl.h"
21 #include "src/execution/protectors-inl.h"
22 #include "src/heap/basic-memory-chunk.h"
23 #include "src/heap/heap-inl.h"
24 #include "src/heap/incremental-marking.h"
25 #include "src/heap/mark-compact-inl.h"
26 #include "src/heap/memory-chunk.h"
27 #include "src/heap/read-only-heap.h"
28 #include "src/ic/handler-configuration-inl.h"
29 #include "src/init/bootstrapper.h"
30 #include "src/interpreter/interpreter.h"
31 #include "src/logging/counters.h"
32 #include "src/logging/log.h"
33 #include "src/numbers/conversions.h"
34 #include "src/numbers/hash-seed-inl.h"
35 #include "src/objects/allocation-site-inl.h"
36 #include "src/objects/allocation-site-scopes.h"
37 #include "src/objects/api-callbacks.h"
38 #include "src/objects/arguments-inl.h"
39 #include "src/objects/bigint.h"
40 #include "src/objects/cell-inl.h"
41 #include "src/objects/debug-objects-inl.h"
42 #include "src/objects/embedder-data-array-inl.h"
43 #include "src/objects/feedback-cell-inl.h"
44 #include "src/objects/fixed-array-inl.h"
45 #include "src/objects/foreign-inl.h"
46 #include "src/objects/frame-array-inl.h"
47 #include "src/objects/instance-type-inl.h"
48 #include "src/objects/js-array-inl.h"
49 #include "src/objects/js-collection-inl.h"
50 #include "src/objects/js-generator-inl.h"
51 #include "src/objects/js-regexp-inl.h"
52 #include "src/objects/js-weak-refs-inl.h"
53 #include "src/objects/literal-objects-inl.h"
54 #include "src/objects/microtask-inl.h"
55 #include "src/objects/module-inl.h"
56 #include "src/objects/promise-inl.h"
57 #include "src/objects/property-descriptor-object-inl.h"
58 #include "src/objects/scope-info.h"
59 #include "src/objects/stack-frame-info-inl.h"
60 #include "src/objects/string-set-inl.h"
61 #include "src/objects/struct-inl.h"
62 #include "src/objects/synthetic-module-inl.h"
63 #include "src/objects/template-objects-inl.h"
64 #include "src/objects/transitions-inl.h"
65 #include "src/roots/roots.h"
66 #include "src/strings/unicode-inl.h"
67
68 namespace v8 {
69 namespace internal {
70
CodeBuilder(Isolate * isolate,const CodeDesc & desc,CodeKind kind)71 Factory::CodeBuilder::CodeBuilder(Isolate* isolate, const CodeDesc& desc,
72 CodeKind kind)
73 : isolate_(isolate),
74 code_desc_(desc),
75 kind_(kind),
76 source_position_table_(isolate_->factory()->empty_byte_array()) {}
77
BuildInternal(bool retry_allocation_or_fail)78 MaybeHandle<Code> Factory::CodeBuilder::BuildInternal(
79 bool retry_allocation_or_fail) {
80 const auto factory = isolate_->factory();
81 // Allocate objects needed for code initialization.
82 Handle<ByteArray> reloc_info =
83 factory->NewByteArray(code_desc_.reloc_size, AllocationType::kOld);
84 Handle<CodeDataContainer> data_container;
85
86 // Use a canonical off-heap trampoline CodeDataContainer if possible.
87 const int32_t promise_rejection_flag =
88 Code::IsPromiseRejectionField::encode(true);
89 if (read_only_data_container_ &&
90 (kind_specific_flags_ == 0 ||
91 kind_specific_flags_ == promise_rejection_flag)) {
92 const ReadOnlyRoots roots(isolate_);
93 const auto canonical_code_data_container =
94 kind_specific_flags_ == 0
95 ? roots.trampoline_trivial_code_data_container_handle()
96 : roots.trampoline_promise_rejection_code_data_container_handle();
97 DCHECK_EQ(canonical_code_data_container->kind_specific_flags(),
98 kind_specific_flags_);
99 data_container = canonical_code_data_container;
100 } else {
101 data_container = factory->NewCodeDataContainer(
102 0, read_only_data_container_ ? AllocationType::kReadOnly
103 : AllocationType::kOld);
104 data_container->set_kind_specific_flags(kind_specific_flags_);
105 }
106
107 // Basic block profiling data for builtins is stored in the JS heap rather
108 // than in separately-allocated C++ objects. Allocate that data now if
109 // appropriate.
110 Handle<OnHeapBasicBlockProfilerData> on_heap_profiler_data;
111 if (profiler_data_ && isolate_->IsGeneratingEmbeddedBuiltins()) {
112 on_heap_profiler_data = profiler_data_->CopyToJSHeap(isolate_);
113
114 // Add the on-heap data to a global list, which keeps it alive and allows
115 // iteration.
116 Handle<ArrayList> list(isolate_->heap()->basic_block_profiling_data(),
117 isolate_);
118 Handle<ArrayList> new_list =
119 ArrayList::Add(isolate_, list, on_heap_profiler_data);
120 isolate_->heap()->SetBasicBlockProfilingData(new_list);
121 }
122
123 STATIC_ASSERT(Code::kOnHeapBodyIsContiguous);
124 const int object_size = Code::SizeFor(code_desc_.body_size());
125
126 Handle<Code> code;
127 {
128 Heap* heap = isolate_->heap();
129
130 CodePageCollectionMemoryModificationScope code_allocation(heap);
131 HeapObject result;
132 AllocationType allocation_type =
133 is_executable_ ? AllocationType::kCode : AllocationType::kReadOnly;
134 if (retry_allocation_or_fail) {
135 result = heap->AllocateRawWith<Heap::kRetryOrFail>(
136 object_size, allocation_type, AllocationOrigin::kRuntime);
137 } else {
138 result = heap->AllocateRawWith<Heap::kLightRetry>(
139 object_size, allocation_type, AllocationOrigin::kRuntime);
140 // Return an empty handle if we cannot allocate the code object.
141 if (result.is_null()) return MaybeHandle<Code>();
142 }
143
144 // The code object has not been fully initialized yet. We rely on the
145 // fact that no allocation will happen from this point on.
146 DisallowHeapAllocation no_gc;
147
148 result.set_map_after_allocation(*factory->code_map(), SKIP_WRITE_BARRIER);
149 code = handle(Code::cast(result), isolate_);
150 if (is_executable_) {
151 DCHECK(IsAligned(code->address(), kCodeAlignment));
152 DCHECK_IMPLIES(
153 !V8_ENABLE_THIRD_PARTY_HEAP_BOOL &&
154 !heap->memory_allocator()->code_range().is_empty(),
155 heap->memory_allocator()->code_range().contains(code->address()));
156 }
157
158 constexpr bool kIsNotOffHeapTrampoline = false;
159
160 code->set_raw_instruction_size(code_desc_.instruction_size());
161 code->set_raw_metadata_size(code_desc_.metadata_size());
162 code->set_relocation_info(*reloc_info);
163 code->initialize_flags(kind_, is_turbofanned_, stack_slots_,
164 kIsNotOffHeapTrampoline);
165 code->set_builtin_index(builtin_index_);
166 code->set_inlined_bytecode_size(inlined_bytecode_size_);
167 code->set_code_data_container(*data_container, kReleaseStore);
168 code->set_deoptimization_data(*deoptimization_data_);
169 code->set_source_position_table(*source_position_table_);
170 code->set_handler_table_offset(code_desc_.handler_table_offset_relative());
171 code->set_constant_pool_offset(code_desc_.constant_pool_offset_relative());
172 code->set_code_comments_offset(code_desc_.code_comments_offset_relative());
173 code->set_unwinding_info_offset(
174 code_desc_.unwinding_info_offset_relative());
175
176 // Allow self references to created code object by patching the handle to
177 // point to the newly allocated Code object.
178 Handle<Object> self_reference;
179 if (self_reference_.ToHandle(&self_reference)) {
180 DCHECK(self_reference->IsOddball());
181 DCHECK(Oddball::cast(*self_reference).kind() ==
182 Oddball::kSelfReferenceMarker);
183 if (isolate_->IsGeneratingEmbeddedBuiltins()) {
184 isolate_->builtins_constants_table_builder()->PatchSelfReference(
185 self_reference, code);
186 }
187 self_reference.PatchValue(*code);
188 }
189
190 // Likewise, any references to the basic block counters marker need to be
191 // updated to point to the newly-allocated counters array.
192 if (!on_heap_profiler_data.is_null()) {
193 isolate_->builtins_constants_table_builder()
194 ->PatchBasicBlockCountersReference(
195 handle(on_heap_profiler_data->counts(), isolate_));
196 }
197
198 // Migrate generated code.
199 // The generated code can contain embedded objects (typically from handles)
200 // in a pointer-to-tagged-value format (i.e. with indirection like a handle)
201 // that are dereferenced during the copy to point directly to the actual
202 // heap objects. These pointers can include references to the code object
203 // itself, through the self_reference parameter.
204 code->CopyFromNoFlush(heap, code_desc_);
205
206 code->clear_padding();
207
208 #ifdef VERIFY_HEAP
209 if (FLAG_verify_heap) code->ObjectVerify(isolate_);
210 #endif
211
212 // Flush the instruction cache before changing the permissions.
213 // Note: we do this before setting permissions to ReadExecute because on
214 // some older ARM kernels there is a bug which causes an access error on
215 // cache flush instructions to trigger access error on non-writable memory.
216 // See https://bugs.chromium.org/p/v8/issues/detail?id=8157
217 code->FlushICache();
218 }
219
220 if (profiler_data_ && FLAG_turbo_profiling_verbose) {
221 #ifdef ENABLE_DISASSEMBLER
222 std::ostringstream os;
223 code->Disassemble(nullptr, os, isolate_);
224 if (!on_heap_profiler_data.is_null()) {
225 Handle<String> disassembly =
226 isolate_->factory()->NewStringFromAsciiChecked(os.str().c_str(),
227 AllocationType::kOld);
228 on_heap_profiler_data->set_code(*disassembly);
229 } else {
230 profiler_data_->SetCode(os);
231 }
232 #endif // ENABLE_DISASSEMBLER
233 }
234
235 return code;
236 }
237
TryBuild()238 MaybeHandle<Code> Factory::CodeBuilder::TryBuild() {
239 return BuildInternal(false);
240 }
241
Build()242 Handle<Code> Factory::CodeBuilder::Build() {
243 return BuildInternal(true).ToHandleChecked();
244 }
245
AllocateRaw(int size,AllocationType allocation,AllocationAlignment alignment)246 HeapObject Factory::AllocateRaw(int size, AllocationType allocation,
247 AllocationAlignment alignment) {
248 return isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(
249 size, allocation, AllocationOrigin::kRuntime, alignment);
250 }
251
AllocateRawWithAllocationSite(Handle<Map> map,AllocationType allocation,Handle<AllocationSite> allocation_site)252 HeapObject Factory::AllocateRawWithAllocationSite(
253 Handle<Map> map, AllocationType allocation,
254 Handle<AllocationSite> allocation_site) {
255 DCHECK(map->instance_type() != MAP_TYPE);
256 int size = map->instance_size();
257 if (!allocation_site.is_null()) size += AllocationMemento::kSize;
258 HeapObject result =
259 isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation);
260 WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
261 ? SKIP_WRITE_BARRIER
262 : UPDATE_WRITE_BARRIER;
263 result.set_map_after_allocation(*map, write_barrier_mode);
264 if (!allocation_site.is_null()) {
265 AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
266 Object(result.ptr() + map->instance_size()));
267 InitializeAllocationMemento(alloc_memento, *allocation_site);
268 }
269 return result;
270 }
271
InitializeAllocationMemento(AllocationMemento memento,AllocationSite allocation_site)272 void Factory::InitializeAllocationMemento(AllocationMemento memento,
273 AllocationSite allocation_site) {
274 memento.set_map_after_allocation(*allocation_memento_map(),
275 SKIP_WRITE_BARRIER);
276 memento.set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
277 if (FLAG_allocation_site_pretenuring) {
278 allocation_site.IncrementMementoCreateCount();
279 }
280 }
281
New(Handle<Map> map,AllocationType allocation)282 HeapObject Factory::New(Handle<Map> map, AllocationType allocation) {
283 DCHECK(map->instance_type() != MAP_TYPE);
284 int size = map->instance_size();
285 HeapObject result =
286 isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation);
287 // New space objects are allocated white.
288 WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
289 ? SKIP_WRITE_BARRIER
290 : UPDATE_WRITE_BARRIER;
291 result.set_map_after_allocation(*map, write_barrier_mode);
292 return result;
293 }
294
NewFillerObject(int size,bool double_align,AllocationType allocation,AllocationOrigin origin)295 Handle<HeapObject> Factory::NewFillerObject(int size, bool double_align,
296 AllocationType allocation,
297 AllocationOrigin origin) {
298 AllocationAlignment alignment = double_align ? kDoubleAligned : kWordAligned;
299 Heap* heap = isolate()->heap();
300 HeapObject result = heap->AllocateRawWith<Heap::kRetryOrFail>(
301 size, allocation, origin, alignment);
302 heap->CreateFillerObjectAt(result.address(), size, ClearRecordedSlots::kNo);
303 return Handle<HeapObject>(result, isolate());
304 }
305
NewPrototypeInfo()306 Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
307 Handle<PrototypeInfo> result = Handle<PrototypeInfo>::cast(
308 NewStruct(PROTOTYPE_INFO_TYPE, AllocationType::kOld));
309 result->set_prototype_users(Smi::zero());
310 result->set_registry_slot(PrototypeInfo::UNREGISTERED);
311 result->set_bit_field(0);
312 result->set_module_namespace(*undefined_value());
313 return result;
314 }
315
NewEnumCache(Handle<FixedArray> keys,Handle<FixedArray> indices)316 Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys,
317 Handle<FixedArray> indices) {
318 Handle<EnumCache> result =
319 Handle<EnumCache>::cast(NewStruct(ENUM_CACHE_TYPE, AllocationType::kOld));
320 result->set_keys(*keys);
321 result->set_indices(*indices);
322 return result;
323 }
324
NewTuple2(Handle<Object> value1,Handle<Object> value2,AllocationType allocation)325 Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2,
326 AllocationType allocation) {
327 Handle<Tuple2> result =
328 Handle<Tuple2>::cast(NewStruct(TUPLE2_TYPE, allocation));
329 result->set_value1(*value1);
330 result->set_value2(*value2);
331 return result;
332 }
333
NewOddball(Handle<Map> map,const char * to_string,Handle<Object> to_number,const char * type_of,byte kind)334 Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
335 Handle<Object> to_number,
336 const char* type_of, byte kind) {
337 Handle<Oddball> oddball(Oddball::cast(New(map, AllocationType::kReadOnly)),
338 isolate());
339 Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
340 return oddball;
341 }
342
NewSelfReferenceMarker()343 Handle<Oddball> Factory::NewSelfReferenceMarker() {
344 return NewOddball(self_reference_marker_map(), "self_reference_marker",
345 handle(Smi::FromInt(-1), isolate()), "undefined",
346 Oddball::kSelfReferenceMarker);
347 }
348
NewBasicBlockCountersMarker()349 Handle<Oddball> Factory::NewBasicBlockCountersMarker() {
350 return NewOddball(basic_block_counters_marker_map(),
351 "basic_block_counters_marker",
352 handle(Smi::FromInt(-1), isolate()), "undefined",
353 Oddball::kBasicBlockCountersMarker);
354 }
355
NewPropertyArray(int length)356 Handle<PropertyArray> Factory::NewPropertyArray(int length) {
357 DCHECK_LE(0, length);
358 if (length == 0) return empty_property_array();
359 HeapObject result = AllocateRawFixedArray(length, AllocationType::kYoung);
360 result.set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER);
361 Handle<PropertyArray> array(PropertyArray::cast(result), isolate());
362 array->initialize_length(length);
363 MemsetTagged(array->data_start(), *undefined_value(), length);
364 return array;
365 }
366
TryNewFixedArray(int length,AllocationType allocation_type)367 MaybeHandle<FixedArray> Factory::TryNewFixedArray(
368 int length, AllocationType allocation_type) {
369 DCHECK_LE(0, length);
370 if (length == 0) return empty_fixed_array();
371
372 int size = FixedArray::SizeFor(length);
373 Heap* heap = isolate()->heap();
374 AllocationResult allocation = heap->AllocateRaw(size, allocation_type);
375 HeapObject result;
376 if (!allocation.To(&result)) return MaybeHandle<FixedArray>();
377 if ((size > Heap::MaxRegularHeapObjectSize(allocation_type)) &&
378 FLAG_use_marking_progress_bar) {
379 BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(result);
380 chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR);
381 }
382 result.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
383 Handle<FixedArray> array(FixedArray::cast(result), isolate());
384 array->set_length(length);
385 MemsetTagged(array->data_start(), ReadOnlyRoots(heap).undefined_value(),
386 length);
387 return array;
388 }
389
NewUninitializedFixedArray(int length)390 Handle<FixedArray> Factory::NewUninitializedFixedArray(int length) {
391 if (length == 0) return empty_fixed_array();
392 if (length < 0 || length > FixedArray::kMaxLength) {
393 isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
394 }
395
396 // TODO(ulan): As an experiment this temporarily returns an initialized fixed
397 // array. After getting canary/performance coverage, either remove the
398 // function or revert to returning uninitilized array.
399 return NewFixedArrayWithFiller(read_only_roots().fixed_array_map_handle(),
400 length, undefined_value(),
401 AllocationType::kYoung);
402 }
403
NewClosureFeedbackCellArray(int length)404 Handle<ClosureFeedbackCellArray> Factory::NewClosureFeedbackCellArray(
405 int length) {
406 if (length == 0) return empty_closure_feedback_cell_array();
407
408 Handle<ClosureFeedbackCellArray> feedback_cell_array =
409 Handle<ClosureFeedbackCellArray>::cast(NewFixedArrayWithMap(
410 read_only_roots().closure_feedback_cell_array_map_handle(), length,
411 AllocationType::kOld));
412
413 return feedback_cell_array;
414 }
415
NewFeedbackVector(Handle<SharedFunctionInfo> shared,Handle<ClosureFeedbackCellArray> closure_feedback_cell_array)416 Handle<FeedbackVector> Factory::NewFeedbackVector(
417 Handle<SharedFunctionInfo> shared,
418 Handle<ClosureFeedbackCellArray> closure_feedback_cell_array) {
419 int length = shared->feedback_metadata().slot_count();
420 DCHECK_LE(0, length);
421 int size = FeedbackVector::SizeFor(length);
422
423 HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld,
424 *feedback_vector_map());
425 Handle<FeedbackVector> vector(FeedbackVector::cast(result), isolate());
426 vector->set_shared_function_info(*shared);
427 vector->set_maybe_optimized_code(
428 HeapObjectReference::ClearedValue(isolate()));
429 vector->set_length(length);
430 vector->set_invocation_count(0);
431 vector->set_profiler_ticks(0);
432 vector->InitializeOptimizationState();
433 vector->set_closure_feedback_cell_array(*closure_feedback_cell_array);
434
435 // TODO(leszeks): Initialize based on the feedback metadata.
436 MemsetTagged(ObjectSlot(vector->slots_start()), *undefined_value(), length);
437 return vector;
438 }
439
NewEmbedderDataArray(int length)440 Handle<EmbedderDataArray> Factory::NewEmbedderDataArray(int length) {
441 DCHECK_LE(0, length);
442 int size = EmbedderDataArray::SizeFor(length);
443
444 HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kYoung,
445 *embedder_data_array_map());
446 Handle<EmbedderDataArray> array(EmbedderDataArray::cast(result), isolate());
447 array->set_length(length);
448
449 if (length > 0) {
450 ObjectSlot start(array->slots_start());
451 ObjectSlot end(array->slots_end());
452 size_t slot_count = end - start;
453 MemsetTagged(start, *undefined_value(), slot_count);
454 for (int i = 0; i < length; i++) {
455 // TODO(v8:10391, saelo): Handle external pointers in EmbedderDataSlot
456 EmbedderDataSlot(*array, i).AllocateExternalPointerEntry(isolate());
457 }
458 }
459 return array;
460 }
461
NewFixedDoubleArrayWithHoles(int length)462 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(int length) {
463 DCHECK_LE(0, length);
464 Handle<FixedArrayBase> array = NewFixedDoubleArray(length);
465 if (length > 0) {
466 Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length);
467 }
468 return array;
469 }
470
NewFrameArray(int number_of_frames)471 Handle<FrameArray> Factory::NewFrameArray(int number_of_frames) {
472 DCHECK_LE(0, number_of_frames);
473 Handle<FixedArray> result =
474 NewFixedArrayWithHoles(FrameArray::LengthFor(number_of_frames));
475 result->set(FrameArray::kFrameCountIndex, Smi::zero());
476 return Handle<FrameArray>::cast(result);
477 }
478
479 template <typename T>
AllocateSmallOrderedHashTable(Handle<Map> map,int capacity,AllocationType allocation)480 Handle<T> Factory::AllocateSmallOrderedHashTable(Handle<Map> map, int capacity,
481 AllocationType allocation) {
482 // Capacity must be a power of two, since we depend on being able
483 // to divide and multiple by 2 (kLoadFactor) to derive capacity
484 // from number of buckets. If we decide to change kLoadFactor
485 // to something other than 2, capacity should be stored as another
486 // field of this object.
