1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
2 data. */
3
4 /* By Rod Smith, initial coding January to February, 2009 */
5
6 /* This program is copyright (c) 2009-2018 by Roderick W. Smith. It is distributed
7 under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8
9 #define __STDC_LIMIT_MACROS
10 #ifndef __STDC_CONSTANT_MACROS
11 #define __STDC_CONSTANT_MACROS
12 #endif
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <stdint.h>
17 #include <fcntl.h>
18 #include <string.h>
19 #include <math.h>
20 #include <time.h>
21 #include <sys/stat.h>
22 #include <errno.h>
23 #include <iostream>
24 #include <algorithm>
25 #include "crc32.h"
26 #include "gpt.h"
27 #include "bsd.h"
28 #include "support.h"
29 #include "parttypes.h"
30 #include "attributes.h"
31 #include "diskio.h"
32
33 using namespace std;
34
35 #ifdef __FreeBSD__
36 #define log2(x) (log(x) / M_LN2)
37 #endif // __FreeBSD__
38
39 #ifdef _MSC_VER
40 #define log2(x) (log((double) x) / log(2.0))
41 #endif // Microsoft Visual C++
42
43 #ifdef EFI
44 // in UEFI mode MMX registers are not yet available so using the
45 // x86_64 ABI to move "double" values around is not an option.
46 #ifdef log2
47 #undef log2
48 #endif
49 #define log2(x) log2_32( x )
log2_32(uint32_t v)50 static inline uint32_t log2_32(uint32_t v) {
51 int r = -1;
52 while (v >= 1) {
53 r++;
54 v >>= 1;
55 }
56 return r;
57 }
58 #endif
59
60 /****************************************
61 * *
62 * GPTData class and related structures *
63 * *
64 ****************************************/
65
66 // Default constructor
GPTData(void)67 GPTData::GPTData(void) {
68 blockSize = SECTOR_SIZE; // set a default
69 physBlockSize = 0; // 0 = can't be determined
70 diskSize = 0;
71 partitions = NULL;
72 state = gpt_valid;
73 device = "";
74 justLooking = 0;
75 mainCrcOk = 0;
76 secondCrcOk = 0;
77 mainPartsCrcOk = 0;
78 secondPartsCrcOk = 0;
79 apmFound = 0;
80 bsdFound = 0;
81 sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
82 beQuiet = 0;
83 whichWasUsed = use_new;
84 mainHeader.numParts = 0;
85 numParts = 0;
86 SetGPTSize(NUM_GPT_ENTRIES);
87 // Initialize CRC functions...
88 chksum_crc32gentab();
89 } // GPTData default constructor
90
GPTData(const GPTData & orig)91 GPTData::GPTData(const GPTData & orig) {
92 uint32_t i;
93
94 if (&orig != this) {
95 mainHeader = orig.mainHeader;
96 numParts = orig.numParts;
97 secondHeader = orig.secondHeader;
98 protectiveMBR = orig.protectiveMBR;
99 device = orig.device;
100 blockSize = orig.blockSize;
101 physBlockSize = orig.physBlockSize;
102 diskSize = orig.diskSize;
103 state = orig.state;
104 justLooking = orig.justLooking;
105 mainCrcOk = orig.mainCrcOk;
106 secondCrcOk = orig.secondCrcOk;
107 mainPartsCrcOk = orig.mainPartsCrcOk;
108 secondPartsCrcOk = orig.secondPartsCrcOk;
109 apmFound = orig.apmFound;
110 bsdFound = orig.bsdFound;
111 sectorAlignment = orig.sectorAlignment;
112 beQuiet = orig.beQuiet;
113 whichWasUsed = orig.whichWasUsed;
114
115 myDisk.OpenForRead(orig.myDisk.GetName());
116
117 delete[] partitions;
118 partitions = new GPTPart [numParts];
119 if (partitions == NULL) {
120 cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
121 << "Terminating!\n";
122 exit(1);
123 } // if
124 for (i = 0; i < numParts; i++) {
125 partitions[i] = orig.partitions[i];
126 } // for
127 } // if
128 } // GPTData copy constructor
129
130 // The following constructor loads GPT data from a device file
GPTData(string filename)131 GPTData::GPTData(string filename) {
132 blockSize = SECTOR_SIZE; // set a default
133 diskSize = 0;
134 partitions = NULL;
135 state = gpt_invalid;
136 device = "";
137 justLooking = 0;
138 mainCrcOk = 0;
139 secondCrcOk = 0;
140 mainPartsCrcOk = 0;
141 secondPartsCrcOk = 0;
142 apmFound = 0;
143 bsdFound = 0;
144 sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
145 beQuiet = 0;
146 whichWasUsed = use_new;
147 mainHeader.numParts = 0;
148 numParts = 0;
149 // Initialize CRC functions...
150 chksum_crc32gentab();
151 if (!LoadPartitions(filename))
152 exit(2);
153 } // GPTData(string filename) constructor
154
155 // Destructor
~GPTData(void)156 GPTData::~GPTData(void) {
157 delete[] partitions;
158 } // GPTData destructor
159
160 // Assignment operator
operator =(const GPTData & orig)161 GPTData & GPTData::operator=(const GPTData & orig) {
162 uint32_t i;
163
164 if (&orig != this) {
165 mainHeader = orig.mainHeader;
166 numParts = orig.numParts;
167 secondHeader = orig.secondHeader;
168 protectiveMBR = orig.protectiveMBR;
169 device = orig.device;
170 blockSize = orig.blockSize;
171 physBlockSize = orig.physBlockSize;
172 diskSize = orig.diskSize;
173 state = orig.state;
174 justLooking = orig.justLooking;
175 mainCrcOk = orig.mainCrcOk;
176 secondCrcOk = orig.secondCrcOk;
177 mainPartsCrcOk = orig.mainPartsCrcOk;
178 secondPartsCrcOk = orig.secondPartsCrcOk;
179 apmFound = orig.apmFound;
180 bsdFound = orig.bsdFound;
181 sectorAlignment = orig.sectorAlignment;
182 beQuiet = orig.beQuiet;
183 whichWasUsed = orig.whichWasUsed;
184
185 myDisk.OpenForRead(orig.myDisk.GetName());
186
187 delete[] partitions;
188 partitions = new GPTPart [numParts];
189 if (partitions == NULL) {
190 cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
191 << "Terminating!\n";
192 exit(1);
193 } // if
194 for (i = 0; i < numParts; i++) {
195 partitions[i] = orig.partitions[i];
196 } // for
197 } // if
198
199 return *this;
200 } // GPTData::operator=()
201
202 /*********************************************************************
203 * *
204 * Begin functions that verify data, or that adjust the verification *
205 * information (compute CRCs, rebuild headers) *
206 * *
207 *********************************************************************/
208
209 // Perform detailed verification, reporting on any problems found, but
210 // do *NOT* recover from these problems. Returns the total number of
211 // problems identified.
Verify(void)212 int GPTData::Verify(void) {
213 int problems = 0, alignProbs = 0;
214 uint32_t i, numSegments, testAlignment = sectorAlignment;
215 uint64_t totalFree, largestSegment;
216
217 // First, check for CRC errors in the GPT data....
218 if (!mainCrcOk) {
219 problems++;
220 cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
221 << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
222 << "header ('b' on the recovery & transformation menu). This report may be a false\n"
223 << "alarm if you've already corrected other problems.\n";
224 } // if
225 if (!mainPartsCrcOk) {
226 problems++;
227 cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
228 << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
229 << "transformation menu). This report may be a false alarm if you've already\n"
230 << "corrected other problems.\n";
231 } // if
232 if (!secondCrcOk) {
233 problems++;
234 cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
235 << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
236 << "header ('d' on the recovery & transformation menu). This report may be a false\n"
237 << "alarm if you've already corrected other problems.\n";
238 } // if
239 if (!secondPartsCrcOk) {
240 problems++;
241 cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
242 << "be corrupt. This program will automatically create a new backup partition\n"
243 << "table when you save your partitions.\n";
244 } // if
245
246 // Now check that the main and backup headers both point to themselves....
247 if (mainHeader.currentLBA != 1) {
248 problems++;
249 cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
250 << "is being automatically corrected, but it may be a symptom of more serious\n"
251 << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
252 mainHeader.currentLBA = 1;
253 } // if
254 if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
255 problems++;
256 cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
257 << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
258 << "option on the experts' menu to adjust the secondary header's and partition\n"
259 << "table's locations.\n";
260 } // if
261
262 // Now check that critical main and backup GPT entries match each other
263 if (mainHeader.currentLBA != secondHeader.backupLBA) {
264 problems++;
265 cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
266 << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
267 << secondHeader.backupLBA << ").\n";
268 } // if
269 if (mainHeader.backupLBA != secondHeader.currentLBA) {
270 problems++;
271 cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
272 << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
273 << secondHeader.currentLBA << ").\n"
274 << "The 'e' option on the experts' menu may fix this problem.\n";
275 } // if
276 if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
277 problems++;
278 cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
279 << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
280 << secondHeader.firstUsableLBA << ")\n";
281 } // if
282 if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
283 problems++;
284 cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
285 << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
286 << secondHeader.lastUsableLBA << ")\n"
287 << "The 'e' option on the experts' menu can probably fix this problem.\n";
288 } // if
289 if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
290 problems++;
291 cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
292 << ") doesn't\nmatch the backup GPT header's disk GUID ("
293 << secondHeader.diskGUID << ")\n"
294 << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
295 << "select one or the other header.\n";
296 } // if
297 if (mainHeader.numParts != secondHeader.numParts) {
298 problems++;
299 cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
300 << ") doesn't\nmatch the backup GPT header's number of partitions ("
301 << secondHeader.numParts << ")\n"
302 << "Resizing the partition table ('s' on the experts' menu) may help.\n";
303 } // if
304 if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
305 problems++;
306 cout << "\nProblem: main GPT header's size of partition entries ("
307 << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
308 << "match the backup GPT header's size of partition entries ("
309 << secondHeader.sizeOfPartitionEntries << ")\n"
310 << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
311 << "select one or the other header.\n";
312 } // if
313
314 // Now check for a few other miscellaneous problems...
315 // Check that the disk size will hold the data...
316 if (mainHeader.backupLBA >= diskSize) {
317 problems++;
318 cout << "\nProblem: Disk is too small to hold all the data!\n"
319 << "(Disk size is " << diskSize << " sectors, needs to be "
320 << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
321 << "The 'e' option on the experts' menu may fix this problem.\n";
322 } // if
323
324 // Check the main and backup partition tables for overlap with things and unusual gaps
325 if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() > mainHeader.firstUsableLBA) {
326 problems++;
327 cout << "\nProblem: Main partition table extends past the first usable LBA.\n"
328 << "Using 'j' on the experts' menu may enable fixing this problem.\n";
329 } // if
330 if (mainHeader.partitionEntriesLBA < 2) {
331 problems++;
332 cout << "\nProblem: Main partition table appears impossibly early on the disk.\n"
333 << "Using 'j' on the experts' menu may enable fixing this problem.\n";
334 } // if
335 if (secondHeader.partitionEntriesLBA + GetTableSizeInSectors() > secondHeader.currentLBA) {
336 problems++;
337 cout << "\nProblem: The backup partition table overlaps the backup header.\n"
338 << "Using 'e' on the experts' menu may fix this problem.\n";
339 } // if
340 if (mainHeader.partitionEntriesLBA != 2) {
341 cout << "\nWarning: There is a gap between the main metadata (sector 1) and the main\n"
342 << "partition table (sector " << mainHeader.partitionEntriesLBA
343 << "). This is helpful in some exotic configurations,\n"
344 << "but is generally ill-advised. Using 'j' on the experts' menu can adjust this\n"
345 << "gap.\n";
346 } // if
347 if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() != mainHeader.firstUsableLBA) {
348 cout << "\nWarning: There is a gap between the main partition table (ending sector "
349 << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << ")\n"
350 << "and the first usable sector (" << mainHeader.firstUsableLBA << "). This is helpful in some exotic configurations,\n"
351 << "but is unusual. The util-linux fdisk program often creates disks like this.\n"
352 << "Using 'j' on the experts' menu can adjust this gap.\n";
353 } // if
354
355 if (mainHeader.sizeOfPartitionEntries * mainHeader.numParts < 16384) {
356 cout << "\nWarning: The size of the partition table (" << mainHeader.sizeOfPartitionEntries * mainHeader.numParts
357 << " bytes) is less than the minimum\n"
358 << "required by the GPT specification. Most OSes and tools seem to work fine on\n"
359 << "such disks, but this is a violation of the GPT specification and so may cause\n"
360 << "problems.\n";
361 } // if
362
363 if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
364 problems++;
365 cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
366 << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
367 << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
368 << "The 'e' option on the experts' menu will probably fix this problem\n";
369 }
370
371 // Check for overlapping partitions....
