1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_ 18 #define ART_COMPILER_OPTIMIZING_NODES_H_ 19 20 #include <algorithm> 21 #include <array> 22 #include <type_traits> 23 24 #include "base/arena_bit_vector.h" 25 #include "base/arena_containers.h" 26 #include "base/arena_object.h" 27 #include "base/array_ref.h" 28 #include "base/intrusive_forward_list.h" 29 #include "base/iteration_range.h" 30 #include "base/mutex.h" 31 #include "base/quasi_atomic.h" 32 #include "base/stl_util.h" 33 #include "base/transform_array_ref.h" 34 #include "art_method.h" 35 #include "data_type.h" 36 #include "deoptimization_kind.h" 37 #include "dex/dex_file.h" 38 #include "dex/dex_file_types.h" 39 #include "dex/invoke_type.h" 40 #include "dex/method_reference.h" 41 #include "entrypoints/quick/quick_entrypoints_enum.h" 42 #include "handle.h" 43 #include "handle_scope.h" 44 #include "intrinsics_enum.h" 45 #include "locations.h" 46 #include "mirror/class.h" 47 #include "mirror/method_type.h" 48 #include "offsets.h" 49 50 namespace art { 51 52 class ArenaStack; 53 class GraphChecker; 54 class HBasicBlock; 55 class HConstructorFence; 56 class HCurrentMethod; 57 class HDoubleConstant; 58 class HEnvironment; 59 class HFloatConstant; 60 class HGraphBuilder; 61 class HGraphVisitor; 62 class HInstruction; 63 class HIntConstant; 64 class HInvoke; 65 class HLongConstant; 66 class HNullConstant; 67 class HParameterValue; 68 class HPhi; 69 class HSuspendCheck; 70 class HTryBoundary; 71 class LiveInterval; 72 class LocationSummary; 73 class SlowPathCode; 74 class SsaBuilder; 75 76 namespace mirror { 77 class DexCache; 78 } // namespace mirror 79 80 static const int kDefaultNumberOfBlocks = 8; 81 static const int kDefaultNumberOfSuccessors = 2; 82 static const int kDefaultNumberOfPredecessors = 2; 83 static const int kDefaultNumberOfExceptionalPredecessors = 0; 84 static const int kDefaultNumberOfDominatedBlocks = 1; 85 static const int kDefaultNumberOfBackEdges = 1; 86 87 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation. 88 static constexpr int32_t kMaxIntShiftDistance = 0x1f; 89 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation. 90 static constexpr int32_t kMaxLongShiftDistance = 0x3f; 91 92 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1); 93 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1); 94 95 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1); 96 97 static constexpr uint32_t kNoDexPc = -1; 98 IsSameDexFile(const DexFile & lhs,const DexFile & rhs)99 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) { 100 // For the purposes of the compiler, the dex files must actually be the same object 101 // if we want to safely treat them as the same. This is especially important for JIT 102 // as custom class loaders can open the same underlying file (or memory) multiple 103 // times and provide different class resolution but no two class loaders should ever 104 // use the same DexFile object - doing so is an unsupported hack that can lead to 105 // all sorts of weird failures. 106 return &lhs == &rhs; 107 } 108 109 enum IfCondition { 110 // All types. 111 kCondEQ, // == 112 kCondNE, // != 113 // Signed integers and floating-point numbers. 114 kCondLT, // < 115 kCondLE, // <= 116 kCondGT, // > 117 kCondGE, // >= 118 // Unsigned integers. 119 kCondB, // < 120 kCondBE, // <= 121 kCondA, // > 122 kCondAE, // >= 123 // First and last aliases. 124 kCondFirst = kCondEQ, 125 kCondLast = kCondAE, 126 }; 127 128 enum GraphAnalysisResult { 129 kAnalysisSkipped, 130 kAnalysisInvalidBytecode, 131 kAnalysisFailThrowCatchLoop, 132 kAnalysisFailAmbiguousArrayOp, 133 kAnalysisFailIrreducibleLoopAndStringInit, 134 kAnalysisFailPhiEquivalentInOsr, 135 kAnalysisSuccess, 136 }; 137 138 template <typename T> MakeUnsigned(T x)139 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) { 140 return static_cast<typename std::make_unsigned<T>::type>(x); 141 } 142 143 class HInstructionList : public ValueObject { 144 public: HInstructionList()145 HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {} 146 147 void AddInstruction(HInstruction* instruction); 148 void RemoveInstruction(HInstruction* instruction); 149 150 // Insert `instruction` before/after an existing instruction `cursor`. 151 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); 152 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); 153 154 // Return true if this list contains `instruction`. 