487 DCHECK_EQ(T::kLoadFactor, 2);
488 capacity = base::bits::RoundUpToPowerOfTwo32(Max(T::kMinCapacity, capacity));
489 capacity = Min(capacity, T::kMaxCapacity);
490
491 DCHECK_LT(0, capacity);
492 DCHECK_EQ(0, capacity % T::kLoadFactor);
493
494 int size = T::SizeFor(capacity);
495 HeapObject result = AllocateRawWithImmortalMap(size, allocation, *map);
496 Handle<T> table(T::cast(result), isolate());
497 table->Initialize(isolate(), capacity);
498 return table;
499 }
500
NewSmallOrderedHashSet(int capacity,AllocationType allocation)501 Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet(
502 int capacity, AllocationType allocation) {
503 return AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
504 small_ordered_hash_set_map(), capacity, allocation);
505 }
506
NewSmallOrderedHashMap(int capacity,AllocationType allocation)507 Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap(
508 int capacity, AllocationType allocation) {
509 return AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
510 small_ordered_hash_map_map(), capacity, allocation);
511 }
512
NewSmallOrderedNameDictionary(int capacity,AllocationType allocation)513 Handle<SmallOrderedNameDictionary> Factory::NewSmallOrderedNameDictionary(
514 int capacity, AllocationType allocation) {
515 Handle<SmallOrderedNameDictionary> dict =
516 AllocateSmallOrderedHashTable<SmallOrderedNameDictionary>(
517 small_ordered_name_dictionary_map(), capacity, allocation);
518 dict->SetHash(PropertyArray::kNoHashSentinel);
519 return dict;
520 }
521
NewOrderedHashSet()522 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
523 return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kInitialCapacity,
524 AllocationType::kYoung)
525 .ToHandleChecked();
526 }
527
NewOrderedHashMap()528 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
529 return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kInitialCapacity,
530 AllocationType::kYoung)
531 .ToHandleChecked();
532 }
533
NewOrderedNameDictionary(int capacity)534 Handle<OrderedNameDictionary> Factory::NewOrderedNameDictionary(int capacity) {
535 return OrderedNameDictionary::Allocate(isolate(), capacity,
536 AllocationType::kYoung)
537 .ToHandleChecked();
538 }
539
NewNameDictionary(int at_least_space_for)540 Handle<NameDictionary> Factory::NewNameDictionary(int at_least_space_for) {
541 return NameDictionary::New(isolate(), at_least_space_for);
542 }
543
NewPropertyDescriptorObject()544 Handle<PropertyDescriptorObject> Factory::NewPropertyDescriptorObject() {
545 Handle<PropertyDescriptorObject> object =
546 Handle<PropertyDescriptorObject>::cast(
547 NewStruct(PROPERTY_DESCRIPTOR_OBJECT_TYPE, AllocationType::kYoung));
548 object->set_flags(0);
549 object->set_value(*the_hole_value(), SKIP_WRITE_BARRIER);
550 object->set_get(*the_hole_value(), SKIP_WRITE_BARRIER);
551 object->set_set(*the_hole_value(), SKIP_WRITE_BARRIER);
552 return object;
553 }
554
555 // Internalized strings are created in the old generation (data space).
InternalizeUtf8String(const Vector<const char> & string)556 Handle<String> Factory::InternalizeUtf8String(
557 const Vector<const char>& string) {
558 Vector<const uint8_t> utf8_data = Vector<const uint8_t>::cast(string);
559 Utf8Decoder decoder(utf8_data);
560 if (decoder.is_ascii()) return InternalizeString(utf8_data);
561 if (decoder.is_one_byte()) {
562 std::unique_ptr<uint8_t[]> buffer(new uint8_t[decoder.utf16_length()]);
563 decoder.Decode(buffer.get(), utf8_data);
564 return InternalizeString(
565 Vector<const uint8_t>(buffer.get(), decoder.utf16_length()));
566 }
567 std::unique_ptr<uint16_t[]> buffer(new uint16_t[decoder.utf16_length()]);
568 decoder.Decode(buffer.get(), utf8_data);
569 return InternalizeString(
570 Vector<const uc16>(buffer.get(), decoder.utf16_length()));
571 }
572
573 template <typename SeqString>
InternalizeString(Handle<SeqString> string,int from,int length,bool convert_encoding)574 Handle<String> Factory::InternalizeString(Handle<SeqString> string, int from,
575 int length, bool convert_encoding) {
576 SeqSubStringKey<SeqString> key(isolate(), string, from, length,
577 convert_encoding);
578 return InternalizeStringWithKey(&key);
579 }
580
581 template Handle<String> Factory::InternalizeString(
582 Handle<SeqOneByteString> string, int from, int length,
583 bool convert_encoding);
584 template Handle<String> Factory::InternalizeString(
585 Handle<SeqTwoByteString> string, int from, int length,
586 bool convert_encoding);
587
NewStringFromOneByte(const Vector<const uint8_t> & string,AllocationType allocation)588 MaybeHandle<String> Factory::NewStringFromOneByte(
589 const Vector<const uint8_t>& string, AllocationType allocation) {
590 DCHECK_NE(allocation, AllocationType::kReadOnly);
591 int length = string.length();
592 if (length == 0) return empty_string();
593 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
594 Handle<SeqOneByteString> result;
595 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
596 NewRawOneByteString(string.length(), allocation),
597 String);
598
599 DisallowHeapAllocation no_gc;
600 // Copy the characters into the new object.
601 CopyChars(SeqOneByteString::cast(*result).GetChars(no_gc), string.begin(),
602 length);
603 return result;
604 }
605
NewStringFromUtf8(const Vector<const char> & string,AllocationType allocation)606 MaybeHandle<String> Factory::NewStringFromUtf8(const Vector<const char>& string,
607 AllocationType allocation) {
608 Vector<const uint8_t> utf8_data = Vector<const uint8_t>::cast(string);
609 Utf8Decoder decoder(utf8_data);
610
611 if (decoder.utf16_length() == 0) return empty_string();
612
613 if (decoder.is_one_byte()) {
614 // Allocate string.
615 Handle<SeqOneByteString> result;
616 ASSIGN_RETURN_ON_EXCEPTION(
617 isolate(), result,
618 NewRawOneByteString(decoder.utf16_length(), allocation), String);
619
620 DisallowHeapAllocation no_gc;
621 decoder.Decode(result->GetChars(no_gc), utf8_data);
622 return result;
623 }
624
625 // Allocate string.
626 Handle<SeqTwoByteString> result;
627 ASSIGN_RETURN_ON_EXCEPTION(
628 isolate(), result,
629 NewRawTwoByteString(decoder.utf16_length(), allocation), String);
630
631 DisallowHeapAllocation no_gc;
632 decoder.Decode(result->GetChars(no_gc), utf8_data);
633 return result;
634 }
635
NewStringFromUtf8SubString(Handle<SeqOneByteString> str,int begin,int length,AllocationType allocation)636 MaybeHandle<String> Factory::NewStringFromUtf8SubString(
637 Handle<SeqOneByteString> str, int begin, int length,
638 AllocationType allocation) {
639 Vector<const uint8_t> utf8_data;
640 {
641 DisallowHeapAllocation no_gc;
642 utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
643 }
644 Utf8Decoder decoder(utf8_data);
645
646 if (length == 1) {
647 uint16_t t;
648 // Decode even in the case of length 1 since it can be a bad character.
649 decoder.Decode(&t, utf8_data);
650 return LookupSingleCharacterStringFromCode(t);
651 }
652
653 if (decoder.is_ascii()) {
654 // If the string is ASCII, we can just make a substring.
655 // TODO(v8): the allocation flag is ignored in this case.
656 return NewSubString(str, begin, begin + length);
657 }
658
659 DCHECK_GT(decoder.utf16_length(), 0);
660
661 if (decoder.is_one_byte()) {
662 // Allocate string.
663 Handle<SeqOneByteString> result;
664 ASSIGN_RETURN_ON_EXCEPTION(
665 isolate(), result,
666 NewRawOneByteString(decoder.utf16_length(), allocation), String);
667 DisallowHeapAllocation no_gc;
668 // Update pointer references, since the original string may have moved after
669 // allocation.
670 utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
671 decoder.Decode(result->GetChars(no_gc), utf8_data);
672 return result;
673 }
674
675 // Allocate string.
676 Handle<SeqTwoByteString> result;
677 ASSIGN_RETURN_ON_EXCEPTION(
678 isolate(), result,
679 NewRawTwoByteString(decoder.utf16_length(), allocation), String);
680
681 DisallowHeapAllocation no_gc;
682 // Update pointer references, since the original string may have moved after
683 // allocation.
684 utf8_data = Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
685 decoder.Decode(result->GetChars(no_gc), utf8_data);
686 return result;
687 }
688
NewStringFromTwoByte(const uc16 * string,int length,AllocationType allocation)689 MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
690 int length,
691 AllocationType allocation) {
692 DCHECK_NE(allocation, AllocationType::kReadOnly);
693 if (length == 0) return empty_string();
694 if (String::IsOneByte(string, length)) {
695 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
696 Handle<SeqOneByteString> result;
697 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
698 NewRawOneByteString(length, allocation), String);
699 DisallowHeapAllocation no_gc;
700 CopyChars(result->GetChars(no_gc), string, length);
701 return result;
702 } else {
703 Handle<SeqTwoByteString> result;
704 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
705 NewRawTwoByteString(length, allocation), String);
706 DisallowHeapAllocation no_gc;
707 CopyChars(result->GetChars(no_gc), string, length);
708 return result;
709 }
710 }
711
NewStringFromTwoByte(const Vector<const uc16> & string,AllocationType allocation)712 MaybeHandle<String> Factory::NewStringFromTwoByte(
713 const Vector<const uc16>& string, AllocationType allocation) {
714 return NewStringFromTwoByte(string.begin(), string.length(), allocation);
715 }
716
NewStringFromTwoByte(const ZoneVector<uc16> * string,AllocationType allocation)717 MaybeHandle<String> Factory::NewStringFromTwoByte(
718 const ZoneVector<uc16>* string, AllocationType allocation) {
719 return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
720 allocation);
721 }
722
723 namespace {
724
IsOneByte(Handle<String> str)725 bool inline IsOneByte(Handle<String> str) {
726 return str->IsOneByteRepresentation();
727 }
728
WriteOneByteData(Handle<String> s,uint8_t * chars,int len)729 inline void WriteOneByteData(Handle<String> s, uint8_t* chars, int len) {
730 DCHECK(s->length() == len);
731 String::WriteToFlat(*s, chars, 0, len);
732 }
733
WriteTwoByteData(Handle<String> s,uint16_t * chars,int len)734 inline void WriteTwoByteData(Handle<String> s, uint16_t* chars, int len) {
735 DCHECK(s->length() == len);
736 String::WriteToFlat(*s, chars, 0, len);
737 }
738
739 } // namespace
740
741 template <bool is_one_byte, typename T>
AllocateInternalizedStringImpl(T t,int chars,uint32_t hash_field)742 Handle<String> Factory::AllocateInternalizedStringImpl(T t, int chars,
743 uint32_t hash_field) {
744 DCHECK_LE(0, chars);
745 DCHECK_GE(String::kMaxLength, chars);
746
747 // Compute map and object size.
748 int size;
749 Map map;
750 if (is_one_byte) {
751 map = *one_byte_internalized_string_map();
752 size = SeqOneByteString::SizeFor(chars);
753 } else {
754 map = *internalized_string_map();
755 size = SeqTwoByteString::SizeFor(chars);
756 }
757
758 HeapObject result =
759 AllocateRawWithImmortalMap(size,
760 isolate()->heap()->CanAllocateInReadOnlySpace()
761 ? AllocationType::kReadOnly
762 : AllocationType::kOld,
763 map);
764 Handle<String> answer(String::cast(result), isolate());
765 answer->set_length(chars);
766 answer->set_hash_field(hash_field);
767 DCHECK_EQ(size, answer->Size());
768 DisallowHeapAllocation no_gc;
769
770 if (is_one_byte) {
771 WriteOneByteData(t, SeqOneByteString::cast(*answer).GetChars(no_gc), chars);
772 } else {
773 WriteTwoByteData(t, SeqTwoByteString::cast(*answer).GetChars(no_gc), chars);
774 }
775 return answer;
776 }
777
NewInternalizedStringImpl(Handle<String> string,int chars,uint32_t hash_field)778 Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string,
779 int chars,
780 uint32_t hash_field) {
781 if (IsOneByte(string)) {
782 return AllocateInternalizedStringImpl<true>(string, chars, hash_field);
783 }
784 return AllocateInternalizedStringImpl<false>(string, chars, hash_field);
785 }
786
787 namespace {
788
GetInternalizedStringMap(Factory * f,Handle<String> string)789 MaybeHandle<Map> GetInternalizedStringMap(Factory* f, Handle<String> string) {
790 switch (string->map().instance_type()) {
791 case STRING_TYPE:
792 return f->internalized_string_map();
793 case ONE_BYTE_STRING_TYPE:
794 return f->one_byte_internalized_string_map();
795 case EXTERNAL_STRING_TYPE:
796 return f->external_internalized_string_map();
797 case EXTERNAL_ONE_BYTE_STRING_TYPE:
798 return f->external_one_byte_internalized_string_map();
799 case UNCACHED_EXTERNAL_STRING_TYPE:
800 return f->uncached_external_internalized_string_map();
801 case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE:
802 return f->uncached_external_one_byte_internalized_string_map();
803 default:
804 return MaybeHandle<Map>(); // No match found.
805 }
806 }
807
808 } // namespace
809
InternalizedStringMapForString(Handle<String> string)810 MaybeHandle<Map> Factory::InternalizedStringMapForString(
811 Handle<String> string) {
812 // If the string is in the young generation, it cannot be used as
813 // internalized.
814 if (Heap::InYoungGeneration(*string)) return MaybeHandle<Map>();
815
816 return GetInternalizedStringMap(this, string);
817 }
818
819 template <class StringClass>
InternalizeExternalString(Handle<String> string)820 Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) {
821 Handle<StringClass> cast_string = Handle<StringClass>::cast(string);
822 Handle<Map> map = GetInternalizedStringMap(this, string).ToHandleChecked();
823 Handle<StringClass> external_string(
824 StringClass::cast(New(map, AllocationType::kOld)), isolate());
825 external_string->AllocateExternalPointerEntries(isolate());
826 external_string->set_length(cast_string->length());
827 external_string->set_hash_field(cast_string->hash_field());
828 external_string->SetResource(isolate(), nullptr);
829 isolate()->heap()->RegisterExternalString(*external_string);
830 return external_string;
831 }
832
833 template Handle<ExternalOneByteString>
834 Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>);
835 template Handle<ExternalTwoByteString>
836 Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>);
837
LookupSingleCharacterStringFromCode(uint16_t code)838 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint16_t code) {
839 if (code <= unibrow::Latin1::kMaxChar) {
840 {
841 DisallowHeapAllocation no_allocation;
842 Object value = single_character_string_cache()->get(code);
843 if (value != *undefined_value()) {
844 return handle(String::cast(value), isolate());
845 }
846 }
847 uint8_t buffer[] = {static_cast<uint8_t>(code)};
848 Handle<String> result = InternalizeString(Vector<const uint8_t>(buffer, 1));
849 single_character_string_cache()->set(code, *result);
850 return result;
851 }
852 uint16_t buffer[] = {code};
853 return InternalizeString(Vector<const uint16_t>(buffer, 1));
854 }
855
NewSurrogatePairString(uint16_t lead,uint16_t trail)856 Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
857 DCHECK_GE(lead, 0xD800);
858 DCHECK_LE(lead, 0xDBFF);
859 DCHECK_GE(trail, 0xDC00);
860 DCHECK_LE(trail, 0xDFFF);
861
862 Handle<SeqTwoByteString> str =
863 isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
864 DisallowHeapAllocation no_allocation;
865 uc16* dest = str->GetChars(no_allocation);
866 dest[0] = lead;
867 dest[1] = trail;
868 return str;
869 }
870
NewProperSubString(Handle<String> str,int begin,int end)871 Handle<String> Factory::NewProperSubString(Handle<String> str, int begin,
872 int end) {
873 #if VERIFY_HEAP
874 if (FLAG_verify_heap) str->StringVerify(isolate());
875 #endif
876 DCHECK(begin > 0 || end < str->length());
877
878 str = String::Flatten(isolate(), str);
879
880 int length = end - begin;
881 if (length <= 0) return empty_string();
882 if (length == 1) {
883 return LookupSingleCharacterStringFromCode(str->Get(begin));
884 }
885 if (length == 2) {
886 // Optimization for 2-byte strings often used as keys in a decompression
887 // dictionary. Check whether we already have the string in the string
888 // table to prevent creation of many unnecessary strings.
889 uint16_t c1 = str->Get(begin);
890 uint16_t c2 = str->Get(begin + 1);
891 return MakeOrFindTwoCharacterString(c1, c2);
892 }
893
894 if (!FLAG_string_slices || length < SlicedString::kMinLength) {
895 if (str->IsOneByteRepresentation()) {
896 Handle<SeqOneByteString> result =
897 NewRawOneByteString(length).ToHandleChecked();
898 DisallowHeapAllocation no_gc;
899 uint8_t* dest = result->GetChars(no_gc);
900 String::WriteToFlat(*str, dest, begin, end);
901 return result;
902 } else {
903 Handle<SeqTwoByteString> result =
904 NewRawTwoByteString(length).ToHandleChecked();
905 DisallowHeapAllocation no_gc;
906 uc16* dest = result->GetChars(no_gc);
907 String::WriteToFlat(*str, dest, begin, end);
908 return result;
909 }
910 }
911
912 int offset = begin;
913
914 if (str->IsSlicedString()) {
915 Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
916 str = Handle<String>(slice->parent(), isolate());
917 offset += slice->offset();
918 }
919 if (str->IsThinString()) {
920 Handle<ThinString> thin = Handle<ThinString>::cast(str);
921 str = handle(thin->actual(), isolate());
922 }
923
924 DCHECK(str->IsSeqString() || str->IsExternalString());
925 Handle<Map> map = str->IsOneByteRepresentation()
926 ? sliced_one_byte_string_map()
927 : sliced_string_map();
928 Handle<SlicedString> slice(
929 SlicedString::cast(New(map, AllocationType::kYoung)), isolate());
930
931 slice->set_hash_field(String::kEmptyHashField);
932 slice->set_length(length);
933 slice->set_parent(*str);
934 slice->set_offset(offset);
935 return slice;
936 }
937
NewExternalStringFromOneByte(const ExternalOneByteString::Resource * resource)938 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
939 const ExternalOneByteString::Resource* resource) {
940 size_t length = resource->length();
941 if (length > static_cast<size_t>(String::kMaxLength)) {
942 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
943 }
944 if (length == 0) return empty_string();
945
946 Handle<Map> map = resource->IsCacheable()
947 ? external_one_byte_string_map()
948 : uncached_external_one_byte_string_map();
949 Handle<ExternalOneByteString> external_string(
950 ExternalOneByteString::cast(New(map, AllocationType::kOld)), isolate());
951 external_string->AllocateExternalPointerEntries(isolate());
952 external_string->set_length(static_cast<int>(length));
953 external_string->set_hash_field(String::kEmptyHashField);
954 external_string->SetResource(isolate(), resource);
955 isolate()->heap()->RegisterExternalString(*external_string);
956
957 return external_string;
958 }
959
NewExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)960 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
961 const ExternalTwoByteString::Resource* resource) {
962 size_t length = resource->length();
963 if (length > static_cast<size_t>(String::kMaxLength)) {
964 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
965 }
966 if (length == 0) return empty_string();
967
968 Handle<Map> map = resource->IsCacheable() ? external_string_map()
969 : uncached_external_string_map();
970 Handle<ExternalTwoByteString> external_string(
971 ExternalTwoByteString::cast(New(map, AllocationType::kOld)), isolate());
972 external_string->AllocateExternalPointerEntries(isolate());
973 external_string->set_length(static_cast<int>(length));
974 external_string->set_hash_field(String::kEmptyHashField);
975 external_string->SetResource(isolate(), resource);
976 isolate()->heap()->RegisterExternalString(*external_string);
977
978 return external_string;
979 }
980
NewJSStringIterator(Handle<String> string)981 Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) {
982 Handle<Map> map(isolate()->native_context()->initial_string_iterator_map(),
983 isolate());
984 Handle<String> flat_string = String::Flatten(isolate(), string);
985 Handle<JSStringIterator> iterator =
986 Handle<JSStringIterator>::cast(NewJSObjectFromMap(map));
987 iterator->set_string(*flat_string);
988 iterator->set_index(0);
989
990 return iterator;
991 }
992
NewSymbol(AllocationType allocation)993 Handle<Symbol> Factory::NewSymbol(AllocationType allocation) {
994 DCHECK(allocation != AllocationType::kYoung);
995 // Statically ensure that it is safe to allocate symbols in paged spaces.
996 STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize);
997
998 HeapObject result =
999 AllocateRawWithImmortalMap(Symbol::kSize, allocation, *symbol_map());
1000
1001 // Generate a random hash value.