372 problems += FindOverlaps();
373
374 // Check for insane partitions (start after end, hugely big, etc.)
375 problems += FindInsanePartitions();
376
377 // Check for mismatched MBR and GPT partitions...
378 problems += FindHybridMismatches();
379
380 // Check for MBR-specific problems....
381 problems += VerifyMBR();
382
383 // Check for a 0xEE protective partition that's marked as active....
384 if (protectiveMBR.IsEEActive()) {
385 cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
386 << "technically a violation of the GPT specification, and can cause some EFIs to\n"
387 << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
388 << "computers. You can clear this flag by creating a fresh protective MBR using\n"
389 << "the 'n' option on the experts' menu.\n";
390 }
391
392 // Verify that partitions don't run into GPT data areas....
393 problems += CheckGPTSize();
394
395 if (!protectiveMBR.DoTheyFit()) {
396 cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
397 << "fresh protective or hybrid MBR is recommended.\n";
398 problems++;
399 }
400
401 // Check that partitions are aligned on proper boundaries (for WD Advanced
402 // Format and similar disks)....
403 if ((physBlockSize != 0) && (blockSize != 0))
404 testAlignment = physBlockSize / blockSize;
405 testAlignment = max(testAlignment, sectorAlignment);
406 if (testAlignment == 0) // Should not happen; just being paranoid.
407 testAlignment = sectorAlignment;
408 for (i = 0; i < numParts; i++) {
409 if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % testAlignment) != 0) {
410 cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
411 << testAlignment << "-sector boundary. This may\nresult "
412 << "in degraded performance on some modern (2009 and later) hard disks.\n";
413 alignProbs++;
414 } // if
415 } // for
416 if (alignProbs > 0)
417 cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
418 << "for information on disk alignment.\n";
419
420 // Now compute available space, but only if no problems found, since
421 // problems could affect the results
422 if (problems == 0) {
423 totalFree = FindFreeBlocks(&numSegments, &largestSegment);
424 cout << "\nNo problems found. " << totalFree << " free sectors ("
425 << BytesToIeee(totalFree, blockSize) << ") available in "
426 << numSegments << "\nsegments, the largest of which is "
427 << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
428 << ") in size.\n";
429 } else {
430 cout << "\nIdentified " << problems << " problems!\n";
431 } // if/else
432
433 return (problems);
434 } // GPTData::Verify()
435
436 // Checks to see if the GPT tables overrun existing partitions; if they
437 // do, issues a warning but takes no action. Returns number of problems
438 // detected (0 if OK, 1 to 2 if problems).
CheckGPTSize(void)439 int GPTData::CheckGPTSize(void) {
440 uint64_t overlap, firstUsedBlock, lastUsedBlock;
441 uint32_t i;
442 int numProbs = 0;
443
444 // first, locate the first & last used blocks
445 firstUsedBlock = UINT64_MAX;
446 lastUsedBlock = 0;
447 for (i = 0; i < numParts; i++) {
448 if (partitions[i].IsUsed()) {
449 if (partitions[i].GetFirstLBA() < firstUsedBlock)
450 firstUsedBlock = partitions[i].GetFirstLBA();
451 if (partitions[i].GetLastLBA() > lastUsedBlock) {
452 lastUsedBlock = partitions[i].GetLastLBA();
453 } // if
454 } // if
455 } // for
456
457 // If the disk size is 0 (the default), then it means that various
458 // variables aren't yet set, so the below tests will be useless;
459 // therefore we should skip everything
460 if (diskSize != 0) {
461 if (mainHeader.firstUsableLBA > firstUsedBlock) {
462 overlap = mainHeader.firstUsableLBA - firstUsedBlock;
463 cout << "Warning! Main partition table overlaps the first partition by "
464 << overlap << " blocks!\n";
465 if (firstUsedBlock > 2) {
466 cout << "Try reducing the partition table size by " << overlap * 4
467 << " entries.\n(Use the 's' item on the experts' menu.)\n";
468 } else {
469 cout << "You will need to delete this partition or resize it in another utility.\n";
470 } // if/else
471 numProbs++;
472 } // Problem at start of disk
473 if (mainHeader.lastUsableLBA < lastUsedBlock) {
474 overlap = lastUsedBlock - mainHeader.lastUsableLBA;
475 cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
476 << overlap << " blocks!\n";
477 if (lastUsedBlock > (diskSize - 2)) {
478 cout << "You will need to delete this partition or resize it in another utility.\n";
479 } else {
480 cout << "Try reducing the partition table size by " << overlap * 4
481 << " entries.\n(Use the 's' item on the experts' menu.)\n";
482 } // if/else
483 numProbs++;
484 } // Problem at end of disk
485 } // if (diskSize != 0)
486 return numProbs;
487 } // GPTData::CheckGPTSize()
488
489 // Check the validity of the GPT header. Returns 1 if the main header
490 // is valid, 2 if the backup header is valid, 3 if both are valid, and
491 // 0 if neither is valid. Note that this function checks the GPT signature,
492 // revision value, and CRCs in both headers.
CheckHeaderValidity(void)493 int GPTData::CheckHeaderValidity(void) {
494 int valid = 3;
495
496 cout.setf(ios::uppercase);
497 cout.fill('0');
498
499 // Note: failed GPT signature checks produce no error message because
500 // a message is displayed in the ReversePartitionBytes() function
501 if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
502 valid -= 1;
503 } else if ((mainHeader.revision != 0x00010000) && valid) {
504 valid -= 1;
505 cout << "Unsupported GPT version in main header; read 0x";
506 cout.width(8);
507 cout << hex << mainHeader.revision << ", should be\n0x";
508 cout.width(8);
509 cout << UINT32_C(0x00010000) << dec << "\n";
510 } // if/else/if
511
512 if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
513 valid -= 2;
514 } else if ((secondHeader.revision != 0x00010000) && valid) {
515 valid -= 2;
516 cout << "Unsupported GPT version in backup header; read 0x";
517 cout.width(8);
518 cout << hex << secondHeader.revision << ", should be\n0x";
519 cout.width(8);
520 cout << UINT32_C(0x00010000) << dec << "\n";
521 } // if/else/if
522
523 // Check for an Apple disk signature
524 if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
525 (mainHeader.signature << 32) == APM_SIGNATURE2) {
526 apmFound = 1; // Will display warning message later
527 } // if
528 cout.fill(' ');
529
530 return valid;
531 } // GPTData::CheckHeaderValidity()
532
533 // Check the header CRC to see if it's OK...
534 // Note: Must be called with header in platform-ordered byte order.
535 // Returns 1 if header's computed CRC matches the stored value, 0 if the
536 // computed and stored values don't match
CheckHeaderCRC(struct GPTHeader * header,int warn)537 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
538 uint32_t oldCRC, newCRC, hSize;
539 uint8_t *temp;
540
541 // Back up old header CRC and then blank it, since it must be 0 for
542 // computation to be valid
543 oldCRC = header->headerCRC;
544 header->headerCRC = UINT32_C(0);
545
546 hSize = header->headerSize;
547
548 if (IsLittleEndian() == 0)
549 ReverseHeaderBytes(header);
550
551 if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
552 if (warn) {
553 cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
554 cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
555 } // if
556 hSize = HEADER_SIZE;
557 } else if ((hSize > sizeof(GPTHeader)) && warn) {
558 cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
559 cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
560 << "which may result in a CRC false alarm.\n";
561 } // if/elseif
562 temp = new uint8_t[hSize];
563 if (temp != NULL) {
564 memset(temp, 0, hSize);
565 if (hSize < sizeof(GPTHeader))
566 memcpy(temp, header, hSize);
567 else
568 memcpy(temp, header, sizeof(GPTHeader));
569
570 newCRC = chksum_crc32((unsigned char*) temp, hSize);
571 delete[] temp;
572 } else {
573 cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
574 exit(1);
575 }
576 if (IsLittleEndian() == 0)
577 ReverseHeaderBytes(header);
578 header->headerCRC = oldCRC;
579 return (oldCRC == newCRC);
580 } // GPTData::CheckHeaderCRC()
581
582 // Recompute all the CRCs. Must be called before saving if any changes have
583 // been made. Must be called on platform-ordered data (this function reverses
584 // byte order and then undoes that reversal.)
RecomputeCRCs(void)585 void GPTData::RecomputeCRCs(void) {
586 uint32_t crc, hSize;
587 int littleEndian = 1;
588
589 // If the header size is bigger than the GPT header data structure, reset it;
590 // otherwise, set both header sizes to whatever the main one is....
591 if (mainHeader.headerSize > sizeof(GPTHeader))
592 hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
593 else
594 hSize = secondHeader.headerSize = mainHeader.headerSize;
595
596 if ((littleEndian = IsLittleEndian()) == 0) {
597 ReversePartitionBytes();
598 ReverseHeaderBytes(&mainHeader);
599 ReverseHeaderBytes(&secondHeader);
600 } // if
601
602 // Compute CRC of partition tables & store in main and secondary headers
603 crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
604 mainHeader.partitionEntriesCRC = crc;
605 secondHeader.partitionEntriesCRC = crc;
606 if (littleEndian == 0) {
607 ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
608 ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
609 } // if
610
611 // Zero out GPT headers' own CRCs (required for correct computation)
612 mainHeader.headerCRC = 0;
613 secondHeader.headerCRC = 0;
614
615 crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
616 if (littleEndian == 0)
617 ReverseBytes(&crc, 4);
618 mainHeader.headerCRC = crc;
619 crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
620 if (littleEndian == 0)
621 ReverseBytes(&crc, 4);
622 secondHeader.headerCRC = crc;
623
624 if (littleEndian == 0) {
625 ReverseHeaderBytes(&mainHeader);
626 ReverseHeaderBytes(&secondHeader);
627 ReversePartitionBytes();
628 } // if
629 } // GPTData::RecomputeCRCs()
630
631 // Rebuild the main GPT header, using the secondary header as a model.
632 // Typically called when the main header has been found to be corrupt.
RebuildMainHeader(void)633 void GPTData::RebuildMainHeader(void) {
634 mainHeader.signature = GPT_SIGNATURE;
635 mainHeader.revision = secondHeader.revision;
636 mainHeader.headerSize = secondHeader.headerSize;
637 mainHeader.headerCRC = UINT32_C(0);
638 mainHeader.reserved = secondHeader.reserved;
639 mainHeader.currentLBA = secondHeader.backupLBA;
640 mainHeader.backupLBA = secondHeader.currentLBA;
641 mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
642 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
643 mainHeader.diskGUID = secondHeader.diskGUID;
644 mainHeader.numParts = secondHeader.numParts;
645 mainHeader.partitionEntriesLBA = secondHeader.firstUsableLBA - GetTableSizeInSectors();
646 mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
647 mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
648 memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
649 mainCrcOk = secondCrcOk;
650 SetGPTSize(mainHeader.numParts, 0);
651 } // GPTData::RebuildMainHeader()
652
653 // Rebuild the secondary GPT header, using the main header as a model.
RebuildSecondHeader(void)654 void GPTData::RebuildSecondHeader(void) {
655 secondHeader.signature = GPT_SIGNATURE;
656 secondHeader.revision = mainHeader.revision;
657 secondHeader.headerSize = mainHeader.headerSize;
658 secondHeader.headerCRC = UINT32_C(0);
659 secondHeader.reserved = mainHeader.reserved;
660 secondHeader.currentLBA = mainHeader.backupLBA;
661 secondHeader.backupLBA = mainHeader.currentLBA;
662 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
663 secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
664 secondHeader.diskGUID = mainHeader.diskGUID;
665 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
666 secondHeader.numParts = mainHeader.numParts;
667 secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
668 secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
669 memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
670 secondCrcOk = mainCrcOk;
671 SetGPTSize(secondHeader.numParts, 0);
672 } // GPTData::RebuildSecondHeader()
673
674 // Search for hybrid MBR entries that have no corresponding GPT partition.
