• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright 2002 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 
7 // mathutil.h: Math and bit manipulation functions.
8 
9 #ifndef COMMON_MATHUTIL_H_
10 #define COMMON_MATHUTIL_H_
11 
12 #include <math.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <algorithm>
17 #include <limits>
18 
19 #include <anglebase/numerics/safe_math.h>
20 
21 #include "common/debug.h"
22 #include "common/platform.h"
23 
24 namespace angle
25 {
26 using base::CheckedNumeric;
27 using base::IsValueInRangeForNumericType;
28 }  // namespace angle
29 
30 namespace gl
31 {
32 
33 const unsigned int Float32One   = 0x3F800000;
34 const unsigned short Float16One = 0x3C00;
35 
36 template <typename T>
isPow2(T x)37 inline constexpr bool isPow2(T x)
38 {
39     static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
40     return (x & (x - 1)) == 0 && (x != 0);
41 }
42 
43 template <typename T>
log2(T x)44 inline int log2(T x)
45 {
46     static_assert(std::is_integral<T>::value, "log2 must be called on an integer type.");
47     int r = 0;
48     while ((x >> r) > 1)
49         r++;
50     return r;
51 }
52 
ceilPow2(unsigned int x)53 inline unsigned int ceilPow2(unsigned int x)
54 {
55     if (x != 0)
56         x--;
57     x |= x >> 1;
58     x |= x >> 2;
59     x |= x >> 4;
60     x |= x >> 8;
61     x |= x >> 16;
62     x++;
63 
64     return x;
65 }
66 
67 template <typename DestT, typename SrcT>
clampCast(SrcT value)68 inline DestT clampCast(SrcT value)
69 {
70     // For floating-point types with denormalization, min returns the minimum positive normalized
71     // value. To find the value that has no values less than it, use numeric_limits::lowest.
72     constexpr const long double destLo =
73         static_cast<long double>(std::numeric_limits<DestT>::lowest());
74     constexpr const long double destHi =
75         static_cast<long double>(std::numeric_limits<DestT>::max());
76     constexpr const long double srcLo =
77         static_cast<long double>(std::numeric_limits<SrcT>::lowest());
78     constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
79 
80     if (destHi < srcHi)
81     {
82         DestT destMax = std::numeric_limits<DestT>::max();
83         if (value >= static_cast<SrcT>(destMax))
84         {
85             return destMax;
86         }
87     }
88 
89     if (destLo > srcLo)
90     {
91         DestT destLow = std::numeric_limits<DestT>::lowest();
92         if (value <= static_cast<SrcT>(destLow))
93         {
94             return destLow;
95         }
96     }
97 
98     return static_cast<DestT>(value);
99 }
100 
101 // Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
102 // value is casted to the source type.
103 template <>
clampCast(bool value)104 inline unsigned int clampCast(bool value)
105 {
106     return static_cast<unsigned int>(value);
107 }
108 
109 template <>
clampCast(bool value)110 inline int clampCast(bool value)
111 {
112     return static_cast<int>(value);
113 }
114 
115 template <typename T, typename MIN, typename MAX>
clamp(T x,MIN min,MAX max)116 inline T clamp(T x, MIN min, MAX max)
117 {
118     // Since NaNs fail all comparison tests, a NaN value will default to min
119     return x > min ? (x > max ? max : x) : min;
120 }
121 
clamp01(float x)122 inline float clamp01(float x)
123 {
124     return clamp(x, 0.0f, 1.0f);
125 }
126 
127 template <const int n>
unorm(float x)128 inline unsigned int unorm(float x)
129 {
130     const unsigned int max = 0xFFFFFFFF >> (32 - n);
131 
132     if (x > 1)
133     {
134         return max;
135     }
136     else if (x < 0)
137     {
138         return 0;
139     }
140     else
141     {
142         return (unsigned int)(max * x + 0.5f);
143     }
144 }
145 
supportsSSE2()146 inline bool supportsSSE2()
147 {
148 #if defined(ANGLE_USE_SSE)
149     static bool checked  = false;
150     static bool supports = false;
151 
152     if (checked)
153     {
154         return supports;
155     }
156 
157 #    if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
158     {
159         int info[4];
160         __cpuid(info, 0);
161 
162         if (info[0] >= 1)
163         {
164             __cpuid(info, 1);
165 
166             supports = (info[3] >> 26) & 1;
167         }
168     }
169 #    endif  // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
170     checked = true;
171     return supports;
172 #else  // defined(ANGLE_USE_SSE)
173     return false;
174 #endif
175 }
176 
177 template <typename destType, typename sourceType>
bitCast(const sourceType & source)178 destType bitCast(const sourceType &source)
179 {
180     size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
181     destType output;
182     memcpy(&output, &source, copySize);
183     return output;
184 }
185 
186 // https://stackoverflow.com/a/37581284
187 template <typename T>
normalize(T value)188 static constexpr double normalize(T value)
189 {
190     return value < 0 ? -static_cast<double>(value) / std::numeric_limits<T>::min()
191                      : static_cast<double>(value) / std::numeric_limits<T>::max();
192 }
193 
float32ToFloat16(float fp32)194 inline unsigned short float32ToFloat16(float fp32)
195 {
196     unsigned int fp32i = bitCast<unsigned int>(fp32);
197     unsigned int sign  = (fp32i & 0x80000000) >> 16;
198     unsigned int abs   = fp32i & 0x7FFFFFFF;
199 
200     if (abs > 0x7F800000)
201     {  // NaN
202         return 0x7FFF;
203     }
204     else if (abs > 0x47FFEFFF)
205     {  // Infinity
206         return static_cast<uint16_t>(sign | 0x7C00);
207     }
208     else if (abs < 0x38800000)  // Denormal
209     {
210         unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
