1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #include "src/codegen/mips/assembler-mips.h"
36
37 #if V8_TARGET_ARCH_MIPS
38
39 #include "src/base/bits.h"
40 #include "src/base/cpu.h"
41 #include "src/codegen/mips/assembler-mips-inl.h"
42 #include "src/codegen/safepoint-table.h"
43 #include "src/codegen/string-constants.h"
44 #include "src/deoptimizer/deoptimizer.h"
45 #include "src/objects/heap-number-inl.h"
46
47 namespace v8 {
48 namespace internal {
49
50 // Get the CPU features enabled by the build. For cross compilation the
51 // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
52 // can be defined to enable FPU instructions when building the
53 // snapshot.
CpuFeaturesImpliedByCompiler()54 static unsigned CpuFeaturesImpliedByCompiler() {
55 unsigned answer = 0;
56 #ifdef CAN_USE_FPU_INSTRUCTIONS
57 answer |= 1u << FPU;
58 #endif // def CAN_USE_FPU_INSTRUCTIONS
59
60 // If the compiler is allowed to use FPU then we can use FPU too in our code
61 // generation even when generating snapshots. This won't work for cross
62 // compilation.
63 #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
64 answer |= 1u << FPU;
65 #endif
66
67 return answer;
68 }
69
ProbeImpl(bool cross_compile)70 void CpuFeatures::ProbeImpl(bool cross_compile) {
71 supported_ |= CpuFeaturesImpliedByCompiler();
72
73 // Only use statically determined features for cross compile (snapshot).
74 if (cross_compile) return;
75
76 // If the compiler is allowed to use fpu then we can use fpu too in our
77 // code generation.
78 #ifndef __mips__
79 // For the simulator build, use FPU.
80 supported_ |= 1u << FPU;
81 #if defined(_MIPS_ARCH_MIPS32R6)
82 // FP64 mode is implied on r6.
83 supported_ |= 1u << FP64FPU;
84 #if defined(_MIPS_MSA)
85 supported_ |= 1u << MIPS_SIMD;
86 #endif
87 #endif
88 #if defined(FPU_MODE_FP64)
89 supported_ |= 1u << FP64FPU;
90 #endif
91 #else
92 // Probe for additional features at runtime.
93 base::CPU cpu;
94 if (cpu.has_fpu()) supported_ |= 1u << FPU;
95 #if defined(FPU_MODE_FPXX)
96 if (cpu.is_fp64_mode()) supported_ |= 1u << FP64FPU;
97 #elif defined(FPU_MODE_FP64)
98 supported_ |= 1u << FP64FPU;
99 #if defined(_MIPS_ARCH_MIPS32R6)
100 #if defined(_MIPS_MSA)
101 supported_ |= 1u << MIPS_SIMD;
102 #else
103 if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
104 #endif
105 #endif
106 #endif
107 #if defined(_MIPS_ARCH_MIPS32RX)
108 if (cpu.architecture() == 6) {
109 supported_ |= 1u << MIPSr6;
110 } else if (cpu.architecture() == 2) {
111 supported_ |= 1u << MIPSr1;
112 supported_ |= 1u << MIPSr2;
113 } else {
114 supported_ |= 1u << MIPSr1;
115 }
116 #endif
117 #endif
118 }
119
PrintTarget()120 void CpuFeatures::PrintTarget() {}
PrintFeatures()121 void CpuFeatures::PrintFeatures() {}
122
ToNumber(Register reg)123 int ToNumber(Register reg) {
124 DCHECK(reg.is_valid());
125 const int kNumbers[] = {
126 0, // zero_reg
127 1, // at
128 2, // v0
129 3, // v1
130 4, // a0
131 5, // a1
132 6, // a2
133 7, // a3
134 8, // t0
135 9, // t1
136 10, // t2
137 11, // t3
138 12, // t4
139 13, // t5
140 14, // t6
141 15, // t7
142 16, // s0
143 17, // s1
144 18, // s2
145 19, // s3
146 20, // s4
147 21, // s5
148 22, // s6
149 23, // s7
150 24, // t8
151 25, // t9
152 26, // k0
153 27, // k1
154 28, // gp
155 29, // sp
156 30, // fp
157 31, // ra
158 };
159 return kNumbers[reg.code()];
160 }
161
ToRegister(int num)162 Register ToRegister(int num) {
163 DCHECK(num >= 0 && num < kNumRegisters);
164 const Register kRegisters[] = {
165 zero_reg, at, v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, t7,
166 s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
167 return kRegisters[num];
168 }
169
170 // -----------------------------------------------------------------------------
171 // Implementation of RelocInfo.
172
173 const int RelocInfo::kApplyMask =
174 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
175 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED) |
176 RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET);
177
IsCodedSpecially()178 bool RelocInfo::IsCodedSpecially() {
179 // The deserializer needs to know whether a pointer is specially coded. Being
180 // specially coded on MIPS means that it is a lui/ori instruction, and that is
181 // always the case inside code objects.
182 return true;
183 }
184
IsInConstantPool()185 bool RelocInfo::IsInConstantPool() { return false; }
186
wasm_call_tag() const187 uint32_t RelocInfo::wasm_call_tag() const {
188 DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
189 return static_cast<uint32_t>(
190 Assembler::target_address_at(pc_, constant_pool_));
191 }
192
193 // -----------------------------------------------------------------------------
194 // Implementation of Operand and MemOperand.
195 // See assembler-mips-inl.h for inlined constructors.
196
Operand(Handle<HeapObject> handle)197 Operand::Operand(Handle<HeapObject> handle)
198 : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
199 value_.immediate = static_cast<intptr_t>(handle.address());
200 }
201
EmbeddedNumber(double value)202 Operand Operand::EmbeddedNumber(double value) {
203 int32_t smi;
204 if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
205 Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
206 result.is_heap_object_request_ = true;
207 result.value_.heap_object_request = HeapObjectRequest(value);
208 return result;
209 }
210
EmbeddedStringConstant(const StringConstantBase * str)211 Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
212 Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
213 result.is_heap_object_request_ = true;
214 result.value_.heap_object_request = HeapObjectRequest(str);
215 return result;
216 }
217
MemOperand(Register rm,int32_t offset)218 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
219 offset_ = offset;
220 }
221
MemOperand(Register rm,int32_t unit,int32_t multiplier,OffsetAddend offset_addend)222 MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
223 OffsetAddend offset_addend)
224 : Operand(rm) {
225 offset_ = unit * multiplier + offset_addend;
226 }
227
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)228 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
229 DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
230 for (auto& request : heap_object_requests_) {
231 Handle<HeapObject> object;
232 switch (request.kind()) {
233 case HeapObjectRequest::kHeapNumber:
234 object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
235 request.heap_number());
236 break;
237 case HeapObjectRequest::kStringConstant:
238 const StringConstantBase* str = request.string();
239 CHECK_NOT_NULL(str);
240 object = str->AllocateStringConstant(isolate);
241 break;
242 }
243 Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
244 set_target_value_at(pc, reinterpret_cast<uint32_t>(object.location()));
245 }
246 }
247
248 // -----------------------------------------------------------------------------
249 // Specific instructions, constants, and masks.
250
251 static const int kNegOffset = 0x00008000;
252 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
253 // operations as post-increment of sp.
254 const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) |
255 (sp.code() << kRtShift) |
256 (kPointerSize & kImm16Mask); // NOLINT
257 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
258 const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) |
259 (sp.code() << kRtShift) |
260 (-kPointerSize & kImm16Mask); // NOLINT
261 // sw(r, MemOperand(sp, 0))
262 const Instr kPushRegPattern =
263 SW | (sp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
264 // lw(r, MemOperand(sp, 0))
265 const Instr kPopRegPattern =
266 LW | (sp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
267
268 const Instr kLwRegFpOffsetPattern =
269 LW | (fp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
270
271 const Instr kSwRegFpOffsetPattern =
272 SW | (fp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
273
274 const Instr kLwRegFpNegOffsetPattern =
275 LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); // NOLINT
276
277 const Instr kSwRegFpNegOffsetPattern =
278 SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); // NOLINT
279 // A mask for the Rt register for push, pop, lw, sw instructions.
280 const Instr kRtMask = kRtFieldMask;
281 const Instr kLwSwInstrTypeMask = 0xFFE00000;
282 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
283 const Instr kLwSwOffsetMask = kImm16Mask;
284
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)285 Assembler::Assembler(const AssemblerOptions& options,
286 std::unique_ptr<AssemblerBuffer> buffer)
287 : AssemblerBase(options, std::move(buffer)),
288 scratch_register_list_(at.bit()) {
289 reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
290
291 last_trampoline_pool_end_ = 0;
292 no_trampoline_pool_before_ = 0;
293 trampoline_pool_blocked_nesting_ = 0;
294 // We leave space (16 * kTrampolineSlotsSize)
295 // for BlockTrampolinePoolScope buffer.
296 next_buffer_check_ = FLAG_force_long_branches
297 ? kMaxInt
298 : kMaxBranchOffset - kTrampolineSlotsSize * 16;
299 internal_trampoline_exception_ = false;
300 last_bound_pos_ = 0;
301
302 trampoline_emitted_ = FLAG_force_long_branches;
303 unbound_labels_count_ = 0;
304 block_buffer_growth_ = false;
305 }
306
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)307 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
308 SafepointTableBuilder* safepoint_table_builder,
309 int handler_table_offset) {
310 // As a crutch to avoid having to add manual Align calls wherever we use a
311 // raw workflow to create Code objects (mostly in tests), add another Align
312 // call here. It does no harm - the end of the Code object is aligned to the
313 // (larger) kCodeAlignment anyways.
314 // TODO(jgruber): Consider moving responsibility for proper alignment to
315 // metadata table builders (safepoint, handler, constant pool, code
316 // comments).
317 DataAlign(Code::kMetadataAlignment);
318
319 EmitForbiddenSlotInstruction();
320
321 int code_comments_size = WriteCodeComments();
322
323 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
324
325 AllocateAndInstallRequestedHeapObjects(isolate);
326
327 // Set up code descriptor.
328 // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
329 // this point to make CodeDesc initialization less fiddly.
330
331 static constexpr int kConstantPoolSize = 0;
332 const int instruction_size = pc_offset();
333 const int code_comments_offset = instruction_size - code_comments_size;
334 const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
335 const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
336 ? constant_pool_offset
337 : handler_table_offset;
338 const int safepoint_table_offset =
339 (safepoint_table_builder == kNoSafepointTable)
340 ? handler_table_offset2
341 : safepoint_table_builder->GetCodeOffset();
342 const int reloc_info_offset =
343 static_cast<int>(reloc_info_writer.pos() - buffer_->start());
344 CodeDesc::Initialize(desc, this, safepoint_table_offset,
345 handler_table_offset2, constant_pool_offset,
346 code_comments_offset, reloc_info_offset);
347 }
348
Align(int m)349 void Assembler::Align(int m) {
350 DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
351 EmitForbiddenSlotInstruction();
352 while ((pc_offset() & (m - 1)) != 0) {
353 nop();
354 }
355 }
356
CodeTargetAlign()357 void Assembler::CodeTargetAlign() {
358 // No advantage to aligning branch/call targets to more than
359 // single instruction, that I am aware of.
360 Align(4);
361 }
362
GetRtReg(Instr instr)363 Register Assembler::GetRtReg(Instr instr) {
364 return Register::from_code((instr & kRtFieldMask) >> kRtShift);
365 }
366
GetRsReg(Instr instr)367 Register Assembler::GetRsReg(Instr instr) {
368 return Register::from_code((instr & kRsFieldMask) >> kRsShift);
369 }
370
GetRdReg(Instr instr)371 Register Assembler::GetRdReg(Instr instr) {
372 return Register::from_code((instr & kRdFieldMask) >> kRdShift);
373 }
374
GetRt(Instr instr)375 uint32_t Assembler::GetRt(Instr instr) {
376 return (instr & kRtFieldMask) >> kRtShift;
377 }
378
GetRtField(Instr instr)379 uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
380
GetRs(Instr instr)381 uint32_t Assembler::GetRs(Instr instr) {
382 return (instr & kRsFieldMask) >> kRsShift;
383 }
384
GetRsField(Instr instr)385 uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
386
GetRd(Instr instr)387 uint32_t Assembler::GetRd(Instr instr) {
388 return (instr & kRdFieldMask) >> kRdShift;
389 }
390
GetRdField(Instr instr)391 uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
392
GetSa(Instr instr)393 uint32_t Assembler::GetSa(Instr instr) {
394 return (instr & kSaFieldMask) >> kSaShift;
395 }
396
GetSaField(Instr instr)397 uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
398
GetOpcodeField(Instr instr)399 uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
400
GetFunction(Instr instr)401 uint32_t Assembler::GetFunction(Instr instr) {
402 return (instr & kFunctionFieldMask) >> kFunctionShift;
403 }
404
GetFunctionField(Instr instr)405 uint32_t Assembler::GetFunctionField(Instr instr) {
406 return instr & kFunctionFieldMask;
407 }
408
GetImmediate16(Instr instr)409 uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
410
GetLabelConst(Instr instr)411 uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
412
IsPop(Instr instr)413 bool Assembler::IsPop(Instr instr) {
414 return (instr & ~kRtMask) == kPopRegPattern;
415 }
416
IsPush(Instr instr)417 bool Assembler::IsPush(Instr instr) {
418 return (instr & ~kRtMask) == kPushRegPattern;
419 }
420
IsSwRegFpOffset(Instr instr)421 bool Assembler::IsSwRegFpOffset(Instr instr) {
422 return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
423 }
424
IsLwRegFpOffset(Instr instr)425 bool Assembler::IsLwRegFpOffset(Instr instr) {
426 return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
427 }
428
IsSwRegFpNegOffset(Instr instr)429 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
430 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
431 kSwRegFpNegOffsetPattern);
432 }
433
IsLwRegFpNegOffset(Instr instr)434 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
435 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
436 kLwRegFpNegOffsetPattern);
437 }
438
439 // Labels refer to positions in the (to be) generated code.
440 // There are bound, linked, and unused labels.
441 //
442 // Bound labels refer to known positions in the already
443 // generated code. pos() is the position the label refers to.
444 //
445 // Linked labels refer to unknown positions in the code
446 // to be generated; pos() is the position of the last
447 // instruction using the label.
448
449 // The link chain is terminated by a value in the instruction of -1,
450 // which is an otherwise illegal value (branch -1 is inf loop).
451 // The instruction 16-bit offset field addresses 32-bit words, but in
452 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
453
454 const int kEndOfChain = -4;
455 // Determines the end of the Jump chain (a subset of the label link chain).
456 const int kEndOfJumpChain = 0;
457
IsMsaBranch(Instr instr)458 bool Assembler::IsMsaBranch(Instr instr) {
459 uint32_t opcode = GetOpcodeField(instr);
460 uint32_t rs_field = GetRsField(instr);
461 if (opcode == COP1) {
462 switch (rs_field) {
463 case BZ_V:
464 case BZ_B:
465 case BZ_H:
466 case BZ_W:
467 case BZ_D:
468 case BNZ_V:
469 case BNZ_B:
470 case BNZ_H:
471 case BNZ_W:
472 case BNZ_D:
473 return true;
474 default:
475 return false;
476 }
477 } else {
478 return false;
479 }
480 }
481
IsBranch(Instr instr)482 bool Assembler::IsBranch(Instr instr) {
483 uint32_t opcode = GetOpcodeField(instr);
484 uint32_t rt_field = GetRtField(instr);
485 uint32_t rs_field = GetRsField(instr);
486 // Checks if the instruction is a branch.
487 bool isBranch =
488 opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
489 opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
490 (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
491 rt_field == BLTZAL || rt_field == BGEZAL)) ||
492 (opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
493 (opcode == COP1 && rs_field == BC1EQZ) ||
494 (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
495 if (!isBranch && IsMipsArchVariant(kMips32r6)) {
496 // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
497 // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
498 isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
499 opcode == BALC ||
500 (opcode == POP66 && rs_field != 0) || // BEQZC
501 (opcode == POP76 && rs_field != 0); // BNEZC
502 }
503 return isBranch;
504 }
505
IsBc(Instr instr)506 bool Assembler::IsBc(Instr instr) {
507 uint32_t opcode = GetOpcodeField(instr);
508 // Checks if the instruction is a BC or BALC.
509 return opcode == BC || opcode == BALC;
510 }
511
IsNal(Instr instr)512 bool Assembler::IsNal(Instr instr) {
513 uint32_t opcode = GetOpcodeField(instr);
514 uint32_t rt_field = GetRtField(instr);
515 uint32_t rs_field = GetRsField(instr);
516 return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
517 }
518
IsBzc(Instr instr)519 bool Assembler::IsBzc(Instr instr) {
520 uint32_t opcode = GetOpcodeField(instr);
521 // Checks if the instruction is BEQZC or BNEZC.
522 return (opcode == POP66 && GetRsField(instr) != 0) ||
523 (opcode == POP76 && GetRsField(instr) != 0);
524 }
525
IsEmittedConstant(Instr instr)526 bool Assembler::IsEmittedConstant(Instr instr) {
527 uint32_t label_constant = GetLabelConst(instr);
528 return label_constant == 0; // Emitted label const in reg-exp engine.