675 // Returns number of such mismatches found
FindHybridMismatches(void)676 int GPTData::FindHybridMismatches(void) {
677 int i, found, numFound = 0;
678 uint32_t j;
679 uint64_t mbrFirst, mbrLast;
680
681 for (i = 0; i < 4; i++) {
682 if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
683 j = 0;
684 found = 0;
685 mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
686 mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
687 do {
688 if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
689 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
690 found = 1;
691 j++;
692 } while ((!found) && (j < numParts));
693 if (!found) {
694 numFound++;
695 cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
696 << i + 1 << ", of type 0x";
697 cout.fill('0');
698 cout.setf(ios::uppercase);
699 cout.width(2);
700 cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
701 << "has no corresponding GPT partition! You may continue, but this condition\n"
702 << "might cause data loss in the future!\a\n" << dec;
703 cout.fill(' ');
704 } // if
705 } // if
706 } // for
707 return numFound;
708 } // GPTData::FindHybridMismatches
709
710 // Find overlapping partitions and warn user about them. Returns number of
711 // overlapping partitions.
712 // Returns number of overlapping segments found.
FindOverlaps(void)713 int GPTData::FindOverlaps(void) {
714 int problems = 0;
715 uint32_t i, j;
716
717 for (i = 1; i < numParts; i++) {
718 for (j = 0; j < i; j++) {
719 if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
720 (partitions[i].DoTheyOverlap(partitions[j]))) {
721 problems++;
722 cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
723 cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
724 << " to " << partitions[i].GetLastLBA() << "\n";
725 cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
726 << " to " << partitions[j].GetLastLBA() << "\n";
727 } // if
728 } // for j...
729 } // for i...
730 return problems;
731 } // GPTData::FindOverlaps()
732
733 // Find partitions that are insane -- they start after they end or are too
734 // big for the disk. (The latter should duplicate detection of overlaps
735 // with GPT backup data structures, but better to err on the side of
736 // redundant tests than to miss something....)
737 // Returns number of problems found.
FindInsanePartitions(void)738 int GPTData::FindInsanePartitions(void) {
739 uint32_t i;
740 int problems = 0;
741
742 for (i = 0; i < numParts; i++) {
743 if (partitions[i].IsUsed()) {
744 if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
745 problems++;
746 cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
747 } // if
748 if (partitions[i].GetLastLBA() >= diskSize) {
749 problems++;
750 cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
751 } // if
752 } // if
753 } // for
754 return problems;
755 } // GPTData::FindInsanePartitions(void)
756
757
758 /******************************************************************
759 * *
760 * Begin functions that load data from disk or save data to disk. *
761 * *
762 ******************************************************************/
763
764 // Change the filename associated with the GPT. Used for duplicating
765 // the partition table to a new disk and saving backups.
766 // Returns 1 on success, 0 on failure.
SetDisk(const string & deviceFilename)767 int GPTData::SetDisk(const string & deviceFilename) {
768 int err, allOK = 1;
769
770 device = deviceFilename;
771 if (allOK && myDisk.OpenForRead(deviceFilename)) {
772 // store disk information....
773 diskSize = myDisk.DiskSize(&err);
774 blockSize = (uint32_t) myDisk.GetBlockSize();
775 physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
776 } // if
777 protectiveMBR.SetDisk(&myDisk);
778 protectiveMBR.SetDiskSize(diskSize);
779 protectiveMBR.SetBlockSize(blockSize);
780 return allOK;
781 } // GPTData::SetDisk()
782
783 // Scan for partition data. This function loads the MBR data (regular MBR or
784 // protective MBR) and loads BSD disklabel data (which is probably invalid).
785 // It also looks for APM data, forces a load of GPT data, and summarizes
786 // the results.
PartitionScan(void)787 void GPTData::PartitionScan(void) {
788 BSDData bsdDisklabel;
789
790 // Read the MBR & check for BSD disklabel
791 protectiveMBR.ReadMBRData(&myDisk);
792 bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
793
794 // Load the GPT data, whether or not it's valid
795 ForceLoadGPTData();
796
797 // Some tools create a 0xEE partition that's too big. If this is detected,
798 // normalize it....
799 if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
800 if (!beQuiet) {
801 cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
802 } // if
803 protectiveMBR.MakeProtectiveMBR();
804 } // if
805
806 if (!beQuiet) {
807 cout << "Partition table scan:\n";
808 protectiveMBR.ShowState();
809 bsdDisklabel.ShowState();
810 ShowAPMState(); // Show whether there's an Apple Partition Map present
811 ShowGPTState(); // Show GPT status
812 cout << "\n";
813 } // if
814
815 if (apmFound) {
816 cout << "\n*******************************************************************\n"
817 << "This disk appears to contain an Apple-format (APM) partition table!\n";
818 if (!justLooking) {
819 cout << "It will be destroyed if you continue!\n";
820 } // if
821 cout << "*******************************************************************\n\n\a";
822 } // if
823 } // GPTData::PartitionScan()
824
825 // Read GPT data from a disk.
LoadPartitions(const string & deviceFilename)826 int GPTData::LoadPartitions(const string & deviceFilename) {
827 BSDData bsdDisklabel;
828 int err, allOK = 1;
829 MBRValidity mbrState;
830
831 if (myDisk.OpenForRead(deviceFilename)) {
832 err = myDisk.OpenForWrite(deviceFilename);
833 if ((err == 0) && (!justLooking)) {
834 cout << "\aNOTE: Write test failed with error number " << errno
835 << ". It will be impossible to save\nchanges to this disk's partition table!\n";
836 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
837 cout << "You may be able to enable writes by exiting this program, typing\n"
838 << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
839 << "program.\n";
840 #endif
841 #if defined (__APPLE__)
842 cout << "You may need to deactivate System Integrity Protection to use this program. See\n"
843 << "https://www.quora.com/How-do-I-turn-off-the-rootless-in-OS-X-El-Capitan-10-11\n"
844 << "for more information.\n";
845 #endif
846 cout << "\n";
847 } // if
848 myDisk.Close(); // Close and re-open read-only in case of bugs
849 } else allOK = 0; // if
850
851 if (allOK && myDisk.OpenForRead(deviceFilename)) {
852 // store disk information....
853 diskSize = myDisk.DiskSize(&err);
854 blockSize = (uint32_t) myDisk.GetBlockSize();
855 physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
856 device = deviceFilename;
857 PartitionScan(); // Check for partition types, load GPT, & print summary
858
859 whichWasUsed = UseWhichPartitions();
860 switch (whichWasUsed) {
861 case use_mbr:
862 XFormPartitions();
863 break;
864 case use_bsd:
865 bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
866 // bsdDisklabel.DisplayBSDData();
867 ClearGPTData();
868 protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
869 XFormDisklabel(&bsdDisklabel);
870 break;
871 case use_gpt:
872 mbrState = protectiveMBR.GetValidity();
873 if ((mbrState == invalid) || (mbrState == mbr))
874 protectiveMBR.MakeProtectiveMBR();
875 break;
876 case use_new:
877 ClearGPTData();
878 protectiveMBR.MakeProtectiveMBR();
879 break;
880 case use_abort:
881 allOK = 0;
882 cerr << "Invalid partition data!\n";
883 break;
884 } // switch
885
886 if (allOK)
887 CheckGPTSize();
888 myDisk.Close();
889 ComputeAlignment();
890 } else {
891 allOK = 0;
892 } // if/else
893 return (allOK);
894 } // GPTData::LoadPartitions()
895
896 // Loads the GPT, as much as possible. Returns 1 if this seems to have
897 // succeeded, 0 if there are obvious problems....
ForceLoadGPTData(void)898 int GPTData::ForceLoadGPTData(void) {
899 int allOK, validHeaders, loadedTable = 1;
900
901 allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
902
903 if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
904 allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
905 } else {
906 allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
907 if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
908 cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
909 << "secondary header from the last sector of the disk! You should use 'v' to\n"
910 << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
911 << "the disk.\n";
912 } // if/else
913 if (!allOK)
914 state = gpt_invalid;
915
916 // Return valid headers code: 0 = both headers bad; 1 = main header
917 // good, backup bad; 2 = backup header good, main header bad;
918 // 3 = both headers good. Note these codes refer to valid GPT
919 // signatures, version numbers, and CRCs.
920 validHeaders = CheckHeaderValidity();
921
922 // Read partitions (from primary array)
923 if (validHeaders > 0) { // if at least one header is OK....
924 // GPT appears to be valid....
925 state = gpt_valid;
926
927 // We're calling the GPT valid, but there's a possibility that one
928 // of the two headers is corrupt. If so, use the one that seems to
929 // be in better shape to regenerate the bad one
930 if (validHeaders == 1) { // valid main header, invalid backup header
931 cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
932 << "backup header from main header.\n\n";
933 RebuildSecondHeader();
934 state = gpt_corrupt;
935 secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
936 } else if (validHeaders == 2) { // valid backup header, invalid main header
937 cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
938 << "from backup!\n\n";
939 RebuildMainHeader();
940 state = gpt_corrupt;
941 mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
942 } // if/else/if
943
944 // Figure out which partition table to load....
945 // Load the main partition table, if its header's CRC is OK
946 if (validHeaders != 2) {
947 if (LoadMainTable() == 0)
948 allOK = 0;
949 } else { // bad main header CRC and backup header CRC is OK
950 state = gpt_corrupt;
951 if (LoadSecondTableAsMain()) {
952 loadedTable = 2;
953 cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
954 } else { // backup table bad, bad main header CRC, but try main table in desperation....
955 if (LoadMainTable() == 0) {
956 allOK = 0;
957 loadedTable = 0;
958 cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
959 } // if
960 } // if/else (LoadSecondTableAsMain())
961 } // if/else (load partition table)
962
963 if (loadedTable == 1)
964 secondPartsCrcOk = CheckTable(&secondHeader);
965 else if (loadedTable == 2)
966 mainPartsCrcOk = CheckTable(&mainHeader);
967 else
968 mainPartsCrcOk = secondPartsCrcOk = 0;
969
970 // Problem with main partition table; if backup is OK, use it instead....
971 if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
972 state = gpt_corrupt;
973 allOK = allOK && LoadSecondTableAsMain();
974 mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
975 cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
976 << "partition table\ninstead of main partition table!\n\n";
977 } // if */
978
979 // Check for valid CRCs and warn if there are problems
980 if ((validHeaders != 3) || (mainPartsCrcOk == 0) ||
981 (secondPartsCrcOk == 0)) {
982 cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n";
983 // Show detail status of header and table
984 if (validHeaders & 0x1)
985 cerr << "Main header: OK\n";
986 else
987 cerr << "Main header: ERROR\n";
988 if (validHeaders & 0x2)
989 cerr << "Backup header: OK\n";
990 else
991 cerr << "Backup header: ERROR\n";
992 if (mainPartsCrcOk)
993 cerr << "Main partition table: OK\n";
994 else
995 cerr << "Main partition table: ERROR\n";
996 if (secondPartsCrcOk)
997 cerr << "Backup partition table: OK\n";
998 else
999 cerr << "Backup partition table: ERROR\n";
1000 cerr << "\n";
1001 state = gpt_corrupt;
1002 } // if
1003 } else {
1004 state = gpt_invalid;
1005 } // if/else
1006 return allOK;
1007 } // GPTData::ForceLoadGPTData()
1008
1009 // Loads the partition table pointed to by the main GPT header. The
1010 // main GPT header in memory MUST be valid for this call to do anything
1011 // sensible!
1012 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadMainTable(void)1013 int GPTData::LoadMainTable(void) {
1014 return LoadPartitionTable(mainHeader, myDisk);
1015 } // GPTData::LoadMainTable()
1016
1017 // Load the second (backup) partition table as the primary partition
1018 // table. Used in repair functions, and when starting up if the main
1019 // partition table is damaged.
1020 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadSecondTableAsMain(void)1021 int GPTData::LoadSecondTableAsMain(void) {
1022 return LoadPartitionTable(secondHeader, myDisk);
1023 } // GPTData::LoadSecondTableAsMain()
1024
1025 // Load a single GPT header (main or backup) from the specified disk device and
1026 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
1027 // value appropriately.