1002 int hash = isolate()->GenerateIdentityHash(Name::kHashBitMask);
1003
1004 Handle<Symbol> symbol(Symbol::cast(result), isolate());
1005 symbol->set_hash_field(Name::kIsNotIntegerIndexMask |
1006 (hash << Name::kHashShift));
1007 symbol->set_description(*undefined_value());
1008 symbol->set_flags(0);
1009 DCHECK(!symbol->is_private());
1010 return symbol;
1011 }
1012
NewPrivateSymbol(AllocationType allocation)1013 Handle<Symbol> Factory::NewPrivateSymbol(AllocationType allocation) {
1014 DCHECK(allocation != AllocationType::kYoung);
1015 Handle<Symbol> symbol = NewSymbol(allocation);
1016 symbol->set_is_private(true);
1017 return symbol;
1018 }
1019
NewPrivateNameSymbol(Handle<String> name)1020 Handle<Symbol> Factory::NewPrivateNameSymbol(Handle<String> name) {
1021 Handle<Symbol> symbol = NewSymbol();
1022 symbol->set_is_private_name();
1023 symbol->set_description(*name);
1024 return symbol;
1025 }
1026
NewContext(Handle<Map> map,int size,int variadic_part_length,AllocationType allocation)1027 Handle<Context> Factory::NewContext(Handle<Map> map, int size,
1028 int variadic_part_length,
1029 AllocationType allocation) {
1030 DCHECK_LE(Context::kTodoHeaderSize, size);
1031 DCHECK(IsAligned(size, kTaggedSize));
1032 DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
1033 DCHECK_LE(Context::SizeFor(variadic_part_length), size);
1034
1035 HeapObject result =
1036 isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(size, allocation);
1037 result.set_map_after_allocation(*map);
1038 Handle<Context> context(Context::cast(result), isolate());
1039 context->set_length(variadic_part_length);
1040 DCHECK_EQ(context->SizeFromMap(*map), size);
1041 if (size > Context::kTodoHeaderSize) {
1042 ObjectSlot start = context->RawField(Context::kTodoHeaderSize);
1043 ObjectSlot end = context->RawField(size);
1044 size_t slot_count = end - start;
1045 MemsetTagged(start, *undefined_value(), slot_count);
1046 }
1047 return context;
1048 }
1049
NewNativeContext()1050 Handle<NativeContext> Factory::NewNativeContext() {
1051 Handle<Map> map = NewMap(NATIVE_CONTEXT_TYPE, kVariableSizeSentinel);
1052 Handle<NativeContext> context = Handle<NativeContext>::cast(
1053 NewContext(map, NativeContext::kSize, NativeContext::NATIVE_CONTEXT_SLOTS,
1054 AllocationType::kOld));
1055 context->set_native_context_map(*map);
1056 map->set_native_context(*context);
1057 context->AllocateExternalPointerEntries(isolate());
1058 context->set_scope_info(ReadOnlyRoots(isolate()).native_scope_info());
1059 context->set_previous(Context::unchecked_cast(Smi::zero()));
1060 context->set_extension(*undefined_value());
1061 context->set_errors_thrown(Smi::zero());
1062 context->set_math_random_index(Smi::zero());
1063 context->set_serialized_objects(*empty_fixed_array());
1064 context->set_microtask_queue(isolate(), nullptr);
1065 context->set_osr_code_cache(*empty_weak_fixed_array());
1066 context->set_retained_maps(*empty_weak_array_list());
1067 return context;
1068 }
1069
NewScriptContext(Handle<NativeContext> outer,Handle<ScopeInfo> scope_info)1070 Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer,
1071 Handle<ScopeInfo> scope_info) {
1072 DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE);
1073 int variadic_part_length = scope_info->ContextLength();
1074 Handle<Context> context =
1075 NewContext(handle(outer->script_context_map(), isolate()),
1076 Context::SizeFor(variadic_part_length), variadic_part_length,
1077 AllocationType::kOld);
1078 context->set_scope_info(*scope_info);
1079 context->set_previous(*outer);
1080 DCHECK(context->IsScriptContext());
1081 return context;
1082 }
1083
NewScriptContextTable()1084 Handle<ScriptContextTable> Factory::NewScriptContextTable() {
1085 Handle<ScriptContextTable> context_table = Handle<ScriptContextTable>::cast(
1086 NewFixedArrayWithMap(read_only_roots().script_context_table_map_handle(),
1087 ScriptContextTable::kMinLength));
1088 context_table->synchronized_set_used(0);
1089 return context_table;
1090 }
1091
NewModuleContext(Handle<SourceTextModule> module,Handle<NativeContext> outer,Handle<ScopeInfo> scope_info)1092 Handle<Context> Factory::NewModuleContext(Handle<SourceTextModule> module,
1093 Handle<NativeContext> outer,
1094 Handle<ScopeInfo> scope_info) {
1095 DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE);
1096 int variadic_part_length = scope_info->ContextLength();
1097 Handle<Context> context = NewContext(
1098 isolate()->module_context_map(), Context::SizeFor(variadic_part_length),
1099 variadic_part_length, AllocationType::kOld);
1100 context->set_scope_info(*scope_info);
1101 context->set_previous(*outer);
1102 context->set_extension(*module);
1103 DCHECK(context->IsModuleContext());
1104 return context;
1105 }
1106
NewFunctionContext(Handle<Context> outer,Handle<ScopeInfo> scope_info)1107 Handle<Context> Factory::NewFunctionContext(Handle<Context> outer,
1108 Handle<ScopeInfo> scope_info) {
1109 Handle<Map> map;
1110 switch (scope_info->scope_type()) {
1111 case EVAL_SCOPE:
1112 map = isolate()->eval_context_map();
1113 break;
1114 case FUNCTION_SCOPE:
1115 map = isolate()->function_context_map();
1116 break;
1117 default:
1118 UNREACHABLE();
1119 }
1120 int variadic_part_length = scope_info->ContextLength();
1121 Handle<Context> context =
1122 NewContext(map, Context::SizeFor(variadic_part_length),
1123 variadic_part_length, AllocationType::kYoung);
1124 context->set_scope_info(*scope_info);
1125 context->set_previous(*outer);
1126 return context;
1127 }
1128
NewCatchContext(Handle<Context> previous,Handle<ScopeInfo> scope_info,Handle<Object> thrown_object)1129 Handle<Context> Factory::NewCatchContext(Handle<Context> previous,
1130 Handle<ScopeInfo> scope_info,
1131 Handle<Object> thrown_object) {
1132 DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
1133 STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
1134 // TODO(ishell): Take the details from CatchContext class.
1135 int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1;
1136 Handle<Context> context = NewContext(
1137 isolate()->catch_context_map(), Context::SizeFor(variadic_part_length),
1138 variadic_part_length, AllocationType::kYoung);
1139 context->set_scope_info(*scope_info);
1140 context->set_previous(*previous);
1141 context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
1142 return context;
1143 }
1144
NewDebugEvaluateContext(Handle<Context> previous,Handle<ScopeInfo> scope_info,Handle<JSReceiver> extension,Handle<Context> wrapped,Handle<StringSet> blocklist)1145 Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
1146 Handle<ScopeInfo> scope_info,
1147 Handle<JSReceiver> extension,
1148 Handle<Context> wrapped,
1149 Handle<StringSet> blocklist) {
1150 STATIC_ASSERT(Context::BLOCK_LIST_INDEX ==
1151 Context::MIN_CONTEXT_EXTENDED_SLOTS + 1);
1152 DCHECK(scope_info->IsDebugEvaluateScope());
1153 Handle<HeapObject> ext = extension.is_null()
1154 ? Handle<HeapObject>::cast(undefined_value())
1155 : Handle<HeapObject>::cast(extension);
1156 // TODO(ishell): Take the details from DebugEvaluateContextContext class.
1157 int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS + 2;
1158 Handle<Context> c = NewContext(isolate()->debug_evaluate_context_map(),
1159 Context::SizeFor(variadic_part_length),
1160 variadic_part_length, AllocationType::kYoung);
1161 c->set_scope_info(*scope_info);
1162 c->set_previous(*previous);
1163 c->set_extension(*ext);
1164 if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped);
1165 if (!blocklist.is_null()) c->set(Context::BLOCK_LIST_INDEX, *blocklist);
1166 return c;
1167 }
1168
NewWithContext(Handle<Context> previous,Handle<ScopeInfo> scope_info,Handle<JSReceiver> extension)1169 Handle<Context> Factory::NewWithContext(Handle<Context> previous,
1170 Handle<ScopeInfo> scope_info,
1171 Handle<JSReceiver> extension) {
1172 DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE);
1173 // TODO(ishell): Take the details from WithContext class.
1174 int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS;
1175 Handle<Context> context = NewContext(
1176 isolate()->with_context_map(), Context::SizeFor(variadic_part_length),
1177 variadic_part_length, AllocationType::kYoung);
1178 context->set_scope_info(*scope_info);
1179 context->set_previous(*previous);
1180 context->set_extension(*extension);
1181 return context;
1182 }
1183
NewBlockContext(Handle<Context> previous,Handle<ScopeInfo> scope_info)1184 Handle<Context> Factory::NewBlockContext(Handle<Context> previous,
1185 Handle<ScopeInfo> scope_info) {
1186 DCHECK_IMPLIES(scope_info->scope_type() != BLOCK_SCOPE,
1187 scope_info->scope_type() == CLASS_SCOPE);
1188 int variadic_part_length = scope_info->ContextLength();
1189 Handle<Context> context = NewContext(
1190 isolate()->block_context_map(), Context::SizeFor(variadic_part_length),
1191 variadic_part_length, AllocationType::kYoung);
1192 context->set_scope_info(*scope_info);
1193 context->set_previous(*previous);
1194 return context;
1195 }
1196
NewBuiltinContext(Handle<NativeContext> native_context,int variadic_part_length)1197 Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context,
1198 int variadic_part_length) {
1199 DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
1200 Handle<Context> context = NewContext(
1201 isolate()->function_context_map(), Context::SizeFor(variadic_part_length),
1202 variadic_part_length, AllocationType::kYoung);
1203 context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info());
1204 context->set_previous(*native_context);
1205 return context;
1206 }
1207
NewAliasedArgumentsEntry(int aliased_context_slot)1208 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
1209 int aliased_context_slot) {
1210 Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
1211 NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, AllocationType::kYoung));
1212 entry->set_aliased_context_slot(aliased_context_slot);
1213 return entry;
1214 }
1215
NewAccessorInfo()1216 Handle<AccessorInfo> Factory::NewAccessorInfo() {
1217 Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(
1218 NewStruct(ACCESSOR_INFO_TYPE, AllocationType::kOld));
1219 DisallowHeapAllocation no_gc;
1220 info->set_name(*empty_string());
1221 info->set_flags(0); // Must clear the flags, it was initialized as undefined.
1222 info->set_is_sloppy(true);
1223 info->set_initial_property_attributes(NONE);
1224
1225 // Clear some other fields that should not be undefined.
1226 info->set_getter(Smi::zero());
1227 info->set_setter(Smi::zero());
1228 info->set_js_getter(Smi::zero());
1229
1230 return info;
1231 }
1232
AddToScriptList(Handle<Script> script)1233 void Factory::AddToScriptList(Handle<Script> script) {
1234 Handle<WeakArrayList> scripts = script_list();
1235 scripts = WeakArrayList::Append(isolate(), scripts,
1236 MaybeObjectHandle::Weak(script));
1237 isolate()->heap()->set_script_list(*scripts);
1238 }
1239
CloneScript(Handle<Script> script)1240 Handle<Script> Factory::CloneScript(Handle<Script> script) {
1241 Heap* heap = isolate()->heap();
1242 int script_id = isolate()->GetNextScriptId();
1243 Handle<Script> new_script =
1244 Handle<Script>::cast(NewStruct(SCRIPT_TYPE, AllocationType::kOld));
1245 new_script->set_source(script->source());
1246 new_script->set_name(script->name());
1247 new_script->set_id(script_id);
1248 new_script->set_line_offset(script->line_offset());
1249 new_script->set_column_offset(script->column_offset());
1250 new_script->set_context_data(script->context_data());
1251 new_script->set_type(script->type());
1252 new_script->set_line_ends(ReadOnlyRoots(heap).undefined_value());
1253 new_script->set_eval_from_shared_or_wrapped_arguments(
1254 script->eval_from_shared_or_wrapped_arguments());
1255 new_script->set_shared_function_infos(*empty_weak_fixed_array(),
1256 SKIP_WRITE_BARRIER);
1257 new_script->set_eval_from_position(script->eval_from_position());
1258 new_script->set_flags(script->flags());
1259 new_script->set_host_defined_options(script->host_defined_options());
1260 Handle<WeakArrayList> scripts = script_list();
1261 scripts = WeakArrayList::AddToEnd(isolate(), scripts,
1262 MaybeObjectHandle::Weak(new_script));
1263 heap->set_script_list(*scripts);
1264 LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
1265 return new_script;
1266 }
1267
NewCallableTask(Handle<JSReceiver> callable,Handle<Context> context)1268 Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable,
1269 Handle<Context> context) {
1270 DCHECK(callable->IsCallable());
1271 Handle<CallableTask> microtask =
1272 Handle<CallableTask>::cast(NewStruct(CALLABLE_TASK_TYPE));
1273 microtask->set_callable(*callable);
1274 microtask->set_context(*context);
1275 return microtask;
1276 }
1277
NewCallbackTask(Handle<Foreign> callback,Handle<Foreign> data)1278 Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback,
1279 Handle<Foreign> data) {
1280 Handle<CallbackTask> microtask =
1281 Handle<CallbackTask>::cast(NewStruct(CALLBACK_TASK_TYPE));
1282 microtask->set_callback(*callback);
1283 microtask->set_data(*data);
1284 return microtask;
1285 }
1286
NewPromiseResolveThenableJobTask(Handle<JSPromise> promise_to_resolve,Handle<JSReceiver> thenable,Handle<JSReceiver> then,Handle<Context> context)1287 Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask(
1288 Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> thenable,
1289 Handle<JSReceiver> then, Handle<Context> context) {
1290 DCHECK(then->IsCallable());
1291 Handle<PromiseResolveThenableJobTask> microtask =
1292 Handle<PromiseResolveThenableJobTask>::cast(
1293 NewStruct(PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE));
1294 microtask->set_promise_to_resolve(*promise_to_resolve);
1295 microtask->set_thenable(*thenable);
1296 microtask->set_then(*then);
1297 microtask->set_context(*context);
1298 return microtask;
1299 }
1300
NewForeign(Address addr)1301 Handle<Foreign> Factory::NewForeign(Address addr) {
1302 // Statically ensure that it is safe to allocate foreigns in paged spaces.
1303 STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize);
1304 Map map = *foreign_map();
1305 HeapObject result = AllocateRawWithImmortalMap(map.instance_size(),
1306 AllocationType::kYoung, map);
1307 Handle<Foreign> foreign(Foreign::cast(result), isolate());
1308 foreign->AllocateExternalPointerEntries(isolate());
1309 foreign->set_foreign_address(isolate(), addr);
1310 return foreign;
1311 }
1312
NewWasmTypeInfo(Address type_address,Handle<Map> parent)1313 Handle<WasmTypeInfo> Factory::NewWasmTypeInfo(Address type_address,
1314 Handle<Map> parent) {
1315 Handle<ArrayList> subtypes = ArrayList::New(isolate(), 0);
1316 Map map = *wasm_type_info_map();
1317 HeapObject result = AllocateRawWithImmortalMap(map.instance_size(),
1318 AllocationType::kYoung, map);
1319 Handle<WasmTypeInfo> info(WasmTypeInfo::cast(result), isolate());
1320 info->AllocateExternalPointerEntries(isolate());
1321 info->set_foreign_address(isolate(), type_address);
1322 info->set_parent(*parent);
1323 info->set_subtypes(*subtypes);
1324 return info;
1325 }
1326
NewCell(Handle<Object> value)1327 Handle<Cell> Factory::NewCell(Handle<Object> value) {
1328 STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize);
1329 HeapObject result = AllocateRawWithImmortalMap(
1330 Cell::kSize, AllocationType::kOld, *cell_map());
1331 Handle<Cell> cell(Cell::cast(result), isolate());
1332 cell->set_value(*value);
1333 return cell;
1334 }
1335
NewNoClosuresCell(Handle<HeapObject> value)1336 Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) {
1337 HeapObject result =
1338 AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize,
1339 AllocationType::kOld, *no_closures_cell_map());
1340 Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
1341 cell->set_value(*value);
1342 cell->SetInitialInterruptBudget();
1343 cell->clear_padding();
1344 return cell;
1345 }
1346
NewOneClosureCell(Handle<HeapObject> value)1347 Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) {
1348 HeapObject result =
1349 AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize,
1350 AllocationType::kOld, *one_closure_cell_map());
1351 Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
1352 cell->set_value(*value);
1353 cell->SetInitialInterruptBudget();
1354 cell->clear_padding();
1355 return cell;
1356 }
1357
NewManyClosuresCell(Handle<HeapObject> value)1358 Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) {
1359 HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kAlignedSize,
1360 AllocationType::kOld,
1361 *many_closures_cell_map());
1362 Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
1363 cell->set_value(*value);
1364 cell->SetInitialInterruptBudget();
1365 cell->clear_padding();
1366 return cell;
1367 }
1368
NewPropertyCell(Handle<Name> name,AllocationType allocation)1369 Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name,
1370 AllocationType allocation) {
1371 DCHECK(name->IsUniqueName());
1372 STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize);
1373 HeapObject result = AllocateRawWithImmortalMap(
1374 PropertyCell::kSize, allocation, *global_property_cell_map());
1375 Handle<PropertyCell> cell(PropertyCell::cast(result), isolate());
1376 cell->set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()),
1377 SKIP_WRITE_BARRIER);
1378 cell->set_property_details(PropertyDetails(Smi::zero()));
1379 cell->set_name(*name);
1380 cell->set_value(*the_hole_value());
1381 return cell;
1382 }
1383
NewTransitionArray(int number_of_transitions,int slack)1384 Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions,
1385 int slack) {
1386 int capacity = TransitionArray::LengthFor(number_of_transitions + slack);
1387 Handle<TransitionArray> array = Handle<TransitionArray>::cast(
1388 NewWeakFixedArrayWithMap(read_only_roots().transition_array_map(),
1389 capacity, AllocationType::kOld));
1390 // Transition arrays are AllocationType::kOld. When black allocation is on we
1391 // have to add the transition array to the list of
1392 // encountered_transition_arrays.
1393 Heap* heap = isolate()->heap();
1394 if (heap->incremental_marking()->black_allocation()) {
1395 heap->mark_compact_collector()->AddTransitionArray(*array);
1396 }
1397 array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex,
1398 MaybeObject::FromObject(Smi::zero()));
1399 array->WeakFixedArray::Set(
1400 TransitionArray::kTransitionLengthIndex,
1401 MaybeObject::FromObject(Smi::FromInt(number_of_transitions)));
1402 return array;
1403 }
1404
NewAllocationSite(bool with_weak_next)1405 Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) {
1406 Handle<Map> map = with_weak_next ? allocation_site_map()
1407 : allocation_site_without_weaknext_map();
1408 Handle<AllocationSite> site(
1409 AllocationSite::cast(New(map, AllocationType::kOld)), isolate());
1410 site->Initialize();
1411
1412 if (with_weak_next) {
1413 // Link the site
1414 site->set_weak_next(isolate()->heap()->allocation_sites_list());
1415 isolate()->heap()->set_allocation_sites_list(*site);
1416 }
1417 return site;
1418 }
1419
NewMap(InstanceType type,int instance_size,ElementsKind elements_kind,int inobject_properties)1420 Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
1421 ElementsKind elements_kind,
1422 int inobject_properties) {
1423 STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
1424 DCHECK_IMPLIES(InstanceTypeChecker::IsJSObject(type) &&
1425 !Map::CanHaveFastTransitionableElementsKind(type),
1426 IsDictionaryElementsKind(elements_kind) ||
1427 IsTerminalElementsKind(elements_kind));
1428 HeapObject result = isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(
1429 Map::kSize, AllocationType::kMap);
1430 result.set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER);
1431 return handle(InitializeMap(Map::cast(result), type, instance_size,
1432 elements_kind, inobject_properties),
1433 isolate());
1434 }
1435
InitializeMap(Map map,InstanceType type,int instance_size,ElementsKind elements_kind,int inobject_properties)1436 Map Factory::InitializeMap(Map map, InstanceType type, int instance_size,
1437 ElementsKind elements_kind,
1438 int inobject_properties) {
1439 map.set_instance_type(type);
1440 map.set_prototype(*null_value(), SKIP_WRITE_BARRIER);
1441 map.set_constructor_or_backpointer(*null_value(), SKIP_WRITE_BARRIER);
1442 map.set_instance_size(instance_size);
1443 if (map.IsJSObjectMap()) {
1444 DCHECK(!ReadOnlyHeap::Contains(map));
1445 map.SetInObjectPropertiesStartInWords(instance_size / kTaggedSize -
1446 inobject_properties);
1447 DCHECK_EQ(map.GetInObjectProperties(), inobject_properties);
1448 map.set_prototype_validity_cell(*invalid_prototype_validity_cell());
1449 } else {
1450 DCHECK_EQ(inobject_properties, 0);
1451 map.set_inobject_properties_start_or_constructor_function_index(0);
1452 map.set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid));
1453 }
1454 map.set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()),
1455 SKIP_WRITE_BARRIER);
1456 map.set_raw_transitions(MaybeObject::FromSmi(Smi::zero()));
1457 map.SetInObjectUnusedPropertyFields(inobject_properties);
1458 map.SetInstanceDescriptors(isolate(), *empty_descriptor_array(), 0);
1459 if (FLAG_unbox_double_fields) {
1460 map.set_layout_descriptor(LayoutDescriptor::FastPointerLayout(),
1461 kReleaseStore);
1462 }
1463 // Must be called only after |instance_type|, |instance_size| and
1464 // |layout_descriptor| are set.
