1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""A simple functional keras model with one layer.""" 16 17from __future__ import absolute_import 18from __future__ import division 19from __future__ import print_function 20 21import numpy as np 22 23from tensorflow.python import keras 24from tensorflow.python.distribute.model_collection import model_collection_base 25from tensorflow.python.eager import def_function 26from tensorflow.python.framework import constant_op 27from tensorflow.python.framework import dtypes 28from tensorflow.python.keras.optimizer_v2 import gradient_descent 29from tensorflow.python.module import module 30from tensorflow.python.ops import variables 31 32_BATCH_SIZE = 10 33 34 35def _get_data_for_simple_models(): 36 x_train = constant_op.constant(np.random.rand(1000, 3), dtype=dtypes.float32) 37 y_train = constant_op.constant(np.random.rand(1000, 5), dtype=dtypes.float32) 38 x_predict = constant_op.constant( 39 np.random.rand(1000, 3), dtype=dtypes.float32) 40 41 return x_train, y_train, x_predict 42 43 44class SimpleFunctionalModel(model_collection_base.ModelAndInput): 45 """A simple functinal model and its inputs.""" 46 47 def get_model(self, **kwargs): 48 output_name = 'output_layer' 49 50 x = keras.layers.Input(shape=(3,), dtype=dtypes.float32) 51 y = keras.layers.Dense(5, dtype=dtypes.float32, name=output_name)(x) 52 53 model = keras.Model(inputs=x, outputs=y) 54 optimizer = gradient_descent.SGD(learning_rate=0.001) 55 experimental_run_tf_function = kwargs.pop('experimental_run_tf_function', 56 None) 57 assert experimental_run_tf_function is not None 58 model.compile( 59 loss='mse', 60 metrics=['mae'], 61 optimizer=optimizer, 62 experimental_run_tf_function=experimental_run_tf_function) 63 64 return model 65 66 def get_data(self): 67 return _get_data_for_simple_models() 68 69 def get_batch_size(self): 70 return _BATCH_SIZE 71 72 73class SimpleSequentialModel(model_collection_base.ModelAndInput): 74 """A simple sequential model and its inputs.""" 75 76 def get_model(self, **kwargs): 77 output_name = 'output_layer' 78 79 model = keras.Sequential() 80 y = keras.layers.Dense( 81 5, dtype=dtypes.float32, name=output_name, input_dim=3) 82 model.add(y) 83 optimizer = gradient_descent.SGD(learning_rate=0.001) 84 experimental_run_tf_function = kwargs.pop('experimental_run_tf_function', 85 None) 86 assert experimental_run_tf_function is not None 87 model.compile( 88 loss='mse', 89 metrics=['mae'], 90 optimizer=optimizer, 91 experimental_run_tf_function=experimental_run_tf_function) 92 93 return model 94 95 def get_data(self): 96 return _get_data_for_simple_models() 97 98 def get_batch_size(self): 99 return _BATCH_SIZE 100 101 102class _SimpleModel(keras.Model): 103 104 def __init__(self): 105 super(_SimpleModel, self).__init__() 106 self._dense_layer = keras.layers.Dense(5, dtype=dtypes.float32) 107 108 def call(self, inputs): 109 return {'output_layer': self._dense_layer(inputs)} 110 111 112class SimpleSubclassModel(model_collection_base.ModelAndInput): 113 """A simple subclass model and its data.""" 114 115 def get_model(self, **kwargs): 116 model = _SimpleModel() 117 optimizer = gradient_descent.SGD(learning_rate=0.001) 118 experimental_run_tf_function = kwargs.pop('experimental_run_tf_function', 119 None) 120 assert experimental_run_tf_function is not None 121 model.compile( 122 loss='mse', 123 metrics=['mae'], 124 cloning=False, 125 optimizer=optimizer, 126 experimental_run_tf_function=experimental_run_tf_function) 127 128 return model 129 130 def get_data(self): 131 return _get_data_for_simple_models() 132 133 def get_batch_size(self): 134 return _BATCH_SIZE 135 136 137class _SimpleModule(module.Module): 138 139 def __init__(self): 140 self.v = variables.Variable(3.0) 141 142 @def_function.function 143 def __call__(self, x): 144 return self.v * x 145 146 147class SimpleTFModuleModel(model_collection_base.ModelAndInput): 148 """A simple model based on tf.Module and its data.""" 149 150 def get_model(self, **kwargs): 151 model = _SimpleModule() 152 return model 153 154 def get_data(self): 155 return _get_data_for_simple_models() 156 157 def get_batch_size(self): 158 return _BATCH_SIZE 159