529 }
530
IsBeq(Instr instr)531 bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
532
IsBne(Instr instr)533 bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
534
IsBeqzc(Instr instr)535 bool Assembler::IsBeqzc(Instr instr) {
536 uint32_t opcode = GetOpcodeField(instr);
537 return opcode == POP66 && GetRsField(instr) != 0;
538 }
539
IsBnezc(Instr instr)540 bool Assembler::IsBnezc(Instr instr) {
541 uint32_t opcode = GetOpcodeField(instr);
542 return opcode == POP76 && GetRsField(instr) != 0;
543 }
544
IsBeqc(Instr instr)545 bool Assembler::IsBeqc(Instr instr) {
546 uint32_t opcode = GetOpcodeField(instr);
547 uint32_t rs = GetRsField(instr);
548 uint32_t rt = GetRtField(instr);
549 return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0
550 }
551
IsBnec(Instr instr)552 bool Assembler::IsBnec(Instr instr) {
553 uint32_t opcode = GetOpcodeField(instr);
554 uint32_t rs = GetRsField(instr);
555 uint32_t rt = GetRtField(instr);
556 return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0
557 }
558
IsJicOrJialc(Instr instr)559 bool Assembler::IsJicOrJialc(Instr instr) {
560 uint32_t opcode = GetOpcodeField(instr);
561 uint32_t rs = GetRsField(instr);
562 return (opcode == POP66 || opcode == POP76) && rs == 0;
563 }
564
IsJump(Instr instr)565 bool Assembler::IsJump(Instr instr) {
566 uint32_t opcode = GetOpcodeField(instr);
567 uint32_t rt_field = GetRtField(instr);
568 uint32_t rd_field = GetRdField(instr);
569 uint32_t function_field = GetFunctionField(instr);
570 // Checks if the instruction is a jump.
571 return opcode == J || opcode == JAL ||
572 (opcode == SPECIAL && rt_field == 0 &&
573 ((function_field == JALR) ||
574 (rd_field == 0 && (function_field == JR))));
575 }
576
IsJ(Instr instr)577 bool Assembler::IsJ(Instr instr) {
578 uint32_t opcode = GetOpcodeField(instr);
579 // Checks if the instruction is a jump.
580 return opcode == J;
581 }
582
IsJal(Instr instr)583 bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
584
IsJr(Instr instr)585 bool Assembler::IsJr(Instr instr) {
586 if (!IsMipsArchVariant(kMips32r6)) {
587 return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
588 } else {
589 return GetOpcodeField(instr) == SPECIAL && GetRdField(instr) == 0 &&
590 GetFunctionField(instr) == JALR;
591 }
592 }
593
IsJalr(Instr instr)594 bool Assembler::IsJalr(Instr instr) {
595 return GetOpcodeField(instr) == SPECIAL && GetRdField(instr) != 0 &&
596 GetFunctionField(instr) == JALR;
597 }
598
IsLui(Instr instr)599 bool Assembler::IsLui(Instr instr) {
600 uint32_t opcode = GetOpcodeField(instr);
601 // Checks if the instruction is a load upper immediate.
602 return opcode == LUI;
603 }
604
IsOri(Instr instr)605 bool Assembler::IsOri(Instr instr) {
606 uint32_t opcode = GetOpcodeField(instr);
607 // Checks if the instruction is a load upper immediate.
608 return opcode == ORI;
609 }
610
IsAddu(Instr instr,Register rd,Register rs,Register rt)611 bool Assembler::IsAddu(Instr instr, Register rd, Register rs, Register rt) {
612 uint32_t opcode = GetOpcodeField(instr);
613 uint32_t rd_field = GetRd(instr);
614 uint32_t rs_field = GetRs(instr);
615 uint32_t rt_field = GetRt(instr);
616 uint32_t sa_field = GetSaField(instr);
617 uint32_t rd_reg = static_cast<uint32_t>(rd.code());
618 uint32_t rs_reg = static_cast<uint32_t>(rs.code());
619 uint32_t rt_reg = static_cast<uint32_t>(rt.code());
620 uint32_t function_field = GetFunction(instr);
621 return opcode == SPECIAL && sa_field == 0 && function_field == ADDU &&
622 rd_reg == rd_field && rs_reg == rs_field && rt_reg == rt_field;
623 }
624
IsMov(Instr instr,Register rd,Register rs)625 bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
626 uint32_t opcode = GetOpcodeField(instr);
627 uint32_t rd_field = GetRd(instr);
628 uint32_t rs_field = GetRs(instr);
629 uint32_t rt_field = GetRt(instr);
630 uint32_t rd_reg = static_cast<uint32_t>(rd.code());
631 uint32_t rs_reg = static_cast<uint32_t>(rs.code());
632 uint32_t function_field = GetFunctionField(instr);
633 // Checks if the instruction is a OR with zero_reg argument (aka MOV).
634 bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
635 rs_field == rs_reg && rt_field == 0;
636 return res;
637 }
638
IsNop(Instr instr,unsigned int type)639 bool Assembler::IsNop(Instr instr, unsigned int type) {
640 // See Assembler::nop(type).
641 DCHECK_LT(type, 32);
642 uint32_t opcode = GetOpcodeField(instr);
643 uint32_t function = GetFunctionField(instr);
644 uint32_t rt = GetRt(instr);
645 uint32_t rd = GetRd(instr);
646 uint32_t sa = GetSa(instr);
647
648 // Traditional mips nop == sll(zero_reg, zero_reg, 0)
649 // When marking non-zero type, use sll(zero_reg, at, type)
650 // to avoid use of mips ssnop and ehb special encodings
651 // of the sll instruction.
652
653 Register nop_rt_reg = (type == 0) ? zero_reg : at;
654 bool ret = (opcode == SPECIAL && function == SLL &&
655 rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
656 rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
657
658 return ret;
659 }
660
GetBranchOffset(Instr instr)661 int32_t Assembler::GetBranchOffset(Instr instr) {
662 DCHECK(IsBranch(instr));
663 return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
664 }
665
IsLw(Instr instr)666 bool Assembler::IsLw(Instr instr) {
667 return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
668 }
669
GetLwOffset(Instr instr)670 int16_t Assembler::GetLwOffset(Instr instr) {
671 DCHECK(IsLw(instr));
672 return ((instr & kImm16Mask));
673 }
674
SetLwOffset(Instr instr,int16_t offset)675 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
676 DCHECK(IsLw(instr));
677
678 // We actually create a new lw instruction based on the original one.
679 Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
680 (offset & kImm16Mask);
681
682 return temp_instr;
683 }
684
IsSw(Instr instr)685 bool Assembler::IsSw(Instr instr) {
686 return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
687 }
688
SetSwOffset(Instr instr,int16_t offset)689 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
690 DCHECK(IsSw(instr));
691 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
692 }
693
IsAddImmediate(Instr instr)694 bool Assembler::IsAddImmediate(Instr instr) {
695 return ((instr & kOpcodeMask) == ADDIU);
696 }
697
SetAddImmediateOffset(Instr instr,int16_t offset)698 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
699 DCHECK(IsAddImmediate(instr));
700 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
701 }
702
IsAndImmediate(Instr instr)703 bool Assembler::IsAndImmediate(Instr instr) {
704 return GetOpcodeField(instr) == ANDI;
705 }
706
OffsetSizeInBits(Instr instr)707 static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
708 if (IsMipsArchVariant(kMips32r6)) {
709 if (Assembler::IsBc(instr)) {
710 return Assembler::OffsetSize::kOffset26;
711 } else if (Assembler::IsBzc(instr)) {
712 return Assembler::OffsetSize::kOffset21;
713 }
714 }
715 return Assembler::OffsetSize::kOffset16;
716 }
717
AddBranchOffset(int pos,Instr instr)718 static inline int32_t AddBranchOffset(int pos, Instr instr) {
719 int bits = OffsetSizeInBits(instr);
720 const int32_t mask = (1 << bits) - 1;
721 bits = 32 - bits;
722
723 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
724 // the compiler uses arithmetic shifts for signed integers.
725 int32_t imm = ((instr & mask) << bits) >> (bits - 2);
726
727 if (imm == kEndOfChain) {
728 // EndOfChain sentinel is returned directly, not relative to pc or pos.
729 return kEndOfChain;
730 } else {
731 return pos + Assembler::kBranchPCOffset + imm;
732 }
733 }
734
CreateTargetAddress(Instr instr_lui,Instr instr_jic)735 uint32_t Assembler::CreateTargetAddress(Instr instr_lui, Instr instr_jic) {
736 DCHECK(IsLui(instr_lui) && IsJicOrJialc(instr_jic));
737 int16_t jic_offset = GetImmediate16(instr_jic);
738 int16_t lui_offset = GetImmediate16(instr_lui);
739
740 if (jic_offset < 0) {
741 lui_offset += kImm16Mask;
742 }
743 uint32_t lui_offset_u = (static_cast<uint32_t>(lui_offset)) << kLuiShift;
744 uint32_t jic_offset_u = static_cast<uint32_t>(jic_offset) & kImm16Mask;
745
746 return lui_offset_u | jic_offset_u;
747 }
748
749 // Use just lui and jic instructions. Insert lower part of the target address in
750 // jic offset part. Since jic sign-extends offset and then add it with register,
751 // before that addition, difference between upper part of the target address and
752 // upper part of the sign-extended offset (0xFFFF or 0x0000), will be inserted
753 // in jic register with lui instruction.
UnpackTargetAddress(uint32_t address,int16_t * lui_offset,int16_t * jic_offset)754 void Assembler::UnpackTargetAddress(uint32_t address, int16_t* lui_offset,
755 int16_t* jic_offset) {
756 *lui_offset = (address & kHiMask) >> kLuiShift;
757 *jic_offset = address & kLoMask;
758
759 if (*jic_offset < 0) {
760 *lui_offset -= kImm16Mask;
761 }
762 }
763
UnpackTargetAddressUnsigned(uint32_t address,uint32_t * lui_offset,uint32_t * jic_offset)764 void Assembler::UnpackTargetAddressUnsigned(uint32_t address,
765 uint32_t* lui_offset,
766 uint32_t* jic_offset) {
767 int16_t lui_offset16 = (address & kHiMask) >> kLuiShift;
768 int16_t jic_offset16 = address & kLoMask;
769
770 if (jic_offset16 < 0) {
771 lui_offset16 -= kImm16Mask;
772 }
773 *lui_offset = static_cast<uint32_t>(lui_offset16) & kImm16Mask;
774 *jic_offset = static_cast<uint32_t>(jic_offset16) & kImm16Mask;
775 }
776
PatchLuiOriImmediate(int pc,int32_t imm,Instr instr_lui,Address offset_lui,Instr instr_ori,Address offset_ori)777 void Assembler::PatchLuiOriImmediate(int pc, int32_t imm, Instr instr_lui,
778 Address offset_lui, Instr instr_ori,
779 Address offset_ori) {
780 DCHECK(IsLui(instr_lui));
781 DCHECK(IsOri(instr_ori));
782 instr_at_put(static_cast<int>(pc + offset_lui),
783 instr_lui | ((imm >> kLuiShift) & kImm16Mask));
784 instr_at_put(static_cast<int>(pc + offset_ori),
785 instr_ori | (imm & kImm16Mask));
786 }
787
PatchLuiOriImmediate(Address pc,int32_t imm,Instr instr_lui,Address offset_lui,Instr instr_ori,Address offset_ori)788 void Assembler::PatchLuiOriImmediate(Address pc, int32_t imm, Instr instr_lui,
789 Address offset_lui, Instr instr_ori,
790 Address offset_ori) {
791 DCHECK(IsLui(instr_lui));
792 DCHECK(IsOri(instr_ori));
793 instr_at_put(pc + offset_lui, instr_lui | ((imm >> kLuiShift) & kImm16Mask));
794 instr_at_put(pc + offset_ori, instr_ori | (imm & kImm16Mask));
795 }
796
GetLuiOriImmediate(Instr instr_lui,Instr instr_ori)797 int32_t Assembler::GetLuiOriImmediate(Instr instr_lui, Instr instr_ori) {
798 DCHECK(IsLui(instr_lui));
799 DCHECK(IsOri(instr_ori));
800 int32_t imm;
801 imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
802 imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));
803 return imm;
804 }
805
target_at(int pos,bool is_internal)806 int Assembler::target_at(int pos, bool is_internal) {
807 Instr instr = instr_at(pos);
808 if (is_internal) {
809 if (instr == 0) {
810 return kEndOfChain;
811 } else {
812 int32_t instr_address = reinterpret_cast<int32_t>(buffer_start_ + pos);
813 int delta = static_cast<int>(instr_address - instr);
814 DCHECK(pos > delta);
815 return pos - delta;
816 }
817 }
818 if ((instr & ~kImm16Mask) == 0) {
819 // Emitted label constant, not part of a branch.
820 if (instr == 0) {
821 return kEndOfChain;
822 } else {
823 int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
824 return (imm18 + pos);
825 }
826 }
827 // Check we have a branch or jump instruction.
828 DCHECK(IsBranch(instr) || IsLui(instr) || IsMov(instr, t8, ra));
829 if (IsBranch(instr)) {
830 return AddBranchOffset(pos, instr);
831 } else if (IsMov(instr, t8, ra)) {
832 int32_t imm32;
833 Instr instr_lui = instr_at(pos + 2 * kInstrSize);
834 Instr instr_ori = instr_at(pos + 3 * kInstrSize);
835 imm32 = GetLuiOriImmediate(instr_lui, instr_ori);
836 if (imm32 == kEndOfJumpChain) {
837 // EndOfChain sentinel is returned directly, not relative to pc or pos.
838 return kEndOfChain;
839 }
840 return pos + Assembler::kLongBranchPCOffset + imm32;
841 } else {
842 DCHECK(IsLui(instr));
843 if (IsNal(instr_at(pos + kInstrSize))) {
844 int32_t imm32;
845 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
846 Instr instr_ori = instr_at(pos + 2 * kInstrSize);
847 imm32 = GetLuiOriImmediate(instr_lui, instr_ori);
848 if (imm32 == kEndOfJumpChain) {
849 // EndOfChain sentinel is returned directly, not relative to pc or pos.
850 return kEndOfChain;
851 }
852 return pos + Assembler::kLongBranchPCOffset + imm32;
853 } else {
854 Instr instr1 = instr_at(pos + 0 * kInstrSize);
855 Instr instr2 = instr_at(pos + 1 * kInstrSize);
856 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
857 int32_t imm;
858 if (IsJicOrJialc(instr2)) {
859 imm = CreateTargetAddress(instr1, instr2);
860 } else {
861 imm = GetLuiOriImmediate(instr1, instr2);
862 }
863
864 if (imm == kEndOfJumpChain) {
865 // EndOfChain sentinel is returned directly, not relative to pc or pos.
866 return kEndOfChain;
867 } else {
868 uint32_t instr_address = reinterpret_cast<int32_t>(buffer_start_ + pos);
869 int32_t delta = instr_address - imm;
870 DCHECK(pos > delta);
871 return pos - delta;
872 }
873 }
874 }
875 return 0;
876 }
877
SetBranchOffset(int32_t pos,int32_t target_pos,Instr instr)878 static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
879 Instr instr) {
880 int32_t bits = OffsetSizeInBits(instr);
881 int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
882 DCHECK_EQ(imm & 3, 0);
883 imm >>= 2;
884
885 const int32_t mask = (1 << bits) - 1;
886 instr &= ~mask;
887 DCHECK(is_intn(imm, bits));
888
889 return instr | (imm & mask);
890 }
891
target_at_put(int32_t pos,int32_t target_pos,bool is_internal)892 void Assembler::target_at_put(int32_t pos, int32_t target_pos,
893 bool is_internal) {
894 Instr instr = instr_at(pos);
895
896 if (is_internal) {
897 uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
898 instr_at_put(pos, imm);
899 return;
900 }
901 if ((instr & ~kImm16Mask) == 0) {
902 DCHECK(target_pos == kEndOfChain || target_pos >= 0);
903 // Emitted label constant, not part of a branch.
904 // Make label relative to Code pointer of generated Code object.
905 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
906 return;
907 }
908
909 DCHECK(IsBranch(instr) || IsLui(instr) || IsMov(instr, t8, ra));
910 if (IsBranch(instr)) {
911 instr = SetBranchOffset(pos, target_pos, instr);
912 instr_at_put(pos, instr);
913 } else if (IsMov(instr, t8, ra)) {
914 Instr instr_lui = instr_at(pos + 2 * kInstrSize);
915 Instr instr_ori = instr_at(pos + 3 * kInstrSize);
916 DCHECK(IsLui(instr_lui));
917 DCHECK(IsOri(instr_ori));
918
919 int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
920
921 if (is_int16(imm_short)) {
922 // Optimize by converting to regular branch with 16-bit
923 // offset
924 Instr instr_b = BEQ;
925 instr_b = SetBranchOffset(pos, target_pos, instr_b);
926
927 Instr instr_j = instr_at(pos + 5 * kInstrSize);
928 Instr instr_branch_delay;
929
930 if (IsJump(instr_j)) {
931 // Case when branch delay slot is protected.
932 instr_branch_delay = nopInstr;
933 } else {
934 // Case when branch delay slot is used.
935 instr_branch_delay = instr_at(pos + 7 * kInstrSize);
936 }
937 instr_at_put(pos + 0 * kInstrSize, instr_b);
938 instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
939 } else {
940 int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
941 DCHECK_EQ(imm & 3, 0);
942
943 instr_lui &= ~kImm16Mask;
944 instr_ori &= ~kImm16Mask;
945
946 PatchLuiOriImmediate(pos, imm, instr_lui, 2 * kInstrSize, instr_ori,
947 3 * kInstrSize);
948 }
949 } else {
950 DCHECK(IsLui(instr));
951 if (IsNal(instr_at(pos + kInstrSize))) {
952 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
953 Instr instr_ori = instr_at(pos + 2 * kInstrSize);
954 DCHECK(IsLui(instr_lui));
955 DCHECK(IsOri(instr_ori));
956 int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
957 DCHECK_EQ(imm & 3, 0);
958 if (is_int16(imm + Assembler::kLongBranchPCOffset -
959 Assembler::kBranchPCOffset)) {
960 // Optimize by converting to regular branch and link with 16-bit
961 // offset.
962 Instr instr_b = REGIMM | BGEZAL; // Branch and link.
963 instr_b = SetBranchOffset(pos, target_pos, instr_b);
964 // Correct ra register to point to one instruction after jalr from
965 // TurboAssembler::BranchAndLinkLong.