1028 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
1029 // failure.
LoadHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector,int * crcOk)1030 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
1031 int allOK = 1;
1032 GPTHeader tempHeader;
1033
1034 disk.Seek(sector);
1035 if (disk.Read(&tempHeader, 512) != 512) {
1036 cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
1037 allOK = 0;
1038 } // if
1039
1040 // Reverse byte order, if necessary
1041 if (IsLittleEndian() == 0) {
1042 ReverseHeaderBytes(&tempHeader);
1043 } // if
1044 *crcOk = CheckHeaderCRC(&tempHeader);
1045
1046 if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
1047 allOK = SetGPTSize(tempHeader.numParts, 0);
1048 }
1049
1050 *header = tempHeader;
1051 return allOK;
1052 } // GPTData::LoadHeader
1053
1054 // Load a partition table (either main or secondary) from the specified disk,
1055 // using header as a reference for what to load. If sector != 0 (the default
1056 // is 0), loads from the specified sector; otherwise loads from the sector
1057 // indicated in header.
1058 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadPartitionTable(const struct GPTHeader & header,DiskIO & disk,uint64_t sector)1059 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
1060 uint32_t sizeOfParts, newCRC;
1061 int retval;
1062
1063 if (header.sizeOfPartitionEntries != sizeof(GPTPart)) {
1064 cerr << "Error! GPT header contains invalid partition entry size!\n";
1065 retval = 0;
1066 } else if (disk.OpenForRead()) {
1067 if (sector == 0) {
1068 retval = disk.Seek(header.partitionEntriesLBA);
1069 } else {
1070 retval = disk.Seek(sector);
1071 } // if/else
1072 if (retval == 1)
1073 retval = SetGPTSize(header.numParts, 0);
1074 if (retval == 1) {
1075 sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
1076 if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
1077 cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
1078 retval = 0;
1079 } // if
1080 newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
1081 mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
1082 if (IsLittleEndian() == 0)
1083 ReversePartitionBytes();
1084 if (!mainPartsCrcOk) {
1085 cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
1086 } // if
1087 } else {
1088 cerr << "Error! Couldn't seek to partition table!\n";
1089 } // if/else
1090 } else {
1091 cerr << "Error! Couldn't open device " << device
1092 << " when reading partition table!\n";
1093 retval = 0;
1094 } // if/else
1095 return retval;
1096 } // GPTData::LoadPartitionsTable()
1097
1098 // Check the partition table pointed to by header, but don't keep it
1099 // around.
1100 // Returns 1 if the CRC is OK & this table matches the one already in memory,
1101 // 0 if not or if there was a read error.
CheckTable(struct GPTHeader * header)1102 int GPTData::CheckTable(struct GPTHeader *header) {
1103 uint32_t sizeOfParts, newCRC;
1104 GPTPart *partsToCheck;
1105 GPTHeader *otherHeader;
1106 int allOK = 0;
1107
1108 // Load partition table into temporary storage to check
1109 // its CRC and store the results, then discard this temporary
1110 // storage, since we don't use it in any but recovery operations
1111 if (myDisk.Seek(header->partitionEntriesLBA)) {
1112 partsToCheck = new GPTPart[header->numParts];
1113 sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
1114 if (partsToCheck == NULL) {
1115 cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
1116 exit(1);
1117 } // if
1118 if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
1119 cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
1120 } else {
1121 newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
1122 allOK = (newCRC == header->partitionEntriesCRC);
1123 if (header == &mainHeader)
1124 otherHeader = &secondHeader;
1125 else
1126 otherHeader = &mainHeader;
1127 if (newCRC != otherHeader->partitionEntriesCRC) {
1128 cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
1129 << "on the recovery & transformation menu to examine the two tables.\n\n";
1130 allOK = 0;
1131 } // if
1132 } // if/else
1133 delete[] partsToCheck;
1134 } // if
1135 return allOK;
1136 } // GPTData::CheckTable()
1137
1138 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
1139 // header later on the disk without asking for permission, if necessary, and
1140 // doesn't confirm the operation before writing. If quiet==0, asks permission
1141 // before moving the second header and asks for final confirmation of any
1142 // write.
1143 // Returns 1 on successful write, 0 if there was a problem.
SaveGPTData(int quiet)1144 int GPTData::SaveGPTData(int quiet) {
1145 int allOK = 1, syncIt = 1;
1146 char answer;
1147
1148 // First do some final sanity checks....
1149
1150 // This test should only fail on read-only disks....
1151 if (justLooking) {
1152 cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
1153 allOK = 0;
1154 } // if
1155
1156 // Check that disk is really big enough to handle the second header...
1157 if (mainHeader.backupLBA >= diskSize) {
1158 cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
1159 << "header, but other problems may occur!\n";
1160 MoveSecondHeaderToEnd();
1161 } // if
1162
1163 // Is there enough space to hold the GPT headers and partition tables,
1164 // given the partition sizes?
1165 if (CheckGPTSize() > 0) {
1166 allOK = 0;
1167 } // if
1168
1169 // Check that second header is properly placed. Warn and ask if this should
1170 // be corrected if the test fails....
1171 if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
1172 if (quiet == 0) {
1173 cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
1174 << "correct this problem? ";
1175 if (GetYN() == 'Y') {
1176 MoveSecondHeaderToEnd();
1177 cout << "Have moved second header and partition table to correct location.\n";
1178 } else {
1179 cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1180 } // if correction requested
1181 } else { // Go ahead and do correction automatically
1182 MoveSecondHeaderToEnd();
1183 } // if/else quiet
1184 } // if
1185
1186 if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
1187 if (quiet == 0) {
1188 cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
1189 << "this problem? ";
1190 if (GetYN() == 'Y') {
1191 MoveSecondHeaderToEnd();
1192 cout << "Have adjusted the second header and last usable sector value.\n";
1193 } else {
1194 cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1195 } // if correction requested
1196 } else { // go ahead and do correction automatically
1197 MoveSecondHeaderToEnd();
1198 } // if/else quiet
1199 } // if
1200
1201 // Check for overlapping or insane partitions....
1202 if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
1203 allOK = 0;
1204 cerr << "Aborting write operation!\n";
1205 } // if
1206
1207 // Check that protective MBR fits, and warn if it doesn't....
1208 if (!protectiveMBR.DoTheyFit()) {
1209 cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
1210 << "fresh protective or hybrid MBR is recommended.\n";
1211 }
1212
1213 // Check for mismatched MBR and GPT data, but let it pass if found
1214 // (function displays warning message)
1215 FindHybridMismatches();
1216
1217 RecomputeCRCs();
1218
1219 if ((allOK) && (!quiet)) {
1220 cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
1221 << "PARTITIONS!!\n\nDo you want to proceed? ";
1222 answer = GetYN();
1223 if (answer == 'Y') {
1224 cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
1225 } else {
1226 allOK = 0;
1227 } // if/else
1228 } // if
1229
1230 // Do it!
1231 if (allOK) {
1232 if (myDisk.OpenForWrite()) {
1233 // As per UEFI specs, write the secondary table and GPT first....
1234 allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
1235 if (!allOK) {
1236 cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
1237 << "menu will resolve this problem.\n";
1238 syncIt = 0;
1239 } // if
1240
1241 // Now write the secondary GPT header...
1242 allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
1243
1244 // Now write the main partition tables...
1245 allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
1246
1247 // Now write the main GPT header...
1248 allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
1249
1250 // To top it off, write the protective MBR...
1251 allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
1252
1253 // re-read the partition table
1254 // Note: Done even if some write operations failed, but not if all of them failed.
1255 // Done this way because I've received one problem report from a user one whose
1256 // system the MBR write failed but everything else was OK (on a GPT disk under
1257 // Windows), and the failure to sync therefore caused Windows to restore the
1258 // original partition table from its cache. OTOH, such restoration might be
1259 // desirable if the error occurs later; but that seems unlikely unless the initial
1260 // write fails....
1261 if (syncIt)
1262 myDisk.DiskSync();
1263
1264 if (allOK) { // writes completed OK
1265 cout << "The operation has completed successfully.\n";
1266 } else {
1267 cerr << "Warning! An error was reported when writing the partition table! This error\n"
1268 << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
1269 } // if/else
1270
1271 myDisk.Close();
1272 } else {
1273 cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
1274 << errno << "! Aborting write!\n";
1275 allOK = 0;
1276 } // if/else
1277 } else {
1278 cout << "Aborting write of new partition table.\n";
1279 } // if
1280
1281 return (allOK);
1282 } // GPTData::SaveGPTData()
1283
1284 // Save GPT data to a backup file. This function does much less error
1285 // checking than SaveGPTData(). It can therefore preserve many types of
1286 // corruption for later analysis; however, it preserves only the MBR,
1287 // the main GPT header, the backup GPT header, and the main partition
1288 // table; it discards the backup partition table, since it should be
1289 // identical to the main partition table on healthy disks.
SaveGPTBackup(const string & filename)1290 int GPTData::SaveGPTBackup(const string & filename) {
1291 int allOK = 1;
1292 DiskIO backupFile;
1293
1294 if (backupFile.OpenForWrite(filename)) {
1295 // Recomputing the CRCs is likely to alter them, which could be bad
1296 // if the intent is to save a potentially bad GPT for later analysis;
1297 // but if we don't do this, we get bogus errors when we load the
1298 // backup. I'm favoring misses over false alarms....
1299 RecomputeCRCs();
1300
1301 protectiveMBR.WriteMBRData(&backupFile);
1302 protectiveMBR.SetDisk(&myDisk);
1303
1304 if (allOK) {
1305 // MBR write closed disk, so re-open and seek to end....
1306 backupFile.OpenForWrite();
1307 allOK = SaveHeader(&mainHeader, backupFile, 1);
1308 } // if (allOK)
1309
1310 if (allOK)
1311 allOK = SaveHeader(&secondHeader, backupFile, 2);
1312
1313 if (allOK)
1314 allOK = SavePartitionTable(backupFile, 3);
1315
1316 if (allOK) { // writes completed OK
1317 cout << "The operation has completed successfully.\n";
1318 } else {
1319 cerr << "Warning! An error was reported when writing the backup file.\n"
1320 << "It may not be usable!\n";
1321 } // if/else
1322 backupFile.Close();
1323 } else {
1324 cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
1325 allOK = 0;
1326 } // if/else
1327 return allOK;
1328 } // GPTData::SaveGPTBackup()
1329
1330 // Write a GPT header (main or backup) to the specified sector. Used by both
1331 // the SaveGPTData() and SaveGPTBackup() functions.
1332 // Should be passed an architecture-appropriate header (DO NOT call
1333 // ReverseHeaderBytes() on the header before calling this function)
1334 // Returns 1 on success, 0 on failure
SaveHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector)1335 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
1336 int littleEndian, allOK = 1;
1337
1338 littleEndian = IsLittleEndian();
1339 if (!littleEndian)
1340 ReverseHeaderBytes(header);
1341 if (disk.Seek(sector)) {
1342 if (disk.Write(header, 512) == -1)
1343 allOK = 0;
1344 } else allOK = 0; // if (disk.Seek()...)
1345 if (!littleEndian)
1346 ReverseHeaderBytes(header);
1347 return allOK;
1348 } // GPTData::SaveHeader()
1349
1350 // Save the partitions to the specified sector. Used by both the SaveGPTData()
1351 // and SaveGPTBackup() functions.
1352 // Should be passed an architecture-appropriate header (DO NOT call
1353 // ReverseHeaderBytes() on the header before calling this function)
1354 // Returns 1 on success, 0 on failure
SavePartitionTable(DiskIO & disk,uint64_t sector)1355 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
1356 int littleEndian, allOK = 1;
1357
1358 littleEndian = IsLittleEndian();
1359 if (disk.Seek(sector)) {
1360 if (!littleEndian)
1361 ReversePartitionBytes();
1362 if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
1363 allOK = 0;
1364 if (!littleEndian)
1365 ReversePartitionBytes();
1366 } else allOK = 0; // if (myDisk.Seek()...)
1367 return allOK;
1368 } // GPTData::SavePartitionTable()
1369
1370 // Load GPT data from a backup file created by SaveGPTBackup(). This function
1371 // does minimal error checking. It returns 1 if it completed successfully,
1372 // 0 if there was a problem. In the latter case, it creates a new empty
1373 // set of partitions.