155 bool Contains(HInstruction* instruction) const; 156 157 // Return true if `instruction1` is found before `instruction2` in 158 // this instruction list and false otherwise. Abort if none 159 // of these instructions is found. 160 bool FoundBefore(const HInstruction* instruction1, 161 const HInstruction* instruction2) const; 162 IsEmpty()163 bool IsEmpty() const { return first_instruction_ == nullptr; } Clear()164 void Clear() { first_instruction_ = last_instruction_ = nullptr; } 165 166 // Update the block of all instructions to be `block`. 167 void SetBlockOfInstructions(HBasicBlock* block) const; 168 169 void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list); 170 void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list); 171 void Add(const HInstructionList& instruction_list); 172 173 // Return the number of instructions in the list. This is an expensive operation. 174 size_t CountSize() const; 175 176 private: 177 HInstruction* first_instruction_; 178 HInstruction* last_instruction_; 179 180 friend class HBasicBlock; 181 friend class HGraph; 182 friend class HInstruction; 183 friend class HInstructionIterator; 184 friend class HInstructionIteratorHandleChanges; 185 friend class HBackwardInstructionIterator; 186 187 DISALLOW_COPY_AND_ASSIGN(HInstructionList); 188 }; 189 190 class ReferenceTypeInfo : ValueObject { 191 public: 192 typedef Handle<mirror::Class> TypeHandle; 193 194 static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact); 195 Create(TypeHandle type_handle)196 static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) { 197 return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes()); 198 } 199 CreateUnchecked(TypeHandle type_handle,bool is_exact)200 static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) { 201 return ReferenceTypeInfo(type_handle, is_exact); 202 } 203 CreateInvalid()204 static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); } 205 IsValidHandle(TypeHandle handle)206 static bool IsValidHandle(TypeHandle handle) { 207 return handle.GetReference() != nullptr; 208 } 209 IsValid()210 bool IsValid() const { 211 return IsValidHandle(type_handle_); 212 } 213 IsExact()214 bool IsExact() const { return is_exact_; } 215 IsObjectClass()216 bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 217 DCHECK(IsValid()); 218 return GetTypeHandle()->IsObjectClass(); 219 } 220 IsStringClass()221 bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 222 DCHECK(IsValid()); 223 return GetTypeHandle()->IsStringClass(); 224 } 225 IsObjectArray()226 bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) { 227 DCHECK(IsValid()); 228 return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass(); 229 } 230 IsInterface()231 bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) { 232 DCHECK(IsValid()); 233 return GetTypeHandle()->IsInterface(); 234 } 235 IsArrayClass()236 bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 237 DCHECK(IsValid()); 238 return GetTypeHandle()->IsArrayClass(); 239 } 240 IsPrimitiveArrayClass()241 bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 242 DCHECK(IsValid()); 243 return GetTypeHandle()->IsPrimitiveArray(); 244 } 245 IsNonPrimitiveArrayClass()246 bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 247 DCHECK(IsValid()); 248 return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray(); 249 } 250 CanArrayHold(ReferenceTypeInfo rti)251 bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 252 DCHECK(IsValid()); 253 if (!IsExact()) return false; 254 if (!IsArrayClass()) return false; 255 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get()); 256 } 257 CanArrayHoldValuesOf(ReferenceTypeInfo rti)258 bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 259 DCHECK(IsValid()); 260 if (!IsExact()) return false; 261 if (!IsArrayClass()) return false; 262 if (!rti.IsArrayClass()) return false; 263 return GetTypeHandle()->GetComponentType()->IsAssignableFrom( 264 rti.GetTypeHandle()->GetComponentType()); 265 } 266 GetTypeHandle()267 Handle<mirror::Class> GetTypeHandle() const { return type_handle_; } 268 IsSupertypeOf(ReferenceTypeInfo rti)269 bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 270 DCHECK(IsValid()); 271 DCHECK(rti.IsValid()); 272 return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); 273 } 274 IsStrictSupertypeOf(ReferenceTypeInfo rti)275 bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 276 DCHECK(IsValid()); 277 DCHECK(rti.IsValid()); 278 return GetTypeHandle().Get() != rti.GetTypeHandle().Get() && 279 GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); 280 } 281 282 // Returns true if the type information provide the same amount of details. 