1465 map.set_visitor_id(Map::GetVisitorId(map));
1466 map.set_relaxed_bit_field(0);
1467 map.set_bit_field2(Map::Bits2::NewTargetIsBaseBit::encode(true));
1468 int bit_field3 =
1469 Map::Bits3::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
1470 Map::Bits3::OwnsDescriptorsBit::encode(true) |
1471 Map::Bits3::ConstructionCounterBits::encode(Map::kNoSlackTracking) |
1472 Map::Bits3::IsExtensibleBit::encode(true);
1473 map.set_bit_field3(bit_field3);
1474 DCHECK(!map.is_in_retained_map_list());
1475 map.clear_padding();
1476 map.set_elements_kind(elements_kind);
1477 isolate()->counters()->maps_created()->Increment();
1478 if (FLAG_trace_maps) LOG(isolate(), MapCreate(map));
1479 return map;
1480 }
1481
CopyJSObject(Handle<JSObject> source)1482 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) {
1483 return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>());
1484 }
1485
CopyJSObjectWithAllocationSite(Handle<JSObject> source,Handle<AllocationSite> site)1486 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
1487 Handle<JSObject> source, Handle<AllocationSite> site) {
1488 Handle<Map> map(source->map(), isolate());
1489
1490 // We can only clone regexps, normal objects, api objects, errors or arrays.
1491 // Copying anything else will break invariants.
1492 CHECK(map->instance_type() == JS_REG_EXP_TYPE ||
1493 map->instance_type() == JS_OBJECT_TYPE ||
1494 map->instance_type() == JS_ERROR_TYPE ||
1495 map->instance_type() == JS_ARRAY_TYPE ||
1496 map->instance_type() == JS_API_OBJECT_TYPE ||
1497 map->instance_type() == WASM_GLOBAL_OBJECT_TYPE ||
1498 map->instance_type() == WASM_INSTANCE_OBJECT_TYPE ||
1499 map->instance_type() == WASM_MEMORY_OBJECT_TYPE ||
1500 map->instance_type() == WASM_MODULE_OBJECT_TYPE ||
1501 map->instance_type() == WASM_TABLE_OBJECT_TYPE ||
1502 map->instance_type() == JS_SPECIAL_API_OBJECT_TYPE);
1503 DCHECK(site.is_null() || AllocationSite::CanTrack(map->instance_type()));
1504
1505 int object_size = map->instance_size();
1506 int adjusted_object_size =
1507 site.is_null() ? object_size : object_size + AllocationMemento::kSize;
1508 HeapObject raw_clone = isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(
1509 adjusted_object_size, AllocationType::kYoung);
1510
1511 DCHECK(Heap::InYoungGeneration(raw_clone) || FLAG_single_generation);
1512
1513 Heap::CopyBlock(raw_clone.address(), source->address(), object_size);
1514 Handle<JSObject> clone(JSObject::cast(raw_clone), isolate());
1515
1516 if (FLAG_enable_unconditional_write_barriers) {
1517 // By default, we shouldn't need to update the write barrier here, as the
1518 // clone will be allocated in new space.
1519 const ObjectSlot start(raw_clone.address());
1520 const ObjectSlot end(raw_clone.address() + object_size);
1521 isolate()->heap()->WriteBarrierForRange(raw_clone, start, end);
1522 }
1523 if (!site.is_null()) {
1524 AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
1525 Object(raw_clone.ptr() + object_size));
1526 InitializeAllocationMemento(alloc_memento, *site);
1527 }
1528
1529 SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind());
1530 FixedArrayBase elements = source->elements();
1531 // Update elements if necessary.
1532 if (elements.length() > 0) {
1533 FixedArrayBase elem;
1534 if (elements.map() == *fixed_cow_array_map()) {
1535 elem = elements;
1536 } else if (source->HasDoubleElements()) {
1537 elem = *CopyFixedDoubleArray(
1538 handle(FixedDoubleArray::cast(elements), isolate()));
1539 } else {
1540 elem = *CopyFixedArray(handle(FixedArray::cast(elements), isolate()));
1541 }
1542 clone->set_elements(elem);
1543 }
1544
1545 // Update properties if necessary.
1546 if (source->HasFastProperties()) {
1547 PropertyArray properties = source->property_array();
1548 if (properties.length() > 0) {
1549 // TODO(gsathya): Do not copy hash code.
1550 Handle<PropertyArray> prop = CopyArrayWithMap(
1551 handle(properties, isolate()), handle(properties.map(), isolate()));
1552 clone->set_raw_properties_or_hash(*prop);
1553 }
1554 } else {
1555 Handle<FixedArray> properties(
1556 FixedArray::cast(source->property_dictionary()), isolate());
1557 Handle<FixedArray> prop = CopyFixedArray(properties);
1558 clone->set_raw_properties_or_hash(*prop);
1559 }
1560 return clone;
1561 }
1562
1563 namespace {
1564 template <typename T>
initialize_length(Handle<T> array,int length)1565 void initialize_length(Handle<T> array, int length) {
1566 array->set_length(length);
1567 }
1568
1569 template <>
initialize_length(Handle<PropertyArray> array,int length)1570 void initialize_length<PropertyArray>(Handle<PropertyArray> array, int length) {
1571 array->initialize_length(length);
1572 }
1573
ZeroEmbedderFields(i::Handle<i::JSObject> obj)1574 inline void ZeroEmbedderFields(i::Handle<i::JSObject> obj) {
1575 auto count = obj->GetEmbedderFieldCount();
1576 for (int i = 0; i < count; i++) {
1577 obj->SetEmbedderField(i, Smi::zero());
1578 }
1579 }
1580
1581 } // namespace
1582
1583 template <typename T>
CopyArrayWithMap(Handle<T> src,Handle<Map> map)1584 Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map) {
1585 int len = src->length();
1586 HeapObject obj = AllocateRawFixedArray(len, AllocationType::kYoung);
1587 obj.set_map_after_allocation(*map, SKIP_WRITE_BARRIER);
1588
1589 Handle<T> result(T::cast(obj), isolate());
1590 initialize_length(result, len);
1591
1592 DisallowHeapAllocation no_gc;
1593 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
1594 result->CopyElements(isolate(), 0, *src, 0, len, mode);
1595 return result;
1596 }
1597
1598 template <typename T>
CopyArrayAndGrow(Handle<T> src,int grow_by,AllocationType allocation)1599 Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by,
1600 AllocationType allocation) {
1601 DCHECK_LT(0, grow_by);
1602 DCHECK_LE(grow_by, kMaxInt - src->length());
1603 int old_len = src->length();
1604 int new_len = old_len + grow_by;
1605 HeapObject obj = AllocateRawFixedArray(new_len, allocation);
1606 obj.set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
1607
1608 Handle<T> result(T::cast(obj), isolate());
1609 initialize_length(result, new_len);
1610
1611 // Copy the content.
1612 DisallowHeapAllocation no_gc;
1613 WriteBarrierMode mode = obj.GetWriteBarrierMode(no_gc);
1614 result->CopyElements(isolate(), 0, *src, 0, old_len, mode);
1615 MemsetTagged(ObjectSlot(result->data_start() + old_len),
1616 ReadOnlyRoots(isolate()).undefined_value(), grow_by);
1617 return result;
1618 }
1619
CopyFixedArrayWithMap(Handle<FixedArray> array,Handle<Map> map)1620 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
1621 Handle<Map> map) {
1622 return CopyArrayWithMap(array, map);
1623 }
1624
CopyFixedArrayAndGrow(Handle<FixedArray> array,int grow_by)1625 Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
1626 int grow_by) {
1627 return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
1628 }
1629
NewUninitializedWeakArrayList(int capacity,AllocationType allocation)1630 Handle<WeakArrayList> Factory::NewUninitializedWeakArrayList(
1631 int capacity, AllocationType allocation) {
1632 DCHECK_LE(0, capacity);
1633 if (capacity == 0) return empty_weak_array_list();
1634
1635 HeapObject obj = AllocateRawWeakArrayList(capacity, allocation);
1636 obj.set_map_after_allocation(*weak_array_list_map(), SKIP_WRITE_BARRIER);
1637
1638 Handle<WeakArrayList> result(WeakArrayList::cast(obj), isolate());
1639 result->set_length(0);
1640 result->set_capacity(capacity);
1641 return result;
1642 }
1643
NewWeakArrayList(int capacity,AllocationType allocation)1644 Handle<WeakArrayList> Factory::NewWeakArrayList(int capacity,
1645 AllocationType allocation) {
1646 Handle<WeakArrayList> result =
1647 NewUninitializedWeakArrayList(capacity, allocation);
1648 MemsetTagged(ObjectSlot(result->data_start()),
1649 ReadOnlyRoots(isolate()).undefined_value(), capacity);
1650 return result;
1651 }
1652
CopyWeakFixedArrayAndGrow(Handle<WeakFixedArray> src,int grow_by)1653 Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow(
1654 Handle<WeakFixedArray> src, int grow_by) {
1655 DCHECK(!src->IsTransitionArray()); // Compacted by GC, this code doesn't work
1656 return CopyArrayAndGrow(src, grow_by, AllocationType::kOld);
1657 }
1658
CopyWeakArrayListAndGrow(Handle<WeakArrayList> src,int grow_by,AllocationType allocation)1659 Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow(
1660 Handle<WeakArrayList> src, int grow_by, AllocationType allocation) {
1661 int old_capacity = src->capacity();
1662 int new_capacity = old_capacity + grow_by;
1663 DCHECK_GE(new_capacity, old_capacity);
1664 Handle<WeakArrayList> result =
1665 NewUninitializedWeakArrayList(new_capacity, allocation);
1666 int old_len = src->length();
1667 result->set_length(old_len);
1668
1669 // Copy the content.
1670 DisallowHeapAllocation no_gc;
1671 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
1672 result->CopyElements(isolate(), 0, *src, 0, old_len, mode);
1673 MemsetTagged(ObjectSlot(result->data_start() + old_len),
1674 ReadOnlyRoots(isolate()).undefined_value(),
1675 new_capacity - old_len);
1676 return result;
1677 }
1678
CompactWeakArrayList(Handle<WeakArrayList> src,int new_capacity,AllocationType allocation)1679 Handle<WeakArrayList> Factory::CompactWeakArrayList(Handle<WeakArrayList> src,
1680 int new_capacity,
1681 AllocationType allocation) {
1682 Handle<WeakArrayList> result =
1683 NewUninitializedWeakArrayList(new_capacity, allocation);
1684
1685 // Copy the content.
1686 DisallowHeapAllocation no_gc;
1687 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
1688 int copy_to = 0, length = src->length();
1689 for (int i = 0; i < length; i++) {
1690 MaybeObject element = src->Get(i);
1691 if (element->IsCleared()) continue;
1692 result->Set(copy_to++, element, mode);
1693 }
1694 result->set_length(copy_to);
1695
1696 MemsetTagged(ObjectSlot(result->data_start() + copy_to),
1697 ReadOnlyRoots(isolate()).undefined_value(),
1698 new_capacity - copy_to);
1699 return result;
1700 }
1701
CopyPropertyArrayAndGrow(Handle<PropertyArray> array,int grow_by)1702 Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow(
1703 Handle<PropertyArray> array, int grow_by) {
1704 return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
1705 }
1706
CopyFixedArrayUpTo(Handle<FixedArray> array,int new_len,AllocationType allocation)1707 Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
1708 int new_len,
1709 AllocationType allocation) {
1710 DCHECK_LE(0, new_len);
1711 DCHECK_LE(new_len, array->length());
1712 if (new_len == 0) return empty_fixed_array();
1713
1714 HeapObject obj = AllocateRawFixedArray(new_len, allocation);
1715 obj.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
1716 Handle<FixedArray> result(FixedArray::cast(obj), isolate());
1717 result->set_length(new_len);
1718
1719 // Copy the content.
1720 DisallowHeapAllocation no_gc;
1721 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
1722 result->CopyElements(isolate(), 0, *array, 0, new_len, mode);
1723 return result;
1724 }
1725
CopyFixedArray(Handle<FixedArray> array)1726 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
1727 if (array->length() == 0) return array;
1728 return CopyArrayWithMap(array, handle(array->map(), isolate()));
1729 }
1730
CopyAndTenureFixedCOWArray(Handle<FixedArray> array)1731 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
1732 Handle<FixedArray> array) {
1733 DCHECK(Heap::InYoungGeneration(*array));
1734 Handle<FixedArray> result =
1735 CopyFixedArrayUpTo(array, array->length(), AllocationType::kOld);
1736
1737 // TODO(mvstanton): The map is set twice because of protection against calling
1738 // set() on a COW FixedArray. Issue v8:3221 created to track this, and
1739 // we might then be able to remove this whole method.
1740 result->set_map_after_allocation(*fixed_cow_array_map(), SKIP_WRITE_BARRIER);
1741 return result;
1742 }
1743
CopyFixedDoubleArray(Handle<FixedDoubleArray> array)1744 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
1745 Handle<FixedDoubleArray> array) {
1746 int len = array->length();
1747 if (len == 0) return array;
1748 Handle<FixedDoubleArray> result =
1749 Handle<FixedDoubleArray>::cast(NewFixedDoubleArray(len));
1750 Heap::CopyBlock(
1751 result->address() + FixedDoubleArray::kLengthOffset,
1752 array->address() + FixedDoubleArray::kLengthOffset,
1753 FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
1754 return result;
1755 }
1756
NewHeapNumberForCodeAssembler(double value)1757 Handle<HeapNumber> Factory::NewHeapNumberForCodeAssembler(double value) {
1758 return isolate()->heap()->CanAllocateInReadOnlySpace()
1759 ? NewHeapNumber<AllocationType::kReadOnly>(value)
1760 : NewHeapNumber<AllocationType::kOld>(value);
1761 }
1762
NewError(Handle<JSFunction> constructor,MessageTemplate template_index,Handle<Object> arg0,Handle<Object> arg1,Handle<Object> arg2)1763 Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
1764 MessageTemplate template_index,
1765 Handle<Object> arg0, Handle<Object> arg1,
1766 Handle<Object> arg2) {
1767 HandleScope scope(isolate());
1768
1769 if (arg0.is_null()) arg0 = undefined_value();
1770 if (arg1.is_null()) arg1 = undefined_value();
1771 if (arg2.is_null()) arg2 = undefined_value();
1772
1773 return scope.CloseAndEscape(ErrorUtils::MakeGenericError(
1774 isolate(), constructor, template_index, arg0, arg1, arg2, SKIP_NONE));
1775 }
1776
NewError(Handle<JSFunction> constructor,Handle<String> message)1777 Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
1778 Handle<String> message) {
1779 // Construct a new error object. If an exception is thrown, use the exception
1780 // as the result.
1781
1782 Handle<Object> no_caller;
1783 return ErrorUtils::Construct(isolate(), constructor, constructor, message,
1784 SKIP_NONE, no_caller,
1785 ErrorUtils::StackTraceCollection::kDetailed)
1786 .ToHandleChecked();
1787 }
1788
NewInvalidStringLengthError()1789 Handle<Object> Factory::NewInvalidStringLengthError() {
1790 if (FLAG_correctness_fuzzer_suppressions) {
1791 FATAL("Aborting on invalid string length");
1792 }
1793 // Invalidate the "string length" protector.
1794 if (Protectors::IsStringLengthOverflowLookupChainIntact(isolate())) {
1795 Protectors::InvalidateStringLengthOverflowLookupChain(isolate());
1796 }
1797 return NewRangeError(MessageTemplate::kInvalidStringLength);
1798 }
1799
1800 #define DEFINE_ERROR(NAME, name) \
1801 Handle<JSObject> Factory::New##NAME( \
1802 MessageTemplate template_index, Handle<Object> arg0, \
1803 Handle<Object> arg1, Handle<Object> arg2) { \
1804 return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
1805 arg2); \
1806 }
DEFINE_ERROR(Error,error)1807 DEFINE_ERROR(Error, error)
1808 DEFINE_ERROR(EvalError, eval_error)
1809 DEFINE_ERROR(RangeError, range_error)
1810 DEFINE_ERROR(ReferenceError, reference_error)
1811 DEFINE_ERROR(SyntaxError, syntax_error)
1812 DEFINE_ERROR(TypeError, type_error)
1813 DEFINE_ERROR(WasmCompileError, wasm_compile_error)
1814 DEFINE_ERROR(WasmLinkError, wasm_link_error)
1815 DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
1816 #undef DEFINE_ERROR
1817
1818 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1819 // Make sure to use globals from the function's context, since the function
1820 // can be from a different context.
1821 Handle<NativeContext> native_context(function->context().native_context(),
1822 isolate());
1823 Handle<Map> new_map;
1824 if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared().kind()))) {
1825 new_map = handle(native_context->async_generator_object_prototype_map(),
1826 isolate());
1827 } else if (IsResumableFunction(function->shared().kind())) {
1828 // Generator and async function prototypes can share maps since they
1829 // don't have "constructor" properties.
1830 new_map =
1831 handle(native_context->generator_object_prototype_map(), isolate());
1832 } else {
1833 // Each function prototype gets a fresh map to avoid unwanted sharing of
1834 // maps between prototypes of different constructors.
1835 Handle<JSFunction> object_function(native_context->object_function(),
1836 isolate());
1837 DCHECK(object_function->has_initial_map());
1838 new_map = handle(object_function->initial_map(), isolate());
1839 }
1840
1841 DCHECK(!new_map->is_prototype_map());
1842 Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1843
1844 if (!IsResumableFunction(function->shared().kind())) {
1845 JSObject::AddProperty(isolate(), prototype, constructor_string(), function,
1846 DONT_ENUM);
1847 }
1848
1849 return prototype;
1850 }
1851
NewExternal(void * value)1852 Handle<JSObject> Factory::NewExternal(void* value) {
1853 Handle<Foreign> foreign = NewForeign(reinterpret_cast<Address>(value));
1854 Handle<JSObject> external = NewJSObjectFromMap(external_map());
1855 external->SetEmbedderField(0, *foreign);
1856 return external;
1857 }
1858
NewCodeDataContainer(int flags,AllocationType allocation)1859 Handle<CodeDataContainer> Factory::NewCodeDataContainer(
1860 int flags, AllocationType allocation) {
1861 Handle<CodeDataContainer> data_container(
1862 CodeDataContainer::cast(New(code_data_container_map(), allocation)),
1863 isolate());
1864 data_container->set_next_code_link(*undefined_value(), SKIP_WRITE_BARRIER);
1865 data_container->set_kind_specific_flags(flags);
1866 data_container->clear_padding();
1867 return data_container;
1868 }
1869
NewOffHeapTrampolineFor(Handle<Code> code,Address off_heap_entry)1870 Handle<Code> Factory::NewOffHeapTrampolineFor(Handle<Code> code,
1871 Address off_heap_entry) {
1872 CHECK_NOT_NULL(isolate()->embedded_blob_code());
1873 CHECK_NE(0, isolate()->embedded_blob_code_size());
1874 CHECK(Builtins::IsIsolateIndependentBuiltin(*code));
1875
1876 bool generate_jump_to_instruction_stream =
1877 Builtins::CodeObjectIsExecutable(code->builtin_index());
1878 Handle<Code> result = Builtins::GenerateOffHeapTrampolineFor(
1879 isolate(), off_heap_entry,
1880 code->code_data_container(kAcquireLoad).kind_specific_flags(),
1881 generate_jump_to_instruction_stream);
1882
1883 // Trampolines may not contain any metadata since all metadata offsets,
1884 // stored on the Code object, refer to the off-heap metadata area.
1885 CHECK_EQ(result->raw_metadata_size(), 0);
1886
1887 // The CodeDataContainer should not be modified beyond this point since it's
1888 // now possibly canonicalized.
1889
1890 // The trampoline code object must inherit specific flags from the original
1891 // builtin (e.g. the safepoint-table offset). We set them manually here.
1892 {
1893 CodePageMemoryModificationScope code_allocation(*result);
1894
1895 const bool set_is_off_heap_trampoline = true;
1896 const int stack_slots =
1897 code->has_safepoint_info() ? code->stack_slots() : 0;
1898 result->initialize_flags(code->kind(), code->is_turbofanned(), stack_slots,
1899 set_is_off_heap_trampoline);
1900 result->set_builtin_index(code->builtin_index());
1901 result->set_handler_table_offset(code->handler_table_offset());
1902 result->set_constant_pool_offset(code->constant_pool_offset());
1903 result->set_code_comments_offset(code->code_comments_offset());
1904 result->set_unwinding_info_offset(code->unwinding_info_offset());
1905
1906 // Replace the newly generated trampoline's RelocInfo ByteArray with the
1907 // canonical one stored in the roots to avoid duplicating it for every
1908 // single builtin.
1909 ByteArray canonical_reloc_info =
1910 generate_jump_to_instruction_stream
1911 ? ReadOnlyRoots(isolate()).off_heap_trampoline_relocation_info()
1912 : ReadOnlyRoots(isolate()).empty_byte_array();
1913 #ifdef DEBUG
1914 // Verify that the contents are the same.
1915 ByteArray reloc_info = result->relocation_info();
1916 DCHECK_EQ(reloc_info.length(), canonical_reloc_info.length());
1917 for (int i = 0; i < reloc_info.length(); ++i) {
1918 DCHECK_EQ(reloc_info.get(i), canonical_reloc_info.get(i));
1919 }
1920 #endif
1921 result->set_relocation_info(canonical_reloc_info);
1922 }
1923
1924 return result;
1925 }
1926
CopyCode(Handle<Code> code)1927 Handle<Code> Factory::CopyCode(Handle<Code> code) {
1928 Handle<CodeDataContainer> data_container = NewCodeDataContainer(
1929 code->code_data_container(kAcquireLoad).kind_specific_flags(),
1930 AllocationType::kOld);
1931
1932 Heap* heap = isolate()->heap();
1933 Handle<Code> new_code;
1934 {
1935 int obj_size = code->Size();
1936 CodePageCollectionMemoryModificationScope code_allocation(heap);
1937 HeapObject result = heap->AllocateRawWith<Heap::kRetryOrFail>(
1938 obj_size, AllocationType::kCode, AllocationOrigin::kRuntime);
1939
1940 // Copy code object.