LoadGPTBackup(const string & filename)1374 int GPTData::LoadGPTBackup(const string & filename) {
1375 int allOK = 1, val, err;
1376 int shortBackup = 0;
1377 DiskIO backupFile;
1378
1379 if (backupFile.OpenForRead(filename)) {
1380 // Let the MBRData class load the saved MBR...
1381 protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
1382 protectiveMBR.SetDisk(&myDisk);
1383
1384 LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
1385
1386 // Check backup file size and rebuild second header if file is right
1387 // size to be direct dd copy of MBR, main header, and main partition
1388 // table; if other size, treat it like a GPT fdisk-generated backup
1389 // file
1390 shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
1391 (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
1392 if (shortBackup) {
1393 RebuildSecondHeader();
1394 secondCrcOk = mainCrcOk;
1395 } else {
1396 LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
1397 } // if/else
1398
1399 // Return valid headers code: 0 = both headers bad; 1 = main header
1400 // good, backup bad; 2 = backup header good, main header bad;
1401 // 3 = both headers good. Note these codes refer to valid GPT
1402 // signatures and version numbers; more subtle problems will elude
1403 // this check!
1404 if ((val = CheckHeaderValidity()) > 0) {
1405 if (val == 2) { // only backup header seems to be good
1406 SetGPTSize(secondHeader.numParts, 0);
1407 } else { // main header is OK
1408 SetGPTSize(mainHeader.numParts, 0);
1409 } // if/else
1410
1411 if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
1412 cout << "Warning! Current disk size doesn't match that of the backup!\n"
1413 << "Adjusting sizes to match, but subsequent problems are possible!\n";
1414 MoveSecondHeaderToEnd();
1415 } // if
1416
1417 if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
1418 cerr << "Warning! Read error " << errno
1419 << " loading partition table; strange behavior now likely!\n";
1420 } else {
1421 allOK = 0;
1422 } // if/else
1423 // Something went badly wrong, so blank out partitions
1424 if (allOK == 0) {
1425 cerr << "Improper backup file! Clearing all partition data!\n";
1426 ClearGPTData();
1427 protectiveMBR.MakeProtectiveMBR();
1428 } // if
1429 } else {
1430 allOK = 0;
1431 cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
1432 } // if/else
1433
1434 return allOK;
1435 } // GPTData::LoadGPTBackup()
1436
SaveMBR(void)1437 int GPTData::SaveMBR(void) {
1438 return protectiveMBR.WriteMBRData(&myDisk);
1439 } // GPTData::SaveMBR()
1440
1441 // This function destroys the on-disk GPT structures, but NOT the on-disk
1442 // MBR.
1443 // Returns 1 if the operation succeeds, 0 if not.
DestroyGPT(void)1444 int GPTData::DestroyGPT(void) {
1445 int sum, tableSize, allOK = 1;
1446 uint8_t blankSector[512];
1447 uint8_t* emptyTable;
1448
1449 memset(blankSector, 0, sizeof(blankSector));
1450 ClearGPTData();
1451
1452 if (myDisk.OpenForWrite()) {
1453 if (!myDisk.Seek(mainHeader.currentLBA))
1454 allOK = 0;
1455 if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1456 cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
1457 allOK = 0;
1458 } // if
1459 if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
1460 allOK = 0;
1461 tableSize = numParts * mainHeader.sizeOfPartitionEntries;
1462 emptyTable = new uint8_t[tableSize];
1463 if (emptyTable == NULL) {
1464 cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
1465 exit(1);
1466 } // if
1467 memset(emptyTable, 0, tableSize);
1468 if (allOK) {
1469 sum = myDisk.Write(emptyTable, tableSize);
1470 if (sum != tableSize) {
1471 cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
1472 allOK = 0;
1473 } // if write failed
1474 } // if
1475 if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
1476 allOK = 0;
1477 if (allOK) {
1478 sum = myDisk.Write(emptyTable, tableSize);
1479 if (sum != tableSize) {
1480 cerr << "Warning! GPT backup partition table not overwritten! Error is "
1481 << errno << "\n";
1482 allOK = 0;
1483 } // if wrong size written
1484 } // if
1485 if (!myDisk.Seek(secondHeader.currentLBA))
1486 allOK = 0;
1487 if (allOK) {
1488 if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1489 cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
1490 allOK = 0;
1491 } // if
1492 } // if
1493 myDisk.DiskSync();
1494 myDisk.Close();
1495 cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
1496 << "other utilities.\n";
1497 delete[] emptyTable;
1498 } else {
1499 cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
1500 } // if/else (fd != -1)
1501 return (allOK);
1502 } // GPTDataTextUI::DestroyGPT()
1503
1504 // Wipe MBR data from the disk (zero it out completely)
1505 // Returns 1 on success, 0 on failure.
DestroyMBR(void)1506 int GPTData::DestroyMBR(void) {
1507 int allOK;
1508 uint8_t blankSector[512];
1509
1510 memset(blankSector, 0, sizeof(blankSector));
1511
1512 allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
1513
1514 if (!allOK)
1515 cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
1516 return allOK;
1517 } // GPTData::DestroyMBR(void)
1518
1519 // Tell user whether Apple Partition Map (APM) was discovered....
ShowAPMState(void)1520 void GPTData::ShowAPMState(void) {
1521 if (apmFound)
1522 cout << " APM: present\n";
1523 else
1524 cout << " APM: not present\n";
1525 } // GPTData::ShowAPMState()
1526
1527 // Tell user about the state of the GPT data....
ShowGPTState(void)1528 void GPTData::ShowGPTState(void) {
1529 switch (state) {
1530 case gpt_invalid:
1531 cout << " GPT: not present\n";
1532 break;
1533 case gpt_valid:
1534 cout << " GPT: present\n";
1535 break;
1536 case gpt_corrupt:
1537 cout << " GPT: damaged\n";
1538 break;
1539 default:
1540 cout << "\a GPT: unknown -- bug!\n";
1541 break;
1542 } // switch
1543 } // GPTData::ShowGPTState()
1544
1545 // Display the basic GPT data
DisplayGPTData(void)1546 void GPTData::DisplayGPTData(void) {
1547 uint32_t i;
1548 uint64_t temp, totalFree;
1549
1550 cout << "Disk " << device << ": " << diskSize << " sectors, "
1551 << BytesToIeee(diskSize, blockSize) << "\n";
1552 if (myDisk.GetModel() != "")
1553 cout << "Model: " << myDisk.GetModel() << "\n";
1554 if (physBlockSize > 0)
1555 cout << "Sector size (logical/physical): " << blockSize << "/" << physBlockSize << " bytes\n";
1556 else
1557 cout << "Sector size (logical): " << blockSize << " bytes\n";
1558 cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
1559 cout << "Partition table holds up to " << numParts << " entries\n";
1560 cout << "Main partition table begins at sector " << mainHeader.partitionEntriesLBA
1561 << " and ends at sector " << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << "\n";
1562 cout << "First usable sector is " << mainHeader.firstUsableLBA
1563 << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
1564 totalFree = FindFreeBlocks(&i, &temp);
1565 cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
1566 cout << "Total free space is " << totalFree << " sectors ("
1567 << BytesToIeee(totalFree, blockSize) << ")\n";
1568 cout << "\nNumber Start (sector) End (sector) Size Code Name\n";
1569 for (i = 0; i < numParts; i++) {
1570 partitions[i].ShowSummary(i, blockSize);
1571 } // for
1572 } // GPTData::DisplayGPTData()
1573
1574 // Show detailed information on the specified partition
ShowPartDetails(uint32_t partNum)1575 void GPTData::ShowPartDetails(uint32_t partNum) {
1576 if ((partNum < numParts) && !IsFreePartNum(partNum)) {
1577 partitions[partNum].ShowDetails(blockSize);
1578 } else {
1579 cout << "Partition #" << partNum + 1 << " does not exist.\n";
1580 } // if
1581 } // GPTData::ShowPartDetails()
1582
1583 /**************************************************************************
1584 * *
1585 * Partition table transformation functions (MBR or BSD disklabel to GPT) *
1586 * (some of these functions may require user interaction) *
1587 * *
1588 **************************************************************************/
1589
1590 // Examines the MBR & GPT data to determine which set of data to use: the
1591 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
1592 // a new set of partitions (use_new). A return value of use_abort indicates
1593 // that this function couldn't determine what to do. Overriding functions
1594 // in derived classes may ask users questions in such cases.
UseWhichPartitions(void)1595 WhichToUse GPTData::UseWhichPartitions(void) {
1596 WhichToUse which = use_new;
1597 MBRValidity mbrState;
1598
1599 mbrState = protectiveMBR.GetValidity();
1600
1601 if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
1602 cout << "\n***************************************************************\n"
1603 << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
1604 << "in memory. ";
1605 if (!justLooking) {
1606 cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
1607 << "typing 'q' if you don't want to convert your MBR partitions\n"
1608 << "to GPT format!";
1609 } // if
1610 cout << "\n***************************************************************\n\n";
1611 which = use_mbr;
1612 } // if
1613
1614 if ((state == gpt_invalid) && bsdFound) {
1615 cout << "\n**********************************************************************\n"
1616 << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
1617 << "to GPT format.";
1618 if ((!justLooking) && (!beQuiet)) {
1619 cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
1620 << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
1621 << "want to convert your BSD partitions to GPT format!";
1622 } // if
1623 cout << "\n**********************************************************************\n\n";
1624 which = use_bsd;
1625 } // if
1626
1627 if ((state == gpt_valid) && (mbrState == gpt)) {
1628 which = use_gpt;
1629 if (!beQuiet)
1630 cout << "Found valid GPT with protective MBR; using GPT.\n";
1631 } // if
1632 if ((state == gpt_valid) && (mbrState == hybrid)) {
1633 which = use_gpt;
1634 if (!beQuiet)
1635 cout << "Found valid GPT with hybrid MBR; using GPT.\n";
1636 } // if
1637 if ((state == gpt_valid) && (mbrState == invalid)) {
1638 cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
1639 << "protective MBR on save.\n";
1640 which = use_gpt;
1641 } // if
1642 if ((state == gpt_valid) && (mbrState == mbr)) {
1643 which = use_abort;
1644 } // if
1645
1646 if (state == gpt_corrupt) {
1647 if (mbrState == gpt) {
1648 cout << "\a\a****************************************************************************\n"
1649 << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
1650 << "verification and recovery are STRONGLY recommended.\n"
1651 << "****************************************************************************\n";
1652 which = use_gpt;
1653 } else {
1654 which = use_abort;
1655 } // if/else MBR says disk is GPT
1656 } // if GPT corrupt
1657
1658 if (which == use_new)
1659 cout << "Creating new GPT entries in memory.\n";
1660
1661 return which;
1662 } // UseWhichPartitions()
1663
1664 // Convert MBR partition table into GPT form.
XFormPartitions(void)1665 void GPTData::XFormPartitions(void) {
1666 int i, numToConvert;
1667 uint8_t origType;
1668
1669 // Clear out old data & prepare basics....
1670 ClearGPTData();
1671
1672 // Convert the smaller of the # of GPT or MBR partitions
1673 if (numParts > MAX_MBR_PARTS)
1674 numToConvert = MAX_MBR_PARTS;
1675 else
1676 numToConvert = numParts;
1677
1678 for (i = 0; i < numToConvert; i++) {
1679 origType = protectiveMBR.GetType(i);
1680 // don't waste CPU time trying to convert extended, hybrid protective, or
1681 // null (non-existent) partitions
1682 if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
1683 (origType != 0x00) && (origType != 0xEE))
1684 partitions[i] = protectiveMBR.AsGPT(i);
1685 } // for
1686
1687 // Convert MBR into protective MBR
1688 protectiveMBR.MakeProtectiveMBR();
1689
1690 // Record that all original CRCs were OK so as not to raise flags
1691 // when doing a disk verification
1692 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1693 } // GPTData::XFormPartitions()
1694
1695 // Transforms BSD disklabel on the specified partition (numbered from 0).
1696 // If an invalid partition number is given, the program does nothing.
1697 // Returns the number of new partitions created.