211         int e                 = 113 - (abs >> 23);
212 
213         if (e < 24)
214         {
215             abs = mantissa >> e;
216         }
217         else
218         {
219             abs = 0;
220         }
221 
222         return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
223     }
224     else
225     {
226         return static_cast<unsigned short>(
227             sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
228     }
229 }
230 
231 float float16ToFloat32(unsigned short h);
232 
233 unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
234 void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
235 
float32ToFloat11(float fp32)236 inline unsigned short float32ToFloat11(float fp32)
237 {
238     const unsigned int float32MantissaMask     = 0x7FFFFF;
239     const unsigned int float32ExponentMask     = 0x7F800000;
240     const unsigned int float32SignMask         = 0x80000000;
241     const unsigned int float32ValueMask        = ~float32SignMask;
242     const unsigned int float32ExponentFirstBit = 23;
243     const unsigned int float32ExponentBias     = 127;
244 
245     const unsigned short float11Max          = 0x7BF;
246     const unsigned short float11MantissaMask = 0x3F;
247     const unsigned short float11ExponentMask = 0x7C0;
248     const unsigned short float11BitMask      = 0x7FF;
249     const unsigned int float11ExponentBias   = 14;
250 
251     const unsigned int float32Maxfloat11 = 0x477E0000;
252     const unsigned int float32Minfloat11 = 0x38800000;
253 
254     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
255     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
256 
257     unsigned int float32Val = float32Bits & float32ValueMask;
258 
259     if ((float32Val & float32ExponentMask) == float32ExponentMask)
260     {
261         // INF or NAN
262         if ((float32Val & float32MantissaMask) != 0)
263         {
264             return float11ExponentMask |
265                    (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
266                     float11MantissaMask);
267         }
268         else if (float32Sign)
269         {
270             // -INF is clamped to 0 since float11 is positive only
271             return 0;
272         }
273         else
274         {
275             return float11ExponentMask;
276         }
277     }
278     else if (float32Sign)
279     {
280         // float11 is positive only, so clamp to zero
281         return 0;
282     }
283     else if (float32Val > float32Maxfloat11)
284     {
285         // The number is too large to be represented as a float11, set to max
286         return float11Max;
287     }
288     else
289     {
290         if (float32Val < float32Minfloat11)
291         {
292             // The number is too small to be represented as a normalized float11
293             // Convert it to a denormalized value.
294             const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
295                                        (float32Val >> float32ExponentFirstBit);
296             float32Val =
297                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
298         }
299         else
300         {
301             // Rebias the exponent to represent the value as a normalized float11
302             float32Val += 0xC8000000;
303         }
304 
305         return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
306     }
307 }
308 
float32ToFloat10(float fp32)309 inline unsigned short float32ToFloat10(float fp32)
310 {
311     const unsigned int float32MantissaMask     = 0x7FFFFF;
312     const unsigned int float32ExponentMask     = 0x7F800000;
313     const unsigned int float32SignMask         = 0x80000000;
314     const unsigned int float32ValueMask        = ~float32SignMask;
315     const unsigned int float32ExponentFirstBit = 23;
316     const unsigned int float32ExponentBias     = 127;
317 
318     const unsigned short float10Max          = 0x3DF;
319     const unsigned short float10MantissaMask = 0x1F;
320     const unsigned short float10ExponentMask = 0x3E0;
321     const unsigned short float10BitMask      = 0x3FF;
322     const unsigned int float10ExponentBias   = 14;
323 
324     const unsigned int float32Maxfloat10 = 0x477C0000;
325     const unsigned int float32Minfloat10 = 0x38800000;
326 
327     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
328     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
329 
330     unsigned int float32Val = float32Bits & float32ValueMask;
331 
332     if ((float32Val & float32ExponentMask) == float32ExponentMask)
333     {
334         // INF or NAN
335         if ((float32Val & float32MantissaMask) != 0)
336         {
337             return float10ExponentMask |
338                    (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
339                     float10MantissaMask);
340         }
341         else if (float32Sign)
342         {
343             // -INF is clamped to 0 since float11 is positive only
344             return 0;
345         }
346         else
347         {
348             return float10ExponentMask;
349         }
350     }
351     else if (float32Sign)
352     {
353         // float10 is positive only, so clamp to zero
354         return 0;
355     }
356     else if (float32Val > float32Maxfloat10)
357     {
358         // The number is too large to be represented as a float11, set to max
359         return float10Max;
360     }
361     else
362     {
363         if (float32Val < float32Minfloat10)
364         {
365             // The number is too small to be represented as a normalized float11
366             // Convert it to a denormalized value.