1941 Address old_addr = code->address();
1942 Address new_addr = result.address();
1943 Heap::CopyBlock(new_addr, old_addr, obj_size);
1944 new_code = handle(Code::cast(result), isolate());
1945
1946 // Set the {CodeDataContainer}, it cannot be shared.
1947 new_code->set_code_data_container(*data_container, kReleaseStore);
1948
1949 new_code->Relocate(new_addr - old_addr);
1950 // We have to iterate over the object and process its pointers when black
1951 // allocation is on.
1952 heap->incremental_marking()->ProcessBlackAllocatedObject(*new_code);
1953 // Record all references to embedded objects in the new code object.
1954 #ifndef V8_DISABLE_WRITE_BARRIERS
1955 WriteBarrierForCode(*new_code);
1956 #endif
1957 }
1958
1959 #ifdef VERIFY_HEAP
1960 if (FLAG_verify_heap) new_code->ObjectVerify(isolate());
1961 #endif
1962 DCHECK(IsAligned(new_code->address(), kCodeAlignment));
1963 DCHECK_IMPLIES(
1964 !V8_ENABLE_THIRD_PARTY_HEAP_BOOL &&
1965 !heap->memory_allocator()->code_range().is_empty(),
1966 heap->memory_allocator()->code_range().contains(new_code->address()));
1967 return new_code;
1968 }
1969
CopyBytecodeArray(Handle<BytecodeArray> bytecode_array)1970 Handle<BytecodeArray> Factory::CopyBytecodeArray(
1971 Handle<BytecodeArray> bytecode_array) {
1972 int size = BytecodeArray::SizeFor(bytecode_array->length());
1973 HeapObject result = AllocateRawWithImmortalMap(size, AllocationType::kOld,
1974 *bytecode_array_map());
1975
1976 Handle<BytecodeArray> copy(BytecodeArray::cast(result), isolate());
1977 copy->set_length(bytecode_array->length());
1978 copy->set_frame_size(bytecode_array->frame_size());
1979 copy->set_parameter_count(bytecode_array->parameter_count());
1980 copy->set_incoming_new_target_or_generator_register(
1981 bytecode_array->incoming_new_target_or_generator_register());
1982 copy->set_constant_pool(bytecode_array->constant_pool());
1983 copy->set_handler_table(bytecode_array->handler_table());
1984 copy->set_source_position_table(
1985 bytecode_array->source_position_table(kAcquireLoad), kReleaseStore);
1986 copy->set_osr_loop_nesting_level(bytecode_array->osr_loop_nesting_level());
1987 copy->set_bytecode_age(bytecode_array->bytecode_age());
1988 bytecode_array->CopyBytecodesTo(*copy);
1989 return copy;
1990 }
1991
NewJSObject(Handle<JSFunction> constructor,AllocationType allocation)1992 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1993 AllocationType allocation) {
1994 JSFunction::EnsureHasInitialMap(constructor);
1995 Handle<Map> map(constructor->initial_map(), isolate());
1996 return NewJSObjectFromMap(map, allocation);
1997 }
1998
NewJSObjectWithNullProto()1999 Handle<JSObject> Factory::NewJSObjectWithNullProto() {
2000 Handle<JSObject> result = NewJSObject(isolate()->object_function());
2001 Handle<Map> new_map = Map::Copy(
2002 isolate(), Handle<Map>(result->map(), isolate()), "ObjectWithNullProto");
2003 Map::SetPrototype(isolate(), new_map, null_value());
2004 JSObject::MigrateToMap(isolate(), result, new_map);
2005 return result;
2006 }
2007
NewJSGlobalObject(Handle<JSFunction> constructor)2008 Handle<JSGlobalObject> Factory::NewJSGlobalObject(
2009 Handle<JSFunction> constructor) {
2010 DCHECK(constructor->has_initial_map());
2011 Handle<Map> map(constructor->initial_map(), isolate());
2012 DCHECK(map->is_dictionary_map());
2013
2014 // Make sure no field properties are described in the initial map.
2015 // This guarantees us that normalizing the properties does not
2016 // require us to change property values to PropertyCells.
2017 DCHECK_EQ(map->NextFreePropertyIndex(), 0);
2018
2019 // Make sure we don't have a ton of pre-allocated slots in the
2020 // global objects. They will be unused once we normalize the object.
2021 DCHECK_EQ(map->UnusedPropertyFields(), 0);
2022 DCHECK_EQ(map->GetInObjectProperties(), 0);
2023
2024 // Initial size of the backing store to avoid resize of the storage during
2025 // bootstrapping. The size differs between the JS global object ad the
2026 // builtins object.
2027 int initial_size = 64;
2028
2029 // Allocate a dictionary object for backing storage.
2030 int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
2031 Handle<GlobalDictionary> dictionary =
2032 GlobalDictionary::New(isolate(), at_least_space_for);
2033
2034 // The global object might be created from an object template with accessors.
2035 // Fill these accessors into the dictionary.
2036 Handle<DescriptorArray> descs(map->instance_descriptors(kRelaxedLoad),
2037 isolate());
2038 for (InternalIndex i : map->IterateOwnDescriptors()) {
2039 PropertyDetails details = descs->GetDetails(i);
2040 // Only accessors are expected.
2041 DCHECK_EQ(kAccessor, details.kind());
2042 PropertyDetails d(kAccessor, details.attributes(),
2043 PropertyCellType::kMutable);
2044 Handle<Name> name(descs->GetKey(i), isolate());
2045 Handle<PropertyCell> cell = NewPropertyCell(name);
2046 cell->set_value(descs->GetStrongValue(i));
2047 // |dictionary| already contains enough space for all properties.
2048 USE(GlobalDictionary::Add(isolate(), dictionary, name, cell, d));
2049 }
2050
2051 // Allocate the global object and initialize it with the backing store.
2052 Handle<JSGlobalObject> global(
2053 JSGlobalObject::cast(New(map, AllocationType::kOld)), isolate());
2054 InitializeJSObjectFromMap(global, dictionary, map);
2055
2056 // Create a new map for the global object.
2057 Handle<Map> new_map = Map::CopyDropDescriptors(isolate(), map);
2058 new_map->set_may_have_interesting_symbols(true);
2059 new_map->set_is_dictionary_map(true);
2060 LOG(isolate(), MapDetails(*new_map));
2061
2062 // Set up the global object as a normalized object.
2063 global->set_global_dictionary(*dictionary);
2064 global->synchronized_set_map(*new_map);
2065
2066 // Make sure result is a global object with properties in dictionary.
2067 DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
2068 return global;
2069 }
2070
InitializeJSObjectFromMap(Handle<JSObject> obj,Handle<Object> properties,Handle<Map> map)2071 void Factory::InitializeJSObjectFromMap(Handle<JSObject> obj,
2072 Handle<Object> properties,
2073 Handle<Map> map) {
2074 obj->set_raw_properties_or_hash(*properties);
2075 obj->initialize_elements();
2076 // TODO(1240798): Initialize the object's body using valid initial values
2077 // according to the object's initial map. For example, if the map's
2078 // instance type is JS_ARRAY_TYPE, the length field should be initialized
2079 // to a number (e.g. Smi::zero()) and the elements initialized to a
2080 // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
2081 // verification code has to cope with (temporarily) invalid objects. See
2082 // for example, JSArray::JSArrayVerify).
2083 InitializeJSObjectBody(obj, map, JSObject::kHeaderSize);
2084 }
2085
InitializeJSObjectBody(Handle<JSObject> obj,Handle<Map> map,int start_offset)2086 void Factory::InitializeJSObjectBody(Handle<JSObject> obj, Handle<Map> map,
2087 int start_offset) {
2088 if (start_offset == map->instance_size()) return;
2089 DCHECK_LT(start_offset, map->instance_size());
2090
2091 // We cannot always fill with one_pointer_filler_map because objects
2092 // created from API functions expect their embedder fields to be initialized
2093 // with undefined_value.
2094 // Pre-allocated fields need to be initialized with undefined_value as well
2095 // so that object accesses before the constructor completes (e.g. in the
2096 // debugger) will not cause a crash.
2097
2098 // In case of Array subclassing the |map| could already be transitioned
2099 // to different elements kind from the initial map on which we track slack.
2100 bool in_progress = map->IsInobjectSlackTrackingInProgress();
2101 Object filler;
2102 if (in_progress) {
2103 filler = *one_pointer_filler_map();
2104 } else {
2105 filler = *undefined_value();
2106 }
2107 obj->InitializeBody(*map, start_offset, *undefined_value(), filler);
2108 if (in_progress) {
2109 map->FindRootMap(isolate()).InobjectSlackTrackingStep(isolate());
2110 }
2111 }
2112
NewJSObjectFromMap(Handle<Map> map,AllocationType allocation,Handle<AllocationSite> allocation_site)2113 Handle<JSObject> Factory::NewJSObjectFromMap(
2114 Handle<Map> map, AllocationType allocation,
2115 Handle<AllocationSite> allocation_site) {
2116 // JSFunctions should be allocated using AllocateFunction to be
2117 // properly initialized.
2118 DCHECK(map->instance_type() != JS_FUNCTION_TYPE);
2119
2120 // Both types of global objects should be allocated using
2121 // AllocateGlobalObject to be properly initialized.
2122 DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
2123
2124 HeapObject obj =
2125 AllocateRawWithAllocationSite(map, allocation, allocation_site);
2126 Handle<JSObject> js_obj(JSObject::cast(obj), isolate());
2127
2128 InitializeJSObjectFromMap(js_obj, empty_fixed_array(), map);
2129
2130 DCHECK(js_obj->HasFastElements() || js_obj->HasTypedArrayElements() ||
2131 js_obj->HasFastStringWrapperElements() ||
2132 js_obj->HasFastArgumentsElements() || js_obj->HasDictionaryElements());
2133 return js_obj;
2134 }
2135
NewSlowJSObjectFromMap(Handle<Map> map,int capacity,AllocationType allocation,Handle<AllocationSite> allocation_site)2136 Handle<JSObject> Factory::NewSlowJSObjectFromMap(
2137 Handle<Map> map, int capacity, AllocationType allocation,
2138 Handle<AllocationSite> allocation_site) {
2139 DCHECK(map->is_dictionary_map());
2140 Handle<NameDictionary> object_properties =
2141 NameDictionary::New(isolate(), capacity);
2142 Handle<JSObject> js_object =
2143 NewJSObjectFromMap(map, allocation, allocation_site);
2144 js_object->set_raw_properties_or_hash(*object_properties);
2145 return js_object;
2146 }
2147
NewSlowJSObjectWithPropertiesAndElements(Handle<HeapObject> prototype,Handle<NameDictionary> properties,Handle<FixedArrayBase> elements)2148 Handle<JSObject> Factory::NewSlowJSObjectWithPropertiesAndElements(
2149 Handle<HeapObject> prototype, Handle<NameDictionary> properties,
2150 Handle<FixedArrayBase> elements) {
2151 Handle<Map> object_map = isolate()->slow_object_with_object_prototype_map();
2152 if (object_map->prototype() != *prototype) {
2153 object_map = Map::TransitionToPrototype(isolate(), object_map, prototype);
2154 }
2155 DCHECK(object_map->is_dictionary_map());
2156 Handle<JSObject> object =
2157 NewJSObjectFromMap(object_map, AllocationType::kYoung);
2158 object->set_raw_properties_or_hash(*properties);
2159 if (*elements != ReadOnlyRoots(isolate()).empty_fixed_array()) {
2160 DCHECK(elements->IsNumberDictionary());
2161 object_map =
2162 JSObject::GetElementsTransitionMap(object, DICTIONARY_ELEMENTS);
2163 JSObject::MigrateToMap(isolate(), object, object_map);
2164 object->set_elements(*elements);
2165 }
2166 return object;
2167 }
2168
NewJSArray(ElementsKind elements_kind,int length,int capacity,ArrayStorageAllocationMode mode,AllocationType allocation)2169 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
2170 int capacity,
2171 ArrayStorageAllocationMode mode,
2172 AllocationType allocation) {
2173 DCHECK(capacity >= length);
2174 if (capacity == 0) {
2175 return NewJSArrayWithElements(empty_fixed_array(), elements_kind, length,
2176 allocation);
2177 }
2178
2179 HandleScope inner_scope(isolate());
2180 Handle<FixedArrayBase> elms =
2181 NewJSArrayStorage(elements_kind, capacity, mode);
2182 return inner_scope.CloseAndEscape(NewJSArrayWithUnverifiedElements(
2183 elms, elements_kind, length, allocation));
2184 }
2185
NewJSArrayWithElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,AllocationType allocation)2186 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
2187 ElementsKind elements_kind,
2188 int length,
2189 AllocationType allocation) {
2190 Handle<JSArray> array = NewJSArrayWithUnverifiedElements(
2191 elements, elements_kind, length, allocation);
2192 JSObject::ValidateElements(*array);
2193 return array;
2194 }
2195
NewJSArrayWithUnverifiedElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,AllocationType allocation)2196 Handle<JSArray> Factory::NewJSArrayWithUnverifiedElements(
2197 Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length,
2198 AllocationType allocation) {
2199 DCHECK(length <= elements->length());
2200 NativeContext native_context = isolate()->raw_native_context();
2201 Map map = native_context.GetInitialJSArrayMap(elements_kind);
2202 if (map.is_null()) {
2203 JSFunction array_function = native_context.array_function();
2204 map = array_function.initial_map();
2205 }
2206 Handle<JSArray> array = Handle<JSArray>::cast(
2207 NewJSObjectFromMap(handle(map, isolate()), allocation));
2208 DisallowHeapAllocation no_gc;
2209 array->set_elements(*elements);
2210 array->set_length(Smi::FromInt(length));
2211 return array;
2212 }
2213
NewJSArrayStorage(Handle<JSArray> array,int length,int capacity,ArrayStorageAllocationMode mode)2214 void Factory::NewJSArrayStorage(Handle<JSArray> array, int length, int capacity,
2215 ArrayStorageAllocationMode mode) {
2216 DCHECK(capacity >= length);
2217
2218 if (capacity == 0) {
2219 array->set_length(Smi::zero());
2220 array->set_elements(*empty_fixed_array());
2221 return;
2222 }
2223
2224 HandleScope inner_scope(isolate());
2225 Handle<FixedArrayBase> elms =
2226 NewJSArrayStorage(array->GetElementsKind(), capacity, mode);
2227
2228 array->set_elements(*elms);
2229 array->set_length(Smi::FromInt(length));
2230 }
2231
NewJSArrayStorage(ElementsKind elements_kind,int capacity,ArrayStorageAllocationMode mode)2232 Handle<FixedArrayBase> Factory::NewJSArrayStorage(
2233 ElementsKind elements_kind, int capacity, ArrayStorageAllocationMode mode) {
2234 DCHECK_GT(capacity, 0);
2235 Handle<FixedArrayBase> elms;
2236 if (IsDoubleElementsKind(elements_kind)) {
2237 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
2238 elms = NewFixedDoubleArray(capacity);
2239 } else {
2240 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
2241 elms = NewFixedDoubleArrayWithHoles(capacity);
2242 }
2243 } else {
2244 DCHECK(IsSmiOrObjectElementsKind(elements_kind));
2245 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
2246 elms = NewUninitializedFixedArray(capacity);
2247 } else {
2248 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
2249 elms = NewFixedArrayWithHoles(capacity);
2250 }
2251 }
2252 return elms;
2253 }
2254
NewJSWeakMap()2255 Handle<JSWeakMap> Factory::NewJSWeakMap() {
2256 NativeContext native_context = isolate()->raw_native_context();
2257 Handle<Map> map(native_context.js_weak_map_fun().initial_map(), isolate());
2258 Handle<JSWeakMap> weakmap(JSWeakMap::cast(*NewJSObjectFromMap(map)),
2259 isolate());
2260 {
2261 // Do not leak handles for the hash table, it would make entries strong.