283 // Note that it does not mean that the instructions have the same actual type 284 // (because the type can be the result of a merge). IsEqual(ReferenceTypeInfo rti)285 bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 286 if (!IsValid() && !rti.IsValid()) { 287 // Invalid types are equal. 288 return true; 289 } 290 if (!IsValid() || !rti.IsValid()) { 291 // One is valid, the other not. 292 return false; 293 } 294 return IsExact() == rti.IsExact() 295 && GetTypeHandle().Get() == rti.GetTypeHandle().Get(); 296 } 297 298 private: ReferenceTypeInfo()299 ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} ReferenceTypeInfo(TypeHandle type_handle,bool is_exact)300 ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) 301 : type_handle_(type_handle), is_exact_(is_exact) { } 302 303 // The class of the object. 304 TypeHandle type_handle_; 305 // Whether or not the type is exact or a superclass of the actual type. 306 // Whether or not we have any information about this type. 307 bool is_exact_; 308 }; 309 310 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs); 311 312 // Control-flow graph of a method. Contains a list of basic blocks. 313 class HGraph : public ArenaObject<kArenaAllocGraph> { 314 public: 315 HGraph(ArenaAllocator* allocator, 316 ArenaStack* arena_stack, 317 const DexFile& dex_file, 318 uint32_t method_idx, 319 InstructionSet instruction_set, 320 InvokeType invoke_type = kInvalidInvokeType, 321 bool dead_reference_safe = false, 322 bool debuggable = false, 323 bool osr = false, 324 bool is_shared_jit_code = false, 325 bool baseline = false, 326 int start_instruction_id = 0) allocator_(allocator)327 : allocator_(allocator), 328 arena_stack_(arena_stack), 329 blocks_(allocator->Adapter(kArenaAllocBlockList)), 330 reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)), 331 linear_order_(allocator->Adapter(kArenaAllocLinearOrder)), 332 entry_block_(nullptr), 333 exit_block_(nullptr), 334 maximum_number_of_out_vregs_(0), 335 number_of_vregs_(0), 336 number_of_in_vregs_(0), 337 temporaries_vreg_slots_(0), 338 has_bounds_checks_(false), 339 has_try_catch_(false), 340 has_monitor_operations_(false), 341 has_simd_(false), 342 has_loops_(false), 343 has_irreducible_loops_(false), 344 dead_reference_safe_(dead_reference_safe), 345 debuggable_(debuggable), 346 current_instruction_id_(start_instruction_id), 347 dex_file_(dex_file), 348 method_idx_(method_idx), 349 invoke_type_(invoke_type), 350 in_ssa_form_(false), 351 number_of_cha_guards_(0), 352 instruction_set_(instruction_set), 353 cached_null_constant_(nullptr), 354 cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)), 355 cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)), 356 cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)), 357 cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)), 358 cached_current_method_(nullptr), 359 art_method_(nullptr), 360 inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()), 361 osr_(osr), 362 baseline_(baseline), 363 cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)), 364 is_shared_jit_code_(is_shared_jit_code) { 365 blocks_.reserve(kDefaultNumberOfBlocks); 366 } 367 368 // Acquires and stores RTI of inexact Object to be used when creating HNullConstant. 369 void InitializeInexactObjectRTI(VariableSizedHandleScope* handles); 370 GetAllocator()371 ArenaAllocator* GetAllocator() const { return allocator_; } GetArenaStack()372 ArenaStack* GetArenaStack() const { return arena_stack_; } GetBlocks()373 const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; } 374 IsInSsaForm()375 bool IsInSsaForm() const { return in_ssa_form_; } SetInSsaForm()376 void SetInSsaForm() { in_ssa_form_ = true; } 377 GetEntryBlock()378 HBasicBlock* GetEntryBlock() const { return entry_block_; } GetExitBlock()379 HBasicBlock* GetExitBlock() const { return exit_block_; } HasExitBlock()380 bool HasExitBlock() const { return exit_block_ != nullptr; } 381 SetEntryBlock(HBasicBlock * block)382 void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; } SetExitBlock(HBasicBlock * block)383 void SetExitBlock(HBasicBlock* block) { exit_block_ = block; } 384 385 void AddBlock(HBasicBlock* block); 386 387 void ComputeDominanceInformation(); 388 void ClearDominanceInformation(); 389 void ClearLoopInformation(); 390 void FindBackEdges(ArenaBitVector* visited); 391 GraphAnalysisResult BuildDominatorTree(); 392 void SimplifyCFG(); 393 void SimplifyCatchBlocks(); 394 395 // Analyze all natural loops in this graph. Returns a code specifying that it 396 // was successful or the reason for failure. The method will fail if a loop 397 // is a throw-catch loop, i.e. the header is a catch block. 