367             const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
368                                        (float32Val >> float32ExponentFirstBit);
369             float32Val =
370                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
371         }
372         else
373         {
374             // Rebias the exponent to represent the value as a normalized float11
375             float32Val += 0xC8000000;
376         }
377 
378         return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
379     }
380 }
381 
float11ToFloat32(unsigned short fp11)382 inline float float11ToFloat32(unsigned short fp11)
383 {
384     unsigned short exponent = (fp11 >> 6) & 0x1F;
385     unsigned short mantissa = fp11 & 0x3F;
386 
387     if (exponent == 0x1F)
388     {
389         // INF or NAN
390         return bitCast<float>(0x7f800000 | (mantissa << 17));
391     }
392     else
393     {
394         if (exponent != 0)
395         {
396             // normalized
397         }
398         else if (mantissa != 0)
399         {
400             // The value is denormalized
401             exponent = 1;
402 
403             do
404             {
405                 exponent--;
406                 mantissa <<= 1;
407             } while ((mantissa & 0x40) == 0);
408 
409             mantissa = mantissa & 0x3F;
410         }
411         else  // The value is zero
412         {
413             exponent = static_cast<unsigned short>(-112);
414         }
415 
416         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
417     }
418 }
419 
float10ToFloat32(unsigned short fp11)420 inline float float10ToFloat32(unsigned short fp11)
421 {
422     unsigned short exponent = (fp11 >> 5) & 0x1F;
423     unsigned short mantissa = fp11 & 0x1F;
424 
425     if (exponent == 0x1F)
426     {
427         // INF or NAN
428         return bitCast<float>(0x7f800000 | (mantissa << 17));
429     }
430     else
431     {
432         if (exponent != 0)
433         {
434             // normalized
435         }
436         else if (mantissa != 0)
437         {
438             // The value is denormalized
439             exponent = 1;
440 
441             do
442             {
443                 exponent--;
444                 mantissa <<= 1;
445             } while ((mantissa & 0x20) == 0);
446 
447             mantissa = mantissa & 0x1F;
448         }
449         else  // The value is zero
450         {
451             exponent = static_cast<unsigned short>(-112);
452         }
453 
454         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
455     }
456 }
457 
458 // Convers to and from float and 16.16 fixed point format.
459 
ConvertFixedToFloat(uint32_t fixedInput)460 inline float ConvertFixedToFloat(uint32_t fixedInput)
461 {
462     return static_cast<float>(fixedInput) / 65536.0f;
463 }
464 
ConvertFloatToFixed(float floatInput)465 inline uint32_t ConvertFloatToFixed(float floatInput)
466 {
467     static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
468     static constexpr uint32_t kLowest  = static_cast<uint32_t>(-32768 * 65536 + 65535);
469 
470     if (floatInput > 32767.65535)
471     {
472         return kHighest;
473     }
474     else if (floatInput < -32768.65535)
475     {
476         return kLowest;
477     }
478     else
479     {
480         return static_cast<uint32_t>(floatInput * 65536);
481     }
482 }
483 
484 template <typename T>
normalizedToFloat(T input)485 inline float normalizedToFloat(T input)
486 {
487     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
488 
489     if (sizeof(T) > 2)
490     {
491         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
492         constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
493         return static_cast<float>(input * inverseMax);
494     }
495     else
496     {
497         constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
498         return input * inverseMax;
499     }
500 }
501 
502 template <unsigned int inputBitCount, typename T>
normalizedToFloat(T input)503 inline float normalizedToFloat(T input)
504 {
505     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
506     static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
507 
508     if (inputBitCount > 23)
509     {
510         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
511         constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1);
512         return static_cast<float>(input * inverseMax);
513     }
514     else
515     {
516         constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
517         return input * inverseMax;
518     }
519 }
520 
521 template <typename T>
floatToNormalized(float input)522 inline T floatToNormalized(float input)
523 {
524     if (sizeof(T) > 2)
525     {
526         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
527         return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5);
528     }
529     else
530     {
531         return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
532     }
533 }
534 
535 template <unsigned int outputBitCount, typename T>
floatToNormalized(float input)536 inline T floatToNormalized(float input)
537 {
538     static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
539 
540     if (outputBitCount > 23)
541     {
542         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
543         return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5);
544     }
545     else
546     {
547         return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
548     }
549 }
550 
551 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
getShiftedData(T input)552 inline T getShiftedData(T input)
553 {
554     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
555                   "T must have at least as many bits as inputBitCount + inputBitStart.");
556     const T mask = (1 << inputBitCount) - 1;
557     return (input >> inputBitStart) & mask;
558 }
559 
560 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
shiftData(T input)561 inline T shiftData(T input)
562 {
563     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
564                   "T must have at least as many bits as inputBitCount + inputBitStart.");
565     const T mask = (1 << inputBitCount) - 1;
566     return (input & mask) << inputBitStart;
567 }
568 
CountLeadingZeros(uint32_t x)569 inline unsigned int CountLeadingZeros(uint32_t x)
570 {
571     // Use binary search to find the amount of leading zeros.