966 Instr instr_a = ADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
967 kOptimizedBranchAndLinkLongReturnOffset;
968
969 instr_at_put(pos, instr_b);
970 instr_at_put(pos + 1 * kInstrSize, instr_a);
971 } else {
972 instr_lui &= ~kImm16Mask;
973 instr_ori &= ~kImm16Mask;
974 PatchLuiOriImmediate(pos, imm, instr_lui, 0 * kInstrSize, instr_ori,
975 2 * kInstrSize);
976 }
977 } else {
978 Instr instr1 = instr_at(pos + 0 * kInstrSize);
979 Instr instr2 = instr_at(pos + 1 * kInstrSize);
980 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
981 uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
982 DCHECK_EQ(imm & 3, 0);
983 DCHECK(IsLui(instr1) && (IsJicOrJialc(instr2) || IsOri(instr2)));
984 instr1 &= ~kImm16Mask;
985 instr2 &= ~kImm16Mask;
986
987 if (IsJicOrJialc(instr2)) {
988 uint32_t lui_offset_u, jic_offset_u;
989 UnpackTargetAddressUnsigned(imm, &lui_offset_u, &jic_offset_u);
990 instr_at_put(pos + 0 * kInstrSize, instr1 | lui_offset_u);
991 instr_at_put(pos + 1 * kInstrSize, instr2 | jic_offset_u);
992 } else {
993 PatchLuiOriImmediate(pos, imm, instr1, 0 * kInstrSize, instr2,
994 1 * kInstrSize);
995 }
996 }
997 }
998 }
999
print(const Label * L)1000 void Assembler::print(const Label* L) {
1001 if (L->is_unused()) {
1002 PrintF("unused label\n");
1003 } else if (L->is_bound()) {
1004 PrintF("bound label to %d\n", L->pos());
1005 } else if (L->is_linked()) {
1006 Label l;
1007 l.link_to(L->pos());
1008 PrintF("unbound label");
1009 while (l.is_linked()) {
1010 PrintF("@ %d ", l.pos());
1011 Instr instr = instr_at(l.pos());
1012 if ((instr & ~kImm16Mask) == 0) {
1013 PrintF("value\n");
1014 } else {
1015 PrintF("%d\n", instr);
1016 }
1017 next(&l, is_internal_reference(&l));
1018 }
1019 } else {
1020 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1021 }
1022 }
1023
bind_to(Label * L,int pos)1024 void Assembler::bind_to(Label* L, int pos) {
1025 DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
1026 int32_t trampoline_pos = kInvalidSlotPos;
1027 bool is_internal = false;
1028 if (L->is_linked() && !trampoline_emitted_) {
1029 unbound_labels_count_--;
1030 if (!is_internal_reference(L)) {
1031 next_buffer_check_ += kTrampolineSlotsSize;
1032 }
1033 }
1034
1035 while (L->is_linked()) {
1036 int32_t fixup_pos = L->pos();
1037 int32_t dist = pos - fixup_pos;
1038 is_internal = is_internal_reference(L);
1039 next(L, is_internal); // Call next before overwriting link with target at
1040 // fixup_pos.
1041 Instr instr = instr_at(fixup_pos);
1042 if (is_internal) {
1043 target_at_put(fixup_pos, pos, is_internal);
1044 } else {
1045 if (IsBranch(instr)) {
1046 int branch_offset = BranchOffset(instr);
1047 if (dist > branch_offset) {
1048 if (trampoline_pos == kInvalidSlotPos) {
1049 trampoline_pos = get_trampoline_entry(fixup_pos);
1050 CHECK_NE(trampoline_pos, kInvalidSlotPos);
1051 }
1052 CHECK((trampoline_pos - fixup_pos) <= branch_offset);
1053 target_at_put(fixup_pos, trampoline_pos, false);
1054 fixup_pos = trampoline_pos;
1055 }
1056 target_at_put(fixup_pos, pos, false);
1057 } else {
1058 target_at_put(fixup_pos, pos, false);
1059 }
1060 }
1061 }
1062 L->bind_to(pos);
1063
1064 // Keep track of the last bound label so we don't eliminate any instructions
1065 // before a bound label.
1066 if (pos > last_bound_pos_) last_bound_pos_ = pos;
1067 }
1068
bind(Label * L)1069 void Assembler::bind(Label* L) {
1070 DCHECK(!L->is_bound()); // Label can only be bound once.
1071 bind_to(L, pc_offset());
1072 }
1073
next(Label * L,bool is_internal)1074 void Assembler::next(Label* L, bool is_internal) {
1075 DCHECK(L->is_linked());
1076 int link = target_at(L->pos(), is_internal);
1077 if (link == kEndOfChain) {
1078 L->Unuse();
1079 } else {
1080 DCHECK_GE(link, 0);
1081 L->link_to(link);
1082 }
1083 }
1084
is_near(Label * L)1085 bool Assembler::is_near(Label* L) {
1086 DCHECK(L->is_bound());
1087 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
1088 }
1089
is_near(Label * L,OffsetSize bits)1090 bool Assembler::is_near(Label* L, OffsetSize bits) {
1091 if (L == nullptr || !L->is_bound()) return true;
1092 return pc_offset() - L->pos() < (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize;
1093 }
1094
is_near_branch(Label * L)1095 bool Assembler::is_near_branch(Label* L) {
1096 DCHECK(L->is_bound());
1097 return IsMipsArchVariant(kMips32r6) ? is_near_r6(L) : is_near_pre_r6(L);
1098 }
1099
BranchOffset(Instr instr)1100 int Assembler::BranchOffset(Instr instr) {
1101 // At pre-R6 and for other R6 branches the offset is 16 bits.
1102 int bits = OffsetSize::kOffset16;
1103
1104 if (IsMipsArchVariant(kMips32r6)) {
1105 uint32_t opcode = GetOpcodeField(instr);
1106 switch (opcode) {
1107 // Checks BC or BALC.
1108 case BC:
1109 case BALC:
1110 bits = OffsetSize::kOffset26;
1111 break;
1112
1113 // Checks BEQZC or BNEZC.
1114 case POP66:
1115 case POP76:
1116 if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
1117 break;
1118 default:
1119 break;
1120 }
1121 }
1122
1123 return (1 << (bits + 2 - 1)) - 1;
1124 }
1125
1126 // We have to use a temporary register for things that can be relocated even
1127 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
1128 // space. There is no guarantee that the relocated location can be similarly
1129 // encoded.
MustUseReg(RelocInfo::Mode rmode)1130 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
1131 return !RelocInfo::IsNone(rmode);
1132 }
1133
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)1134 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1135 Register rd, uint16_t sa,
1136 SecondaryField func) {
1137 DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1138 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1139 (rd.code() << kRdShift) | (sa << kSaShift) | func;
1140 emit(instr);
1141 }
1142
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)1143 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1144 uint16_t msb, uint16_t lsb,
1145 SecondaryField func) {
1146 DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1147 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1148 (msb << kRdShift) | (lsb << kSaShift) | func;
1149 emit(instr);
1150 }
1151
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1152 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
1153 FPURegister ft, FPURegister fs, FPURegister fd,
1154 SecondaryField func) {
1155 DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1156 Instr instr = opcode | fmt | (ft.code() << kFtShift) |
1157 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1158 emit(instr);
1159 }
1160
GenInstrRegister(Opcode opcode,FPURegister fr,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1161 void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1162 FPURegister fs, FPURegister fd,
1163 SecondaryField func) {
1164 DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1165 Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
1166 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1167 emit(instr);
1168 }
1169
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)1170 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1171 FPURegister fs, FPURegister fd,
1172 SecondaryField func) {
1173 DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1174 Instr instr = opcode | fmt | (rt.code() << kRtShift) |
1175 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1176 emit(instr);
1177 }
1178
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)1179 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1180 FPUControlRegister fs, SecondaryField func) {
1181 DCHECK(fs.is_valid() && rt.is_valid());
1182 Instr instr =
1183 opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1184 emit(instr);
1185 }
1186
1187 // Instructions with immediate value.
1188 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j,CompactBranchType is_compact_branch)1189 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
1190 int32_t j,
1191 CompactBranchType is_compact_branch) {
1192 DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1193 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1194 (j & kImm16Mask);
1195 emit(instr, is_compact_branch);
1196 }
1197
GenInstrImmediate(Opcode opcode,Register base,Register rt,int32_t offset9,int bit6,SecondaryField func)1198 void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
1199 int32_t offset9, int bit6,
1200 SecondaryField func) {
1201 DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
1202 is_uint1(bit6));
1203 Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
1204 ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
1205 func;
1206 emit(instr);
1207 }
1208
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j,CompactBranchType is_compact_branch)1209 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
1210 int32_t j,
1211 CompactBranchType is_compact_branch) {
1212 DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1213 Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1214 emit(instr, is_compact_branch);
1215 }
1216
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j,CompactBranchType is_compact_branch)1217 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
1218 int32_t j,
1219 CompactBranchType is_compact_branch) {
1220 DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1221 Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
1222 (j & kImm16Mask);
1223 emit(instr, is_compact_branch);
1224 }
1225
GenInstrImmediate(Opcode opcode,Register rs,int32_t offset21,CompactBranchType is_compact_branch)1226 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
1227 CompactBranchType is_compact_branch) {
1228 DCHECK(rs.is_valid() && (is_int21(offset21)));
1229 Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1230 emit(instr, is_compact_branch);
1231 }
1232
GenInstrImmediate(Opcode opcode,Register rs,uint32_t offset21)1233 void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
1234 uint32_t offset21) {
1235 DCHECK(rs.is_valid() && (is_uint21(offset21)));
1236 Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1237 emit(instr);
1238 }
1239
GenInstrImmediate(Opcode opcode,int32_t offset26,CompactBranchType is_compact_branch)1240 void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
1241 CompactBranchType is_compact_branch) {
1242 DCHECK(is_int26(offset26));
1243 Instr instr = opcode | (offset26 & kImm26Mask);
1244 emit(instr, is_compact_branch);
1245 }
1246
GenInstrJump(Opcode opcode,uint32_t address)1247 void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
1248 BlockTrampolinePoolScope block_trampoline_pool(this);
1249 DCHECK(is_uint26(address));
1250 Instr instr = opcode | address;
1251 emit(instr);
1252 BlockTrampolinePoolFor(1); // For associated delay slot.
1253 }
1254
1255 // MSA instructions
GenInstrMsaI8(SecondaryField operation,uint32_t imm8,MSARegister ws,MSARegister wd)1256 void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
1257 MSARegister ws, MSARegister wd) {
1258 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1259 DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
1260 Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
1261 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1262 emit(instr);
1263 }
1264
GenInstrMsaI5(SecondaryField operation,SecondaryField df,int32_t imm5,MSARegister ws,MSARegister wd)1265 void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
1266 int32_t imm5, MSARegister ws, MSARegister wd) {
1267 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1268 DCHECK(ws.is_valid() && wd.is_valid());
1269 DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
1270 (operation == CEQI) || (operation == CLTI_S) ||
1271 (operation == CLEI_S)
1272 ? is_int5(imm5)
1273 : is_uint5(imm5));
1274 Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
1275 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1276 emit(instr);
1277 }
1278
GenInstrMsaBit(SecondaryField operation,SecondaryField df,uint32_t m,MSARegister ws,MSARegister wd)1279 void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
1280 uint32_t m, MSARegister ws, MSARegister wd) {
1281 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1282 DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
1283 Instr instr = MSA | operation | df | (m << kWtShift) |
1284 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1285 emit(instr);
1286 }
1287
GenInstrMsaI10(SecondaryField operation,SecondaryField df,int32_t imm10,MSARegister wd)1288 void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1289 int32_t imm10, MSARegister wd) {
1290 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1291 DCHECK(wd.is_valid() && is_int10(imm10));
1292 Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
1293 (wd.code() << kWdShift);
1294 emit(instr);
1295 }
1296
1297 template <typename RegType>
GenInstrMsa3R(SecondaryField operation,SecondaryField df,RegType t,MSARegister ws,MSARegister wd)1298 void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
1299 RegType t, MSARegister ws, MSARegister wd) {
1300 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1301 DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
1302 Instr instr = MSA | operation | df | (t.code() << kWtShift) |
1303 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1304 emit(instr);
1305 }
1306
1307 template <typename DstType, typename SrcType>
GenInstrMsaElm(SecondaryField operation,SecondaryField df,uint32_t n,SrcType src,DstType dst)1308 void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
1309 uint32_t n, SrcType src, DstType dst) {
1310 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1311 DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
1312 Instr instr = MSA | operation | df | (n << kWtShift) |
1313 (src.code() << kWsShift) | (dst.code() << kWdShift) |
1314 MSA_ELM_MINOR;
1315 emit(instr);
1316 }
1317
GenInstrMsa3RF(SecondaryField operation,uint32_t df,MSARegister wt,MSARegister ws,MSARegister wd)1318 void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
1319 MSARegister wt, MSARegister ws, MSARegister wd) {
1320 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1321 DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1322 DCHECK_LT(df, 2);
1323 Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
1324 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1325 emit(instr);
1326 }
1327
GenInstrMsaVec(SecondaryField operation,MSARegister wt,MSARegister ws,MSARegister wd)1328 void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
1329 MSARegister ws, MSARegister wd) {
1330 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1331 DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1332 Instr instr = MSA | operation | (wt.code() << kWtShift) |
1333 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1334 MSA_VEC_2R_2RF_MINOR;
1335 emit(instr);
1336 }
1337
GenInstrMsaMI10(SecondaryField operation,int32_t s10,Register rs,MSARegister wd)1338 void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
1339 Register rs, MSARegister wd) {
1340 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1341 DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
1342 Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
1343 (rs.code() << kWsShift) | (wd.code() << kWdShift);
1344 emit(instr);
1345 }
1346
GenInstrMsa2R(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1347 void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1348 MSARegister ws, MSARegister wd) {
1349 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1350 DCHECK(ws.is_valid() && wd.is_valid());
1351 Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
1352 (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
1353 emit(instr);
1354 }
1355
GenInstrMsa2RF(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1356 void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1357 MSARegister ws, MSARegister wd) {
1358 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1359 DCHECK(ws.is_valid() && wd.is_valid());
1360 Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
1361 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1362 MSA_VEC_2R_2RF_MINOR;
1363 emit(instr);
1364 }
1365
GenInstrMsaBranch(SecondaryField operation,MSARegister wt,int32_t offset16)1366 void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1367 int32_t offset16) {
1368 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1369 DCHECK(wt.is_valid() && is_int16(offset16));
1370 BlockTrampolinePoolScope block_trampoline_pool(this);
1371 Instr instr =
1372 COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
1373 emit(instr);
1374 BlockTrampolinePoolFor(1); // For associated delay slot.
1375 }
1376
1377 // Returns the next free trampoline entry.
get_trampoline_entry(int32_t pos)1378 int32_t Assembler::get_trampoline_entry(int32_t pos) {
1379 int32_t trampoline_entry = kInvalidSlotPos;
1380
1381 if (!internal_trampoline_exception_) {
1382 if (trampoline_.start() > pos) {
1383 trampoline_entry = trampoline_.take_slot();
1384 }
1385
1386 if (kInvalidSlotPos == trampoline_entry) {
1387 internal_trampoline_exception_ = true;
1388 }
1389 }
1390 return trampoline_entry;
1391 }
1392
jump_address(Label * L)1393 uint32_t Assembler::jump_address(Label* L) {
1394 int32_t target_pos;
1395
1396 if (L->is_bound()) {
1397 target_pos = L->pos();
1398 } else {
1399 if (L->is_linked()) {
1400 target_pos = L->pos(); // L's link.
1401 L->link_to(pc_offset());
1402 } else {
1403 L->link_to(pc_offset());
1404 return kEndOfJumpChain;
1405 }
1406 }
1407
1408 uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
1409 DCHECK_EQ(imm & 3, 0);
1410
1411 return imm;
1412 }
1413
branch_long_offset(Label * L)1414 uint32_t Assembler::branch_long_offset(Label* L) {
1415 int32_t target_pos;
1416
1417 if (L->is_bound()) {
1418 target_pos = L->pos();
1419 } else {
1420 if (L->is_linked()) {
1421 target_pos = L->pos(); // L's link.
1422 L->link_to(pc_offset());
1423 } else {
1424 L->link_to(pc_offset());
1425 return kEndOfJumpChain;
1426 }
1427 }
1428
1429 DCHECK(is_int32(static_cast<int64_t>(target_pos) -
1430 static_cast<int64_t>(pc_offset() + kLongBranchPCOffset)));
1431 int32_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
1432 DCHECK_EQ(offset & 3, 0);
1433
1434 return offset;
1435 }
1436
branch_offset_helper(Label * L,OffsetSize bits)1437 int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1438 int32_t target_pos;
1439 int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1440
1441 if (L->is_bound()) {
1442 target_pos = L->pos();
1443 } else {
1444 if (L->is_linked()) {
1445 target_pos = L->pos();
1446 L->link_to(pc_offset() + pad);
1447 } else {
1448 L->link_to(pc_offset() + pad);
1449 if (!trampoline_emitted_) {
1450 unbound_labels_count_++;
1451 next_buffer_check_ -= kTrampolineSlotsSize;
1452 }
1453 return kEndOfChain;
1454 }
1455 }
1456
1457 int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
1458 DCHECK(is_intn(offset, bits + 2));
1459 DCHECK_EQ(offset & 3, 0);
1460
1461 return offset;
1462 }
1463
label_at_put(Label * L,int at_offset)1464 void Assembler::label_at_put(Label* L, int at_offset) {
1465 int target_pos;
1466 if (L->is_bound()) {
1467 target_pos = L->pos();
1468 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1469 } else {
1470 if (L->is_linked()) {
1471 target_pos = L->pos(); // L's link.