XFormDisklabel(uint32_t partNum)1698 int GPTData::XFormDisklabel(uint32_t partNum) {
1699 uint32_t low, high;
1700 int goOn = 1, numDone = 0;
1701 BSDData disklabel;
1702
1703 if (GetPartRange(&low, &high) == 0) {
1704 goOn = 0;
1705 cout << "No partitions!\n";
1706 } // if
1707 if (partNum > high) {
1708 goOn = 0;
1709 cout << "Specified partition is invalid!\n";
1710 } // if
1711
1712 // If all is OK, read the disklabel and convert it.
1713 if (goOn) {
1714 goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
1715 partitions[partNum].GetLastLBA());
1716 if ((goOn) && (disklabel.IsDisklabel())) {
1717 numDone = XFormDisklabel(&disklabel);
1718 if (numDone == 1)
1719 cout << "Converted 1 BSD partition.\n";
1720 else
1721 cout << "Converted " << numDone << " BSD partitions.\n";
1722 } else {
1723 cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
1724 } // if/else
1725 } // if
1726 if (numDone > 0) { // converted partitions; delete carrier
1727 partitions[partNum].BlankPartition();
1728 } // if
1729 return numDone;
1730 } // GPTData::XFormDisklabel(uint32_t i)
1731
1732 // Transform the partitions on an already-loaded BSD disklabel...
XFormDisklabel(BSDData * disklabel)1733 int GPTData::XFormDisklabel(BSDData* disklabel) {
1734 int i, partNum = 0, numDone = 0;
1735
1736 if (disklabel->IsDisklabel()) {
1737 for (i = 0; i < disklabel->GetNumParts(); i++) {
1738 partNum = FindFirstFreePart();
1739 if (partNum >= 0) {
1740 partitions[partNum] = disklabel->AsGPT(i);
1741 if (partitions[partNum].IsUsed())
1742 numDone++;
1743 } // if
1744 } // for
1745 if (partNum == -1)
1746 cerr << "Warning! Too many partitions to convert!\n";
1747 } // if
1748
1749 // Record that all original CRCs were OK so as not to raise flags
1750 // when doing a disk verification
1751 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1752
1753 return numDone;
1754 } // GPTData::XFormDisklabel(BSDData* disklabel)
1755
1756 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
1757 // partition has the active/bootable flag UNset and uses the GPT fdisk
1758 // type code divided by 0x0100 as the MBR type code.
1759 // Returns 1 if operation was 100% successful, 0 if there were ANY
1760 // problems.
OnePartToMBR(uint32_t gptPart,int mbrPart)1761 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
1762 int allOK = 1;
1763
1764 if ((mbrPart < 0) || (mbrPart > 3)) {
1765 cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
1766 allOK = 0;
1767 } // if
1768 if (gptPart >= numParts) {
1769 cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
1770 allOK = 0;
1771 } // if
1772 if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
1773 cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
1774 allOK = 0;
1775 } // if
1776 if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
1777 (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
1778 if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
1779 cout << "Caution: Partition end point past 32-bit pointer boundary;"
1780 << " some OSes may\nreact strangely.\n";
1781 } // if
1782 protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
1783 (uint32_t) partitions[gptPart].GetLengthLBA(),
1784 partitions[gptPart].GetHexType() / 256, 0);
1785 } else { // partition out of range
1786 if (allOK) // Display only if "else" triggered by out-of-bounds condition
1787 cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
1788 << "partitions, or is\n too big; omitting it.\n";
1789 allOK = 0;
1790 } // if/else
1791 return allOK;
1792 } // GPTData::OnePartToMBR()
1793
1794
1795 /**********************************************************************
1796 * *
1797 * Functions that adjust GPT data structures WITHOUT user interaction *
1798 * (they may display information for the user's benefit, though) *
1799 * *
1800 **********************************************************************/
1801
1802 // Resizes GPT to specified number of entries. Creates a new table if
1803 // necessary, copies data if it already exists. If fillGPTSectors is 1
1804 // (the default), rounds numEntries to fill all the sectors necessary to
1805 // hold the GPT.
1806 // Returns 1 if all goes well, 0 if an error is encountered.
SetGPTSize(uint32_t numEntries,int fillGPTSectors)1807 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
1808 GPTPart* newParts;
1809 uint32_t i, high, copyNum, entriesPerSector;
1810 int allOK = 1;
1811
1812 // First, adjust numEntries upward, if necessary, to get a number
1813 // that fills the allocated sectors
1814 entriesPerSector = blockSize / GPT_SIZE;
1815 if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
1816 cout << "Adjusting GPT size from " << numEntries << " to ";
1817 numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
1818 cout << numEntries << " to fill the sector\n";
1819 } // if
1820
1821 // Do the work only if the # of partitions is changing. Along with being
1822 // efficient, this prevents mucking with the location of the secondary
1823 // partition table, which causes problems when loading data from a RAID
1824 // array that's been expanded because this function is called when loading
1825 // data.
1826 if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
1827 newParts = new GPTPart [numEntries];
1828 if (newParts != NULL) {
1829 if (partitions != NULL) { // existing partitions; copy them over
1830 GetPartRange(&i, &high);
1831 if (numEntries < (high + 1)) { // Highest entry too high for new #
1832 cout << "The highest-numbered partition is " << high + 1
1833 << ", which is greater than the requested\n"
1834 << "partition table size of " << numEntries
1835 << "; cannot resize. Perhaps sorting will help.\n";
1836 allOK = 0;
1837 delete[] newParts;
1838 } else { // go ahead with copy
1839 if (numEntries < numParts)
1840 copyNum = numEntries;
1841 else
1842 copyNum = numParts;
1843 for (i = 0; i < copyNum; i++) {
1844 newParts[i] = partitions[i];
1845 } // for
1846 delete[] partitions;
1847 partitions = newParts;
1848 } // if
1849 } else { // No existing partition table; just create it
1850 partitions = newParts;
1851 } // if/else existing partitions
1852 numParts = numEntries;
1853 mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
1854 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
1855 MoveSecondHeaderToEnd();
1856 if (diskSize > 0)
1857 CheckGPTSize();
1858 } else { // Bad memory allocation
1859 cerr << "Error allocating memory for partition table! Size is unchanged!\n";
1860 allOK = 0;
1861 } // if/else
1862 } // if/else
1863 mainHeader.numParts = numParts;
1864 secondHeader.numParts = numParts;
1865 return (allOK);
1866 } // GPTData::SetGPTSize()
1867
1868 // Change the start sector for the main partition table.
1869 // Returns 1 on success, 0 on failure
MoveMainTable(uint64_t pteSector)1870 int GPTData::MoveMainTable(uint64_t pteSector) {
1871 uint64_t pteSize = GetTableSizeInSectors();
1872 int retval = 1;
1873
1874 if ((pteSector >= 2) && ((pteSector + pteSize) <= FindFirstUsedLBA())) {
1875 mainHeader.partitionEntriesLBA = pteSector;
1876 mainHeader.firstUsableLBA = pteSector + pteSize;
1877 RebuildSecondHeader();
1878 } else {
1879 cerr << "Unable to set the main partition table's location to " << pteSector << "!\n";
1880 retval = 0;
1881 } // if/else
1882 return retval;
1883 } // GPTData::MoveMainTable()
1884
1885 // Blank the partition array
BlankPartitions(void)1886 void GPTData::BlankPartitions(void) {
1887 uint32_t i;
1888
1889 for (i = 0; i < numParts; i++) {
1890 partitions[i].BlankPartition();
1891 } // for
1892 } // GPTData::BlankPartitions()
1893
1894 // Delete a partition by number. Returns 1 if successful,
1895 // 0 if there was a problem. Returns 1 if partition was in
1896 // range, 0 if it was out of range.
DeletePartition(uint32_t partNum)1897 int GPTData::DeletePartition(uint32_t partNum) {
1898 uint64_t startSector, length;
1899 uint32_t low, high, numUsedParts, retval = 1;;
1900
1901 numUsedParts = GetPartRange(&low, &high);
1902 if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
1903 // In case there's a protective MBR, look for & delete matching
1904 // MBR partition....
1905 startSector = partitions[partNum].GetFirstLBA();
1906 length = partitions[partNum].GetLengthLBA();
1907 protectiveMBR.DeleteByLocation(startSector, length);
1908
1909 // Now delete the GPT partition
1910 partitions[partNum].BlankPartition();
1911 } else {
1912 cerr << "Partition number " << partNum + 1 << " out of range!\n";
1913 retval = 0;
1914 } // if/else
1915 return retval;
1916 } // GPTData::DeletePartition(uint32_t partNum)
1917
1918 // Non-interactively create a partition.
1919 // Returns 1 if the operation was successful, 0 if a problem was discovered.
CreatePartition(uint32_t partNum,uint64_t startSector,uint64_t endSector)1920 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
1921 int retval = 1; // assume there'll be no problems
1922 uint64_t origSector = startSector;
1923
1924 if (IsFreePartNum(partNum)) {
1925 if (Align(&startSector)) {
1926 cout << "Information: Moved requested sector from " << origSector << " to "
1927 << startSector << " in\norder to align on " << sectorAlignment
1928 << "-sector boundaries.\n";
1929 } // if
1930 if (IsFree(startSector) && (startSector <= endSector)) {
1931 if (FindLastInFree(startSector) >= endSector) {
1932 partitions[partNum].SetFirstLBA(startSector);
1933 partitions[partNum].SetLastLBA(endSector);
1934 partitions[partNum].SetType(DEFAULT_GPT_TYPE);
1935 partitions[partNum].RandomizeUniqueGUID();
1936 } else retval = 0; // if free space until endSector
1937 } else retval = 0; // if startSector is free
1938 } else retval = 0; // if legal partition number
1939 return retval;
1940 } // GPTData::CreatePartition(partNum, startSector, endSector)
1941
1942 // Sort the GPT entries, eliminating gaps and making for a logical
1943 // ordering.
SortGPT(void)1944 void GPTData::SortGPT(void) {
1945 if (numParts > 0)
1946 sort(partitions, partitions + numParts);
1947 } // GPTData::SortGPT()
1948
1949 // Swap the contents of two partitions.
1950 // Returns 1 if successful, 0 if either partition is out of range
1951 // (that is, not a legal number; either or both can be empty).
1952 // Note that if partNum1 = partNum2 and this number is in range,
1953 // it will be considered successful.
SwapPartitions(uint32_t partNum1,uint32_t partNum2)1954 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
1955 GPTPart temp;
1956 int allOK = 1;
1957
1958 if ((partNum1 < numParts) && (partNum2 < numParts)) {
1959 if (partNum1 != partNum2) {
1960 temp = partitions[partNum1];
1961 partitions[partNum1] = partitions[partNum2];
1962 partitions[partNum2] = temp;
1963 } // if
1964 } else allOK = 0; // partition numbers are valid
1965 return allOK;
1966 } // GPTData::SwapPartitions()
1967
1968 // Set up data structures for entirely new set of partitions on the
1969 // specified device. Returns 1 if OK, 0 if there were problems.
1970 // Note that this function does NOT clear the protectiveMBR data
1971 // structure, since it may hold the original MBR partitions if the
1972 // program was launched on an MBR disk, and those may need to be
1973 // converted to GPT format.
ClearGPTData(void)1974 int GPTData::ClearGPTData(void) {
1975 int goOn = 1, i;
1976
1977 // Set up the partition table....
1978 delete[] partitions;
1979 partitions = NULL;
1980 SetGPTSize(NUM_GPT_ENTRIES);
1981
1982 // Now initialize a bunch of stuff that's static....
1983 mainHeader.signature = GPT_SIGNATURE;
1984 mainHeader.revision = 0x00010000;
1985 mainHeader.headerSize = HEADER_SIZE;
1986 mainHeader.reserved = 0;
1987 mainHeader.currentLBA = UINT64_C(1);
1988 mainHeader.partitionEntriesLBA = (uint64_t) 2;
1989 mainHeader.sizeOfPartitionEntries = GPT_SIZE;
1990 mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
1991 for (i = 0; i < GPT_RESERVED; i++) {
1992 mainHeader.reserved2[i] = '\0';
1993 } // for
1994 if (blockSize > 0)
1995 sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
1996 else
1997 sectorAlignment = DEFAULT_ALIGNMENT;
1998
1999 // Now some semi-static items (computed based on end of disk)
2000 mainHeader.backupLBA = diskSize - UINT64_C(1);
2001 mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
2002
2003 // Set a unique GUID for the disk, based on random numbers
2004 mainHeader.diskGUID.Randomize();
2005
2006 // Copy main header to backup header
2007 RebuildSecondHeader();
2008
2009 // Blank out the partitions array....