572     unsigned int zeros = 32u;
573     uint32_t y;
574 
575     y = x >> 16u;
576     if (y != 0)
577     {
578         zeros = zeros - 16u;
579         x     = y;
580     }
581     y = x >> 8u;
582     if (y != 0)
583     {
584         zeros = zeros - 8u;
585         x     = y;
586     }
587     y = x >> 4u;
588     if (y != 0)
589     {
590         zeros = zeros - 4u;
591         x     = y;
592     }
593     y = x >> 2u;
594     if (y != 0)
595     {
596         zeros = zeros - 2u;
597         x     = y;
598     }
599     y = x >> 1u;
600     if (y != 0)
601     {
602         return zeros - 2u;
603     }
604     return zeros - x;
605 }
606 
average(unsigned char a,unsigned char b)607 inline unsigned char average(unsigned char a, unsigned char b)
608 {
609     return ((a ^ b) >> 1) + (a & b);
610 }
611 
average(signed char a,signed char b)612 inline signed char average(signed char a, signed char b)
613 {
614     return ((short)a + (short)b) / 2;
615 }
616 
average(unsigned short a,unsigned short b)617 inline unsigned short average(unsigned short a, unsigned short b)
618 {
619     return ((a ^ b) >> 1) + (a & b);
620 }
621 
average(signed short a,signed short b)622 inline signed short average(signed short a, signed short b)
623 {
624     return ((int)a + (int)b) / 2;
625 }
626 
average(unsigned int a,unsigned int b)627 inline unsigned int average(unsigned int a, unsigned int b)
628 {
629     return ((a ^ b) >> 1) + (a & b);
630 }
631 
average(int a,int b)632 inline int average(int a, int b)
633 {
634     long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll;
635     return static_cast<int>(average);
636 }
637 
average(float a,float b)638 inline float average(float a, float b)
639 {
640     return (a + b) * 0.5f;
641 }
642 
averageHalfFloat(unsigned short a,unsigned short b)643 inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
644 {
645     return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
646 }
647 
averageFloat11(unsigned int a,unsigned int b)648 inline unsigned int averageFloat11(unsigned int a, unsigned int b)
649 {
650     return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
651                              float11ToFloat32(static_cast<unsigned short>(b))) *
652                             0.5f);
653 }
654 
averageFloat10(unsigned int a,unsigned int b)655 inline unsigned int averageFloat10(unsigned int a, unsigned int b)
656 {
657     return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
658                              float10ToFloat32(static_cast<unsigned short>(b))) *
659                             0.5f);
660 }
661 
662 template <typename T>
663 class Range
664 {
665   public:
Range()666     Range() {}
Range(T lo,T hi)667     Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
668 
length()669     T length() const { return (empty() ? 0 : (mHigh - mLow)); }
670 
intersects(Range<T> other)671     bool intersects(Range<T> other)
672     {
673         if (mLow <= other.mLow)
674         {
675             return other.mLow < mHigh;
676         }
677         else
678         {
679             return mLow < other.mHigh;
680         }
681     }
682 
683     // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
extend(T value)684     void extend(T value)
685     {
686         mLow  = value < mLow ? value : mLow;
687         mHigh = value >= mHigh ? (value + 1) : mHigh;
688     }
689 
empty()690     bool empty() const { return mHigh <= mLow; }
691 
contains(T value)692     bool contains(T value) const { return value >= mLow && value < mHigh; }
693 
694     class Iterator final
695     {
696       public:
Iterator(T value)697         Iterator(T value) : mCurrent(value) {}
698 
699         Iterator &operator++()
700         {
701             mCurrent++;
702             return *this;
703         }
704         bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
705         bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
706         T operator*() const { return mCurrent; }
707 
708       private:
709         T mCurrent;
710     };
711 
begin()712     Iterator begin() const { return Iterator(mLow); }
713 
end()714     Iterator end() const { return Iterator(mHigh); }
715 
low()716     T low() const { return mLow; }
high()717     T high() const { return mHigh; }
718 
invalidate()719     void invalidate()
720     {
721         mLow  = std::numeric_limits<T>::max();
722         mHigh = std::numeric_limits<T>::min();
723     }
724 
725   private:
726     T mLow;
727     T mHigh;
728 };
729 
730 typedef Range<int> RangeI;
731 typedef Range<unsigned int> RangeUI;
732 
733 struct IndexRange
734 {
735     struct Undefined
736     {};
IndexRangeIndexRange737     IndexRange(Undefined) {}
IndexRangeIndexRange738     IndexRange() : IndexRange(0, 0, 0) {}
IndexRangeIndexRange739     IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
740         : start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
741     {
742         ASSERT(start <= end);
743     }
744 
745     // Number of vertices in the range.
vertexCountIndexRange746     size_t vertexCount() const { return (end - start) + 1; }
747 
748     // Inclusive range of indices that are not primitive restart
749     size_t start;
750     size_t end;
751 
752     // Number of non-primitive restart indices
753     size_t vertexIndexCount;
754 };
755 
756 // Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
757 // floating-point value. As in GLSL ldexp() built-in.
Ldexp(float x,int exp)758 inline float Ldexp(float x, int exp)
759 {
760     if (exp > 128)
761     {
762         return std::numeric_limits<float>::infinity();
763     }
764     if (exp < -126)
765     {
766         return 0.0f;
767     }
768     double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
769     return static_cast<float>(result);
770 }
771 
772 // First, both normalized floating-point values are converted into 16-bit integer values.
773 // Then, the results are packed into the returned 32-bit unsigned integer.
774 // The first float value will be written to the least significant bits of the output;
775 // the last float value will be written to the most significant bits.