2262 HandleScope scope(isolate());
2263 JSWeakCollection::Initialize(weakmap, isolate());
2264 }
2265 return weakmap;
2266 }
2267
NewJSModuleNamespace()2268 Handle<JSModuleNamespace> Factory::NewJSModuleNamespace() {
2269 Handle<Map> map = isolate()->js_module_namespace_map();
2270 Handle<JSModuleNamespace> module_namespace(
2271 Handle<JSModuleNamespace>::cast(NewJSObjectFromMap(map)));
2272 FieldIndex index = FieldIndex::ForDescriptor(
2273 *map, InternalIndex(JSModuleNamespace::kToStringTagFieldIndex));
2274 module_namespace->FastPropertyAtPut(index,
2275 ReadOnlyRoots(isolate()).Module_string());
2276 return module_namespace;
2277 }
2278
NewJSGeneratorObject(Handle<JSFunction> function)2279 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
2280 Handle<JSFunction> function) {
2281 DCHECK(IsResumableFunction(function->shared().kind()));
2282 JSFunction::EnsureHasInitialMap(function);
2283 Handle<Map> map(function->initial_map(), isolate());
2284
2285 DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
2286 map->instance_type() == JS_ASYNC_GENERATOR_OBJECT_TYPE);
2287
2288 return Handle<JSGeneratorObject>::cast(NewJSObjectFromMap(map));
2289 }
2290
NewSourceTextModule(Handle<SharedFunctionInfo> code)2291 Handle<SourceTextModule> Factory::NewSourceTextModule(
2292 Handle<SharedFunctionInfo> code) {
2293 Handle<SourceTextModuleInfo> module_info(
2294 code->scope_info().ModuleDescriptorInfo(), isolate());
2295 Handle<ObjectHashTable> exports =
2296 ObjectHashTable::New(isolate(), module_info->RegularExportCount());
2297 Handle<FixedArray> regular_exports =
2298 NewFixedArray(module_info->RegularExportCount());
2299 Handle<FixedArray> regular_imports =
2300 NewFixedArray(module_info->regular_imports().length());
2301 int requested_modules_length = module_info->module_requests().length();
2302 Handle<FixedArray> requested_modules =
2303 requested_modules_length > 0 ? NewFixedArray(requested_modules_length)
2304 : empty_fixed_array();
2305 Handle<ArrayList> async_parent_modules = ArrayList::New(isolate(), 0);
2306
2307 ReadOnlyRoots roots(isolate());
2308 Handle<SourceTextModule> module(
2309 SourceTextModule::cast(
2310 New(source_text_module_map(), AllocationType::kOld)),
2311 isolate());
2312 module->set_code(*code);
2313 module->set_exports(*exports);
2314 module->set_regular_exports(*regular_exports);
2315 module->set_regular_imports(*regular_imports);
2316 module->set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
2317 module->set_module_namespace(roots.undefined_value());
2318 module->set_requested_modules(*requested_modules);
2319 module->set_script(Script::cast(code->script()));
2320 module->set_status(Module::kUninstantiated);
2321 module->set_exception(roots.the_hole_value());
2322 module->set_import_meta(roots.the_hole_value());
2323 module->set_dfs_index(-1);
2324 module->set_dfs_ancestor_index(-1);
2325 module->set_top_level_capability(roots.undefined_value());
2326 module->set_flags(0);
2327 module->set_async(IsAsyncModule(code->kind()));
2328 module->set_async_evaluating(false);
2329 module->set_async_parent_modules(*async_parent_modules);
2330 module->set_pending_async_dependencies(0);
2331 return module;
2332 }
2333
NewSyntheticModule(Handle<String> module_name,Handle<FixedArray> export_names,v8::Module::SyntheticModuleEvaluationSteps evaluation_steps)2334 Handle<SyntheticModule> Factory::NewSyntheticModule(
2335 Handle<String> module_name, Handle<FixedArray> export_names,
2336 v8::Module::SyntheticModuleEvaluationSteps evaluation_steps) {
2337 ReadOnlyRoots roots(isolate());
2338
2339 Handle<ObjectHashTable> exports =
2340 ObjectHashTable::New(isolate(), static_cast<int>(export_names->length()));
2341 Handle<Foreign> evaluation_steps_foreign =
2342 NewForeign(reinterpret_cast<i::Address>(evaluation_steps));
2343
2344 Handle<SyntheticModule> module(
2345 SyntheticModule::cast(New(synthetic_module_map(), AllocationType::kOld)),
2346 isolate());
2347 module->set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
2348 module->set_module_namespace(roots.undefined_value());
2349 module->set_status(Module::kUninstantiated);
2350 module->set_exception(roots.the_hole_value());
2351 module->set_name(*module_name);
2352 module->set_export_names(*export_names);
2353 module->set_exports(*exports);
2354 module->set_evaluation_steps(*evaluation_steps_foreign);
2355 return module;
2356 }
2357
NewJSArrayBuffer(std::shared_ptr<BackingStore> backing_store,AllocationType allocation)2358 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(
2359 std::shared_ptr<BackingStore> backing_store, AllocationType allocation) {
2360 Handle<Map> map(isolate()->native_context()->array_buffer_fun().initial_map(),
2361 isolate());
2362 auto result =
2363 Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, allocation));
2364 result->Setup(SharedFlag::kNotShared, std::move(backing_store));
2365 return result;
2366 }
2367
NewJSArrayBufferAndBackingStore(size_t byte_length,InitializedFlag initialized,AllocationType allocation)2368 MaybeHandle<JSArrayBuffer> Factory::NewJSArrayBufferAndBackingStore(
2369 size_t byte_length, InitializedFlag initialized,
2370 AllocationType allocation) {
2371 std::unique_ptr<BackingStore> backing_store = nullptr;
2372
2373 if (byte_length > 0) {
2374 backing_store = BackingStore::Allocate(isolate(), byte_length,
2375 SharedFlag::kNotShared, initialized);
2376 if (!backing_store) return MaybeHandle<JSArrayBuffer>();
2377 }
2378 Handle<Map> map(isolate()->native_context()->array_buffer_fun().initial_map(),
2379 isolate());
2380 auto array_buffer =
2381 Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, allocation));
2382 array_buffer->Setup(SharedFlag::kNotShared, std::move(backing_store));
2383 return array_buffer;
2384 }
2385
NewJSSharedArrayBuffer(std::shared_ptr<BackingStore> backing_store)2386 Handle<JSArrayBuffer> Factory::NewJSSharedArrayBuffer(
2387 std::shared_ptr<BackingStore> backing_store) {
2388 Handle<Map> map(
2389 isolate()->native_context()->shared_array_buffer_fun().initial_map(),
2390 isolate());
2391 auto result = Handle<JSArrayBuffer>::cast(
2392 NewJSObjectFromMap(map, AllocationType::kYoung));
2393 result->Setup(SharedFlag::kShared, std::move(backing_store));
2394 return result;
2395 }
2396
NewJSIteratorResult(Handle<Object> value,bool done)2397 Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
2398 bool done) {
2399 Handle<Map> map(isolate()->native_context()->iterator_result_map(),
2400 isolate());
2401 Handle<JSIteratorResult> js_iter_result =
2402 Handle<JSIteratorResult>::cast(NewJSObjectFromMap(map));
2403 js_iter_result->set_value(*value);
2404 js_iter_result->set_done(*ToBoolean(done));
2405 return js_iter_result;
2406 }
2407
NewJSAsyncFromSyncIterator(Handle<JSReceiver> sync_iterator,Handle<Object> next)2408 Handle<JSAsyncFromSyncIterator> Factory::NewJSAsyncFromSyncIterator(
2409 Handle<JSReceiver> sync_iterator, Handle<Object> next) {
2410 Handle<Map> map(isolate()->native_context()->async_from_sync_iterator_map(),
2411 isolate());
2412 Handle<JSAsyncFromSyncIterator> iterator =
2413 Handle<JSAsyncFromSyncIterator>::cast(NewJSObjectFromMap(map));
2414
2415 iterator->set_sync_iterator(*sync_iterator);
2416 iterator->set_next(*next);
2417 return iterator;
2418 }
2419
NewJSMap()2420 Handle<JSMap> Factory::NewJSMap() {
2421 Handle<Map> map(isolate()->native_context()->js_map_map(), isolate());
2422 Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
2423 JSMap::Initialize(js_map, isolate());
2424 return js_map;
2425 }
2426
NewJSSet()2427 Handle<JSSet> Factory::NewJSSet() {
2428 Handle<Map> map(isolate()->native_context()->js_set_map(), isolate());
2429 Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
2430 JSSet::Initialize(js_set, isolate());
2431 return js_set;
2432 }
2433
TypeAndSizeForElementsKind(ElementsKind kind,ExternalArrayType * array_type,size_t * element_size)2434 void Factory::TypeAndSizeForElementsKind(ElementsKind kind,
2435 ExternalArrayType* array_type,
2436 size_t* element_size) {
2437 switch (kind) {
2438 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
2439 case TYPE##_ELEMENTS: \
2440 *array_type = kExternal##Type##Array; \
2441 *element_size = sizeof(ctype); \
2442 break;
2443 TYPED_ARRAYS(TYPED_ARRAY_CASE)
2444 #undef TYPED_ARRAY_CASE
2445
2446 default:
2447 UNREACHABLE();
2448 }
2449 }
2450
2451 namespace {
2452
ForFixedTypedArray(ExternalArrayType array_type,size_t * element_size,ElementsKind * element_kind)2453 void ForFixedTypedArray(ExternalArrayType array_type, size_t* element_size,
2454 ElementsKind* element_kind) {
2455 switch (array_type) {
2456 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
2457 case kExternal##Type##Array: \
2458 *element_size = sizeof(ctype); \
2459 *element_kind = TYPE##_ELEMENTS; \
2460 return;
2461
2462 TYPED_ARRAYS(TYPED_ARRAY_CASE)
2463 #undef TYPED_ARRAY_CASE
2464 }
2465 UNREACHABLE();
2466 }
2467
2468 } // namespace
2469
NewJSArrayBufferView(Handle<Map> map,Handle<FixedArrayBase> elements,Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t byte_length)2470 Handle<JSArrayBufferView> Factory::NewJSArrayBufferView(
2471 Handle<Map> map, Handle<FixedArrayBase> elements,
2472 Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length) {
2473 CHECK_LE(byte_length, buffer->byte_length());
2474 CHECK_LE(byte_offset, buffer->byte_length());
2475 CHECK_LE(byte_offset + byte_length, buffer->byte_length());
2476 Handle<JSArrayBufferView> array_buffer_view = Handle<JSArrayBufferView>::cast(
2477 NewJSObjectFromMap(map, AllocationType::kYoung));
2478 array_buffer_view->set_elements(*elements);
2479 array_buffer_view->set_buffer(*buffer);
2480 array_buffer_view->set_byte_offset(byte_offset);
2481 array_buffer_view->set_byte_length(byte_length);
2482 ZeroEmbedderFields(array_buffer_view);
2483 DCHECK_EQ(array_buffer_view->GetEmbedderFieldCount(),
2484 v8::ArrayBufferView::kEmbedderFieldCount);
2485 return array_buffer_view;
2486 }
2487
NewJSTypedArray(ExternalArrayType type,Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t length)2488 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
2489 Handle<JSArrayBuffer> buffer,
2490 size_t byte_offset,
2491 size_t length) {
2492 size_t element_size;
2493 ElementsKind elements_kind;
2494 ForFixedTypedArray(type, &element_size, &elements_kind);
2495 size_t byte_length = length * element_size;
2496
2497 CHECK_LE(length, JSTypedArray::kMaxLength);
2498 CHECK_EQ(length, byte_length / element_size);
2499 CHECK_EQ(0, byte_offset % ElementsKindToByteSize(elements_kind));
2500
2501 Handle<Map> map;
2502 switch (elements_kind) {
2503 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype) \
2504 case TYPE##_ELEMENTS: \
2505 map = \
2506 handle(isolate()->native_context()->type##_array_fun().initial_map(), \
2507 isolate()); \
2508 break;
2509
2510 TYPED_ARRAYS(TYPED_ARRAY_FUN)
2511 #undef TYPED_ARRAY_FUN
2512
2513 default:
2514 UNREACHABLE();
2515 }
2516 Handle<JSTypedArray> typed_array =
2517 Handle<JSTypedArray>::cast(NewJSArrayBufferView(
2518 map, empty_byte_array(), buffer, byte_offset, byte_length));
2519 typed_array->AllocateExternalPointerEntries(isolate());
2520 typed_array->set_length(length);
2521 typed_array->SetOffHeapDataPtr(isolate(), buffer->backing_store(),
2522 byte_offset);
2523 return typed_array;
2524 }
2525
NewJSDataView(Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t byte_length)2526 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
2527 size_t byte_offset,
2528 size_t byte_length) {
2529 Handle<Map> map(isolate()->native_context()->data_view_fun().initial_map(),
2530 isolate());
2531 Handle<JSDataView> obj = Handle<JSDataView>::cast(NewJSArrayBufferView(
2532 map, empty_fixed_array(), buffer, byte_offset, byte_length));
2533 obj->AllocateExternalPointerEntries(isolate());
2534 obj->set_data_pointer(
2535 isolate(), static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
2536 return obj;
2537 }
2538
NewJSBoundFunction(Handle<JSReceiver> target_function,Handle<Object> bound_this,Vector<Handle<Object>> bound_args)2539 MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
2540 Handle<JSReceiver> target_function, Handle<Object> bound_this,
2541 Vector<Handle<Object>> bound_args) {
2542 DCHECK(target_function->IsCallable());
2543 STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
2544 if (bound_args.length() >= Code::kMaxArguments) {
2545 THROW_NEW_ERROR(isolate(),
2546 NewRangeError(MessageTemplate::kTooManyArguments),
2547 JSBoundFunction);
2548 }
2549
2550 // Determine the prototype of the {target_function}.
2551 Handle<HeapObject> prototype;
2552 ASSIGN_RETURN_ON_EXCEPTION(
2553 isolate(), prototype,
2554 JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
2555
2556 SaveAndSwitchContext save(isolate(), *target_function->GetCreationContext());
2557
2558 // Create the [[BoundArguments]] for the result.
2559 Handle<FixedArray> bound_arguments;
2560 if (bound_args.length() == 0) {
2561 bound_arguments = empty_fixed_array();
2562 } else {
2563 bound_arguments = NewFixedArray(bound_args.length());
2564 for (int i = 0; i < bound_args.length(); ++i) {
2565 bound_arguments->set(i, *bound_args[i]);
2566 }
2567 }
2568
2569 // Setup the map for the JSBoundFunction instance.
2570 Handle<Map> map = target_function->IsConstructor()
2571 ? isolate()->bound_function_with_constructor_map()
2572 : isolate()->bound_function_without_constructor_map();
2573 if (map->prototype() != *prototype) {
2574 map = Map::TransitionToPrototype(isolate(), map, prototype);
2575 }
2576 DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
2577
2578 // Setup the JSBoundFunction instance.
2579 Handle<JSBoundFunction> result =
2580 Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map));
2581 result->set_bound_target_function(*target_function);
2582 result->set_bound_this(*bound_this);
2583 result->set_bound_arguments(*bound_arguments);
2584 return result;
2585 }
2586
2587 // ES6 section 9.5.15 ProxyCreate (target, handler)
NewJSProxy(Handle<JSReceiver> target,Handle<JSReceiver> handler)2588 Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
2589 Handle<JSReceiver> handler) {
2590 // Allocate the proxy object.
2591 Handle<Map> map;
2592 if (target->IsCallable()) {
2593 if (target->IsConstructor()) {
2594 map = Handle<Map>(isolate()->proxy_constructor_map());
2595 } else {
2596 map = Handle<Map>(isolate()->proxy_callable_map());
2597 }
2598 } else {
2599 map = Handle<Map>(isolate()->proxy_map());
2600 }
2601 DCHECK(map->prototype().IsNull(isolate()));
2602 Handle<JSProxy> result(JSProxy::cast(New(map, AllocationType::kYoung)),
2603 isolate());
2604 result->initialize_properties(isolate());
2605 result->set_target(*target);
2606 result->set_handler(*handler);
2607 return result;
2608 }
2609
NewUninitializedJSGlobalProxy(int size)2610 Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy(int size) {
2611 // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
2612 // via ReinitializeJSGlobalProxy later.
2613 Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, size);
2614 // Maintain invariant expected from any JSGlobalProxy.
2615 map->set_is_access_check_needed(true);
2616 map->set_may_have_interesting_symbols(true);
2617 LOG(isolate(), MapDetails(*map));
2618 Handle<JSGlobalProxy> proxy = Handle<JSGlobalProxy>::cast(
2619 NewJSObjectFromMap(map, AllocationType::kOld));
2620 // Create identity hash early in case there is any JS collection containing
2621 // a global proxy key and needs to be rehashed after deserialization.
2622 proxy->GetOrCreateIdentityHash(isolate());
2623 return proxy;
2624 }
2625
ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,Handle<JSFunction> constructor)2626 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
2627 Handle<JSFunction> constructor) {
2628 DCHECK(constructor->has_initial_map());
2629 Handle<Map> map(constructor->initial_map(), isolate());
2630 Handle<Map> old_map(object->map(), isolate());
2631
2632 // The proxy's hash should be retained across reinitialization.
2633 Handle<Object> raw_properties_or_hash(object->raw_properties_or_hash(),
2634 isolate());
2635
2636 if (old_map->is_prototype_map()) {
2637 map = Map::Copy(isolate(), map, "CopyAsPrototypeForJSGlobalProxy");
2638 map->set_is_prototype_map(true);
2639 }
2640 JSObject::NotifyMapChange(old_map, map, isolate());
2641 old_map->NotifyLeafMapLayoutChange(isolate());
2642
2643 // Check that the already allocated object has the same size and type as
2644 // objects allocated using the constructor.
2645 DCHECK(map->instance_size() == old_map->instance_size());
2646 DCHECK(map->instance_type() == old_map->instance_type());
2647
2648 // In order to keep heap in consistent state there must be no allocations
2649 // before object re-initialization is finished.
2650 DisallowHeapAllocation no_allocation;
2651
2652 // Reset the map for the object.
2653 object->synchronized_set_map(*map);
2654
2655 // Reinitialize the object from the constructor map.
2656 InitializeJSObjectFromMap(object, raw_properties_or_hash, map);
2657 }
2658
NewJSMessageObject(MessageTemplate message,Handle<Object> argument,int start_position,int end_position,Handle<SharedFunctionInfo> shared_info,int bytecode_offset,Handle<Script> script,Handle<Object> stack_frames)2659 Handle<JSMessageObject> Factory::NewJSMessageObject(
2660 MessageTemplate message, Handle<Object> argument, int start_position,
2661 int end_position, Handle<SharedFunctionInfo> shared_info,
2662 int bytecode_offset, Handle<Script> script, Handle<Object> stack_frames) {
2663 Handle<Map> map = message_object_map();
2664 Handle<JSMessageObject> message_obj(
2665 JSMessageObject::cast(New(map, AllocationType::kYoung)), isolate());
2666 message_obj->set_raw_properties_or_hash(*empty_fixed_array(),
2667 SKIP_WRITE_BARRIER);
2668 message_obj->initialize_elements();
2669 message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2670 message_obj->set_type(message);
2671 message_obj->set_argument(*argument);
2672 message_obj->set_start_position(start_position);
2673 message_obj->set_end_position(end_position);
2674 message_obj->set_script(*script);
2675 if (start_position >= 0) {
2676 // If there's a start_position, then there's no need to store the
2677 // SharedFunctionInfo as it will never be necessary to regenerate the
2678 // position.
2679 message_obj->set_shared_info(*undefined_value());
2680 message_obj->set_bytecode_offset(Smi::FromInt(0));
2681 } else {
2682 message_obj->set_bytecode_offset(Smi::FromInt(bytecode_offset));
2683 if (shared_info.is_null()) {
2684 message_obj->set_shared_info(*undefined_value());
2685 DCHECK_EQ(bytecode_offset, -1);
2686 } else {
2687 message_obj->set_shared_info(*shared_info);
2688 DCHECK_GE(bytecode_offset, kFunctionEntryBytecodeOffset);
2689 }
2690 }
2691
2692 message_obj->set_stack_frames(*stack_frames);
2693 message_obj->set_error_level(v8::Isolate::kMessageError);
2694 return message_obj;
2695 }
2696
NewSharedFunctionInfoForApiFunction(MaybeHandle<String> maybe_name,Handle<FunctionTemplateInfo> function_template_info,FunctionKind kind)2697 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForApiFunction(
2698 MaybeHandle<String> maybe_name,
2699 Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind) {
2700 Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
2701 maybe_name, function_template_info, Builtins::kNoBuiltinId, kind);
2702 return shared;
2703 }
2704
NewSharedFunctionInfoForWasmCapiFunction(Handle<WasmCapiFunctionData> data)2705 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmCapiFunction(
2706 Handle<WasmCapiFunctionData> data) {
2707 return NewSharedFunctionInfo(MaybeHandle<String>(), data,
2708 Builtins::kNoBuiltinId, kConciseMethod);
2709 }
2710
NewSharedFunctionInfoForBuiltin(MaybeHandle<String> maybe_name,int builtin_index,FunctionKind kind)2711 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForBuiltin(
2712 MaybeHandle<String> maybe_name, int builtin_index, FunctionKind kind) {
2713 Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
2714 maybe_name, MaybeHandle<Code>(), builtin_index, kind);
2715 return shared;
2716 }
2717
2718 namespace {
NumberToStringCacheHash(Handle<FixedArray> cache,Smi number)2719 V8_INLINE int NumberToStringCacheHash(Handle<FixedArray> cache, Smi number) {
2720 int mask = (cache->length() >> 1) - 1;
2721 return number.value() & mask;
2722 }
2723
NumberToStringCacheHash(Handle<FixedArray> cache,double number)2724 V8_INLINE int NumberToStringCacheHash(Handle<FixedArray> cache, double number) {
2725 int mask = (cache->length() >> 1) - 1;
2726 int64_t bits = bit_cast<int64_t>(number);
2727 return (static_cast<int>(bits) ^ static_cast<int>(bits >> 32)) & mask;
2728 }
2729
CharToString(Factory * factory,const char * string,NumberCacheMode mode)2730 V8_INLINE Handle<String> CharToString(Factory* factory, const char* string,
2731 NumberCacheMode mode) {
2732 // We tenure the allocated string since it is referenced from the
2733 // number-string cache which lives in the old space.
2734 AllocationType type = mode == NumberCacheMode::kIgnore
2735 ? AllocationType::kYoung
2736 : AllocationType::kOld;
2737 return factory->NewStringFromAsciiChecked(string, type);
2738 }
2739
2740 } // namespace
2741
NumberToStringCacheSet(Handle<Object> number,int hash,Handle<String> js_string)2742 void Factory::NumberToStringCacheSet(Handle<Object> number, int hash,
2743 Handle<String> js_string) {
2744 if (!number_string_cache()->get(hash * 2).IsUndefined(isolate()) &&
2745 !FLAG_optimize_for_size) {
2746 int full_size = isolate()->heap()->MaxNumberToStringCacheSize();
2747 if (number_string_cache()->length() != full_size) {
2748 Handle<FixedArray> new_cache =
2749 NewFixedArray(full_size, AllocationType::kOld);
2750 isolate()->heap()->set_number_string_cache(*new_cache);
2751 return;
2752 }
2753 }
2754 number_string_cache()->set(hash * 2, *number);
2755 number_string_cache()->set(hash * 2 + 1, *js_string);
2756 }
2757
NumberToStringCacheGet(Object number,int hash)2758 Handle<Object> Factory::NumberToStringCacheGet(Object number, int hash) {
2759 DisallowHeapAllocation no_gc;
2760 Object key = number_string_cache()->get(hash * 2);
2761 if (key == number || (key.IsHeapNumber() && number.IsHeapNumber() &&
2762 key.Number() == number.Number())) {
2763 return Handle<String>(
2764 String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2765 }
2766 return undefined_value();
2767 }
2768
NumberToString(Handle<Object> number,NumberCacheMode mode)2769 Handle<String> Factory::NumberToString(Handle<Object> number,
2770 NumberCacheMode mode) {
2771 if (number->IsSmi()) return SmiToString(Smi::cast(*number), mode);
2772
2773 double double_value = Handle<HeapNumber>::cast(number)->value();
2774 // Try to canonicalize doubles.
2775 int smi_value;
2776 if (DoubleToSmiInteger(double_value, &smi_value)) {
2777 return SmiToString(Smi::FromInt(smi_value), mode);
2778 }
2779 return HeapNumberToString(Handle<HeapNumber>::cast(number), double_value,
2780 mode);
2781 }
2782
2783 // Must be large enough to fit any double, int, or size_t.
2784 static const int kNumberToStringBufferSize = 32;
2785
HeapNumberToString(Handle<HeapNumber> number,double value,NumberCacheMode mode)2786 Handle<String> Factory::HeapNumberToString(Handle<HeapNumber> number,
2787 double value, NumberCacheMode mode) {
2788 int hash = 0;
2789 if (mode != NumberCacheMode::kIgnore) {
2790 hash = NumberToStringCacheHash(number_string_cache(), value);
2791 }
2792 if (mode == NumberCacheMode::kBoth) {
2793 Handle<Object> cached = NumberToStringCacheGet(*number, hash);
2794 if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
2795 }
2796
2797 char arr[kNumberToStringBufferSize];
2798 Vector<char> buffer(arr, arraysize(arr));
2799 const char* string = DoubleToCString(value, buffer);
2800 Handle<String> result = CharToString(this, string, mode);
2801 if (mode != NumberCacheMode::kIgnore) {
2802 NumberToStringCacheSet(number, hash, result);
2803 }
2804 return result;
2805 }
2806
SmiToString(Smi number,NumberCacheMode mode)2807 inline Handle<String> Factory::SmiToString(Smi number, NumberCacheMode mode) {
2808 int hash = NumberToStringCacheHash(number_string_cache(), number);
2809 if (mode == NumberCacheMode::kBoth) {
2810 Handle<Object> cached = NumberToStringCacheGet(number, hash);
2811 if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
2812 }
2813
2814 char arr[kNumberToStringBufferSize];
2815 Vector<char> buffer(arr, arraysize(arr));
2816 const char* string = IntToCString(number.value(), buffer);
2817 Handle<String> result = CharToString(this, string, mode);
2818 if (mode != NumberCacheMode::kIgnore) {
2819 NumberToStringCacheSet(handle(number, isolate()), hash, result);
2820 }
2821
2822 // Compute the hash here (rather than letting the caller take care of it) so
2823 // that the "cache hit" case above doesn't have to bother with it.
2824 STATIC_ASSERT(Smi::kMaxValue <= std::numeric_limits<uint32_t>::max());
2825 if (result->hash_field() == String::kEmptyHashField && number.value() >= 0) {
2826 uint32_t field = StringHasher::MakeArrayIndexHash(
2827 static_cast<uint32_t>(number.value()), result->length());
2828 result->set_hash_field(field);
2829 }
2830 return result;
2831 }
2832
SizeToString(size_t value,bool check_cache)2833 Handle<String> Factory::SizeToString(size_t value, bool check_cache) {
2834 Handle<String> result;
2835 NumberCacheMode cache_mode =
2836 check_cache ? NumberCacheMode::kBoth : NumberCacheMode::kIgnore;
2837 if (value <= Smi::kMaxValue) {
2838 int32_t int32v = static_cast<int32_t>(static_cast<uint32_t>(value));
2839 // SmiToString sets the hash when needed, we can return immediately.