1472 int32_t imm18 = target_pos - at_offset;
1473 DCHECK_EQ(imm18 & 3, 0);
1474 int32_t imm16 = imm18 >> 2;
1475 DCHECK(is_int16(imm16));
1476 instr_at_put(at_offset, (imm16 & kImm16Mask));
1477 } else {
1478 target_pos = kEndOfChain;
1479 instr_at_put(at_offset, 0);
1480 if (!trampoline_emitted_) {
1481 unbound_labels_count_++;
1482 next_buffer_check_ -= kTrampolineSlotsSize;
1483 }
1484 }
1485 L->link_to(at_offset);
1486 }
1487 }
1488
1489 //------- Branch and jump instructions --------
1490
b(int16_t offset)1491 void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
1492
bal(int16_t offset)1493 void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
1494
bc(int32_t offset)1495 void Assembler::bc(int32_t offset) {
1496 DCHECK(IsMipsArchVariant(kMips32r6));
1497 GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1498 }
1499
balc(int32_t offset)1500 void Assembler::balc(int32_t offset) {
1501 DCHECK(IsMipsArchVariant(kMips32r6));
1502 GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1503 }
1504
beq(Register rs,Register rt,int16_t offset)1505 void Assembler::beq(Register rs, Register rt, int16_t offset) {
1506 BlockTrampolinePoolScope block_trampoline_pool(this);
1507 GenInstrImmediate(BEQ, rs, rt, offset);
1508 BlockTrampolinePoolFor(1); // For associated delay slot.
1509 }
1510
bgez(Register rs,int16_t offset)1511 void Assembler::bgez(Register rs, int16_t offset) {
1512 BlockTrampolinePoolScope block_trampoline_pool(this);
1513 GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1514 BlockTrampolinePoolFor(1); // For associated delay slot.
1515 }
1516
bgezc(Register rt,int16_t offset)1517 void Assembler::bgezc(Register rt, int16_t offset) {
1518 DCHECK(IsMipsArchVariant(kMips32r6));
1519 DCHECK(rt != zero_reg);
1520 GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1521 }
1522
bgeuc(Register rs,Register rt,int16_t offset)1523 void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
1524 DCHECK(IsMipsArchVariant(kMips32r6));
1525 DCHECK(rs != zero_reg);
1526 DCHECK(rt != zero_reg);
1527 DCHECK(rs.code() != rt.code());
1528 GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1529 }
1530
bgec(Register rs,Register rt,int16_t offset)1531 void Assembler::bgec(Register rs, Register rt, int16_t offset) {
1532 DCHECK(IsMipsArchVariant(kMips32r6));
1533 DCHECK(rs != zero_reg);
1534 DCHECK(rt != zero_reg);
1535 DCHECK(rs.code() != rt.code());
1536 GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1537 }
1538
bgezal(Register rs,int16_t offset)1539 void Assembler::bgezal(Register rs, int16_t offset) {
1540 DCHECK(!IsMipsArchVariant(kMips32r6) || rs == zero_reg);
1541 DCHECK(rs != ra);
1542 BlockTrampolinePoolScope block_trampoline_pool(this);
1543 GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1544 BlockTrampolinePoolFor(1); // For associated delay slot.
1545 }
1546
bgtz(Register rs,int16_t offset)1547 void Assembler::bgtz(Register rs, int16_t offset) {
1548 BlockTrampolinePoolScope block_trampoline_pool(this);
1549 GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1550 BlockTrampolinePoolFor(1); // For associated delay slot.
1551 }
1552
bgtzc(Register rt,int16_t offset)1553 void Assembler::bgtzc(Register rt, int16_t offset) {
1554 DCHECK(IsMipsArchVariant(kMips32r6));
1555 DCHECK(rt != zero_reg);
1556 GenInstrImmediate(BGTZL, zero_reg, rt, offset,
1557 CompactBranchType::COMPACT_BRANCH);
1558 }
1559
blez(Register rs,int16_t offset)1560 void Assembler::blez(Register rs, int16_t offset) {
1561 BlockTrampolinePoolScope block_trampoline_pool(this);
1562 GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1563 BlockTrampolinePoolFor(1); // For associated delay slot.
1564 }
1565
blezc(Register rt,int16_t offset)1566 void Assembler::blezc(Register rt, int16_t offset) {
1567 DCHECK(IsMipsArchVariant(kMips32r6));
1568 DCHECK(rt != zero_reg);
1569 GenInstrImmediate(BLEZL, zero_reg, rt, offset,
1570 CompactBranchType::COMPACT_BRANCH);
1571 }
1572
bltzc(Register rt,int16_t offset)1573 void Assembler::bltzc(Register rt, int16_t offset) {
1574 DCHECK(IsMipsArchVariant(kMips32r6));
1575 DCHECK(rt != zero_reg);
1576 GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1577 }
1578
bltuc(Register rs,Register rt,int16_t offset)1579 void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
1580 DCHECK(IsMipsArchVariant(kMips32r6));
1581 DCHECK(rs != zero_reg);
1582 DCHECK(rt != zero_reg);
1583 DCHECK(rs.code() != rt.code());
1584 GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1585 }
1586
bltc(Register rs,Register rt,int16_t offset)1587 void Assembler::bltc(Register rs, Register rt, int16_t offset) {
1588 DCHECK(IsMipsArchVariant(kMips32r6));
1589 DCHECK(rs != zero_reg);
1590 DCHECK(rt != zero_reg);
1591 DCHECK(rs.code() != rt.code());
1592 GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1593 }
1594
bltz(Register rs,int16_t offset)1595 void Assembler::bltz(Register rs, int16_t offset) {
1596 BlockTrampolinePoolScope block_trampoline_pool(this);
1597 GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1598 BlockTrampolinePoolFor(1); // For associated delay slot.
1599 }
1600
bltzal(Register rs,int16_t offset)1601 void Assembler::bltzal(Register rs, int16_t offset) {
1602 DCHECK(!IsMipsArchVariant(kMips32r6) || rs == zero_reg);
1603 DCHECK(rs != ra);
1604 BlockTrampolinePoolScope block_trampoline_pool(this);
1605 GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1606 BlockTrampolinePoolFor(1); // For associated delay slot.
1607 }
1608
bne(Register rs,Register rt,int16_t offset)1609 void Assembler::bne(Register rs, Register rt, int16_t offset) {
1610 BlockTrampolinePoolScope block_trampoline_pool(this);
1611 GenInstrImmediate(BNE, rs, rt, offset);
1612 BlockTrampolinePoolFor(1); // For associated delay slot.
1613 }
1614
bovc(Register rs,Register rt,int16_t offset)1615 void Assembler::bovc(Register rs, Register rt, int16_t offset) {
1616 DCHECK(IsMipsArchVariant(kMips32r6));
1617 if (rs.code() >= rt.code()) {
1618 GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1619 } else {
1620 GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1621 }
1622 }
1623
bnvc(Register rs,Register rt,int16_t offset)1624 void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
1625 DCHECK(IsMipsArchVariant(kMips32r6));
1626 if (rs.code() >= rt.code()) {
1627 GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1628 } else {
1629 GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1630 }
1631 }
1632
blezalc(Register rt,int16_t offset)1633 void Assembler::blezalc(Register rt, int16_t offset) {
1634 DCHECK(IsMipsArchVariant(kMips32r6));
1635 DCHECK(rt != zero_reg);
1636 DCHECK(rt != ra);
1637 GenInstrImmediate(BLEZ, zero_reg, rt, offset,
1638 CompactBranchType::COMPACT_BRANCH);
1639 }
1640
bgezalc(Register rt,int16_t offset)1641 void Assembler::bgezalc(Register rt, int16_t offset) {
1642 DCHECK(IsMipsArchVariant(kMips32r6));
1643 DCHECK(rt != zero_reg);
1644 DCHECK(rt != ra);
1645 GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1646 }
1647
bgezall(Register rs,int16_t offset)1648 void Assembler::bgezall(Register rs, int16_t offset) {
1649 DCHECK(!IsMipsArchVariant(kMips32r6));
1650 DCHECK(rs != zero_reg);
1651 DCHECK(rs != ra);
1652 BlockTrampolinePoolScope block_trampoline_pool(this);
1653 GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1654 BlockTrampolinePoolFor(1); // For associated delay slot.
1655 }
1656
bltzalc(Register rt,int16_t offset)1657 void Assembler::bltzalc(Register rt, int16_t offset) {
1658 DCHECK(IsMipsArchVariant(kMips32r6));
1659 DCHECK(rt != zero_reg);
1660 DCHECK(rt != ra);
1661 GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1662 }
1663
bgtzalc(Register rt,int16_t offset)1664 void Assembler::bgtzalc(Register rt, int16_t offset) {
1665 DCHECK(IsMipsArchVariant(kMips32r6));
1666 DCHECK(rt != zero_reg);
1667 DCHECK(rt != ra);
1668 GenInstrImmediate(BGTZ, zero_reg, rt, offset,
1669 CompactBranchType::COMPACT_BRANCH);
1670 }
1671
beqzalc(Register rt,int16_t offset)1672 void Assembler::beqzalc(Register rt, int16_t offset) {
1673 DCHECK(IsMipsArchVariant(kMips32r6));
1674 DCHECK(rt != zero_reg);
1675 DCHECK(rt != ra);
1676 GenInstrImmediate(ADDI, zero_reg, rt, offset,
1677 CompactBranchType::COMPACT_BRANCH);
1678 }
1679
bnezalc(Register rt,int16_t offset)1680 void Assembler::bnezalc(Register rt, int16_t offset) {
1681 DCHECK(IsMipsArchVariant(kMips32r6));
1682 DCHECK(rt != zero_reg);
1683 DCHECK(rt != ra);
1684 GenInstrImmediate(DADDI, zero_reg, rt, offset,
1685 CompactBranchType::COMPACT_BRANCH);
1686 }
1687
beqc(Register rs,Register rt,int16_t offset)1688 void Assembler::beqc(Register rs, Register rt, int16_t offset) {
1689 DCHECK(IsMipsArchVariant(kMips32r6));
1690 DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1691 if (rs.code() < rt.code()) {
1692 GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1693 } else {
1694 GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1695 }
1696 }
1697
beqzc(Register rs,int32_t offset)1698 void Assembler::beqzc(Register rs, int32_t offset) {
1699 DCHECK(IsMipsArchVariant(kMips32r6));
1700 DCHECK(rs != zero_reg);
1701 GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1702 }
1703
bnec(Register rs,Register rt,int16_t offset)1704 void Assembler::bnec(Register rs, Register rt, int16_t offset) {
1705 DCHECK(IsMipsArchVariant(kMips32r6));
1706 DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1707 if (rs.code() < rt.code()) {
1708 GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1709 } else {
1710 GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1711 }
1712 }
1713
bnezc(Register rs,int32_t offset)1714 void Assembler::bnezc(Register rs, int32_t offset) {
1715 DCHECK(IsMipsArchVariant(kMips32r6));
1716 DCHECK(rs != zero_reg);
1717 GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1718 }
1719
j(int32_t target)1720 void Assembler::j(int32_t target) {
1721 #if DEBUG
1722 // Get pc of delay slot.
1723 uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1724 bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
1725 (kImm26Bits + kImmFieldShift)) == 0;
1726 DCHECK(in_range && ((target & 3) == 0));
1727 #endif
1728 BlockTrampolinePoolScope block_trampoline_pool(this);
1729 GenInstrJump(J, (target >> 2) & kImm26Mask);
1730 BlockTrampolinePoolFor(1); // For associated delay slot.
1731 }
1732
jr(Register rs)1733 void Assembler::jr(Register rs) {
1734 if (!IsMipsArchVariant(kMips32r6)) {
1735 BlockTrampolinePoolScope block_trampoline_pool(this);
1736 GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1737 BlockTrampolinePoolFor(1); // For associated delay slot.
1738 } else {
1739 jalr(rs, zero_reg);
1740 }
1741 }
1742
jal(int32_t target)1743 void Assembler::jal(int32_t target) {
1744 #ifdef DEBUG
1745 // Get pc of delay slot.
1746 uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1747 bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
1748 (kImm26Bits + kImmFieldShift)) == 0;
1749 DCHECK(in_range && ((target & 3) == 0));
1750 #endif
1751 BlockTrampolinePoolScope block_trampoline_pool(this);
1752 GenInstrJump(JAL, (target >> 2) & kImm26Mask);
1753 BlockTrampolinePoolFor(1); // For associated delay slot.
1754 }
1755
jalr(Register rs,Register rd)1756 void Assembler::jalr(Register rs, Register rd) {
1757 DCHECK(rs.code() != rd.code());
1758 BlockTrampolinePoolScope block_trampoline_pool(this);
1759 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1760 BlockTrampolinePoolFor(1); // For associated delay slot.
1761 }
1762
jic(Register rt,int16_t offset)1763 void Assembler::jic(Register rt, int16_t offset) {
1764 DCHECK(IsMipsArchVariant(kMips32r6));
1765 GenInstrImmediate(POP66, zero_reg, rt, offset);
1766 }
1767
jialc(Register rt,int16_t offset)1768 void Assembler::jialc(Register rt, int16_t offset) {
1769 DCHECK(IsMipsArchVariant(kMips32r6));
1770 GenInstrImmediate(POP76, zero_reg, rt, offset);
1771 }
1772
1773 // -------Data-processing-instructions---------
1774
1775 // Arithmetic.
1776
addu(Register rd,Register rs,Register rt)1777 void Assembler::addu(Register rd, Register rs, Register rt) {
1778 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
1779 }
1780
addiu(Register rd,Register rs,int32_t j)1781 void Assembler::addiu(Register rd, Register rs, int32_t j) {
1782 GenInstrImmediate(ADDIU, rs, rd, j);
1783 }
1784
subu(Register rd,Register rs,Register rt)1785 void Assembler::subu(Register rd, Register rs, Register rt) {
1786 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1787 }
1788
mul(Register rd,Register rs,Register rt)1789 void Assembler::mul(Register rd, Register rs, Register rt) {
1790 if (!IsMipsArchVariant(kMips32r6)) {
1791 GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1792 } else {
1793 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
1794 }
1795 }
1796
mulu(Register rd,Register rs,Register rt)1797 void Assembler::mulu(Register rd, Register rs, Register rt) {
1798 DCHECK(IsMipsArchVariant(kMips32r6));
1799 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
1800 }
1801
muh(Register rd,Register rs,Register rt)1802 void Assembler::muh(Register rd, Register rs, Register rt) {
1803 DCHECK(IsMipsArchVariant(kMips32r6));
1804 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
1805 }
1806
muhu(Register rd,Register rs,Register rt)1807 void Assembler::muhu(Register rd, Register rs, Register rt) {
1808 DCHECK(IsMipsArchVariant(kMips32r6));
1809 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
1810 }
1811
mod(Register rd,Register rs,Register rt)1812 void Assembler::mod(Register rd, Register rs, Register rt) {
1813 DCHECK(IsMipsArchVariant(kMips32r6));
1814 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
1815 }
1816
modu(Register rd,Register rs,Register rt)1817 void Assembler::modu(Register rd, Register rs, Register rt) {
1818 DCHECK(IsMipsArchVariant(kMips32r6));
1819 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1820 }
1821
mult(Register rs,Register rt)1822 void Assembler::mult(Register rs, Register rt) {
1823 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1824 }
1825
multu(Register rs,Register rt)1826 void Assembler::multu(Register rs, Register rt) {
1827 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1828 }
1829
div(Register rs,Register rt)1830 void Assembler::div(Register rs, Register rt) {
1831 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1832 }
1833
div(Register rd,Register rs,Register rt)1834 void Assembler::div(Register rd, Register rs, Register rt) {
1835 DCHECK(IsMipsArchVariant(kMips32r6));
1836 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
1837 }
1838
divu(Register rs,Register rt)1839 void Assembler::divu(Register rs, Register rt) {
1840 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1841 }
1842
divu(Register rd,Register rs,Register rt)1843 void Assembler::divu(Register rd, Register rs, Register rt) {
1844 DCHECK(IsMipsArchVariant(kMips32r6));
1845 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
1846 }
1847
1848 // Logical.
1849
and_(Register rd,Register rs,Register rt)1850 void Assembler::and_(Register rd, Register rs, Register rt) {
1851 GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1852 }
1853
andi(Register rt,Register rs,int32_t j)1854 void Assembler::andi(Register rt, Register rs, int32_t j) {
1855 DCHECK(is_uint16(j));
1856 GenInstrImmediate(ANDI, rs, rt, j);
1857 }
1858
or_(Register rd,Register rs,Register rt)1859 void Assembler::or_(Register rd, Register rs, Register rt) {
1860 GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1861 }
1862
ori(Register rt,Register rs,int32_t j)1863 void Assembler::ori(Register rt, Register rs, int32_t j) {
1864 DCHECK(is_uint16(j));
1865 GenInstrImmediate(ORI, rs, rt, j);
1866 }
1867
xor_(Register rd,Register rs,Register rt)1868 void Assembler::xor_(Register rd, Register rs, Register rt) {
1869 GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1870 }
1871
xori(Register rt,Register rs,int32_t j)1872 void Assembler::xori(Register rt, Register rs, int32_t j) {
1873 DCHECK(is_uint16(j));
1874 GenInstrImmediate(XORI, rs, rt, j);
1875 }
1876
nor(Register rd,Register rs,Register rt)1877 void Assembler::nor(Register rd, Register rs, Register rt) {
1878 GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1879 }
1880
1881 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1882 void Assembler::sll(Register rd, Register rt, uint16_t sa,
1883 bool coming_from_nop) {
1884 // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1885 // generated using the sll instruction. They must be generated using
1886 // nop(int/NopMarkerTypes).
1887 DCHECK(coming_from_nop || !(rd == zero_reg && rt == zero_reg));
1888 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1889 }
1890
sllv(Register rd,Register rt,Register rs)1891 void Assembler::sllv(Register rd, Register rt, Register rs) {
1892 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1893 }
1894
srl(Register rd,Register rt,uint16_t sa)1895 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1896 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1897 }
1898
srlv(Register rd,Register rt,Register rs)1899 void Assembler::srlv(Register rd, Register rt, Register rs) {
1900 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1901 }
1902
sra(Register rd,Register rt,uint16_t sa)1903 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1904 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1905 }
1906
srav(Register rd,Register rt,Register rs)1907 void Assembler::srav(Register rd, Register rt, Register rs) {
1908 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1909 }
1910
rotr(Register rd,Register rt,uint16_t sa)1911 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1912 // Should be called via MacroAssembler::Ror.