776 // The conversion of each value to fixed point is done as follows :
777 // packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
packSnorm2x16(float f1,float f2)778 inline uint32_t packSnorm2x16(float f1, float f2)
779 {
780     int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
781     int16_t mostSignificantBits  = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
782     return static_cast<uint32_t>(mostSignificantBits) << 16 |
783            (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
784 }
785 
786 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
787 // each component is converted to a normalized floating-point value to generate the returned two
788 // float values. The first float value will be extracted from the least significant bits of the
789 // input; the last float value will be extracted from the most-significant bits. The conversion for
790 // unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
791 // 32767.0, -1, +1)
unpackSnorm2x16(uint32_t u,float * f1,float * f2)792 inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
793 {
794     int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
795     int16_t mostSignificantBits  = static_cast<int16_t>(u >> 16);
796     *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
797     *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
798 }
799 
800 // First, both normalized floating-point values are converted into 16-bit integer values.
801 // Then, the results are packed into the returned 32-bit unsigned integer.
802 // The first float value will be written to the least significant bits of the output;
803 // the last float value will be written to the most significant bits.
804 // The conversion of each value to fixed point is done as follows:
805 // packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
packUnorm2x16(float f1,float f2)806 inline uint32_t packUnorm2x16(float f1, float f2)
807 {
808     uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
809     uint16_t mostSignificantBits  = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
810     return static_cast<uint32_t>(mostSignificantBits) << 16 |
811            static_cast<uint32_t>(leastSignificantBits);
812 }
813 
814 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
815 // each component is converted to a normalized floating-point value to generate the returned two
816 // float values. The first float value will be extracted from the least significant bits of the
817 // input; the last float value will be extracted from the most-significant bits. The conversion for
818 // unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
unpackUnorm2x16(uint32_t u,float * f1,float * f2)819 inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
820 {
821     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
822     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
823     *f1                           = static_cast<float>(leastSignificantBits) / 65535.0f;
824     *f2                           = static_cast<float>(mostSignificantBits) / 65535.0f;
825 }
826 
827 // Helper functions intended to be used only here.
828 namespace priv
829 {
830 
ToPackedUnorm8(float f)831 inline uint8_t ToPackedUnorm8(float f)
832 {
833     return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
834 }
835 
ToPackedSnorm8(float f)836 inline int8_t ToPackedSnorm8(float f)
837 {
838     return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
839 }
840 
841 }  // namespace priv
842 
843 // Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
844 // similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
845 // unsigned integer starting from the least significant bits.
PackUnorm4x8(float f1,float f2,float f3,float f4)846 inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
847 {
848     uint8_t bits[4];
849     bits[0]         = priv::ToPackedUnorm8(f1);
850     bits[1]         = priv::ToPackedUnorm8(f2);
851     bits[2]         = priv::ToPackedUnorm8(f3);
852     bits[3]         = priv::ToPackedUnorm8(f4);
853     uint32_t result = 0u;
854     for (int i = 0; i < 4; ++i)
855     {
856         int shift = i * 8;
857         result |= (static_cast<uint32_t>(bits[i]) << shift);
858     }
859     return result;
860 }
861 
862 // Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
863 // Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
864 // bits.
UnpackUnorm4x8(uint32_t u,float * f)865 inline void UnpackUnorm4x8(uint32_t u, float *f)
866 {
867     for (int i = 0; i < 4; ++i)
868     {
869         int shift    = i * 8;
870         uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
871         f[i]         = static_cast<float>(bits) / 255.0f;
872     }
873 }
874 
875 // Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
876 // are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
877 // significant bits.
PackSnorm4x8(float f1,float f2,float f3,float f4)878 inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
879 {
880     int8_t bits[4];
881     bits[0]         = priv::ToPackedSnorm8(f1);
882     bits[1]         = priv::ToPackedSnorm8(f2);
883     bits[2]         = priv::ToPackedSnorm8(f3);
884     bits[3]         = priv::ToPackedSnorm8(f4);
885     uint32_t result = 0u;
886     for (int i = 0; i < 4; ++i)
887     {
888         int shift = i * 8;
889         result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
890     }
891     return result;
892 }
893 
894 // Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
895 // Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
896 // bits, and clamped to the range -1.0 to 1.0.
UnpackSnorm4x8(uint32_t u,float * f)897 inline void UnpackSnorm4x8(uint32_t u, float *f)
898 {
899     for (int i = 0; i < 4; ++i)
900     {
901         int shift   = i * 8;
902         int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
903         f[i]        = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
904     }
905 }
906 
907 // Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
908 // floating-point representation found in the OpenGL ES Specification, and then packing these
909 // two 16-bit integers into a 32-bit unsigned integer.
910 // f1: The 16 least-significant bits of the result;
911 // f2: The 16 most-significant bits.
packHalf2x16(float f1,float f2)912 inline uint32_t packHalf2x16(float f1, float f2)
913 {
914     uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
915     uint16_t mostSignificantBits  = static_cast<uint16_t>(float32ToFloat16(f2));
916     return static_cast<uint32_t>(mostSignificantBits) << 16 |
917            static_cast<uint32_t>(leastSignificantBits);
918 }
919 
920 // Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
921 // 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
922 // ES Specification, and converting them to 32-bit floating-point values. The first float value is
923 // obtained from the 16 least-significant bits of u; the second component is obtained from the 16
924 // most-significant bits of u.