2010 BlankPartitions();
2011
2012 // Flag all CRCs as being OK....
2013 mainCrcOk = 1;
2014 secondCrcOk = 1;
2015 mainPartsCrcOk = 1;
2016 secondPartsCrcOk = 1;
2017
2018 return (goOn);
2019 } // GPTData::ClearGPTData()
2020
2021 // Set the location of the second GPT header data to the end of the disk.
2022 // If the disk size has actually changed, this also adjusts the protective
2023 // entry in the MBR, since it's probably no longer correct.
2024 // Used internally and called by the 'e' option on the recovery &
2025 // transformation menu, to help users of RAID arrays who add disk space
2026 // to their arrays or to adjust data structures in restore operations
2027 // involving unequal-sized disks.
MoveSecondHeaderToEnd()2028 void GPTData::MoveSecondHeaderToEnd() {
2029 mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
2030 if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
2031 if (protectiveMBR.GetValidity() == hybrid) {
2032 protectiveMBR.OptimizeEESize();
2033 RecomputeCHS();
2034 } // if
2035 if (protectiveMBR.GetValidity() == gpt)
2036 MakeProtectiveMBR();
2037 } // if
2038 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
2039 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
2040 } // GPTData::FixSecondHeaderLocation()
2041
2042 // Sets the partition's name to the specified UnicodeString without
2043 // user interaction.
2044 // Returns 1 on success, 0 on failure (invalid partition number).
SetName(uint32_t partNum,const UnicodeString & theName)2045 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
2046 int retval = 1;
2047
2048 if (IsUsedPartNum(partNum))
2049 partitions[partNum].SetName(theName);
2050 else
2051 retval = 0;
2052
2053 return retval;
2054 } // GPTData::SetName
2055
2056 // Set the disk GUID to the specified value. Note that the header CRCs must
2057 // be recomputed after calling this function.
SetDiskGUID(GUIDData newGUID)2058 void GPTData::SetDiskGUID(GUIDData newGUID) {
2059 mainHeader.diskGUID = newGUID;
2060 secondHeader.diskGUID = newGUID;
2061 } // SetDiskGUID()
2062
2063 // Set the unique GUID of the specified partition. Returns 1 on
2064 // successful completion, 0 if there were problems (invalid
2065 // partition number).
SetPartitionGUID(uint32_t pn,GUIDData theGUID)2066 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
2067 int retval = 0;
2068
2069 if (pn < numParts) {
2070 if (partitions[pn].IsUsed()) {
2071 partitions[pn].SetUniqueGUID(theGUID);
2072 retval = 1;
2073 } // if
2074 } // if
2075 return retval;
2076 } // GPTData::SetPartitionGUID()
2077
2078 // Set new random GUIDs for the disk and all partitions. Intended to be used
2079 // after disk cloning or similar operations that don't randomize the GUIDs.
RandomizeGUIDs(void)2080 void GPTData::RandomizeGUIDs(void) {
2081 uint32_t i;
2082
2083 mainHeader.diskGUID.Randomize();
2084 secondHeader.diskGUID = mainHeader.diskGUID;
2085 for (i = 0; i < numParts; i++)
2086 if (partitions[i].IsUsed())
2087 partitions[i].RandomizeUniqueGUID();
2088 } // GPTData::RandomizeGUIDs()
2089
2090 // Change partition type code non-interactively. Returns 1 if
2091 // successful, 0 if not....
ChangePartType(uint32_t partNum,PartType theGUID)2092 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
2093 int retval = 1;
2094
2095 if (!IsFreePartNum(partNum)) {
2096 partitions[partNum].SetType(theGUID);
2097 } else retval = 0;
2098 return retval;
2099 } // GPTData::ChangePartType()
2100
2101 // Recompute the CHS values of all the MBR partitions. Used to reset
2102 // CHS values that some BIOSes require, despite the fact that the
2103 // resulting CHS values violate the GPT standard.
RecomputeCHS(void)2104 void GPTData::RecomputeCHS(void) {
2105 int i;
2106
2107 for (i = 0; i < 4; i++)
2108 protectiveMBR.RecomputeCHS(i);
2109 } // GPTData::RecomputeCHS()
2110
2111 // Adjust sector number so that it falls on a sector boundary that's a
2112 // multiple of sectorAlignment. This is done to improve the performance
2113 // of Western Digital Advanced Format disks and disks with similar
2114 // technology from other companies, which use 4096-byte sectors
2115 // internally although they translate to 512-byte sectors for the
2116 // benefit of the OS. If partitions aren't properly aligned on these
2117 // disks, some filesystem data structures can span multiple physical
2118 // sectors, degrading performance. This function should be called
2119 // only on the FIRST sector of the partition, not the last!
2120 // This function returns 1 if the alignment was altered, 0 if it
2121 // was unchanged.
Align(uint64_t * sector)2122 int GPTData::Align(uint64_t* sector) {
2123 int retval = 0, sectorOK = 0;
2124 uint64_t earlier, later, testSector;
2125
2126 if ((*sector % sectorAlignment) != 0) {
2127 earlier = (*sector / sectorAlignment) * sectorAlignment;
2128 later = earlier + (uint64_t) sectorAlignment;
2129
2130 // Check to see that every sector between the earlier one and the
2131 // requested one is clear, and that it's not too early....
2132 if (earlier >= mainHeader.firstUsableLBA) {
2133 sectorOK = 1;
2134 testSector = earlier;
2135 do {
2136 sectorOK = IsFree(testSector++);
2137 } while ((sectorOK == 1) && (testSector < *sector));
2138 if (sectorOK == 1) {
2139 *sector = earlier;
2140 retval = 1;
2141 } // if
2142 } // if firstUsableLBA check
2143
2144 // If couldn't move the sector earlier, try to move it later instead....
2145 if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
2146 sectorOK = 1;
2147 testSector = later;
2148 do {
2149 sectorOK = IsFree(testSector--);
2150 } while ((sectorOK == 1) && (testSector > *sector));
2151 if (sectorOK == 1) {
2152 *sector = later;
2153 retval = 1;
2154 } // if
2155 } // if
2156 } // if
2157 return retval;
2158 } // GPTData::Align()
2159
2160 /********************************************************
2161 * *
2162 * Functions that return data about GPT data structures *
2163 * (most of these are inline in gpt.h) *
2164 * *
2165 ********************************************************/
2166
2167 // Find the low and high used partition numbers (numbered from 0).
2168 // Return value is the number of partitions found. Note that the
2169 // *low and *high values are both set to 0 when no partitions
2170 // are found, as well as when a single partition in the first
2171 // position exists. Thus, the return value is the only way to
2172 // tell when no partitions exist.
GetPartRange(uint32_t * low,uint32_t * high)2173 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
2174 uint32_t i;
2175 int numFound = 0;
2176
2177 *low = numParts + 1; // code for "not found"
2178 *high = 0;
2179 for (i = 0; i < numParts; i++) {
2180 if (partitions[i].IsUsed()) { // it exists
2181 *high = i; // since we're counting up, set the high value
2182 // Set the low value only if it's not yet found...
2183 if (*low == (numParts + 1)) *low = i;
2184 numFound++;
2185 } // if
2186 } // for
2187
2188 // Above will leave *low pointing to its "not found" value if no partitions
2189 // are defined, so reset to 0 if this is the case....
2190 if (*low == (numParts + 1))
2191 *low = 0;
2192 return numFound;
2193 } // GPTData::GetPartRange()
2194
2195 // Returns the value of the first free partition, or -1 if none is
2196 // unused.
FindFirstFreePart(void)2197 int GPTData::FindFirstFreePart(void) {
2198 int i = 0;
2199
2200 if (partitions != NULL) {
2201 while ((i < (int) numParts) && (partitions[i].IsUsed()))
2202 i++;
2203 if (i >= (int) numParts)
2204 i = -1;
2205 } else i = -1;
2206 return i;
2207 } // GPTData::FindFirstFreePart()
2208
2209 // Returns the number of defined partitions.
CountParts(void)2210 uint32_t GPTData::CountParts(void) {
2211 uint32_t i, counted = 0;
2212
2213 for (i = 0; i < numParts; i++) {
2214 if (partitions[i].IsUsed())
2215 counted++;
2216 } // for
2217 return counted;
2218 } // GPTData::CountParts()
2219
2220 /****************************************************
2221 * *
2222 * Functions that return data about disk free space *
2223 * *
2224 ****************************************************/
2225
2226 // Find the first available block after the starting point; returns 0 if
2227 // there are no available blocks left
FindFirstAvailable(uint64_t start)2228 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
2229 uint64_t first;
2230 uint32_t i;
2231 int firstMoved = 0;
2232
2233 // Begin from the specified starting point or from the first usable
2234 // LBA, whichever is greater...
2235 if (start < mainHeader.firstUsableLBA)
2236 first = mainHeader.firstUsableLBA;
2237 else
2238 first = start;
2239
2240 // ...now search through all partitions; if first is within an
2241 // existing partition, move it to the next sector after that
2242 // partition and repeat. If first was moved, set firstMoved
2243 // flag; repeat until firstMoved is not set, so as to catch
2244 // cases where partitions are out of sequential order....
2245 do {
2246 firstMoved = 0;
2247 for (i = 0; i < numParts; i++) {
2248 if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
2249 (first <= partitions[i].GetLastLBA())) { // in existing part.
2250 first = partitions[i].GetLastLBA() + 1;
2251 firstMoved = 1;
2252 } // if
2253 } // for
2254 } while (firstMoved == 1);
2255 if (first > mainHeader.lastUsableLBA)
2256 first = 0;
2257 return (first);
2258 } // GPTData::FindFirstAvailable()
2259
2260 // Returns the LBA of the start of the first partition on the disk (by
2261 // sector number), or 0 if there are no partitions defined.
FindFirstUsedLBA(void)2262 uint64_t GPTData::FindFirstUsedLBA(void) {
2263 uint32_t i;
2264 uint64_t firstFound = UINT64_MAX;
2265
2266 for (i = 0; i < numParts; i++) {
2267 if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() < firstFound)) {
2268 firstFound = partitions[i].GetFirstLBA();
2269 } // if
2270 } // for
2271 return firstFound;
2272 } // GPTData::FindFirstUsedLBA()
2273
2274 // Finds the first available sector in the largest block of unallocated
2275 // space on the disk. Returns 0 if there are no available blocks left
FindFirstInLargest(void)2276 uint64_t GPTData::FindFirstInLargest(void) {
2277 uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
2278
2279 start = 0;
2280 do {
2281 firstBlock = FindFirstAvailable(start);
2282 if (firstBlock != UINT32_C(0)) { // something's free...
2283 lastBlock = FindLastInFree(firstBlock);
2284 segmentSize = lastBlock - firstBlock + UINT32_C(1);
2285 if (segmentSize > selectedSize) {
2286 selectedSize = segmentSize;
2287 selectedSegment = firstBlock;
2288 } // if
2289 start = lastBlock + 1;
2290 } // if
2291 } while (firstBlock != 0);
2292 return selectedSegment;
2293 } // GPTData::FindFirstInLargest()
2294
2295 // Find the last available block on the disk.
2296 // Returns 0 if there are no available sectors
FindLastAvailable(void)2297 uint64_t GPTData::FindLastAvailable(void) {
2298 uint64_t last;
2299 uint32_t i;
2300 int lastMoved = 0;
2301
2302 // Start by assuming the last usable LBA is available....
2303 last = mainHeader.lastUsableLBA;
2304
2305 // ...now, similar to algorithm in FindFirstAvailable(), search
2306 // through all partitions, moving last when it's in an existing
2307 // partition. Set the lastMoved flag so we repeat to catch cases
2308 // where partitions are out of logical order.
2309 do {
2310 lastMoved = 0;
2311 for (i = 0; i < numParts; i++) {
2312 if ((last >= partitions[i].GetFirstLBA()) &&
2313 (last <= partitions[i].GetLastLBA())) { // in existing part.