1913 DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1914 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
1915 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1916 (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1917 emit(instr);
1918 }
1919
rotrv(Register rd,Register rt,Register rs)1920 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1921 // Should be called via MacroAssembler::Ror.
1922 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1923 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
1924 Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1925 (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1926 emit(instr);
1927 }
1928
lsa(Register rd,Register rt,Register rs,uint8_t sa)1929 void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
1930 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1931 DCHECK_LE(sa, 3);
1932 DCHECK(IsMipsArchVariant(kMips32r6));
1933 Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
1934 rd.code() << kRdShift | sa << kSaShift | LSA;
1935 emit(instr);
1936 }
1937
1938 // ------------Memory-instructions-------------
1939
AdjustBaseAndOffset(MemOperand * src,OffsetAccessType access_type,int second_access_add_to_offset)1940 void Assembler::AdjustBaseAndOffset(MemOperand* src,
1941 OffsetAccessType access_type,
1942 int second_access_add_to_offset) {
1943 // This method is used to adjust the base register and offset pair
1944 // for a load/store when the offset doesn't fit into int16_t.
1945 // It is assumed that 'base + offset' is sufficiently aligned for memory
1946 // operands that are machine word in size or smaller. For doubleword-sized
1947 // operands it's assumed that 'base' is a multiple of 8, while 'offset'
1948 // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
1949 // and spilled variables on the stack accessed relative to the stack
1950 // pointer register).
1951 // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
1952
1953 bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
1954 bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
1955 DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7.
1956
1957 // is_int16 must be passed a signed value, hence the static cast below.
1958 if (is_int16(src->offset()) &&
1959 (!two_accesses || is_int16(static_cast<int32_t>(
1960 src->offset() + second_access_add_to_offset)))) {
1961 // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
1962 // value) fits into int16_t.
1963 return;
1964 }
1965 UseScratchRegisterScope temps(this);
1966 Register scratch = temps.Acquire();
1967 DCHECK(src->rm() != scratch); // Must not overwrite the register 'base'
1968 // while loading 'offset'.
1969
1970 #ifdef DEBUG
1971 // Remember the "(mis)alignment" of 'offset', it will be checked at the end.
1972 uint32_t misalignment = src->offset() & (kDoubleSize - 1);
1973 #endif
1974
1975 // Do not load the whole 32-bit 'offset' if it can be represented as
1976 // a sum of two 16-bit signed offsets. This can save an instruction or two.
1977 // To simplify matters, only do this for a symmetric range of offsets from
1978 // about -64KB to about +64KB, allowing further addition of 4 when accessing
1979 // 64-bit variables with two 32-bit accesses.
1980 constexpr int32_t kMinOffsetForSimpleAdjustment =
1981 0x7FF8; // Max int16_t that's a multiple of 8.
1982 constexpr int32_t kMaxOffsetForSimpleAdjustment =
1983 2 * kMinOffsetForSimpleAdjustment;
1984 if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
1985 addiu(at, src->rm(), kMinOffsetForSimpleAdjustment);
1986 src->offset_ -= kMinOffsetForSimpleAdjustment;
1987 } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
1988 src->offset() < 0) {
1989 addiu(at, src->rm(), -kMinOffsetForSimpleAdjustment);
1990 src->offset_ += kMinOffsetForSimpleAdjustment;
1991 } else if (IsMipsArchVariant(kMips32r6)) {
1992 // On r6 take advantage of the aui instruction, e.g.:
1993 // aui at, base, offset_high
1994 // lw reg_lo, offset_low(at)
1995 // lw reg_hi, (offset_low+4)(at)
1996 // or when offset_low+4 overflows int16_t:
1997 // aui at, base, offset_high
1998 // addiu at, at, 8
1999 // lw reg_lo, (offset_low-8)(at)
2000 // lw reg_hi, (offset_low-4)(at)
2001 int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
2002 int16_t offset_low = static_cast<uint16_t>(src->offset());
2003 offset_high += (offset_low < 0)
2004 ? 1
2005 : 0; // Account for offset sign extension in load/store.
2006 aui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
2007 if (two_accesses && !is_int16(static_cast<int32_t>(
2008 offset_low + second_access_add_to_offset))) {
2009 // Avoid overflow in the 16-bit offset of the load/store instruction when
2010 // adding 4.
2011 addiu(scratch, scratch, kDoubleSize);
2012 offset_low -= kDoubleSize;
2013 }
2014 src->offset_ = offset_low;
2015 } else {
2016 // Do not load the whole 32-bit 'offset' if it can be represented as
2017 // a sum of three 16-bit signed offsets. This can save an instruction.
2018 // To simplify matters, only do this for a symmetric range of offsets from
2019 // about -96KB to about +96KB, allowing further addition of 4 when accessing
2020 // 64-bit variables with two 32-bit accesses.
2021 constexpr int32_t kMinOffsetForMediumAdjustment =
2022 2 * kMinOffsetForSimpleAdjustment;
2023 constexpr int32_t kMaxOffsetForMediumAdjustment =
2024 3 * kMinOffsetForSimpleAdjustment;
2025 if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
2026 addiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
2027 addiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
2028 src->offset_ -= kMinOffsetForMediumAdjustment;
2029 } else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
2030 src->offset() < 0) {
2031 addiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
2032 addiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
2033 src->offset_ += kMinOffsetForMediumAdjustment;
2034 } else {
2035 // Now that all shorter options have been exhausted, load the full 32-bit
2036 // offset.
2037 int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
2038 lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
2039 ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset.
2040 addu(scratch, scratch, src->rm());
2041 src->offset_ -= loaded_offset;
2042 }
2043 }
2044 src->rm_ = scratch;
2045
2046 DCHECK(is_int16(src->offset()));
2047 if (two_accesses) {
2048 DCHECK(is_int16(
2049 static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
2050 }
2051 DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
2052 }
2053
lb(Register rd,const MemOperand & rs)2054 void Assembler::lb(Register rd, const MemOperand& rs) {
2055 MemOperand source = rs;
2056 AdjustBaseAndOffset(&source);
2057 GenInstrImmediate(LB, source.rm(), rd, source.offset());
2058 }
2059
lbu(Register rd,const MemOperand & rs)2060 void Assembler::lbu(Register rd, const MemOperand& rs) {
2061 MemOperand source = rs;
2062 AdjustBaseAndOffset(&source);
2063 GenInstrImmediate(LBU, source.rm(), rd, source.offset());
2064 }
2065
lh(Register rd,const MemOperand & rs)2066 void Assembler::lh(Register rd, const MemOperand& rs) {
2067 MemOperand source = rs;
2068 AdjustBaseAndOffset(&source);
2069 GenInstrImmediate(LH, source.rm(), rd, source.offset());
2070 }
2071
lhu(Register rd,const MemOperand & rs)2072 void Assembler::lhu(Register rd, const MemOperand& rs) {
2073 MemOperand source = rs;
2074 AdjustBaseAndOffset(&source);
2075 GenInstrImmediate(LHU, source.rm(), rd, source.offset());
2076 }
2077
lw(Register rd,const MemOperand & rs)2078 void Assembler::lw(Register rd, const MemOperand& rs) {
2079 MemOperand source = rs;
2080 AdjustBaseAndOffset(&source);
2081 GenInstrImmediate(LW, source.rm(), rd, source.offset());
2082 }
2083
lwl(Register rd,const MemOperand & rs)2084 void Assembler::lwl(Register rd, const MemOperand& rs) {
2085 DCHECK(is_int16(rs.offset_));
2086 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2087 IsMipsArchVariant(kMips32r2));
2088 GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
2089 }
2090
lwr(Register rd,const MemOperand & rs)2091 void Assembler::lwr(Register rd, const MemOperand& rs) {
2092 DCHECK(is_int16(rs.offset_));
2093 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2094 IsMipsArchVariant(kMips32r2));
2095 GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
2096 }
2097
sb(Register rd,const MemOperand & rs)2098 void Assembler::sb(Register rd, const MemOperand& rs) {
2099 MemOperand source = rs;
2100 AdjustBaseAndOffset(&source);
2101 GenInstrImmediate(SB, source.rm(), rd, source.offset());
2102 }
2103
sh(Register rd,const MemOperand & rs)2104 void Assembler::sh(Register rd, const MemOperand& rs) {
2105 MemOperand source = rs;
2106 AdjustBaseAndOffset(&source);
2107 GenInstrImmediate(SH, source.rm(), rd, source.offset());
2108 }
2109
sw(Register rd,const MemOperand & rs)2110 void Assembler::sw(Register rd, const MemOperand& rs) {
2111 MemOperand source = rs;
2112 AdjustBaseAndOffset(&source);
2113 GenInstrImmediate(SW, source.rm(), rd, source.offset());
2114 }
2115
swl(Register rd,const MemOperand & rs)2116 void Assembler::swl(Register rd, const MemOperand& rs) {
2117 DCHECK(is_int16(rs.offset_));
2118 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2119 IsMipsArchVariant(kMips32r2));
2120 GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
2121 }
2122
swr(Register rd,const MemOperand & rs)2123 void Assembler::swr(Register rd, const MemOperand& rs) {
2124 DCHECK(is_int16(rs.offset_));
2125 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2126 IsMipsArchVariant(kMips32r2));
2127 GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
2128 }
2129
ll(Register rd,const MemOperand & rs)2130 void Assembler::ll(Register rd, const MemOperand& rs) {
2131 if (IsMipsArchVariant(kMips32r6)) {
2132 DCHECK(is_int9(rs.offset_));
2133 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
2134 } else {
2135 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2136 IsMipsArchVariant(kMips32r2));
2137 DCHECK(is_int16(rs.offset_));
2138 GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
2139 }
2140 }
2141
sc(Register rd,const MemOperand & rs)2142 void Assembler::sc(Register rd, const MemOperand& rs) {
2143 if (IsMipsArchVariant(kMips32r6)) {
2144 DCHECK(is_int9(rs.offset_));
2145 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
2146 } else {
2147 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2148 IsMipsArchVariant(kMips32r2));
2149 GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
2150 }
2151 }
2152
llx(Register rd,const MemOperand & rs)2153 void Assembler::llx(Register rd, const MemOperand& rs) {
2154 DCHECK(IsMipsArchVariant(kMips32r6));
2155 DCHECK(is_int9(rs.offset_));
2156 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 1, LL_R6);
2157 }
2158
scx(Register rd,const MemOperand & rs)2159 void Assembler::scx(Register rd, const MemOperand& rs) {
2160 DCHECK(IsMipsArchVariant(kMips32r6));
2161 DCHECK(is_int9(rs.offset_));
2162 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 1, SC_R6);
2163 }
2164
lui(Register rd,int32_t j)2165 void Assembler::lui(Register rd, int32_t j) {
2166 DCHECK(is_uint16(j) || is_int16(j));
2167 GenInstrImmediate(LUI, zero_reg, rd, j);
2168 }
2169
aui(Register rt,Register rs,int32_t j)2170 void Assembler::aui(Register rt, Register rs, int32_t j) {
2171 // This instruction uses same opcode as 'lui'. The difference in encoding is
2172 // 'lui' has zero reg. for rs field.
2173 DCHECK(IsMipsArchVariant(kMips32r6));
2174 DCHECK(rs != zero_reg);
2175 DCHECK(is_uint16(j));
2176 GenInstrImmediate(LUI, rs, rt, j);
2177 }
2178
2179 // ---------PC-Relative instructions-----------
2180
addiupc(Register rs,int32_t imm19)2181 void Assembler::addiupc(Register rs, int32_t imm19) {
2182 DCHECK(IsMipsArchVariant(kMips32r6));
2183 DCHECK(rs.is_valid() && is_int19(imm19));
2184 uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
2185 GenInstrImmediate(PCREL, rs, imm21);
2186 }
2187
lwpc(Register rs,int32_t offset19)2188 void Assembler::lwpc(Register rs, int32_t offset19) {
2189 DCHECK(IsMipsArchVariant(kMips32r6));
2190 DCHECK(rs.is_valid() && is_int19(offset19));
2191 uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
2192 GenInstrImmediate(PCREL, rs, imm21);
2193 }
2194
auipc(Register rs,int16_t imm16)2195 void Assembler::auipc(Register rs, int16_t imm16) {
2196 DCHECK(IsMipsArchVariant(kMips32r6));
2197 DCHECK(rs.is_valid());
2198 uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
2199 GenInstrImmediate(PCREL, rs, imm21);
2200 }
2201
aluipc(Register rs,int16_t imm16)2202 void Assembler::aluipc(Register rs, int16_t imm16) {
2203 DCHECK(IsMipsArchVariant(kMips32r6));
2204 DCHECK(rs.is_valid());
2205 uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
2206 GenInstrImmediate(PCREL, rs, imm21);
2207 }
2208
2209 // -------------Misc-instructions--------------
2210
2211 // Break / Trap instructions.
break_(uint32_t code,bool break_as_stop)2212 void Assembler::break_(uint32_t code, bool break_as_stop) {
2213 DCHECK_EQ(code & ~0xFFFFF, 0);
2214 // We need to invalidate breaks that could be stops as well because the
2215 // simulator expects a char pointer after the stop instruction.
2216 // See constants-mips.h for explanation.
2217 DCHECK(
2218 (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
2219 (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
2220 Instr break_instr = SPECIAL | BREAK | (code << 6);
2221 emit(break_instr);
2222 }
2223
stop(uint32_t code)2224 void Assembler::stop(uint32_t code) {
2225 DCHECK_GT(code, kMaxWatchpointCode);
2226 DCHECK_LE(code, kMaxStopCode);
2227 #if V8_HOST_ARCH_MIPS
2228 break_(0x54321);
2229 #else // V8_HOST_ARCH_MIPS
2230 break_(code, true);
2231 #endif
2232 }
2233
tge(Register rs,Register rt,uint16_t code)2234 void Assembler::tge(Register rs, Register rt, uint16_t code) {
2235 DCHECK(is_uint10(code));
2236 Instr instr =
2237 SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2238 emit(instr);
2239 }
2240
tgeu(Register rs,Register rt,uint16_t code)2241 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
2242 DCHECK(is_uint10(code));
2243 Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
2244 code << 6;
2245 emit(instr);
2246 }
2247
tlt(Register rs,Register rt,uint16_t code)2248 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
2249 DCHECK(is_uint10(code));
2250 Instr instr =
2251 SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2252 emit(instr);
2253 }
2254
tltu(Register rs,Register rt,uint16_t code)2255 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
2256 DCHECK(is_uint10(code));
2257 Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
2258 code << 6;
2259 emit(instr);
2260 }
2261
teq(Register rs,Register rt,uint16_t code)2262 void Assembler::teq(Register rs, Register rt, uint16_t code) {
2263 DCHECK(is_uint10(code));
2264 Instr instr =
2265 SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2266 emit(instr);
2267 }
2268
tne(Register rs,Register rt,uint16_t code)2269 void Assembler::tne(Register rs, Register rt, uint16_t code) {
2270 DCHECK(is_uint10(code));
2271 Instr instr =
2272 SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2273 emit(instr);
2274 }
2275
sync()2276 void Assembler::sync() {
2277 Instr sync_instr = SPECIAL | SYNC;
2278 emit(sync_instr);
2279 }
2280
2281 // Move from HI/LO register.
2282
mfhi(Register rd)2283 void Assembler::mfhi(Register rd) {
2284 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
2285 }
2286
mflo(Register rd)2287 void Assembler::mflo(Register rd) {
2288 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
2289 }
2290
2291 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)2292 void Assembler::slt(Register rd, Register rs, Register rt) {
2293 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
2294 }
2295
sltu(Register rd,Register rs,Register rt)2296 void Assembler::sltu(Register rd, Register rs, Register rt) {
2297 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
2298 }
2299
slti(Register rt,Register rs,int32_t j)2300 void Assembler::slti(Register rt, Register rs, int32_t j) {
2301 GenInstrImmediate(SLTI, rs, rt, j);
2302 }
2303
sltiu(Register rt,Register rs,int32_t j)2304 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
2305 GenInstrImmediate(SLTIU, rs, rt, j);
2306 }
2307
2308 // Conditional move.
movz(Register rd,Register rs,Register rt)2309 void Assembler::movz(Register rd, Register rs, Register rt) {
2310 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
2311 }
2312
movn(Register rd,Register rs,Register rt)2313 void Assembler::movn(Register rd, Register rs, Register rt) {
2314 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
2315 }
2316
movt(Register rd,Register rs,uint16_t cc)2317 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
2318 Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
2319 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2320 }
2321
movf(Register rd,Register rs,uint16_t cc)2322 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
2323 Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
2324 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2325 }
2326
seleqz(Register rd,Register rs,Register rt)2327 void Assembler::seleqz(Register rd, Register rs, Register rt) {
2328 DCHECK(IsMipsArchVariant(kMips32r6));
2329 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
2330 }
2331
2332 // Bit twiddling.
clz(Register rd,Register rs)2333 void Assembler::clz(Register rd, Register rs) {
2334 if (!IsMipsArchVariant(kMips32r6)) {
2335 // Clz instr requires same GPR number in 'rd' and 'rt' fields.
2336 GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
2337 } else {
2338 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
2339 }
2340 }
2341
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)2342 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2343 // Should be called via MacroAssembler::Ins.
2344 // Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2345 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2346 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
2347 }
2348
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)2349 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2350 // Should be called via MacroAssembler::Ext.