2840 return SmiToString(Smi::FromInt(int32v), cache_mode);
2841 } else if (value <= kMaxSafeInteger) {
2842 // TODO(jkummerow): Refactor the cache to not require Objects as keys.
2843 double double_value = static_cast<double>(value);
2844 result = HeapNumberToString(NewHeapNumber(double_value), value, cache_mode);
2845 } else {
2846 char arr[kNumberToStringBufferSize];
2847 Vector<char> buffer(arr, arraysize(arr));
2848 // Build the string backwards from the least significant digit.
2849 int i = buffer.length();
2850 size_t value_copy = value;
2851 buffer[--i] = '\0';
2852 do {
2853 buffer[--i] = '0' + (value_copy % 10);
2854 value_copy /= 10;
2855 } while (value_copy > 0);
2856 char* string = buffer.begin() + i;
2857 // No way to cache this; we'd need an {Object} to use as key.
2858 result = NewStringFromAsciiChecked(string);
2859 }
2860 if (value <= JSArray::kMaxArrayIndex &&
2861 result->hash_field() == String::kEmptyHashField) {
2862 uint32_t field = StringHasher::MakeArrayIndexHash(
2863 static_cast<uint32_t>(value), result->length());
2864 result->set_hash_field(field);
2865 }
2866 return result;
2867 }
2868
NewDebugInfo(Handle<SharedFunctionInfo> shared)2869 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2870 DCHECK(!shared->HasDebugInfo());
2871 Heap* heap = isolate()->heap();
2872
2873 Handle<DebugInfo> debug_info =
2874 Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE, AllocationType::kOld));
2875 debug_info->set_flags(DebugInfo::kNone);
2876 debug_info->set_shared(*shared);
2877 debug_info->set_debugger_hints(0);
2878 DCHECK_EQ(DebugInfo::kNoDebuggingId, debug_info->debugging_id());
2879 debug_info->set_script(shared->script_or_debug_info(kAcquireLoad));
2880 debug_info->set_original_bytecode_array(
2881 ReadOnlyRoots(heap).undefined_value());
2882 debug_info->set_debug_bytecode_array(ReadOnlyRoots(heap).undefined_value());
2883 debug_info->set_break_points(ReadOnlyRoots(heap).empty_fixed_array());
2884
2885 // Link debug info to function.
2886 shared->SetDebugInfo(*debug_info);
2887
2888 return debug_info;
2889 }
2890
NewWasmValue(int value_type,Handle<Object> ref)2891 Handle<WasmValue> Factory::NewWasmValue(int value_type, Handle<Object> ref) {
2892 DCHECK(value_type == 6 || ref->IsByteArray());
2893 Handle<WasmValue> wasm_value =
2894 Handle<WasmValue>::cast(NewStruct(WASM_VALUE_TYPE, AllocationType::kOld));
2895 wasm_value->set_value_type(value_type);
2896 wasm_value->set_bytes_or_ref(*ref);
2897 return wasm_value;
2898 }
2899
NewBreakPointInfo(int source_position)2900 Handle<BreakPointInfo> Factory::NewBreakPointInfo(int source_position) {
2901 Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast(
2902 NewStruct(BREAK_POINT_INFO_TYPE, AllocationType::kOld));
2903 new_break_point_info->set_source_position(source_position);
2904 new_break_point_info->set_break_points(*undefined_value());
2905 return new_break_point_info;
2906 }
2907
NewBreakPoint(int id,Handle<String> condition)2908 Handle<BreakPoint> Factory::NewBreakPoint(int id, Handle<String> condition) {
2909 Handle<BreakPoint> new_break_point = Handle<BreakPoint>::cast(
2910 NewStruct(BREAK_POINT_TYPE, AllocationType::kOld));
2911 new_break_point->set_id(id);
2912 new_break_point->set_condition(*condition);
2913 return new_break_point;
2914 }
2915
NewStackTraceFrame(Handle<FrameArray> frame_array,int index)2916 Handle<StackTraceFrame> Factory::NewStackTraceFrame(
2917 Handle<FrameArray> frame_array, int index) {
2918 Handle<StackTraceFrame> frame = Handle<StackTraceFrame>::cast(
2919 NewStruct(STACK_TRACE_FRAME_TYPE, AllocationType::kYoung));
2920 frame->set_frame_array(*frame_array);
2921 frame->set_frame_index(index);
2922 frame->set_frame_info(*undefined_value());
2923
2924 return frame;
2925 }
2926
NewStackFrameInfo(Handle<FrameArray> frame_array,int index)2927 Handle<StackFrameInfo> Factory::NewStackFrameInfo(
2928 Handle<FrameArray> frame_array, int index) {
2929 FrameArrayIterator it(isolate(), frame_array, index);
2930 DCHECK(it.HasFrame());
2931
2932 const bool is_wasm = frame_array->IsAnyWasmFrame(index);
2933 StackFrameBase* frame = it.Frame();
2934
2935 int line = frame->GetLineNumber();
2936 int column = frame->GetColumnNumber();
2937 int wasm_function_index = frame->GetWasmFunctionIndex();
2938
2939 const int script_id = frame->GetScriptId();
2940
2941 Handle<Object> script_name = frame->GetFileName();
2942 Handle<Object> script_or_url = frame->GetScriptNameOrSourceUrl();
2943
2944 // TODO(szuend): Adjust this, once it is decided what name to use in both
2945 // "simple" and "detailed" stack traces. This code is for
2946 // backwards compatibility to fullfill test expectations.
2947 Handle<PrimitiveHeapObject> function_name = frame->GetFunctionName();
2948 bool is_user_java_script = false;
2949 if (!is_wasm) {
2950 Handle<Object> function = frame->GetFunction();
2951 if (function->IsJSFunction()) {
2952 Handle<JSFunction> fun = Handle<JSFunction>::cast(function);
2953
2954 is_user_java_script = fun->shared().IsUserJavaScript();
2955 }
2956 }
2957
2958 Handle<PrimitiveHeapObject> method_name = undefined_value();
2959 Handle<PrimitiveHeapObject> type_name = undefined_value();
2960 Handle<PrimitiveHeapObject> eval_origin = frame->GetEvalOrigin();
2961 Handle<PrimitiveHeapObject> wasm_module_name = frame->GetWasmModuleName();
2962 Handle<HeapObject> wasm_instance = frame->GetWasmInstance();
2963
2964 // MethodName and TypeName are expensive to look up, so they are only
2965 // included when they are strictly needed by the stack trace
2966 // serialization code.
2967 // Note: The {is_method_call} predicate needs to be kept in sync with
2968 // the corresponding predicate in the stack trace serialization code
2969 // in stack-frame-info.cc.
2970 const bool is_toplevel = frame->IsToplevel();
2971 const bool is_constructor = frame->IsConstructor();
2972 const bool is_method_call = !(is_toplevel || is_constructor);
2973 if (is_method_call) {
2974 method_name = frame->GetMethodName();
2975 type_name = frame->GetTypeName();
2976 }
2977
2978 Handle<StackFrameInfo> info = Handle<StackFrameInfo>::cast(
2979 NewStruct(STACK_FRAME_INFO_TYPE, AllocationType::kYoung));
2980
2981 DisallowHeapAllocation no_gc;
2982
2983 info->set_flag(0);
2984 info->set_is_wasm(is_wasm);
2985 info->set_is_asmjs_wasm(frame_array->IsAsmJsWasmFrame(index));
2986 info->set_is_user_java_script(is_user_java_script);
2987 info->set_line_number(line);
2988 info->set_column_number(column);
2989 info->set_wasm_function_index(wasm_function_index);
2990 info->set_script_id(script_id);
2991
2992 info->set_script_name(*script_name);
2993 info->set_script_name_or_source_url(*script_or_url);
2994 info->set_function_name(*function_name);
2995 info->set_method_name(*method_name);
2996 info->set_type_name(*type_name);
2997 info->set_eval_origin(*eval_origin);
2998 info->set_wasm_module_name(*wasm_module_name);
2999 info->set_wasm_instance(*wasm_instance);
3000
3001 info->set_is_eval(frame->IsEval());
3002 info->set_is_constructor(is_constructor);
3003 info->set_is_toplevel(is_toplevel);
3004 info->set_is_async(frame->IsAsync());
3005 info->set_is_promise_all(frame->IsPromiseAll());
3006 info->set_is_promise_any(frame->IsPromiseAny());
3007 info->set_promise_combinator_index(frame->GetPromiseIndex());
3008
3009 return info;
3010 }
3011
NewArgumentsObject(Handle<JSFunction> callee,int length)3012 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
3013 int length) {
3014 bool strict_mode_callee = is_strict(callee->shared().language_mode()) ||
3015 !callee->shared().has_simple_parameters();
3016 Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
3017 : isolate()->sloppy_arguments_map();
3018 AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
3019 false);
3020 DCHECK(!isolate()->has_pending_exception());
3021 Handle<JSObject> result = NewJSObjectFromMap(map);
3022 Handle<Smi> value(Smi::FromInt(length), isolate());
3023 Object::SetProperty(isolate(), result, length_string(), value,
3024 StoreOrigin::kMaybeKeyed,
3025 Just(ShouldThrow::kThrowOnError))
3026 .Assert();
3027 if (!strict_mode_callee) {
3028 Object::SetProperty(isolate(), result, callee_string(), callee,
3029 StoreOrigin::kMaybeKeyed,
3030 Just(ShouldThrow::kThrowOnError))
3031 .Assert();
3032 }
3033 return result;
3034 }
3035
ObjectLiteralMapFromCache(Handle<NativeContext> context,int number_of_properties)3036 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<NativeContext> context,
3037 int number_of_properties) {
3038 if (number_of_properties == 0) {
3039 // Reuse the initial map of the Object function if the literal has no
3040 // predeclared properties.
3041 return handle(context->object_function().initial_map(), isolate());
3042 }
3043
3044 // Use initial slow object proto map for too many properties.
3045 const int kMapCacheSize = 128;
3046 if (number_of_properties > kMapCacheSize) {
3047 return handle(context->slow_object_with_object_prototype_map(), isolate());
3048 }
3049
3050 int cache_index = number_of_properties - 1;
3051 Handle<Object> maybe_cache(context->map_cache(), isolate());
3052 if (maybe_cache->IsUndefined(isolate())) {
3053 // Allocate the new map cache for the native context.
3054 maybe_cache = NewWeakFixedArray(kMapCacheSize, AllocationType::kOld);
3055 context->set_map_cache(*maybe_cache);
3056 } else {
3057 // Check to see whether there is a matching element in the cache.
3058 Handle<WeakFixedArray> cache = Handle<WeakFixedArray>::cast(maybe_cache);
3059 MaybeObject result = cache->Get(cache_index);
3060 HeapObject heap_object;
3061 if (result->GetHeapObjectIfWeak(&heap_object)) {
3062 Map map = Map::cast(heap_object);
3063 DCHECK(!map.is_dictionary_map());
3064 return handle(map, isolate());
3065 }
3066 }
3067
3068 // Create a new map and add it to the cache.
3069 Handle<WeakFixedArray> cache = Handle<WeakFixedArray>::cast(maybe_cache);
3070 Handle<Map> map = Map::Create(isolate(), number_of_properties);
3071 DCHECK(!map->is_dictionary_map());
3072 cache->Set(cache_index, HeapObjectReference::Weak(*map));
3073 return map;
3074 }
3075
NewLoadHandler(int data_count,AllocationType allocation)3076 Handle<LoadHandler> Factory::NewLoadHandler(int data_count,
3077 AllocationType allocation) {
3078 Handle<Map> map;
3079 switch (data_count) {
3080 case 1:
3081 map = load_handler1_map();
3082 break;
3083 case 2:
3084 map = load_handler2_map();
3085 break;
3086 case 3:
3087 map = load_handler3_map();
3088 break;
3089 default:
3090 UNREACHABLE();
3091 }
3092 return handle(LoadHandler::cast(New(map, allocation)), isolate());
3093 }
3094
NewStoreHandler(int data_count)3095 Handle<StoreHandler> Factory::NewStoreHandler(int data_count) {
3096 Handle<Map> map;
3097 switch (data_count) {
3098 case 0:
3099 map = store_handler0_map();
3100 break;
3101 case 1:
3102 map = store_handler1_map();
3103 break;
3104 case 2:
3105 map = store_handler2_map();
3106 break;
3107 case 3:
3108 map = store_handler3_map();
3109 break;
3110 default:
3111 UNREACHABLE();
3112 }
3113 return handle(StoreHandler::cast(New(map, AllocationType::kOld)), isolate());
3114 }
3115
SetRegExpAtomData(Handle<JSRegExp> regexp,Handle<String> source,JSRegExp::Flags flags,Handle<Object> data)3116 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp, Handle<String> source,
3117 JSRegExp::Flags flags, Handle<Object> data) {
3118 Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
3119
3120 store->set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::ATOM));
3121 store->set(JSRegExp::kSourceIndex, *source);
3122 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3123 store->set(JSRegExp::kAtomPatternIndex, *data);
3124 regexp->set_data(*store);
3125 }
3126
SetRegExpIrregexpData(Handle<JSRegExp> regexp,Handle<String> source,JSRegExp::Flags flags,int capture_count,uint32_t backtrack_limit)3127 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
3128 Handle<String> source,
3129 JSRegExp::Flags flags, int capture_count,
3130 uint32_t backtrack_limit) {
3131 DCHECK(Smi::IsValid(backtrack_limit));
3132 Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
3133 Smi uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
3134 Smi ticks_until_tier_up = FLAG_regexp_tier_up
3135 ? Smi::FromInt(FLAG_regexp_tier_up_ticks)
3136 : uninitialized;
3137 store->set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::IRREGEXP));
3138 store->set(JSRegExp::kSourceIndex, *source);
3139 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3140 store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
3141 store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
3142 store->set(JSRegExp::kIrregexpLatin1BytecodeIndex, uninitialized);
3143 store->set(JSRegExp::kIrregexpUC16BytecodeIndex, uninitialized);
3144 store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::zero());
3145 store->set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
3146 store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
3147 store->set(JSRegExp::kIrregexpTicksUntilTierUpIndex, ticks_until_tier_up);
3148 store->set(JSRegExp::kIrregexpBacktrackLimit, Smi::FromInt(backtrack_limit));
3149 regexp->set_data(*store);
3150 }
3151
SetRegExpExperimentalData(Handle<JSRegExp> regexp,Handle<String> source,JSRegExp::Flags flags,int capture_count)3152 void Factory::SetRegExpExperimentalData(Handle<JSRegExp> regexp,
3153 Handle<String> source,
3154 JSRegExp::Flags flags,
3155 int capture_count) {
3156 Handle<FixedArray> store = NewFixedArray(JSRegExp::kExperimentalDataSize);
3157 Smi uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
3158
3159 store->set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::EXPERIMENTAL));
3160 store->set(JSRegExp::kSourceIndex, *source);
3161 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3162 store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
3163 store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
3164 store->set(JSRegExp::kIrregexpLatin1BytecodeIndex, uninitialized);
3165 store->set(JSRegExp::kIrregexpUC16BytecodeIndex, uninitialized);
3166 store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, uninitialized);
3167 store->set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
3168 store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
3169 store->set(JSRegExp::kIrregexpTicksUntilTierUpIndex, uninitialized);
3170 store->set(JSRegExp::kIrregexpBacktrackLimit, uninitialized);
3171 regexp->set_data(*store);
3172 }
3173
NewRegExpMatchInfo()3174 Handle<RegExpMatchInfo> Factory::NewRegExpMatchInfo() {
3175 // Initially, the last match info consists of all fixed fields plus space for
3176 // the match itself (i.e., 2 capture indices).
3177 static const int kInitialSize = RegExpMatchInfo::kFirstCaptureIndex +
3178 RegExpMatchInfo::kInitialCaptureIndices;
3179
3180 Handle<FixedArray> elems = NewFixedArray(kInitialSize);
3181 Handle<RegExpMatchInfo> result = Handle<RegExpMatchInfo>::cast(elems);
3182
3183 result->SetNumberOfCaptureRegisters(RegExpMatchInfo::kInitialCaptureIndices);
3184 result->SetLastSubject(*empty_string());
3185 result->SetLastInput(*undefined_value());
3186 result->SetCapture(0, 0);
3187 result->SetCapture(1, 0);
3188
3189 return result;
3190 }
3191
GlobalConstantFor(Handle<Name> name)3192 Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
3193 if (Name::Equals(isolate(), name, undefined_string())) {
3194 return undefined_value();
3195 }
3196 if (Name::Equals(isolate(), name, NaN_string())) return nan_value();
3197 if (Name::Equals(isolate(), name, Infinity_string())) return infinity_value();
3198 return Handle<Object>::null();
3199 }
3200
ToPrimitiveHintString(ToPrimitiveHint hint)3201 Handle<String> Factory::ToPrimitiveHintString(ToPrimitiveHint hint) {
3202 switch (hint) {
3203 case ToPrimitiveHint::kDefault:
3204 return default_string();
3205 case ToPrimitiveHint::kNumber:
3206 return number_string();
3207 case ToPrimitiveHint::kString:
3208 return string_string();
3209 }
3210 UNREACHABLE();
3211 }
3212
CreateSloppyFunctionMap(FunctionMode function_mode,MaybeHandle<JSFunction> maybe_empty_function)3213 Handle<Map> Factory::CreateSloppyFunctionMap(
3214 FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function) {
3215 bool has_prototype = IsFunctionModeWithPrototype(function_mode);
3216 int header_size = has_prototype ? JSFunction::kSizeWithPrototype
3217 : JSFunction::kSizeWithoutPrototype;
3218 int descriptors_count = has_prototype ? 5 : 4;
3219 int inobject_properties_count = 0;
3220 if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
3221
3222 Handle<Map> map = NewMap(
3223 JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
3224 TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
3225 map->set_has_prototype_slot(has_prototype);
3226 map->set_is_constructor(has_prototype);
3227 map->set_is_callable(true);
3228 Handle<JSFunction> empty_function;
3229 if (maybe_empty_function.ToHandle(&empty_function)) {
3230 Map::SetPrototype(isolate(), map, empty_function);
3231 }
3232
3233 //
3234 // Setup descriptors array.
3235 //
3236 Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
3237
3238 PropertyAttributes ro_attribs =
3239 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3240 PropertyAttributes rw_attribs =
3241 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
3242 PropertyAttributes roc_attribs =
3243 static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3244
3245 int field_index = 0;
3246 STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
3247 { // Add length accessor.
3248 Descriptor d = Descriptor::AccessorConstant(
3249 length_string(), function_length_accessor(), roc_attribs);
3250 map->AppendDescriptor(isolate(), &d);
3251 }
3252
3253 STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
3254 if (IsFunctionModeWithName(function_mode)) {
3255 // Add name field.
3256 Handle<Name> name = isolate()->factory()->name_string();
3257 Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
3258 roc_attribs, Representation::Tagged());
3259 map->AppendDescriptor(isolate(), &d);
3260
3261 } else {
3262 // Add name accessor.
3263 Descriptor d = Descriptor::AccessorConstant(
3264 name_string(), function_name_accessor(), roc_attribs);
3265 map->AppendDescriptor(isolate(), &d);
3266 }
3267 { // Add arguments accessor.
3268 Descriptor d = Descriptor::AccessorConstant(
3269 arguments_string(), function_arguments_accessor(), ro_attribs);
3270 map->AppendDescriptor(isolate(), &d);
3271 }
3272 { // Add caller accessor.
3273 Descriptor d = Descriptor::AccessorConstant(
3274 caller_string(), function_caller_accessor(), ro_attribs);
3275 map->AppendDescriptor(isolate(), &d);
3276 }
3277 if (IsFunctionModeWithPrototype(function_mode)) {
3278 // Add prototype accessor.
3279 PropertyAttributes attribs =
3280 IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
3281 : ro_attribs;
3282 Descriptor d = Descriptor::AccessorConstant(
3283 prototype_string(), function_prototype_accessor(), attribs);
3284 map->AppendDescriptor(isolate(), &d);
3285 }
3286 DCHECK_EQ(inobject_properties_count, field_index);
3287 DCHECK_EQ(
3288 0, map->instance_descriptors(kRelaxedLoad).number_of_slack_descriptors());
3289 LOG(isolate(), MapDetails(*map));
3290 return map;
3291 }
3292
CreateStrictFunctionMap(FunctionMode function_mode,Handle<JSFunction> empty_function)3293 Handle<Map> Factory::CreateStrictFunctionMap(
3294 FunctionMode function_mode, Handle<JSFunction> empty_function) {
3295 bool has_prototype = IsFunctionModeWithPrototype(function_mode);
3296 int header_size = has_prototype ? JSFunction::kSizeWithPrototype
3297 : JSFunction::kSizeWithoutPrototype;
3298 int inobject_properties_count = 0;
3299 // length and prototype accessors or just length accessor.
3300 int descriptors_count = IsFunctionModeWithPrototype(function_mode) ? 2 : 1;
3301 if (IsFunctionModeWithName(function_mode)) {
3302 ++inobject_properties_count; // name property.
3303 } else {
3304 ++descriptors_count; // name accessor.
3305 }
3306 if (IsFunctionModeWithHomeObject(function_mode)) ++inobject_properties_count;
3307 descriptors_count += inobject_properties_count;
3308
3309 Handle<Map> map = NewMap(
3310 JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
3311 TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
3312 map->set_has_prototype_slot(has_prototype);
3313 map->set_is_constructor(has_prototype);
3314 map->set_is_callable(true);
3315 Map::SetPrototype(isolate(), map, empty_function);
3316
3317 //
3318 // Setup descriptors array.
3319 //
3320 Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
3321
3322 PropertyAttributes rw_attribs =
3323 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
3324 PropertyAttributes ro_attribs =
3325 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3326 PropertyAttributes roc_attribs =
3327 static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3328
3329 int field_index = 0;
3330 STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
3331 { // Add length accessor.