unpackHalf2x16(uint32_t u,float * f1,float * f2)925 inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
926 {
927     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
928     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
929 
930     *f1 = float16ToFloat32(leastSignificantBits);
931     *f2 = float16ToFloat32(mostSignificantBits);
932 }
933 
sRGBToLinear(uint8_t srgbValue)934 inline uint8_t sRGBToLinear(uint8_t srgbValue)
935 {
936     float value = srgbValue / 255.0f;
937     if (value <= 0.04045f)
938     {
939         value = value / 12.92f;
940     }
941     else
942     {
943         value = std::pow((value + 0.055f) / 1.055f, 2.4f);
944     }
945     return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
946 }
947 
linearToSRGB(uint8_t linearValue)948 inline uint8_t linearToSRGB(uint8_t linearValue)
949 {
950     float value = linearValue / 255.0f;
951     if (value <= 0.0f)
952     {
953         value = 0.0f;
954     }
955     else if (value < 0.0031308f)
956     {
957         value = value * 12.92f;
958     }
959     else if (value < 1.0f)
960     {
961         value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
962     }
963     else
964     {
965         value = 1.0f;
966     }
967     return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
968 }
969 
970 // Reverse the order of the bits.
BitfieldReverse(uint32_t value)971 inline uint32_t BitfieldReverse(uint32_t value)
972 {
973     // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
974     // for this, and right now it's not used in performance-critical paths.
975     uint32_t result = 0u;
976     for (size_t j = 0u; j < 32u; ++j)
977     {
978         result |= (((value >> j) & 1u) << (31u - j));
979     }
980     return result;
981 }
982 
983 // Count the 1 bits.
984 #if defined(_MSC_VER) && !defined(__clang__)
985 #    if defined(_M_IX86) || defined(_M_X64)
986 namespace priv
987 {
988 // Check POPCNT instruction support and cache the result.
989 // https://docs.microsoft.com/en-us/cpp/intrinsics/popcnt16-popcnt-popcnt64#remarks
990 static const bool kHasPopcnt = [] {
991     int info[4];
992     __cpuid(&info[0], 1);
993     return static_cast<bool>(info[2] & 0x800000);
994 }();
995 }  // namespace priv
996 
997 // Polyfills for x86/x64 CPUs without POPCNT.
998 // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
BitCountPolyfill(uint32_t bits)999 inline int BitCountPolyfill(uint32_t bits)
1000 {
1001     bits = bits - ((bits >> 1) & 0x55555555);
1002     bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
1003     bits = ((bits + (bits >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;
1004     return static_cast<int>(bits);
1005 }
1006 
BitCountPolyfill(uint64_t bits)1007 inline int BitCountPolyfill(uint64_t bits)
1008 {
1009     bits = bits - ((bits >> 1) & 0x5555555555555555ull);
1010     bits = (bits & 0x3333333333333333ull) + ((bits >> 2) & 0x3333333333333333ull);
1011     bits = ((bits + (bits >> 4) & 0x0F0F0F0F0F0F0F0Full) * 0x0101010101010101ull) >> 56;
1012     return static_cast<int>(bits);
1013 }
1014 
BitCount(uint32_t bits)1015 inline int BitCount(uint32_t bits)
1016 {
1017     if (priv::kHasPopcnt)
1018     {
1019         return static_cast<int>(__popcnt(bits));
1020     }
1021     return BitCountPolyfill(bits);
1022 }
1023 
BitCount(uint64_t bits)1024 inline int BitCount(uint64_t bits)
1025 {
1026     if (priv::kHasPopcnt)
1027     {
1028 #        if defined(_M_X64)
1029         return static_cast<int>(__popcnt64(bits));
1030 #        else   // x86
1031         return static_cast<int>(__popcnt(static_cast<uint32_t>(bits >> 32)) +
1032                                 __popcnt(static_cast<uint32_t>(bits)));
1033 #        endif  // defined(_M_X64)
1034     }
1035     return BitCountPolyfill(bits);
1036 }
1037 
1038 #    elif defined(_M_ARM) || defined(_M_ARM64)
1039 
1040 // MSVC's _CountOneBits* intrinsics are not defined for ARM64, moreover they do not use dedicated
1041 // NEON instructions.
1042 
BitCount(uint32_t bits)1043 inline int BitCount(uint32_t bits)
1044 {
1045     // cast bits to 8x8 datatype and use VCNT on it
1046     const uint8x8_t vsum = vcnt_u8(vcreate_u8(static_cast<uint64_t>(bits)));
1047 
1048     // pairwise sums: 8x8 -> 16x4 -> 32x2
1049     return static_cast<int>(vget_lane_u32(vpaddl_u16(vpaddl_u8(vsum)), 0));
1050 }
1051 
BitCount(uint64_t bits)1052 inline int BitCount(uint64_t bits)
1053 {
1054     // cast bits to 8x8 datatype and use VCNT on it
1055     const uint8x8_t vsum = vcnt_u8(vcreate_u8(bits));
1056 
1057     // pairwise sums: 8x8 -> 16x4 -> 32x2 -> 64x1
1058     return static_cast<int>(vget_lane_u64(vpaddl_u32(vpaddl_u16(vpaddl_u8(vsum))), 0));
1059 }
1060 #    endif  // defined(_M_IX86) || defined(_M_X64)
1061 #endif      // defined(_MSC_VER) && !defined(__clang__)
1062 
1063 #if defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
BitCount(uint32_t bits)1064 inline int BitCount(uint32_t bits)
1065 {
1066     return __builtin_popcount(bits);
1067 }
1068 
BitCount(uint64_t bits)1069 inline int BitCount(uint64_t bits)
1070 {
1071     return __builtin_popcountll(bits);
1072 }
1073 #endif  // defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
1074 
BitCount(uint8_t bits)1075 inline int BitCount(uint8_t bits)
1076 {
1077     return BitCount(static_cast<uint32_t>(bits));
1078 }
1079 
BitCount(uint16_t bits)1080 inline int BitCount(uint16_t bits)
1081 {
1082     return BitCount(static_cast<uint32_t>(bits));
1083 }
1084 
1085 #if defined(ANGLE_PLATFORM_WINDOWS)
1086 // Return the index of the least significant bit set. Indexing is such that bit 0 is the least
1087 // significant bit. Implemented for different bit widths on different platforms.