2351 // Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
2352 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2353 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
2354 }
2355
bitswap(Register rd,Register rt)2356 void Assembler::bitswap(Register rd, Register rt) {
2357 DCHECK(IsMipsArchVariant(kMips32r6));
2358 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2359 }
2360
pref(int32_t hint,const MemOperand & rs)2361 void Assembler::pref(int32_t hint, const MemOperand& rs) {
2362 DCHECK(!IsMipsArchVariant(kLoongson));
2363 DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
2364 Instr instr =
2365 PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_);
2366 emit(instr);
2367 }
2368
align(Register rd,Register rs,Register rt,uint8_t bp)2369 void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
2370 DCHECK(IsMipsArchVariant(kMips32r6));
2371 DCHECK(is_uint3(bp));
2372 uint16_t sa = (ALIGN << kBp2Bits) | bp;
2373 GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
2374 }
2375
2376 // Byte swap.
wsbh(Register rd,Register rt)2377 void Assembler::wsbh(Register rd, Register rt) {
2378 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2379 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
2380 }
2381
seh(Register rd,Register rt)2382 void Assembler::seh(Register rd, Register rt) {
2383 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2384 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
2385 }
2386
seb(Register rd,Register rt)2387 void Assembler::seb(Register rd, Register rt) {
2388 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2389 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
2390 }
2391
2392 // --------Coprocessor-instructions----------------
2393
2394 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)2395 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2396 MemOperand tmp = src;
2397 AdjustBaseAndOffset(&tmp);
2398 GenInstrImmediate(LWC1, tmp.rm(), fd, tmp.offset());
2399 }
2400
swc1(FPURegister fd,const MemOperand & src)2401 void Assembler::swc1(FPURegister fd, const MemOperand& src) {
2402 MemOperand tmp = src;
2403 AdjustBaseAndOffset(&tmp);
2404 GenInstrImmediate(SWC1, tmp.rm(), fd, tmp.offset());
2405 }
2406
mtc1(Register rt,FPURegister fs)2407 void Assembler::mtc1(Register rt, FPURegister fs) {
2408 GenInstrRegister(COP1, MTC1, rt, fs, f0);
2409 }
2410
mthc1(Register rt,FPURegister fs)2411 void Assembler::mthc1(Register rt, FPURegister fs) {
2412 GenInstrRegister(COP1, MTHC1, rt, fs, f0);
2413 }
2414
mfc1(Register rt,FPURegister fs)2415 void Assembler::mfc1(Register rt, FPURegister fs) {
2416 GenInstrRegister(COP1, MFC1, rt, fs, f0);
2417 }
2418
mfhc1(Register rt,FPURegister fs)2419 void Assembler::mfhc1(Register rt, FPURegister fs) {
2420 GenInstrRegister(COP1, MFHC1, rt, fs, f0);
2421 }
2422
ctc1(Register rt,FPUControlRegister fs)2423 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
2424 GenInstrRegister(COP1, CTC1, rt, fs);
2425 }
2426
cfc1(Register rt,FPUControlRegister fs)2427 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
2428 GenInstrRegister(COP1, CFC1, rt, fs);
2429 }
2430
movn_s(FPURegister fd,FPURegister fs,Register rt)2431 void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2432 DCHECK(!IsMipsArchVariant(kMips32r6));
2433 GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
2434 }
2435
movn_d(FPURegister fd,FPURegister fs,Register rt)2436 void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2437 DCHECK(!IsMipsArchVariant(kMips32r6));
2438 GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
2439 }
2440
sel(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2441 void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
2442 FPURegister ft) {
2443 DCHECK(IsMipsArchVariant(kMips32r6));
2444 DCHECK((fmt == D) || (fmt == S));
2445
2446 GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
2447 }
2448
sel_s(FPURegister fd,FPURegister fs,FPURegister ft)2449 void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2450 sel(S, fd, fs, ft);
2451 }
2452
sel_d(FPURegister fd,FPURegister fs,FPURegister ft)2453 void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2454 sel(D, fd, fs, ft);
2455 }
2456
seleqz(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2457 void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
2458 FPURegister ft) {
2459 DCHECK(IsMipsArchVariant(kMips32r6));
2460 DCHECK((fmt == D) || (fmt == S));
2461 GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
2462 }
2463
selnez(Register rd,Register rs,Register rt)2464 void Assembler::selnez(Register rd, Register rs, Register rt) {
2465 DCHECK(IsMipsArchVariant(kMips32r6));
2466 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
2467 }
2468
selnez(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2469 void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
2470 FPURegister ft) {
2471 DCHECK(IsMipsArchVariant(kMips32r6));
2472 DCHECK((fmt == D) || (fmt == S));
2473 GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
2474 }
2475
seleqz_d(FPURegister fd,FPURegister fs,FPURegister ft)2476 void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2477 seleqz(D, fd, fs, ft);
2478 }
2479
seleqz_s(FPURegister fd,FPURegister fs,FPURegister ft)2480 void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2481 seleqz(S, fd, fs, ft);
2482 }
2483
selnez_d(FPURegister fd,FPURegister fs,FPURegister ft)2484 void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2485 selnez(D, fd, fs, ft);
2486 }
2487
selnez_s(FPURegister fd,FPURegister fs,FPURegister ft)2488 void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2489 selnez(S, fd, fs, ft);
2490 }
2491
movz_s(FPURegister fd,FPURegister fs,Register rt)2492 void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2493 DCHECK(!IsMipsArchVariant(kMips32r6));
2494 GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
2495 }
2496
movz_d(FPURegister fd,FPURegister fs,Register rt)2497 void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2498 DCHECK(!IsMipsArchVariant(kMips32r6));
2499 GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
2500 }
2501
movt_s(FPURegister fd,FPURegister fs,uint16_t cc)2502 void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2503 DCHECK(!IsMipsArchVariant(kMips32r6));
2504 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2505 GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2506 }
2507
movt_d(FPURegister fd,FPURegister fs,uint16_t cc)2508 void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2509 DCHECK(!IsMipsArchVariant(kMips32r6));
2510 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2511 GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2512 }
2513
movf_s(FPURegister fd,FPURegister fs,uint16_t cc)2514 void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2515 DCHECK(!IsMipsArchVariant(kMips32r6));
2516 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2517 GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2518 }
2519
movf_d(FPURegister fd,FPURegister fs,uint16_t cc)2520 void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2521 DCHECK(!IsMipsArchVariant(kMips32r6));
2522 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2523 GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2524 }
2525
2526 // Arithmetic.
2527
add_s(FPURegister fd,FPURegister fs,FPURegister ft)2528 void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2529 GenInstrRegister(COP1, S, ft, fs, fd, ADD_S);
2530 }
2531
add_d(FPURegister fd,FPURegister fs,FPURegister ft)2532 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2533 GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
2534 }
2535
sub_s(FPURegister fd,FPURegister fs,FPURegister ft)2536 void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2537 GenInstrRegister(COP1, S, ft, fs, fd, SUB_S);
2538 }
2539
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)2540 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2541 GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
2542 }
2543
mul_s(FPURegister fd,FPURegister fs,FPURegister ft)2544 void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2545 GenInstrRegister(COP1, S, ft, fs, fd, MUL_S);
2546 }
2547
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)2548 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2549 GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
2550 }
2551
madd_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2552 void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
2553 FPURegister ft) {
2554 DCHECK(IsMipsArchVariant(kMips32r2));
2555 GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_S);
2556 }
2557
madd_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2558 void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
2559 FPURegister ft) {
2560 DCHECK(IsMipsArchVariant(kMips32r2));
2561 GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D);
2562 }
2563
msub_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2564 void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
2565 FPURegister ft) {
2566 DCHECK(IsMipsArchVariant(kMips32r2));
2567 GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_S);
2568 }
2569
msub_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2570 void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
2571 FPURegister ft) {
2572 DCHECK(IsMipsArchVariant(kMips32r2));
2573 GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_D);
2574 }
2575
maddf_s(FPURegister fd,FPURegister fs,FPURegister ft)2576 void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2577 DCHECK(IsMipsArchVariant(kMips32r6));
2578 GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
2579 }
2580
maddf_d(FPURegister fd,FPURegister fs,FPURegister ft)2581 void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2582 DCHECK(IsMipsArchVariant(kMips32r6));
2583 GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
2584 }
2585
msubf_s(FPURegister fd,FPURegister fs,FPURegister ft)2586 void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2587 DCHECK(IsMipsArchVariant(kMips32r6));
2588 GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
2589 }
2590
msubf_d(FPURegister fd,FPURegister fs,FPURegister ft)2591 void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2592 DCHECK(IsMipsArchVariant(kMips32r6));
2593 GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
2594 }
2595
div_s(FPURegister fd,FPURegister fs,FPURegister ft)2596 void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2597 GenInstrRegister(COP1, S, ft, fs, fd, DIV_S);
2598 }
2599
div_d(FPURegister fd,FPURegister fs,FPURegister ft)2600 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2601 GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
2602 }
2603
abs_s(FPURegister fd,FPURegister fs)2604 void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2605 GenInstrRegister(COP1, S, f0, fs, fd, ABS_S);
2606 }
2607
abs_d(FPURegister fd,FPURegister fs)2608 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
2609 GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2610 }
2611
mov_d(FPURegister fd,FPURegister fs)2612 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2613 GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2614 }
2615
mov_s(FPURegister fd,FPURegister fs)2616 void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2617 GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2618 }
2619
neg_s(FPURegister fd,FPURegister fs)2620 void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2621 GenInstrRegister(COP1, S, f0, fs, fd, NEG_S);
2622 }
2623
neg_d(FPURegister fd,FPURegister fs)2624 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
2625 GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
2626 }
2627
sqrt_s(FPURegister fd,FPURegister fs)2628 void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2629 GenInstrRegister(COP1, S, f0, fs, fd, SQRT_S);
2630 }
2631
sqrt_d(FPURegister fd,FPURegister fs)2632 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
2633 GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2634 }
2635
rsqrt_s(FPURegister fd,FPURegister fs)2636 void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2637 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2638 GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
2639 }
2640
rsqrt_d(FPURegister fd,FPURegister fs)2641 void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2642 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2643 GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
2644 }
2645
recip_d(FPURegister fd,FPURegister fs)2646 void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2647 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2648 GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
2649 }
2650
recip_s(FPURegister fd,FPURegister fs)2651 void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2652 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2653 GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
2654 }
2655
2656 // Conversions.
2657
cvt_w_s(FPURegister fd,FPURegister fs)2658 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
2659 GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
2660 }
2661
cvt_w_d(FPURegister fd,FPURegister fs)2662 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
2663 GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
2664 }
2665
trunc_w_s(FPURegister fd,FPURegister fs)2666 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
2667 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
2668 }
2669
trunc_w_d(FPURegister fd,FPURegister fs)2670 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
2671 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
2672 }
2673
round_w_s(FPURegister fd,FPURegister fs)2674 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
2675 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
2676 }
2677
round_w_d(FPURegister fd,FPURegister fs)2678 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
2679 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
2680 }
2681
floor_w_s(FPURegister fd,FPURegister fs)2682 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
2683 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
2684 }
2685
floor_w_d(FPURegister fd,FPURegister fs)2686 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
2687 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
2688 }
2689
ceil_w_s(FPURegister fd,FPURegister fs)2690 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
2691 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
2692 }
2693
ceil_w_d(FPURegister fd,FPURegister fs)2694 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
2695 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
2696 }
2697
rint_s(FPURegister fd,FPURegister fs)2698 void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
2699
rint(SecondaryField fmt,FPURegister fd,FPURegister fs)2700 void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
2701 DCHECK(IsMipsArchVariant(kMips32r6));
2702 DCHECK((fmt == D) || (fmt == S));
2703 GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
2704 }
2705
rint_d(FPURegister fd,FPURegister fs)2706 void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
2707
cvt_l_s(FPURegister fd,FPURegister fs)2708 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2709 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2710 IsFp64Mode());
2711 GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
2712 }
2713
cvt_l_d(FPURegister fd,FPURegister fs)2714 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2715 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2716 IsFp64Mode());
2717 GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
2718 }
2719
trunc_l_s(FPURegister fd,FPURegister fs)2720 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2721 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2722 IsFp64Mode());
2723 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
2724 }
2725
trunc_l_d(FPURegister fd,FPURegister fs)2726 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2727 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2728 IsFp64Mode());
2729 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
2730 }
2731
round_l_s(FPURegister fd,FPURegister fs)2732 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
2733 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2734 IsFp64Mode());
2735 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
2736 }
2737
round_l_d(FPURegister fd,FPURegister fs)2738 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
2739 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2740 IsFp64Mode());
2741 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
2742 }
2743
floor_l_s(FPURegister fd,FPURegister fs)2744 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
2745 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2746 IsFp64Mode());
2747 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
2748 }
2749
floor_l_d(FPURegister fd,FPURegister fs)2750 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
2751 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2752 IsFp64Mode());
2753 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
2754 }
2755
ceil_l_s(FPURegister fd,FPURegister fs)2756 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
2757 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2758 IsFp64Mode());
2759 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
2760 }
2761
ceil_l_d(FPURegister fd,FPURegister fs)2762 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
2763 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2764 IsFp64Mode());
2765 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
2766 }
2767
class_s(FPURegister fd,FPURegister fs)2768 void Assembler::class_s(FPURegister fd, FPURegister fs) {
2769 DCHECK(IsMipsArchVariant(kMips32r6));
2770 GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
2771 }
2772
class_d(FPURegister fd,FPURegister fs)2773 void Assembler::class_d(FPURegister fd, FPURegister fs) {
2774 DCHECK(IsMipsArchVariant(kMips32r6));
2775 GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
2776 }
2777
min(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2778 void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
2779 FPURegister ft) {
2780 DCHECK(IsMipsArchVariant(kMips32r6));
2781 DCHECK((fmt == D) || (fmt == S));
2782 GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
2783 }
2784
mina(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2785 void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
2786 FPURegister ft) {
2787 DCHECK(IsMipsArchVariant(kMips32r6));
2788 DCHECK((fmt == D) || (fmt == S));
2789 GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
2790 }
2791
max(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2792 void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
2793 FPURegister ft) {
2794 DCHECK(IsMipsArchVariant(kMips32r6));
2795 DCHECK((fmt == D) || (fmt == S));
2796 GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
2797 }
2798
maxa(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2799 void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
2800 FPURegister ft) {
2801 DCHECK(IsMipsArchVariant(kMips32r6));
2802 DCHECK((fmt == D) || (fmt == S));
2803 GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
2804 }
2805
min_s(FPURegister fd,FPURegister fs,FPURegister ft)2806 void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2807 min(S, fd, fs, ft);
2808 }
2809
min_d(FPURegister fd,FPURegister fs,FPURegister ft)2810 void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2811 min(D, fd, fs, ft);
2812 }
2813
max_s(FPURegister fd,FPURegister fs,FPURegister ft)2814 void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2815 max(S, fd, fs, ft);
2816 }
2817
max_d(FPURegister fd,FPURegister fs,FPURegister ft)2818 void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2819 max(D, fd, fs, ft);
2820 }
2821
mina_s(FPURegister fd,FPURegister fs,FPURegister ft)2822 void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2823 mina(S, fd, fs, ft);
2824 }
2825
mina_d(FPURegister fd,FPURegister fs,FPURegister ft)2826 void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2827 mina(D, fd, fs, ft);
2828 }
2829
maxa_s(FPURegister fd,FPURegister fs,FPURegister ft)2830 void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2831 maxa(S, fd, fs, ft);
2832 }
2833
maxa_d(FPURegister fd,FPURegister fs,FPURegister ft)2834 void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2835 maxa(D, fd, fs, ft);
2836 }
2837
cvt_s_w(FPURegister fd,FPURegister fs)2838 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
2839 GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
2840 }
2841
cvt_s_l(FPURegister fd,FPURegister fs)2842 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
2843 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2844 IsFp64Mode());
2845 GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
2846 }
2847
cvt_s_d(FPURegister fd,FPURegister fs)2848 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
2849 GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
2850 }
2851
cvt_d_w(FPURegister fd,FPURegister fs)2852 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
2853 GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
2854 }
2855
cvt_d_l(FPURegister fd,FPURegister fs)2856 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
2857 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2858 IsFp64Mode());
2859 GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
2860 }
2861
cvt_d_s(FPURegister fd,FPURegister fs)2862 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
2863 GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
2864 }
2865
2866 // Conditions for >= MIPSr6.