2314 last = partitions[i].GetFirstLBA() - 1;
2315 lastMoved = 1;
2316 } // if
2317 } // for
2318 } while (lastMoved == 1);
2319 if (last < mainHeader.firstUsableLBA)
2320 last = 0;
2321 return (last);
2322 } // GPTData::FindLastAvailable()
2323
2324 // Find the last available block in the free space pointed to by start.
FindLastInFree(uint64_t start)2325 uint64_t GPTData::FindLastInFree(uint64_t start) {
2326 uint64_t nearestStart;
2327 uint32_t i;
2328
2329 nearestStart = mainHeader.lastUsableLBA;
2330 for (i = 0; i < numParts; i++) {
2331 if ((nearestStart > partitions[i].GetFirstLBA()) &&
2332 (partitions[i].GetFirstLBA() > start)) {
2333 nearestStart = partitions[i].GetFirstLBA() - 1;
2334 } // if
2335 } // for
2336 return (nearestStart);
2337 } // GPTData::FindLastInFree()
2338
2339 // Finds the total number of free blocks, the number of segments in which
2340 // they reside, and the size of the largest of those segments
FindFreeBlocks(uint32_t * numSegments,uint64_t * largestSegment)2341 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
2342 uint64_t start = UINT64_C(0); // starting point for each search
2343 uint64_t totalFound = UINT64_C(0); // running total
2344 uint64_t firstBlock; // first block in a segment
2345 uint64_t lastBlock; // last block in a segment
2346 uint64_t segmentSize; // size of segment in blocks
2347 uint32_t num = 0;
2348
2349 *largestSegment = UINT64_C(0);
2350 if (diskSize > 0) {
2351 do {
2352 firstBlock = FindFirstAvailable(start);
2353 if (firstBlock != UINT64_C(0)) { // something's free...
2354 lastBlock = FindLastInFree(firstBlock);
2355 segmentSize = lastBlock - firstBlock + UINT64_C(1);
2356 if (segmentSize > *largestSegment) {
2357 *largestSegment = segmentSize;
2358 } // if
2359 totalFound += segmentSize;
2360 num++;
2361 start = lastBlock + 1;
2362 } // if
2363 } while (firstBlock != 0);
2364 } // if
2365 *numSegments = num;
2366 return totalFound;
2367 } // GPTData::FindFreeBlocks()
2368
2369 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
2370 // If it's allocated, return the partition number to which it's allocated
2371 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
2372 // returned in partNum if the sector is in use by basic GPT data structures.)
IsFree(uint64_t sector,uint32_t * partNum)2373 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
2374 int isFree = 1;
2375 uint32_t i;
2376
2377 for (i = 0; i < numParts; i++) {
2378 if ((sector >= partitions[i].GetFirstLBA()) &&
2379 (sector <= partitions[i].GetLastLBA())) {
2380 isFree = 0;
2381 if (partNum != NULL)
2382 *partNum = i;
2383 } // if
2384 } // for
2385 if ((sector < mainHeader.firstUsableLBA) ||
2386 (sector > mainHeader.lastUsableLBA)) {
2387 isFree = 0;
2388 if (partNum != NULL)
2389 *partNum = UINT32_MAX;
2390 } // if
2391 return (isFree);
2392 } // GPTData::IsFree()
2393
2394 // Returns 1 if partNum is unused AND if it's a legal value.
IsFreePartNum(uint32_t partNum)2395 int GPTData::IsFreePartNum(uint32_t partNum) {
2396 return ((partNum < numParts) && (partitions != NULL) &&
2397 (!partitions[partNum].IsUsed()));
2398 } // GPTData::IsFreePartNum()
2399
2400 // Returns 1 if partNum is in use.
IsUsedPartNum(uint32_t partNum)2401 int GPTData::IsUsedPartNum(uint32_t partNum) {
2402 return ((partNum < numParts) && (partitions != NULL) &&
2403 (partitions[partNum].IsUsed()));
2404 } // GPTData::IsUsedPartNum()
2405
2406 /***********************************************************
2407 * *
2408 * Change how functions work or return information on them *
2409 * *
2410 ***********************************************************/
2411
2412 // Set partition alignment value; partitions will begin on multiples of
2413 // the specified value
SetAlignment(uint32_t n)2414 void GPTData::SetAlignment(uint32_t n) {
2415 if (n > 0) {
2416 sectorAlignment = n;
2417 if ((physBlockSize > 0) && (n % (physBlockSize / blockSize) != 0)) {
2418 cout << "Warning: Setting alignment to a value that does not match the disk's\n"
2419 << "physical block size! Performance degradation may result!\n"
2420 << "Physical block size = " << physBlockSize << "\n"
2421 << "Logical block size = " << blockSize << "\n"
2422 << "Optimal alignment = " << physBlockSize / blockSize << " or multiples thereof.\n";
2423 } // if
2424 } else {
2425 cerr << "Attempt to set partition alignment to 0!\n";
2426 } // if/else
2427 } // GPTData::SetAlignment()
2428
2429 // Compute sector alignment based on the current partitions (if any). Each
2430 // partition's starting LBA is examined, and if it's divisible by a power-of-2
2431 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
2432 // sector size), but not by the previously-located alignment value, then the
2433 // alignment value is adjusted down. If the computed alignment is less than 8
2434 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
2435 // is a safety measure for Advanced Format drives. If no partitions are
2436 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
2437 // adjustment of that based on the current sector size). The result is that new
2438 // drives are aligned to 2048-sector multiples but the program won't complain
2439 // about other alignments on existing disks unless a smaller-than-8 alignment
2440 // is used on big disks (as safety for Advanced Format drives).
2441 // Returns the computed alignment value.
ComputeAlignment(void)2442 uint32_t GPTData::ComputeAlignment(void) {
2443 uint32_t i = 0, found, exponent = 31;
2444 uint32_t align = DEFAULT_ALIGNMENT;
2445
2446 if (blockSize > 0)
2447 align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2448 exponent = (uint32_t) log2(align);
2449 for (i = 0; i < numParts; i++) {
2450 if (partitions[i].IsUsed()) {
2451 found = 0;
2452 while (!found) {
2453 align = UINT64_C(1) << exponent;
2454 if ((partitions[i].GetFirstLBA() % align) == 0) {
2455 found = 1;
2456 } else {
2457 exponent--;
2458 } // if/else
2459 } // while
2460 } // if
2461 } // for
2462 if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
2463 align = MIN_AF_ALIGNMENT;
2464 sectorAlignment = align;
2465 return align;
2466 } // GPTData::ComputeAlignment()
2467
2468 /********************************
2469 * *
2470 * Endianness support functions *
2471 * *
2472 ********************************/
2473
ReverseHeaderBytes(struct GPTHeader * header)2474 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
2475 ReverseBytes(&header->signature, 8);
2476 ReverseBytes(&header->revision, 4);
2477 ReverseBytes(&header->headerSize, 4);
2478 ReverseBytes(&header->headerCRC, 4);
2479 ReverseBytes(&header->reserved, 4);
2480 ReverseBytes(&header->currentLBA, 8);
2481 ReverseBytes(&header->backupLBA, 8);
2482 ReverseBytes(&header->firstUsableLBA, 8);
2483 ReverseBytes(&header->lastUsableLBA, 8);
2484 ReverseBytes(&header->partitionEntriesLBA, 8);
2485 ReverseBytes(&header->numParts, 4);
2486 ReverseBytes(&header->sizeOfPartitionEntries, 4);
2487 ReverseBytes(&header->partitionEntriesCRC, 4);
2488 ReverseBytes(header->reserved2, GPT_RESERVED);
2489 } // GPTData::ReverseHeaderBytes()
2490
2491 // Reverse byte order for all partitions.
ReversePartitionBytes()2492 void GPTData::ReversePartitionBytes() {
2493 uint32_t i;
2494
2495 for (i = 0; i < numParts; i++) {
2496 partitions[i].ReversePartBytes();
2497 } // for
2498 } // GPTData::ReversePartitionBytes()
2499
2500 // Validate partition number
ValidPartNum(const uint32_t partNum)2501 bool GPTData::ValidPartNum (const uint32_t partNum) {
2502 if (partNum >= numParts) {
2503 cerr << "Partition number out of range: " << partNum << "\n";
2504 return false;
2505 } // if
2506 return true;
2507 } // GPTData::ValidPartNum
2508
2509 // Return a single partition for inspection (not modification!) by other
2510 // functions.
operator [](uint32_t partNum) const2511 const GPTPart & GPTData::operator[](uint32_t partNum) const {
2512 if (partNum >= numParts) {
2513 cerr << "Partition number out of range (" << partNum << " requested, but only "
2514 << numParts << " available)\n";
2515 exit(1);
2516 } // if
2517 if (partitions == NULL) {
2518 cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
2519 exit(1);
2520 } // if
2521 return partitions[partNum];
2522 } // operator[]
2523
2524 // Return (not for modification!) the disk's GUID value
GetDiskGUID(void) const2525 const GUIDData & GPTData::GetDiskGUID(void) const {
2526 return mainHeader.diskGUID;
2527 } // GPTData::GetDiskGUID()
2528
2529 // Manage attributes for a partition, based on commands passed to this function.
2530 // (Function is non-interactive.)
2531 // Returns 1 if a modification command succeeded, 0 if the command should not have
2532 // modified data, and -1 if a modification command failed.
ManageAttributes(int partNum,const string & command,const string & bits)2533 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
2534 int retval = 0;
2535 Attributes theAttr;
2536
2537 if (partNum >= (int) numParts) {
2538 cerr << "Invalid partition number (" << partNum + 1 << ")\n";
2539 retval = -1;
2540 } else {
2541 if (command == "show") {
2542 ShowAttributes(partNum);
2543 } else if (command == "get") {
2544 GetAttribute(partNum, bits);
2545 } else {
2546 theAttr = partitions[partNum].GetAttributes();
2547 if (theAttr.OperateOnAttributes(partNum, command, bits)) {
2548 partitions[partNum].SetAttributes(theAttr.GetAttributes());
2549 retval = 1;
2550 } else {
2551 retval = -1;
2552 } // if/else
2553 } // if/elseif/else
2554 } // if/else invalid partition #
2555
2556 return retval;
2557 } // GPTData::ManageAttributes()
2558
2559 // Show all attributes for a specified partition....
ShowAttributes(const uint32_t partNum)2560 void GPTData::ShowAttributes(const uint32_t partNum) {
2561 if ((partNum < numParts) && partitions[partNum].IsUsed())
2562 partitions[partNum].ShowAttributes(partNum);
2563 } // GPTData::ShowAttributes
2564
2565 // Show whether a single attribute bit is set (terse output)...
GetAttribute(const uint32_t partNum,const string & attributeBits)2566 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
2567 if (partNum < numParts)
2568 partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
2569 } // GPTData::GetAttribute
2570
2571
2572 /******************************************
2573 * *
2574 * Additional non-class support functions *
2575 * *
2576 ******************************************/
2577
2578 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
2579 // never fail these tests, but the struct types may fail depending on compile options.
2580 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
2581 // sizes.
SizesOK(void)2582 int SizesOK(void) {
2583 int allOK = 1;
2584
2585 if (sizeof(uint8_t) != 1) {
2586 cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
2587 allOK = 0;
2588 } // if
2589 if (sizeof(uint16_t) != 2) {
2590 cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
2591 allOK = 0;
2592 } // if
2593 if (sizeof(uint32_t) != 4) {
2594 cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
2595 allOK = 0;
2596 } // if
2597 if (sizeof(uint64_t) != 8) {
2598 cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
2599 allOK = 0;
2600 } // if
2601 if (sizeof(struct MBRRecord) != 16) {
2602 cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
2603 allOK = 0;
2604 } // if
2605 if (sizeof(struct TempMBR) != 512) {
2606 cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
2607 allOK = 0;
2608 } // if
2609 if (sizeof(struct GPTHeader) != 512) {
2610 cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
2611 allOK = 0;
2612 } // if
2613 if (sizeof(GPTPart) != 128) {
2614 cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
2615 allOK = 0;
2616 } // if
2617 if (sizeof(GUIDData) != 16) {
2618 cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
2619 allOK = 0;
2620 } // if
2621 if (sizeof(PartType) != 16) {
2622 cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
2623 allOK = 0;
2624 } // if
2625 return (allOK);
2626 } // SizesOK()
2627
2628