ScanForward(uint32_t bits)1088 inline unsigned long ScanForward(uint32_t bits)
1089 {
1090     ASSERT(bits != 0u);
1091     unsigned long firstBitIndex = 0ul;
1092     unsigned char ret           = _BitScanForward(&firstBitIndex, bits);
1093     ASSERT(ret != 0u);
1094     return firstBitIndex;
1095 }
1096 
ScanForward(uint64_t bits)1097 inline unsigned long ScanForward(uint64_t bits)
1098 {
1099     ASSERT(bits != 0u);
1100     unsigned long firstBitIndex = 0ul;
1101 #    if defined(ANGLE_IS_64_BIT_CPU)
1102     unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
1103 #    else
1104     unsigned char ret;
1105     if (static_cast<uint32_t>(bits) == 0)
1106     {
1107         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits >> 32));
1108         firstBitIndex += 32ul;
1109     }
1110     else
1111     {
1112         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits));
1113     }
1114 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1115     ASSERT(ret != 0u);
1116     return firstBitIndex;
1117 }
1118 #endif  // defined(ANGLE_PLATFORM_WINDOWS)
1119 
1120 #if defined(ANGLE_PLATFORM_POSIX)
ScanForward(uint32_t bits)1121 inline unsigned long ScanForward(uint32_t bits)
1122 {
1123     ASSERT(bits != 0u);
1124     return static_cast<unsigned long>(__builtin_ctz(bits));
1125 }
1126 
ScanForward(uint64_t bits)1127 inline unsigned long ScanForward(uint64_t bits)
1128 {
1129     ASSERT(bits != 0u);
1130 #    if defined(ANGLE_IS_64_BIT_CPU)
1131     return static_cast<unsigned long>(__builtin_ctzll(bits));
1132 #    else
1133     return static_cast<unsigned long>(static_cast<uint32_t>(bits) == 0
1134                                           ? __builtin_ctz(static_cast<uint32_t>(bits >> 32)) + 32
1135                                           : __builtin_ctz(static_cast<uint32_t>(bits)));
1136 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1137 }
1138 #endif  // defined(ANGLE_PLATFORM_POSIX)
1139 
ScanForward(uint8_t bits)1140 inline unsigned long ScanForward(uint8_t bits)
1141 {
1142     return ScanForward(static_cast<uint32_t>(bits));
1143 }
1144 
ScanForward(uint16_t bits)1145 inline unsigned long ScanForward(uint16_t bits)
1146 {
1147     return ScanForward(static_cast<uint32_t>(bits));
1148 }
1149 
1150 // Return the index of the most significant bit set. Indexing is such that bit 0 is the least
1151 // significant bit.
ScanReverse(unsigned long bits)1152 inline unsigned long ScanReverse(unsigned long bits)
1153 {
1154     ASSERT(bits != 0u);
1155 #if defined(ANGLE_PLATFORM_WINDOWS)
1156     unsigned long lastBitIndex = 0ul;
1157     unsigned char ret          = _BitScanReverse(&lastBitIndex, bits);
1158     ASSERT(ret != 0u);
1159     return lastBitIndex;
1160 #elif defined(ANGLE_PLATFORM_POSIX)
1161     return static_cast<unsigned long>(sizeof(unsigned long) * CHAR_BIT - 1 - __builtin_clzl(bits));
1162 #else
1163 #    error Please implement bit-scan-reverse for your platform!
1164 #endif
1165 }
1166 
1167 // Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
1168 template <typename T>
FindLSB(T bits)1169 int FindLSB(T bits)
1170 {
1171     static_assert(std::is_integral<T>::value, "must be integral type.");
1172     if (bits == 0u)
1173     {
1174         return -1;
1175     }
1176     else
1177     {
1178         return static_cast<int>(ScanForward(bits));
1179     }
1180 }
1181 
1182 // Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
1183 template <typename T>
FindMSB(T bits)1184 int FindMSB(T bits)
1185 {
1186     static_assert(std::is_integral<T>::value, "must be integral type.");
1187     if (bits == 0u)
1188     {
1189         return -1;
1190     }
1191     else
1192     {
1193         return static_cast<int>(ScanReverse(bits));
1194     }
1195 }
1196 
1197 // Returns whether the argument is Not a Number.
1198 // IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1199 // non-zero.
isNaN(float f)1200 inline bool isNaN(float f)
1201 {
1202     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1203     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1204     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1205            (bitCast<uint32_t>(f) & 0x7fffffu);
1206 }
1207 
1208 // Returns whether the argument is infinity.