cmp(FPUCondition cond,SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2867 void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
2868 FPURegister fs, FPURegister ft) {
2869 DCHECK(IsMipsArchVariant(kMips32r6));
2870 DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
2871 Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
2872 fd.code() << kFdShift | (0 << 5) | cond;
2873 emit(instr);
2874 }
2875
cmp_s(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)2876 void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
2877 FPURegister ft) {
2878 cmp(cond, W, fd, fs, ft);
2879 }
2880
cmp_d(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)2881 void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
2882 FPURegister ft) {
2883 cmp(cond, L, fd, fs, ft);
2884 }
2885
bc1eqz(int16_t offset,FPURegister ft)2886 void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
2887 DCHECK(IsMipsArchVariant(kMips32r6));
2888 BlockTrampolinePoolScope block_trampoline_pool(this);
2889 Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
2890 emit(instr);
2891 BlockTrampolinePoolFor(1); // For associated delay slot.
2892 }
2893
bc1nez(int16_t offset,FPURegister ft)2894 void Assembler::bc1nez(int16_t offset, FPURegister ft) {
2895 DCHECK(IsMipsArchVariant(kMips32r6));
2896 BlockTrampolinePoolScope block_trampoline_pool(this);
2897 Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
2898 emit(instr);
2899 BlockTrampolinePoolFor(1); // For associated delay slot.
2900 }
2901
2902 // Conditions for < MIPSr6.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)2903 void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs,
2904 FPURegister ft, uint16_t cc) {
2905 DCHECK(is_uint3(cc));
2906 DCHECK(fmt == S || fmt == D);
2907 DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
2908 Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift | cc << 8 |
2909 3 << 4 | cond;
2910 emit(instr);
2911 }
2912
c_s(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)2913 void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
2914 uint16_t cc) {
2915 c(cond, S, fs, ft, cc);
2916 }
2917
c_d(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)2918 void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
2919 uint16_t cc) {
2920 c(cond, D, fs, ft, cc);
2921 }
2922
fcmp(FPURegister src1,const double src2,FPUCondition cond)2923 void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) {
2924 DCHECK_EQ(src2, 0.0);
2925 mtc1(zero_reg, f14);
2926 cvt_d_w(f14, f14);
2927 c(cond, D, src1, f14, 0);
2928 }
2929
bc1f(int16_t offset,uint16_t cc)2930 void Assembler::bc1f(int16_t offset, uint16_t cc) {
2931 BlockTrampolinePoolScope block_trampoline_pool(this);
2932 DCHECK(is_uint3(cc));
2933 Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
2934 emit(instr);
2935 BlockTrampolinePoolFor(1); // For associated delay slot.
2936 }
2937
bc1t(int16_t offset,uint16_t cc)2938 void Assembler::bc1t(int16_t offset, uint16_t cc) {
2939 BlockTrampolinePoolScope block_trampoline_pool(this);
2940 DCHECK(is_uint3(cc));
2941 Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
2942 emit(instr);
2943 BlockTrampolinePoolFor(1); // For associated delay slot.
2944 }
2945
2946 // ---------- MSA instructions ------------
2947 #define MSA_BRANCH_LIST(V) \
2948 V(bz_v, BZ_V) \
2949 V(bz_b, BZ_B) \
2950 V(bz_h, BZ_H) \
2951 V(bz_w, BZ_W) \
2952 V(bz_d, BZ_D) \
2953 V(bnz_v, BNZ_V) \
2954 V(bnz_b, BNZ_B) \
2955 V(bnz_h, BNZ_H) \
2956 V(bnz_w, BNZ_W) \
2957 V(bnz_d, BNZ_D)
2958
2959 #define MSA_BRANCH(name, opcode) \
2960 void Assembler::name(MSARegister wt, int16_t offset) { \
2961 GenInstrMsaBranch(opcode, wt, offset); \
2962 }
2963
2964 MSA_BRANCH_LIST(MSA_BRANCH)
2965 #undef MSA_BRANCH
2966 #undef MSA_BRANCH_LIST
2967
2968 #define MSA_LD_ST_LIST(V) \
2969 V(ld_b, LD_B) \
2970 V(ld_h, LD_H) \
2971 V(ld_w, LD_W) \
2972 V(ld_d, LD_D) \
2973 V(st_b, ST_B) \
2974 V(st_h, ST_H) \
2975 V(st_w, ST_W) \
2976 V(st_d, ST_D)
2977
2978 #define MSA_LD_ST(name, opcode) \
2979 void Assembler::name(MSARegister wd, const MemOperand& rs) { \
2980 MemOperand source = rs; \
2981 AdjustBaseAndOffset(&source); \
2982 if (is_int10(source.offset())) { \
2983 GenInstrMsaMI10(opcode, source.offset(), source.rm(), wd); \
2984 } else { \
2985 UseScratchRegisterScope temps(this); \
2986 Register scratch = temps.Acquire(); \
2987 DCHECK(rs.rm() != scratch); \
2988 addiu(scratch, source.rm(), source.offset()); \
2989 GenInstrMsaMI10(opcode, 0, scratch, wd); \
2990 } \
2991 }
2992
MSA_LD_ST_LIST(MSA_LD_ST)2993 MSA_LD_ST_LIST(MSA_LD_ST)
2994 #undef MSA_LD_ST
2995 #undef MSA_LD_ST_LIST
2996
2997 #define MSA_I10_LIST(V) \
2998 V(ldi_b, I5_DF_b) \
2999 V(ldi_h, I5_DF_h) \
3000 V(ldi_w, I5_DF_w) \
3001 V(ldi_d, I5_DF_d)
3002
3003 #define MSA_I10(name, format) \
3004 void Assembler::name(MSARegister wd, int32_t imm10) { \
3005 GenInstrMsaI10(LDI, format, imm10, wd); \
3006 }
3007 MSA_I10_LIST(MSA_I10)
3008 #undef MSA_I10
3009 #undef MSA_I10_LIST
3010
3011 #define MSA_I5_LIST(V) \
3012 V(addvi, ADDVI) \
3013 V(subvi, SUBVI) \
3014 V(maxi_s, MAXI_S) \
3015 V(maxi_u, MAXI_U) \
3016 V(mini_s, MINI_S) \
3017 V(mini_u, MINI_U) \
3018 V(ceqi, CEQI) \
3019 V(clti_s, CLTI_S) \
3020 V(clti_u, CLTI_U) \
3021 V(clei_s, CLEI_S) \
3022 V(clei_u, CLEI_U)
3023
3024 #define MSA_I5_FORMAT(name, opcode, format) \
3025 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3026 uint32_t imm5) { \
3027 GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd); \
3028 }
3029
3030 #define MSA_I5(name, opcode) \
3031 MSA_I5_FORMAT(name, opcode, b) \
3032 MSA_I5_FORMAT(name, opcode, h) \
3033 MSA_I5_FORMAT(name, opcode, w) \
3034 MSA_I5_FORMAT(name, opcode, d)
3035
3036 MSA_I5_LIST(MSA_I5)
3037 #undef MSA_I5
3038 #undef MSA_I5_FORMAT
3039 #undef MSA_I5_LIST
3040
3041 #define MSA_I8_LIST(V) \
3042 V(andi_b, ANDI_B) \
3043 V(ori_b, ORI_B) \
3044 V(nori_b, NORI_B) \
3045 V(xori_b, XORI_B) \
3046 V(bmnzi_b, BMNZI_B) \
3047 V(bmzi_b, BMZI_B) \
3048 V(bseli_b, BSELI_B) \
3049 V(shf_b, SHF_B) \
3050 V(shf_h, SHF_H) \
3051 V(shf_w, SHF_W)
3052
3053 #define MSA_I8(name, opcode) \
3054 void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
3055 GenInstrMsaI8(opcode, imm8, ws, wd); \
3056 }
3057
3058 MSA_I8_LIST(MSA_I8)
3059 #undef MSA_I8
3060 #undef MSA_I8_LIST
3061
3062 #define MSA_VEC_LIST(V) \
3063 V(and_v, AND_V) \
3064 V(or_v, OR_V) \
3065 V(nor_v, NOR_V) \
3066 V(xor_v, XOR_V) \
3067 V(bmnz_v, BMNZ_V) \
3068 V(bmz_v, BMZ_V) \
3069 V(bsel_v, BSEL_V)
3070
3071 #define MSA_VEC(name, opcode) \
3072 void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
3073 GenInstrMsaVec(opcode, wt, ws, wd); \
3074 }
3075
3076 MSA_VEC_LIST(MSA_VEC)
3077 #undef MSA_VEC
3078 #undef MSA_VEC_LIST
3079
3080 #define MSA_2R_LIST(V) \
3081 V(pcnt, PCNT) \
3082 V(nloc, NLOC) \
3083 V(nlzc, NLZC)
3084
3085 #define MSA_2R_FORMAT(name, opcode, format) \
3086 void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3087 GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd); \
3088 }
3089
3090 #define MSA_2R(name, opcode) \
3091 MSA_2R_FORMAT(name, opcode, b) \
3092 MSA_2R_FORMAT(name, opcode, h) \
3093 MSA_2R_FORMAT(name, opcode, w) \
3094 MSA_2R_FORMAT(name, opcode, d)
3095
3096 MSA_2R_LIST(MSA_2R)
3097 #undef MSA_2R
3098 #undef MSA_2R_FORMAT
3099 #undef MSA_2R_LIST
3100
3101 #define MSA_FILL(format) \
3102 void Assembler::fill_##format(MSARegister wd, Register rs) { \
3103 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD)); \
3104 DCHECK(rs.is_valid() && wd.is_valid()); \
3105 Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format | \
3106 (rs.code() << kWsShift) | (wd.code() << kWdShift) | \
3107 MSA_VEC_2R_2RF_MINOR; \
3108 emit(instr); \
3109 }
3110
3111 MSA_FILL(b)
3112 MSA_FILL(h)
3113 MSA_FILL(w)
3114 #undef MSA_FILL
3115
3116 #define MSA_2RF_LIST(V) \
3117 V(fclass, FCLASS) \
3118 V(ftrunc_s, FTRUNC_S) \
3119 V(ftrunc_u, FTRUNC_U) \
3120 V(fsqrt, FSQRT) \
3121 V(frsqrt, FRSQRT) \
3122 V(frcp, FRCP) \
3123 V(frint, FRINT) \
3124 V(flog2, FLOG2) \
3125 V(fexupl, FEXUPL) \
3126 V(fexupr, FEXUPR) \
3127 V(ffql, FFQL) \
3128 V(ffqr, FFQR) \
3129 V(ftint_s, FTINT_S) \
3130 V(ftint_u, FTINT_U) \
3131 V(ffint_s, FFINT_S) \
3132 V(ffint_u, FFINT_U)
3133
3134 #define MSA_2RF_FORMAT(name, opcode, format) \
3135 void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3136 GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd); \
3137 }
3138
3139 #define MSA_2RF(name, opcode) \
3140 MSA_2RF_FORMAT(name, opcode, w) \
3141 MSA_2RF_FORMAT(name, opcode, d)
3142
3143 MSA_2RF_LIST(MSA_2RF)
3144 #undef MSA_2RF
3145 #undef MSA_2RF_FORMAT
3146 #undef MSA_2RF_LIST
3147
3148 #define MSA_3R_LIST(V) \
3149 V(sll, SLL_MSA) \
3150 V(sra, SRA_MSA) \
3151 V(srl, SRL_MSA) \
3152 V(bclr, BCLR) \
3153 V(bset, BSET) \
3154 V(bneg, BNEG) \
3155 V(binsl, BINSL) \
3156 V(binsr, BINSR) \
3157 V(addv, ADDV) \
3158 V(subv, SUBV) \
3159 V(max_s, MAX_S) \
3160 V(max_u, MAX_U) \
3161 V(min_s, MIN_S) \
3162 V(min_u, MIN_U) \
3163 V(max_a, MAX_A) \
3164 V(min_a, MIN_A) \
3165 V(ceq, CEQ) \
3166 V(clt_s, CLT_S) \
3167 V(clt_u, CLT_U) \
3168 V(cle_s, CLE_S) \
3169 V(cle_u, CLE_U) \
3170 V(add_a, ADD_A) \
3171 V(adds_a, ADDS_A) \
3172 V(adds_s, ADDS_S) \
3173 V(adds_u, ADDS_U) \
3174 V(ave_s, AVE_S) \
3175 V(ave_u, AVE_U) \
3176 V(aver_s, AVER_S) \
3177 V(aver_u, AVER_U) \
3178 V(subs_s, SUBS_S) \
3179 V(subs_u, SUBS_U) \
3180 V(subsus_u, SUBSUS_U) \
3181 V(subsuu_s, SUBSUU_S) \
3182 V(asub_s, ASUB_S) \
3183 V(asub_u, ASUB_U) \
3184 V(mulv, MULV) \
3185 V(maddv, MADDV) \
3186 V(msubv, MSUBV) \
3187 V(div_s, DIV_S_MSA) \
3188 V(div_u, DIV_U) \
3189 V(mod_s, MOD_S) \
3190 V(mod_u, MOD_U) \
3191 V(dotp_s, DOTP_S) \
3192 V(dotp_u, DOTP_U) \
3193 V(dpadd_s, DPADD_S) \
3194 V(dpadd_u, DPADD_U) \
3195 V(dpsub_s, DPSUB_S) \
3196 V(dpsub_u, DPSUB_U) \
3197 V(pckev, PCKEV) \
3198 V(pckod, PCKOD) \
3199 V(ilvl, ILVL) \
3200 V(ilvr, ILVR) \
3201 V(ilvev, ILVEV) \
3202 V(ilvod, ILVOD) \
3203 V(vshf, VSHF) \
3204 V(srar, SRAR) \
3205 V(srlr, SRLR) \
3206 V(hadd_s, HADD_S) \
3207 V(hadd_u, HADD_U) \
3208 V(hsub_s, HSUB_S) \
3209 V(hsub_u, HSUB_U)
3210
3211 #define MSA_3R_FORMAT(name, opcode, format) \
3212 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3213 MSARegister wt) { \
3214 GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
3215 }
3216
3217 #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format) \
3218 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3219 Register rt) { \
3220 GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
3221 }
3222
3223 #define MSA_3R(name, opcode) \
3224 MSA_3R_FORMAT(name, opcode, b) \
3225 MSA_3R_FORMAT(name, opcode, h) \
3226 MSA_3R_FORMAT(name, opcode, w) \
3227 MSA_3R_FORMAT(name, opcode, d)
3228
3229 #define MSA_3R_SLD_SPLAT(name, opcode) \
3230 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
3231 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
3232 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
3233 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
3234
3235 MSA_3R_LIST(MSA_3R)
3236 MSA_3R_SLD_SPLAT(sld, SLD)
3237 MSA_3R_SLD_SPLAT(splat, SPLAT)
3238
3239 #undef MSA_3R
3240 #undef MSA_3R_FORMAT
3241 #undef MSA_3R_FORMAT_SLD_SPLAT
3242 #undef MSA_3R_SLD_SPLAT
3243 #undef MSA_3R_LIST
3244
3245 #define MSA_3RF_LIST1(V) \
3246 V(fcaf, FCAF) \
3247 V(fcun, FCUN) \
3248 V(fceq, FCEQ) \
3249 V(fcueq, FCUEQ) \
3250 V(fclt, FCLT) \
3251 V(fcult, FCULT) \
3252 V(fcle, FCLE) \
3253 V(fcule, FCULE) \
3254 V(fsaf, FSAF) \
3255 V(fsun, FSUN) \
3256 V(fseq, FSEQ) \
3257 V(fsueq, FSUEQ) \
3258 V(fslt, FSLT) \
3259 V(fsult, FSULT) \
3260 V(fsle, FSLE) \
3261 V(fsule, FSULE) \
3262 V(fadd, FADD) \
3263 V(fsub, FSUB) \
3264 V(fmul, FMUL) \
3265 V(fdiv, FDIV) \
3266 V(fmadd, FMADD) \
3267 V(fmsub, FMSUB) \
3268 V(fexp2, FEXP2) \
3269 V(fmin, FMIN) \
3270 V(fmin_a, FMIN_A) \
3271 V(fmax, FMAX) \
3272 V(fmax_a, FMAX_A) \
3273 V(fcor, FCOR) \
3274 V(fcune, FCUNE) \
3275 V(fcne, FCNE) \
3276 V(fsor, FSOR) \
3277 V(fsune, FSUNE) \
3278 V(fsne, FSNE)
3279
3280 #define MSA_3RF_LIST2(V) \
3281 V(fexdo, FEXDO) \
3282 V(ftq, FTQ) \
3283 V(mul_q, MUL_Q) \
3284 V(madd_q, MADD_Q) \
3285 V(msub_q, MSUB_Q) \
3286 V(mulr_q, MULR_Q) \
3287 V(maddr_q, MADDR_Q) \
3288 V(msubr_q, MSUBR_Q)
3289
3290 #define MSA_3RF_FORMAT(name, opcode, df, df_c) \
3291 void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
3292 MSARegister wt) { \
3293 GenInstrMsa3RF(opcode, df_c, wt, ws, wd); \
3294 }
3295
3296 #define MSA_3RF_1(name, opcode) \
3297 MSA_3RF_FORMAT(name, opcode, w, 0) \
3298 MSA_3RF_FORMAT(name, opcode, d, 1)
3299
3300 #define MSA_3RF_2(name, opcode) \
3301 MSA_3RF_FORMAT(name, opcode, h, 0) \
3302 MSA_3RF_FORMAT(name, opcode, w, 1)
3303
3304 MSA_3RF_LIST1(MSA_3RF_1)
3305 MSA_3RF_LIST2(MSA_3RF_2)
3306 #undef MSA_3RF_1
3307 #undef MSA_3RF_2
3308 #undef MSA_3RF_FORMAT
3309 #undef MSA_3RF_LIST1
3310 #undef MSA_3RF_LIST2
3311
3312 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
3313 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
3314 }
3315
sldi_h(MSARegister wd,MSARegister ws,uint32_t n)3316 void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
3317 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
3318 }
3319
sldi_w(MSARegister wd,MSARegister ws,uint32_t n)3320 void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
3321 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
3322 }
3323
sldi_d(MSARegister wd,MSARegister ws,uint32_t n)3324 void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
3325 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
3326 }
3327
splati_b(MSARegister wd,MSARegister ws,uint32_t n)3328 void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
3329 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
3330 }
3331
splati_h(MSARegister wd,MSARegister ws,uint32_t n)3332 void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
3333 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
3334 }
3335
splati_w(MSARegister wd,MSARegister ws,uint32_t n)3336 void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
3337 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
3338 }
3339
splati_d(MSARegister wd,MSARegister ws,uint32_t n)3340 void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
3341 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
3342 }
3343
copy_s_b(Register rd,MSARegister ws,uint32_t n)3344 void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
3345 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
3346 }
3347
copy_s_h(Register rd,MSARegister ws,uint32_t n)3348 void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
3349 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
3350 }
3351
copy_s_w(Register rd,MSARegister ws,uint32_t n)3352 void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
3353 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
3354 }
3355
copy_u_b(Register rd,MSARegister ws,uint32_t n)3356 void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
3357 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
3358 }
3359
copy_u_h(Register rd,MSARegister ws,uint32_t n)3360 void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
3361 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
3362 }
3363
copy_u_w(Register rd,MSARegister ws,uint32_t n)3364 void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
3365 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
3366 }
3367
insert_b(MSARegister wd,uint32_t n,Register rs)3368 void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
3369 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
3370 }
3371
insert_h(MSARegister wd,uint32_t n,Register rs)3372 void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
3373 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
3374 }
3375
insert_w(MSARegister wd,uint32_t n,Register rs)3376 void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
3377 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
3378 }
3379
insve_b(MSARegister wd,uint32_t n,MSARegister ws)3380 void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
3381 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
3382 }
3383
insve_h(MSARegister wd,uint32_t n,MSARegister ws)3384 void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
3385 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
3386 }
3387
insve_w(MSARegister wd,uint32_t n,MSARegister ws)3388 void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
3389 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
3390 }
3391
insve_d(MSARegister wd,uint32_t n,MSARegister ws)3392 void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
3393 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
3394 }
3395
move_v(MSARegister wd,MSARegister ws)3396 void Assembler::move_v(MSARegister wd, MSARegister ws) {
3397 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3398 DCHECK(ws.is_valid() && wd.is_valid());
3399 Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
3400 (wd.code() << kWdShift) | MSA_ELM_MINOR;
3401 emit(instr);
3402 }
3403
ctcmsa(MSAControlRegister cd,Register rs)3404 void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
3405 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3406 DCHECK(cd.is_valid() && rs.is_valid());
3407 Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
3408 (cd.code() << kWdShift) | MSA_ELM_MINOR;
3409 emit(instr);
3410 }
3411
cfcmsa(Register rd,MSAControlRegister cs)3412 void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
3413 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3414 DCHECK(rd.is_valid() && cs.is_valid());
3415 Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
3416 (rd.code() << kWdShift) | MSA_ELM_MINOR;
3417 emit(instr);
3418 }
3419
3420 #define MSA_BIT_LIST(V) \
3421 V(slli, SLLI) \
3422 V(srai, SRAI) \
3423 V(srli, SRLI) \
3424 V(bclri, BCLRI) \
3425 V(bseti, BSETI) \
3426 V(bnegi, BNEGI) \
3427 V(binsli, BINSLI) \
3428 V(binsri, BINSRI) \
3429 V(sat_s, SAT_S) \
3430 V(sat_u, SAT_U) \
3431 V(srari, SRARI) \
3432 V(srlri, SRLRI)
3433
3434 #define MSA_BIT_FORMAT(name, opcode, format) \
3435 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3436 uint32_t m) { \
3437 GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd); \
3438 }
3439
3440 #define MSA_BIT(name, opcode) \
3441 MSA_BIT_FORMAT(name, opcode, b) \
3442 MSA_BIT_FORMAT(name, opcode, h) \
3443 MSA_BIT_FORMAT(name, opcode, w) \
3444 MSA_BIT_FORMAT(name, opcode, d)
3445
MSA_BIT_LIST(MSA_BIT)3446 MSA_BIT_LIST(MSA_BIT)
3447 #undef MSA_BIT
3448 #undef MSA_BIT_FORMAT
3449 #undef MSA_BIT_LIST
3450
3451 int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
3452 intptr_t pc_delta) {
3453 Instr instr = instr_at(pc);
3454
3455 if (RelocInfo::IsInternalReference(rmode)) {
3456 int32_t* p = reinterpret_cast<int32_t*>(pc);
3457 if (*p == 0) {
3458 return 0; // Number of instructions patched.