3332 Descriptor d = Descriptor::AccessorConstant(
3333 length_string(), function_length_accessor(), roc_attribs);
3334 map->AppendDescriptor(isolate(), &d);
3335 }
3336
3337 STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
3338 if (IsFunctionModeWithName(function_mode)) {
3339 // Add name field.
3340 Handle<Name> name = isolate()->factory()->name_string();
3341 Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
3342 roc_attribs, Representation::Tagged());
3343 map->AppendDescriptor(isolate(), &d);
3344
3345 } else {
3346 // Add name accessor.
3347 Descriptor d = Descriptor::AccessorConstant(
3348 name_string(), function_name_accessor(), roc_attribs);
3349 map->AppendDescriptor(isolate(), &d);
3350 }
3351
3352 STATIC_ASSERT(JSFunction::kMaybeHomeObjectDescriptorIndex == 2);
3353 if (IsFunctionModeWithHomeObject(function_mode)) {
3354 // Add home object field.
3355 Handle<Name> name = isolate()->factory()->home_object_symbol();
3356 Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
3357 DONT_ENUM, Representation::Tagged());
3358 map->AppendDescriptor(isolate(), &d);
3359 }
3360
3361 if (IsFunctionModeWithPrototype(function_mode)) {
3362 // Add prototype accessor.
3363 PropertyAttributes attribs =
3364 IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
3365 : ro_attribs;
3366 Descriptor d = Descriptor::AccessorConstant(
3367 prototype_string(), function_prototype_accessor(), attribs);
3368 map->AppendDescriptor(isolate(), &d);
3369 }
3370 DCHECK_EQ(inobject_properties_count, field_index);
3371 DCHECK_EQ(
3372 0, map->instance_descriptors(kRelaxedLoad).number_of_slack_descriptors());
3373 LOG(isolate(), MapDetails(*map));
3374 return map;
3375 }
3376
CreateClassFunctionMap(Handle<JSFunction> empty_function)3377 Handle<Map> Factory::CreateClassFunctionMap(Handle<JSFunction> empty_function) {
3378 Handle<Map> map = NewMap(JS_FUNCTION_TYPE, JSFunction::kSizeWithPrototype);
3379 map->set_has_prototype_slot(true);
3380 map->set_is_constructor(true);
3381 map->set_is_prototype_map(true);
3382 map->set_is_callable(true);
3383 Map::SetPrototype(isolate(), map, empty_function);
3384
3385 //
3386 // Setup descriptors array.
3387 //
3388 Map::EnsureDescriptorSlack(isolate(), map, 2);
3389
3390 PropertyAttributes ro_attribs =
3391 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3392 PropertyAttributes roc_attribs =
3393 static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3394
3395 STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
3396 { // Add length accessor.
3397 Descriptor d = Descriptor::AccessorConstant(
3398 length_string(), function_length_accessor(), roc_attribs);
3399 map->AppendDescriptor(isolate(), &d);
3400 }
3401
3402 {
3403 // Add prototype accessor.
3404 Descriptor d = Descriptor::AccessorConstant(
3405 prototype_string(), function_prototype_accessor(), ro_attribs);
3406 map->AppendDescriptor(isolate(), &d);
3407 }
3408 LOG(isolate(), MapDetails(*map));
3409 return map;
3410 }
3411
NewJSPromiseWithoutHook()3412 Handle<JSPromise> Factory::NewJSPromiseWithoutHook() {
3413 Handle<JSPromise> promise =
3414 Handle<JSPromise>::cast(NewJSObject(isolate()->promise_function()));
3415 promise->set_reactions_or_result(Smi::zero());
3416 promise->set_flags(0);
3417 ZeroEmbedderFields(promise);
3418 DCHECK_EQ(promise->GetEmbedderFieldCount(), v8::Promise::kEmbedderFieldCount);
3419 return promise;
3420 }
3421
NewJSPromise()3422 Handle<JSPromise> Factory::NewJSPromise() {
3423 Handle<JSPromise> promise = NewJSPromiseWithoutHook();
3424 isolate()->RunPromiseHook(PromiseHookType::kInit, promise, undefined_value());
3425 return promise;
3426 }
3427
NewCallHandlerInfo(bool has_no_side_effect)3428 Handle<CallHandlerInfo> Factory::NewCallHandlerInfo(bool has_no_side_effect) {
3429 Handle<Map> map = has_no_side_effect
3430 ? side_effect_free_call_handler_info_map()
3431 : side_effect_call_handler_info_map();
3432 Handle<CallHandlerInfo> info(
3433 CallHandlerInfo::cast(New(map, AllocationType::kOld)), isolate());
3434 Object undefined_value = ReadOnlyRoots(isolate()).undefined_value();
3435 info->set_callback(undefined_value);
3436 info->set_js_callback(undefined_value);
3437 info->set_data(undefined_value);
3438 return info;
3439 }
3440
CanAllocateInReadOnlySpace()3441 bool Factory::CanAllocateInReadOnlySpace() {
3442 return isolate()->heap()->CanAllocateInReadOnlySpace();
3443 }
3444
EmptyStringRootIsInitialized()3445 bool Factory::EmptyStringRootIsInitialized() {
3446 return isolate()->roots_table()[RootIndex::kempty_string] != kNullAddress;
3447 }
3448
3449 // static
ForWasm(Handle<String> name,Handle<WasmExportedFunctionData> exported_function_data,Handle<Map> map)3450 NewFunctionArgs NewFunctionArgs::ForWasm(
3451 Handle<String> name,
3452 Handle<WasmExportedFunctionData> exported_function_data, Handle<Map> map) {
3453 DCHECK(name->IsFlat());
3454
3455 NewFunctionArgs args;
3456 args.name_ = name;
3457 args.maybe_map_ = map;
3458 args.maybe_wasm_function_data_ = exported_function_data;
3459 args.language_mode_ = LanguageMode::kSloppy;
3460 args.prototype_mutability_ = MUTABLE;
3461
3462 return args;
3463 }
3464
3465 // static
ForWasm(Handle<String> name,Handle<WasmJSFunctionData> js_function_data,Handle<Map> map)3466 NewFunctionArgs NewFunctionArgs::ForWasm(
3467 Handle<String> name, Handle<WasmJSFunctionData> js_function_data,
3468 Handle<Map> map) {
3469 DCHECK(name->IsFlat());
3470
3471 NewFunctionArgs args;
3472 args.name_ = name;
3473 args.maybe_map_ = map;
3474 args.maybe_wasm_function_data_ = js_function_data;
3475 args.language_mode_ = LanguageMode::kSloppy;
3476 args.prototype_mutability_ = MUTABLE;
3477
3478 return args;
3479 }
3480
3481 // static
ForBuiltin(Handle<String> name,Handle<Map> map,int builtin_id)3482 NewFunctionArgs NewFunctionArgs::ForBuiltin(Handle<String> name,
3483 Handle<Map> map, int builtin_id) {
3484 DCHECK(Builtins::IsBuiltinId(builtin_id));
3485 DCHECK(name->IsFlat());
3486
3487 NewFunctionArgs args;
3488 args.name_ = name;
3489 args.maybe_map_ = map;
3490 args.maybe_builtin_id_ = builtin_id;
3491 args.language_mode_ = LanguageMode::kStrict;
3492 args.prototype_mutability_ = MUTABLE;
3493
3494 args.SetShouldSetLanguageMode();
3495
3496 return args;
3497 }
3498
3499 // static
ForFunctionWithoutCode(Handle<String> name,Handle<Map> map,LanguageMode language_mode)3500 NewFunctionArgs NewFunctionArgs::ForFunctionWithoutCode(
3501 Handle<String> name, Handle<Map> map, LanguageMode language_mode) {
3502 DCHECK(name->IsFlat());
3503
3504 NewFunctionArgs args;
3505 args.name_ = name;
3506 args.maybe_map_ = map;
3507 args.maybe_builtin_id_ = Builtins::kIllegal;
3508 args.language_mode_ = language_mode;
3509 args.prototype_mutability_ = MUTABLE;
3510
3511 args.SetShouldSetLanguageMode();
3512
3513 return args;
3514 }
3515
3516 // static
ForBuiltinWithPrototype(Handle<String> name,Handle<HeapObject> prototype,InstanceType type,int instance_size,int inobject_properties,int builtin_id,MutableMode prototype_mutability)3517 NewFunctionArgs NewFunctionArgs::ForBuiltinWithPrototype(
3518 Handle<String> name, Handle<HeapObject> prototype, InstanceType type,
3519 int instance_size, int inobject_properties, int builtin_id,
3520 MutableMode prototype_mutability) {
3521 DCHECK(Builtins::IsBuiltinId(builtin_id));
3522 DCHECK(name->IsFlat());
3523
3524 NewFunctionArgs args;
3525 args.name_ = name;
3526 args.type_ = type;
3527 args.instance_size_ = instance_size;
3528 args.inobject_properties_ = inobject_properties;
3529 args.maybe_prototype_ = prototype;
3530 args.maybe_builtin_id_ = builtin_id;
3531 args.language_mode_ = LanguageMode::kStrict;
3532 args.prototype_mutability_ = prototype_mutability;
3533
3534 args.SetShouldCreateAndSetInitialMap();
3535 args.SetShouldSetPrototype();
3536 args.SetShouldSetLanguageMode();
3537
3538 return args;
3539 }
3540
3541 // static
ForBuiltinWithoutPrototype(Handle<String> name,int builtin_id,LanguageMode language_mode)3542 NewFunctionArgs NewFunctionArgs::ForBuiltinWithoutPrototype(
3543 Handle<String> name, int builtin_id, LanguageMode language_mode) {
3544 DCHECK(Builtins::IsBuiltinId(builtin_id));
3545 DCHECK(name->IsFlat());
3546
3547 NewFunctionArgs args;
3548 args.name_ = name;
3549 args.maybe_builtin_id_ = builtin_id;
3550 args.language_mode_ = language_mode;
3551 args.prototype_mutability_ = MUTABLE;
3552
3553 args.SetShouldSetLanguageMode();
3554
3555 return args;
3556 }
3557
SetShouldCreateAndSetInitialMap()3558 void NewFunctionArgs::SetShouldCreateAndSetInitialMap() {
3559 // Needed to create the initial map.
3560 maybe_prototype_.Assert();
3561 DCHECK_NE(kUninitialized, instance_size_);
3562 DCHECK_NE(kUninitialized, inobject_properties_);
3563
3564 should_create_and_set_initial_map_ = true;
3565 }
3566
SetShouldSetPrototype()3567 void NewFunctionArgs::SetShouldSetPrototype() {
3568 maybe_prototype_.Assert();
3569 should_set_prototype_ = true;
3570 }
3571
SetShouldSetLanguageMode()3572 void NewFunctionArgs::SetShouldSetLanguageMode() {
3573 DCHECK(language_mode_ == LanguageMode::kStrict ||
3574 language_mode_ == LanguageMode::kSloppy);
3575 should_set_language_mode_ = true;
3576 }
3577
GetMap(Isolate * isolate) const3578 Handle<Map> NewFunctionArgs::GetMap(Isolate* isolate) const {
3579 if (!maybe_map_.is_null()) {
3580 return maybe_map_.ToHandleChecked();
3581 } else if (maybe_prototype_.is_null()) {
3582 return is_strict(language_mode_)
3583 ? isolate->strict_function_without_prototype_map()
3584 : isolate->sloppy_function_without_prototype_map();
3585 } else {
3586 DCHECK(!maybe_prototype_.is_null());
3587 switch (prototype_mutability_) {
3588 case MUTABLE:
3589 return is_strict(language_mode_) ? isolate->strict_function_map()
3590 : isolate->sloppy_function_map();
3591 case IMMUTABLE:
3592 return is_strict(language_mode_)
3593 ? isolate->strict_function_with_readonly_prototype_map()
3594 : isolate->sloppy_function_with_readonly_prototype_map();
3595 }
3596 }
3597 UNREACHABLE();
3598 }
3599
NewFunctionForTest(Handle<String> name)3600 Handle<JSFunction> Factory::NewFunctionForTest(Handle<String> name) {
3601 NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode(
3602 name, isolate()->sloppy_function_map(), LanguageMode::kSloppy);
3603 Handle<JSFunction> result = NewFunction(args);
3604 DCHECK(is_sloppy(result->shared().language_mode()));
3605 return result;
3606 }
3607
NewFunction(const NewFunctionArgs & args)3608 Handle<JSFunction> Factory::NewFunction(const NewFunctionArgs& args) {
3609 DCHECK(!args.name_.is_null());
3610
3611 // Create the SharedFunctionInfo.
3612 Handle<NativeContext> context(isolate()->native_context());
3613 Handle<Map> map = args.GetMap(isolate());
3614 Handle<SharedFunctionInfo> info =
3615 NewSharedFunctionInfo(args.name_, args.maybe_wasm_function_data_,
3616 args.maybe_builtin_id_, kNormalFunction);
3617
3618 // Proper language mode in shared function info will be set later.
3619 DCHECK(is_sloppy(info->language_mode()));
3620 DCHECK(!map->IsUndefined(isolate()));
3621
3622 if (args.should_set_language_mode_) {
3623 info->set_language_mode(args.language_mode_);
3624 }
3625
3626 #ifdef DEBUG
3627 if (isolate()->bootstrapper()->IsActive()) {
3628 Handle<Code> code;
3629 DCHECK(
3630 // During bootstrapping some of these maps could be not created yet.
3631 (*map == context->get(Context::STRICT_FUNCTION_MAP_INDEX)) ||
3632 (*map ==
3633 context->get(Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX)) ||
3634 (*map ==
3635 context->get(
3636 Context::STRICT_FUNCTION_WITH_READONLY_PROTOTYPE_MAP_INDEX)) ||
3637 // Check if it's a creation of an empty or Proxy function during
3638 // bootstrapping.
3639 (args.maybe_builtin_id_ == Builtins::kEmptyFunction ||
3640 args.maybe_builtin_id_ == Builtins::kProxyConstructor));
3641 }
3642 #endif
3643
3644 Handle<JSFunction> result =
3645 JSFunctionBuilder{isolate(), info, context}.set_map(map).Build();
3646
3647 // Both of these write to `prototype_or_initial_map`.
3648 // TODO(jgruber): Fix callsites and enable the DCHECK.
3649 // DCHECK(!args.should_set_prototype_ ||
3650 // !args.should_create_and_set_initial_map_);
3651 if (args.should_set_prototype_) {
3652 result->set_prototype_or_initial_map(
3653 *args.maybe_prototype_.ToHandleChecked());
3654 }
3655
3656 if (args.should_create_and_set_initial_map_) {
3657 ElementsKind elements_kind;
3658 switch (args.type_) {
3659 case JS_ARRAY_TYPE:
3660 elements_kind = PACKED_SMI_ELEMENTS;
3661 break;
3662 case JS_ARGUMENTS_OBJECT_TYPE:
3663 elements_kind = PACKED_ELEMENTS;
3664 break;
3665 default:
3666 elements_kind = TERMINAL_FAST_ELEMENTS_KIND;
3667 break;
3668 }
3669 Handle<Map> initial_map = NewMap(args.type_, args.instance_size_,
3670 elements_kind, args.inobject_properties_);
3671 result->shared().set_expected_nof_properties(args.inobject_properties_);
3672 // TODO(littledan): Why do we have this is_generator test when
3673 // NewFunctionPrototype already handles finding an appropriately
3674 // shared prototype?
3675 Handle<HeapObject> prototype = args.maybe_prototype_.ToHandleChecked();
3676 if (!IsResumableFunction(result->shared().kind())) {
3677 if (prototype->IsTheHole(isolate())) {
3678 prototype = NewFunctionPrototype(result);
3679 }
3680 }
3681 JSFunction::SetInitialMap(result, initial_map, prototype);
3682 }
3683
3684 return result;
3685 }
3686
NewFunction(Handle<Map> map,Handle<SharedFunctionInfo> info,Handle<Context> context,AllocationType allocation)3687 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
3688 Handle<SharedFunctionInfo> info,
3689 Handle<Context> context,
3690 AllocationType allocation) {
3691 // TODO(jgruber): Remove this function.
3692 return JSFunctionBuilder{isolate(), info, context}
3693 .set_map(map)
3694 .set_allocation_type(allocation)
3695 .Build();
3696 }
3697
NewFunctionFromSharedFunctionInfo(Handle<SharedFunctionInfo> info,Handle<Context> context,AllocationType allocation)3698 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
3699 Handle<SharedFunctionInfo> info, Handle<Context> context,
3700 AllocationType allocation) {
3701 // TODO(jgruber): Remove this function.
3702 return JSFunctionBuilder{isolate(), info, context}
3703 .set_allocation_type(allocation)
3704 .Build();
3705 }
3706
NewFunctionFromSharedFunctionInfo(Handle<SharedFunctionInfo> info,Handle<Context> context,Handle<FeedbackCell> feedback_cell,AllocationType allocation)3707 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
3708 Handle<SharedFunctionInfo> info, Handle<Context> context,
3709 Handle<FeedbackCell> feedback_cell, AllocationType allocation) {
3710 // TODO(jgruber): Remove this function.
3711 return JSFunctionBuilder{isolate(), info, context}
3712 .set_feedback_cell(feedback_cell)
3713 .Build();
3714 }
3715
NewFunctionFromSharedFunctionInfo(Handle<Map> initial_map,Handle<SharedFunctionInfo> info,Handle<Context> context,AllocationType allocation)3716 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
3717 Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
3718 Handle<Context> context, AllocationType allocation) {
3719 // TODO(jgruber): Remove this function.
3720 return JSFunctionBuilder{isolate(), info, context}
3721 .set_map(initial_map)
3722 .set_allocation_type(allocation)
3723 .Build();
3724 }
3725
JSFunctionBuilder(Isolate * isolate,Handle<SharedFunctionInfo> sfi,Handle<Context> context)3726 Factory::JSFunctionBuilder::JSFunctionBuilder(Isolate* isolate,
3727 Handle<SharedFunctionInfo> sfi,
3728 Handle<Context> context)
3729 : isolate_(isolate), sfi_(sfi), context_(context) {}
3730
Build()3731 Handle<JSFunction> Factory::JSFunctionBuilder::Build() {
3732 PrepareMap();
3733 PrepareFeedbackCell();
3734
3735 // Determine the associated Code object.
3736 Handle<Code> code;
3737 const bool have_cached_code =
3738 sfi_->TryGetCachedCode(isolate_).ToHandle(&code);
3739 if (!have_cached_code) code = handle(sfi_->GetCode(), isolate_);
3740
3741 Handle<JSFunction> result = BuildRaw(code);
3742
3743 if (have_cached_code) {
3744 IsCompiledScope is_compiled_scope(sfi_->is_compiled_scope(isolate_));
3745 JSFunction::EnsureFeedbackVector(result, &is_compiled_scope);
3746 if (FLAG_trace_turbo_nci) CompilationCacheCode::TraceHit(sfi_, code);
3747 }
3748
3749 Compiler::PostInstantiation(result);
3750 return result;
3751 }
3752
BuildRaw(Handle<Code> code)3753 Handle<JSFunction> Factory::JSFunctionBuilder::BuildRaw(Handle<Code> code) {
3754 Isolate* isolate = isolate_;
3755 Factory* factory = isolate_->factory();
3756
3757 Handle<Map> map = maybe_map_.ToHandleChecked();
3758 Handle<FeedbackCell> feedback_cell = maybe_feedback_cell_.ToHandleChecked();
3759
3760 DCHECK_EQ(JS_FUNCTION_TYPE, map->instance_type());
3761
3762 // Allocation.
3763 Handle<JSFunction> function(
3764 JSFunction::cast(factory->New(map, allocation_type_)), isolate);
3765
3766 // Header initialization.
3767 function->initialize_properties(isolate);
3768 function->initialize_elements();
3769 function->set_shared(*sfi_);
3770 function->set_context(*context_);
3771 function->set_raw_feedback_cell(*feedback_cell);
3772 function->set_code(*code);
3773 if (map->has_prototype_slot()) {
3774 function->set_prototype_or_initial_map(
3775 ReadOnlyRoots(isolate).the_hole_value());
3776 }
3777
3778 // Potentially body initialization.
3779 factory->InitializeJSObjectBody(
3780 function, map, JSFunction::GetHeaderSize(map->has_prototype_slot()));
3781
3782 return function;
3783 }
3784
PrepareMap()3785 void Factory::JSFunctionBuilder::PrepareMap() {
3786 if (maybe_map_.is_null()) {
3787 // No specific map requested, use the default.
3788 maybe_map_ = handle(
3789 Map::cast(context_->native_context().get(sfi_->function_map_index())),
3790 isolate_);
3791 }
3792 }
3793
PrepareFeedbackCell()3794 void Factory::JSFunctionBuilder::PrepareFeedbackCell() {
3795 Handle<FeedbackCell> feedback_cell;
3796 if (maybe_feedback_cell_.ToHandle(&feedback_cell)) {
3797 // Track the newly-created closure, and check that the optimized code in
3798 // the feedback cell wasn't marked for deoptimization while not pointed to
3799 // by any live JSFunction.
3800 feedback_cell->IncrementClosureCount(isolate_);
3801 if (feedback_cell->value().IsFeedbackVector()) {
3802 FeedbackVector::cast(feedback_cell->value())
3803 .EvictOptimizedCodeMarkedForDeoptimization(
3804 *sfi_, "new function from shared function info");
3805 }
3806 } else {
3807 // Fall back to the many_closures_cell.
3808 maybe_feedback_cell_ = isolate_->factory()->many_closures_cell();
3809 }
3810 }
3811
3812 } // namespace internal
3813 } // namespace v8
3814