1209 // IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1210 // zero.
isInf(float f)1211 inline bool isInf(float f)
1212 {
1213     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1214     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1215     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1216            !(bitCast<uint32_t>(f) & 0x7fffffu);
1217 }
1218 
1219 namespace priv
1220 {
1221 template <unsigned int N, unsigned int R>
1222 struct iSquareRoot
1223 {
solveiSquareRoot1224     static constexpr unsigned int solve()
1225     {
1226         return (R * R > N)
1227                    ? 0
1228                    : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
1229     }
1230     enum Result
1231     {
1232         value = iSquareRoot::solve()
1233     };
1234 };
1235 
1236 template <unsigned int N>
1237 struct iSquareRoot<N, N>
1238 {
1239     enum result
1240     {
1241         value = N
1242     };
1243 };
1244 
1245 }  // namespace priv
1246 
1247 template <unsigned int N>
1248 constexpr unsigned int iSquareRoot()
1249 {
1250     return priv::iSquareRoot<N, 1>::value;
1251 }
1252 
1253 // Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
1254 //
1255 // Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
1256 // behavior is undefined.
1257 
1258 template <typename T>
1259 inline T WrappingSum(T lhs, T rhs)
1260 {
1261     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1262     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1263     return static_cast<T>(lhsUnsigned + rhsUnsigned);
1264 }
1265 
1266 template <typename T>
1267 inline T WrappingDiff(T lhs, T rhs)
1268 {
1269     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1270     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1271     return static_cast<T>(lhsUnsigned - rhsUnsigned);
1272 }
1273 
1274 inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
1275 {
1276     int64_t lhsWide = static_cast<int64_t>(lhs);
1277     int64_t rhsWide = static_cast<int64_t>(rhs);
1278     // The multiplication is guaranteed not to overflow.
1279     int64_t resultWide = lhsWide * rhsWide;
1280     // Implement the desired wrapping behavior by masking out the high-order 32 bits.
1281     resultWide = resultWide & 0xffffffffll;
1282     // Casting to a narrower signed type is fine since the casted value is representable in the
1283     // narrower type.
1284     return static_cast<int32_t>(resultWide);
1285 }
1286 
1287 inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
1288 {
1289     return 2.0f * dimensionScreen / viewportDimension;
1290 }
1291 
1292 inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
1293 {
1294     float halfShifted = coordinateScreen / viewportDimension;
1295     return 2.0f * (halfShifted - 0.5f);
1296 }
1297 
1298 }  // namespace gl
1299 
1300 namespace rx
1301 {
1302 
1303 template <typename T>
1304 T roundUp(const T value, const T alignment)
1305 {
1306     auto temp = value + alignment - static_cast<T>(1);
1307     return temp - temp % alignment;
1308 }
1309 
1310 template <typename T>
1311 constexpr T roundUpPow2(const T value, const T alignment)
1312 {
1313     ASSERT(gl::isPow2(alignment));
1314     return (value + alignment - 1) & ~(alignment - 1);
1315 }
1316 
1317 template <typename T>
1318 angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
1319 {
1320     angle::CheckedNumeric<T> checkedValue(value);
1321     angle::CheckedNumeric<T> checkedAlignment(alignment);
1322     return roundUp(checkedValue, checkedAlignment);
1323 }
1324 
1325 inline constexpr unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
1326 {
1327     unsigned int divided = value / divisor;
1328     return (divided + ((value % divisor == 0) ? 0 : 1));
1329 }
1330 
1331 #if defined(__has_builtin)
1332 #    define ANGLE_HAS_BUILTIN(x) __has_builtin(x)
1333 #else
1334 #    define ANGLE_HAS_BUILTIN(x) 0
1335 #endif
1336 
1337 #if defined(_MSC_VER)
1338 
1339 #    define ANGLE_ROTL(x, y) _rotl(x, y)
1340 #    define ANGLE_ROTL64(x, y) _rotl64(x, y)
1341 #    define ANGLE_ROTR16(x, y) _rotr16(x, y)
1342 
1343 #elif defined(__clang__) && ANGLE_HAS_BUILTIN(__builtin_rotateleft32) && \
1344     ANGLE_HAS_BUILTIN(__builtin_rotateleft64) && ANGLE_HAS_BUILTIN(__builtin_rotateright16)
1345 
1346 #    define ANGLE_ROTL(x, y) __builtin_rotateleft32(x, y)
1347 #    define ANGLE_ROTL64(x, y) __builtin_rotateleft64(x, y)
1348 #    define ANGLE_ROTR16(x, y) __builtin_rotateright16(x, y)
1349 
1350 #else
1351 
1352 inline uint32_t RotL(uint32_t x, int8_t r)
1353 {
1354     return (x << r) | (x >> (32 - r));
1355 }
1356 
1357 inline uint64_t RotL64(uint64_t x, int8_t r)
1358 {
1359     return (x << r) | (x >> (64 - r));
1360 }
1361 
1362 inline uint16_t RotR16(uint16_t x, int8_t r)
1363 {
1364     return (x >> r) | (x << (16 - r));
1365 }
1366 
1367 #    define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
1368 #    define ANGLE_ROTL64(x, y) ::rx::RotL64(x, y)
1369 #    define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
1370 
1371 #endif  // namespace rx
1372 
1373 constexpr unsigned int Log2(unsigned int bytes)
1374 {
1375     return bytes == 1 ? 0 : (1 + Log2(bytes / 2));
1376 }
1377 }  // namespace rx
1378 
1379 #endif  // COMMON_MATHUTIL_H_
1380