3459 }
3460 *p += pc_delta;
3461 return 1; // Number of instructions patched.
3462 } else {
3463 DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
3464 if (IsLui(instr)) {
3465 Instr instr1 = instr_at(pc + 0 * kInstrSize);
3466 Instr instr2 = instr_at(pc + 1 * kInstrSize);
3467 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
3468 int32_t imm;
3469 if (IsJicOrJialc(instr2)) {
3470 imm = CreateTargetAddress(instr1, instr2);
3471 } else {
3472 imm = GetLuiOriImmediate(instr1, instr2);
3473 }
3474
3475 if (imm == kEndOfJumpChain) {
3476 return 0; // Number of instructions patched.
3477 }
3478 imm += pc_delta;
3479 DCHECK_EQ(imm & 3, 0);
3480 instr1 &= ~kImm16Mask;
3481 instr2 &= ~kImm16Mask;
3482
3483 if (IsJicOrJialc(instr2)) {
3484 uint32_t lui_offset_u, jic_offset_u;
3485 Assembler::UnpackTargetAddressUnsigned(imm,
3486 &lui_offset_u, &jic_offset_u);
3487 instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
3488 instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
3489 } else {
3490 PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2,
3491 1 * kInstrSize);
3492 }
3493 return 2; // Number of instructions patched.
3494 } else {
3495 UNREACHABLE();
3496 }
3497 }
3498 }
3499
RelocateRelativeReference(RelocInfo::Mode rmode,Address pc,intptr_t pc_delta)3500 void Assembler::RelocateRelativeReference(RelocInfo::Mode rmode, Address pc,
3501 intptr_t pc_delta) {
3502 Instr instr = instr_at(pc);
3503
3504 DCHECK(RelocInfo::IsRelativeCodeTarget(rmode));
3505 if (IsLui(instr)) {
3506 Instr instr1 = instr_at(pc + 0 * kInstrSize);
3507 Instr instr2 = instr_at(pc + 1 * kInstrSize);
3508 Instr instr3 = instr_at(pc + 2 * kInstrSize);
3509 int32_t imm;
3510 Address ori_offset;
3511 if (IsNal(instr2)) {
3512 instr2 = instr3;
3513 ori_offset = 2 * kInstrSize;
3514 } else {
3515 ori_offset = 1 * kInstrSize;
3516 }
3517 DCHECK(IsOri(instr2));
3518 imm = GetLuiOriImmediate(instr1, instr2);
3519 instr1 &= ~kImm16Mask;
3520 instr2 &= ~kImm16Mask;
3521
3522 if (imm == kEndOfJumpChain) {
3523 return;
3524 }
3525 imm -= pc_delta;
3526 DCHECK_EQ(imm & 3, 0);
3527 PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2, ori_offset);
3528 return;
3529 } else {
3530 UNREACHABLE();
3531 }
3532 }
3533
GrowBuffer()3534 void Assembler::GrowBuffer() {
3535 // Compute new buffer size.
3536 int old_size = buffer_->size();
3537 int new_size = std::min(2 * old_size, old_size + 1 * MB);
3538
3539 // Some internal data structures overflow for very large buffers,
3540 // they must ensure that kMaximalBufferSize is not too large.
3541 if (new_size > kMaximalBufferSize) {
3542 V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3543 }
3544
3545 // Set up new buffer.
3546 std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3547 DCHECK_EQ(new_size, new_buffer->size());
3548 byte* new_start = new_buffer->start();
3549
3550 // Copy the data.
3551 int pc_delta = new_start - buffer_start_;
3552 int rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3553 size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3554 MemMove(new_start, buffer_start_, pc_offset());
3555 MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3556 reloc_size);
3557
3558 // Switch buffers.
3559 buffer_ = std::move(new_buffer);
3560 buffer_start_ = new_start;
3561 pc_ += pc_delta;
3562 last_call_pc_ += pc_delta;
3563 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3564 reloc_info_writer.last_pc() + pc_delta);
3565
3566 // Relocate runtime entries.
3567 Vector<byte> instructions{buffer_start_, pc_offset()};
3568 Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3569 for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) {
3570 RelocInfo::Mode rmode = it.rinfo()->rmode();
3571 if (rmode == RelocInfo::INTERNAL_REFERENCE_ENCODED ||
3572 rmode == RelocInfo::INTERNAL_REFERENCE) {
3573 RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
3574 }
3575 }
3576 DCHECK(!overflow());
3577 }
3578
db(uint8_t data)3579 void Assembler::db(uint8_t data) {
3580 CheckForEmitInForbiddenSlot();
3581 *reinterpret_cast<uint8_t*>(pc_) = data;
3582 pc_ += sizeof(uint8_t);
3583 }
3584
dd(uint32_t data)3585 void Assembler::dd(uint32_t data) {
3586 CheckForEmitInForbiddenSlot();
3587 *reinterpret_cast<uint32_t*>(pc_) = data;
3588 pc_ += sizeof(uint32_t);
3589 }
3590
dq(uint64_t data)3591 void Assembler::dq(uint64_t data) {
3592 CheckForEmitInForbiddenSlot();
3593 *reinterpret_cast<uint64_t*>(pc_) = data;
3594 pc_ += sizeof(uint64_t);
3595 }
3596
dd(Label * label)3597 void Assembler::dd(Label* label) {
3598 uint32_t data;
3599 CheckForEmitInForbiddenSlot();
3600 if (label->is_bound()) {
3601 data = reinterpret_cast<uint32_t>(buffer_start_ + label->pos());
3602 } else {
3603 data = jump_address(label);
3604 unbound_labels_count_++;
3605 internal_reference_positions_.insert(label->pos());
3606 }
3607 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3608 EmitHelper(data);
3609 }
3610
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3611 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3612 if (!ShouldRecordRelocInfo(rmode)) return;
3613 // We do not try to reuse pool constants.
3614 RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3615 DCHECK_GE(buffer_space(), kMaxRelocSize); // Too late to grow buffer here.
3616 reloc_info_writer.Write(&rinfo);
3617 }
3618
BlockTrampolinePoolFor(int instructions)3619 void Assembler::BlockTrampolinePoolFor(int instructions) {
3620 CheckTrampolinePoolQuick(instructions);
3621 BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
3622 }
3623
CheckTrampolinePool()3624 void Assembler::CheckTrampolinePool() {
3625 // Some small sequences of instructions must not be broken up by the
3626 // insertion of a trampoline pool; such sequences are protected by setting
3627 // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
3628 // which are both checked here. Also, recursive calls to CheckTrampolinePool
3629 // are blocked by trampoline_pool_blocked_nesting_.
3630 if ((trampoline_pool_blocked_nesting_ > 0) ||
3631 (pc_offset() < no_trampoline_pool_before_)) {
3632 // Emission is currently blocked; make sure we try again as soon as
3633 // possible.
3634 if (trampoline_pool_blocked_nesting_ > 0) {
3635 next_buffer_check_ = pc_offset() + kInstrSize;
3636 } else {
3637 next_buffer_check_ = no_trampoline_pool_before_;
3638 }
3639 return;
3640 }
3641
3642 DCHECK(!trampoline_emitted_);
3643 DCHECK_GE(unbound_labels_count_, 0);
3644 if (unbound_labels_count_ > 0) {
3645 // First we emit jump (2 instructions), then we emit trampoline pool.
3646 {
3647 BlockTrampolinePoolScope block_trampoline_pool(this);
3648 Label after_pool;
3649 if (IsMipsArchVariant(kMips32r6)) {
3650 bc(&after_pool);
3651 } else {
3652 b(&after_pool);
3653 }
3654 nop();
3655
3656 int pool_start = pc_offset();
3657 for (int i = 0; i < unbound_labels_count_; i++) {
3658 {
3659 if (IsMipsArchVariant(kMips32r6)) {
3660 bc(&after_pool);
3661 nop();
3662 } else {
3663 GenPCRelativeJump(t8, t9, 0, RelocInfo::NONE,
3664 BranchDelaySlot::PROTECT);
3665 }
3666 }
3667 }
3668 // If unbound_labels_count_ is big enough, label after_pool will
3669 // need a trampoline too, so we must create the trampoline before
3670 // the bind operation to make sure function 'bind' can get this
3671 // information.
3672 trampoline_ = Trampoline(pool_start, unbound_labels_count_);
3673 bind(&after_pool);
3674
3675 trampoline_emitted_ = true;
3676 // As we are only going to emit trampoline once, we need to prevent any
3677 // further emission.
3678 next_buffer_check_ = kMaxInt;
3679 }
3680 } else {
3681 // Number of branches to unbound label at this point is zero, so we can
3682 // move next buffer check to maximum.
3683 next_buffer_check_ =
3684 pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16;
3685 }
3686 return;
3687 }
3688
target_address_at(Address pc)3689 Address Assembler::target_address_at(Address pc) {
3690 Instr instr1 = instr_at(pc);
3691 Instr instr2 = instr_at(pc + kInstrSize);
3692 Instr instr3 = instr_at(pc + 2 * kInstrSize);
3693 // Interpret 2 instructions generated by li (lui/ori) or optimized pairs
3694 // lui/jic, aui/jic or lui/jialc.
3695 if (IsLui(instr1)) {
3696 if (IsOri(instr2)) {
3697 Address target_address;
3698 // Assemble the 32 bit value.
3699 target_address = GetLuiOriImmediate(instr1, instr2);
3700 if (IsAddu(instr3, t9, ra, t9)) {
3701 target_address += pc + kRelativeJumpForBuiltinsOffset;
3702 }
3703 return target_address;
3704 } else if (IsJicOrJialc(instr2)) {
3705 // Assemble the 32 bit value.
3706 return static_cast<Address>(CreateTargetAddress(instr1, instr2));
3707 } else if (IsNal(instr2)) {
3708 DCHECK(IsOri(instr3));
3709 Address target_address;
3710 target_address = GetLuiOriImmediate(instr1, instr3);
3711 return target_address + pc + kRelativeCallForBuiltinsOffset;
3712 }
3713 }
3714
3715 // We should never get here, force a bad address if we do.
3716 UNREACHABLE();
3717 }
3718
3719 // On Mips, a target address is stored in a lui/ori instruction pair, each
3720 // of which load 16 bits of the 32-bit address to a register.
3721 // Patching the address must replace both instr, and flush the i-cache.
3722 // On r6, target address is stored in a lui/jic pair, and both instr have to be
3723 // patched.
set_target_value_at(Address pc,uint32_t target,ICacheFlushMode icache_flush_mode)3724 void Assembler::set_target_value_at(Address pc, uint32_t target,
3725 ICacheFlushMode icache_flush_mode) {
3726 Instr instr1 = instr_at(pc);
3727 Instr instr2 = instr_at(pc + kInstrSize);
3728
3729 #ifdef DEBUG
3730 // Check we have the result from a li macro-instruction, using instr pair.
3731 DCHECK(IsLui(instr1) &&
3732 (IsOri(instr2) || IsJicOrJialc(instr2) || IsNal(instr2)));
3733 #endif
3734
3735 if (IsJicOrJialc(instr2)) {
3736 // Must use 2 instructions to insure patchable code => use lui and jic
3737 uint32_t lui_offset, jic_offset;
3738 Assembler::UnpackTargetAddressUnsigned(target, &lui_offset, &jic_offset);
3739
3740 instr1 &= ~kImm16Mask;
3741 instr2 &= ~kImm16Mask;
3742
3743 instr1 |= lui_offset;
3744 instr2 |= jic_offset;
3745
3746 instr_at_put(pc, instr1);
3747 instr_at_put(pc + kInstrSize, instr2);
3748 } else {
3749 Instr instr3 = instr_at(pc + 2 * kInstrSize);
3750 // If we are using relative calls/jumps for builtins.
3751 if (IsNal(instr2)) {
3752 target -= pc + kRelativeCallForBuiltinsOffset;
3753 }
3754 if (IsAddu(instr3, t9, ra, t9)) {
3755 target -= pc + kRelativeJumpForBuiltinsOffset;
3756 }
3757 // Must use 2 instructions to insure patchable code => just use lui and ori.
3758 // lui rt, upper-16.
3759 // ori rt rt, lower-16.
3760 if (IsNal(instr2)) {
3761 instr1 &= ~kImm16Mask;
3762 instr3 &= ~kImm16Mask;
3763 PatchLuiOriImmediate(pc, target, instr1, 0 * kInstrSize, instr3,
3764 2 * kInstrSize);
3765 } else {
3766 instr1 &= ~kImm16Mask;
3767 instr2 &= ~kImm16Mask;
3768 PatchLuiOriImmediate(pc, target, instr1, 0 * kInstrSize, instr2,
3769 1 * kInstrSize);
3770 }
3771 }
3772
3773 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3774 FlushInstructionCache(pc, 2 * sizeof(int32_t));
3775 }
3776 }
3777
GenPCRelativeJump(Register tf,Register ts,int32_t imm32,RelocInfo::Mode rmode,BranchDelaySlot bdslot)3778 void Assembler::GenPCRelativeJump(Register tf, Register ts, int32_t imm32,
3779 RelocInfo::Mode rmode,
3780 BranchDelaySlot bdslot) {
3781 // Order of these instructions is relied upon when patching them
3782 // or when changing imm32 that lui/ori pair loads.
3783 or_(tf, ra, zero_reg);
3784 nal(); // Relative place of nal instruction determines kLongBranchPCOffset.
3785 if (!RelocInfo::IsNone(rmode)) {
3786 RecordRelocInfo(rmode);
3787 }
3788 lui(ts, (imm32 & kHiMask) >> kLuiShift);
3789 ori(ts, ts, (imm32 & kImm16Mask));
3790 addu(ts, ra, ts);
3791 if (bdslot == USE_DELAY_SLOT) {
3792 or_(ra, tf, zero_reg);
3793 }
3794 jr(ts);
3795 if (bdslot == PROTECT) {
3796 or_(ra, tf, zero_reg);
3797 }
3798 }
3799
GenPCRelativeJumpAndLink(Register t,int32_t imm32,RelocInfo::Mode rmode,BranchDelaySlot bdslot)3800 void Assembler::GenPCRelativeJumpAndLink(Register t, int32_t imm32,
3801 RelocInfo::Mode rmode,
3802 BranchDelaySlot bdslot) {
3803 if (!RelocInfo::IsNone(rmode)) {
3804 RecordRelocInfo(rmode);
3805 }
3806 // Order of these instructions is relied upon when patching them
3807 // or when changing imm32 that lui/ori pair loads.
3808 lui(t, (imm32 & kHiMask) >> kLuiShift);
3809 nal(); // Relative place of nal instruction determines kLongBranchPCOffset.
3810 ori(t, t, (imm32 & kImm16Mask));
3811 addu(t, ra, t);
3812 jalr(t);
3813 if (bdslot == PROTECT) nop();
3814 set_last_call_pc_(pc_);
3815 }
3816
UseScratchRegisterScope(Assembler * assembler)3817 UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
3818 : available_(assembler->GetScratchRegisterList()),
3819 old_available_(*available_) {}
3820
~UseScratchRegisterScope()3821 UseScratchRegisterScope::~UseScratchRegisterScope() {
3822 *available_ = old_available_;
3823 }
3824
Acquire()3825 Register UseScratchRegisterScope::Acquire() {
3826 DCHECK_NOT_NULL(available_);
3827 DCHECK_NE(*available_, 0);
3828 int index = static_cast<int>(base::bits::CountTrailingZeros32(*available_));
3829 *available_ &= ~(1UL << index);
3830
3831 return Register::from_code(index);
3832 }
3833
hasAvailable() const3834 bool UseScratchRegisterScope::hasAvailable() const { return *available_ != 0; }
3835
3836 } // namespace internal
3837 } // namespace v8
3838
3839 #endif // V8_TARGET_ARCH_MIPS
3840