398 GraphAnalysisResult AnalyzeLoops() const; 399 400 // Iterate over blocks to compute try block membership. Needs reverse post 401 // order and loop information. 402 void ComputeTryBlockInformation(); 403 404 // Inline this graph in `outer_graph`, replacing the given `invoke` instruction. 405 // Returns the instruction to replace the invoke expression or null if the 406 // invoke is for a void method. Note that the caller is responsible for replacing 407 // and removing the invoke instruction. 408 HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke); 409 410 // Update the loop and try membership of `block`, which was spawned from `reference`. 411 // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block` 412 // should be the new back edge. 413 void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block, 414 HBasicBlock* reference, 415 bool replace_if_back_edge); 416 417 // Need to add a couple of blocks to test if the loop body is entered and 418 // put deoptimization instructions, etc. 419 void TransformLoopHeaderForBCE(HBasicBlock* header); 420 421 // Adds a new loop directly after the loop with the given header and exit. 422 // Returns the new preheader. 423 HBasicBlock* TransformLoopForVectorization(HBasicBlock* header, 424 HBasicBlock* body, 425 HBasicBlock* exit); 426 427 // Removes `block` from the graph. Assumes `block` has been disconnected from 428 // other blocks and has no instructions or phis. 429 void DeleteDeadEmptyBlock(HBasicBlock* block); 430 431 // Splits the edge between `block` and `successor` while preserving the 432 // indices in the predecessor/successor lists. If there are multiple edges 433 // between the blocks, the lowest indices are used. 434 // Returns the new block which is empty and has the same dex pc as `successor`. 435 HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor); 436 437 void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor); 438 void OrderLoopHeaderPredecessors(HBasicBlock* header); 439 440 // Transform a loop into a format with a single preheader. 441 // 442 // Each phi in the header should be split: original one in the header should only hold 443 // inputs reachable from the back edges and a single input from the preheader. The newly created 444 // phi in the preheader should collate the inputs from the original multiple incoming blocks. 445 // 446 // Loops in the graph typically have a single preheader, so this method is used to "repair" loops 447 // that no longer have this property. 448 void TransformLoopToSinglePreheaderFormat(HBasicBlock* header); 449 450 void SimplifyLoop(HBasicBlock* header); 451 GetNextInstructionId()452 int32_t GetNextInstructionId() { 453 CHECK_NE(current_instruction_id_, INT32_MAX); 454 return current_instruction_id_++; 455 } 456 GetCurrentInstructionId()457 int32_t GetCurrentInstructionId() const { 458 return current_instruction_id_; 459 } 460 SetCurrentInstructionId(int32_t id)461 void SetCurrentInstructionId(int32_t id) { 462 CHECK_GE(id, current_instruction_id_); 463 current_instruction_id_ = id; 464 } 465 GetMaximumNumberOfOutVRegs()466 uint16_t GetMaximumNumberOfOutVRegs() const { 467 return maximum_number_of_out_vregs_; 468 } 469 SetMaximumNumberOfOutVRegs(uint16_t new_value)470 void SetMaximumNumberOfOutVRegs(uint16_t new_value) { 471 maximum_number_of_out_vregs_ = new_value; 472 } 473 UpdateMaximumNumberOfOutVRegs(uint16_t other_value)474 void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) { 475 maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value); 476 } 477 UpdateTemporariesVRegSlots(size_t slots)478 void UpdateTemporariesVRegSlots(size_t slots) { 479 temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_); 480 } 481 GetTemporariesVRegSlots()482 size_t GetTemporariesVRegSlots() const { 483 DCHECK(!in_ssa_form_); 484 return temporaries_vreg_slots_; 485 } 486 SetNumberOfVRegs(uint16_t number_of_vregs)487 void SetNumberOfVRegs(uint16_t number_of_vregs) { 488 number_of_vregs_ = number_of_vregs; 489 } 490 GetNumberOfVRegs()491 uint16_t GetNumberOfVRegs() const { 492 return number_of_vregs_; 493 } 494 SetNumberOfInVRegs(uint16_t value)495 void SetNumberOfInVRegs(uint16_t value) { 496 number_of_in_vregs_ = value; 497 } 498 GetNumberOfInVRegs()499 uint16_t GetNumberOfInVRegs() const { 500 return number_of_in_vregs_; 501 } 502 GetNumberOfLocalVRegs()503 uint16_t GetNumberOfLocalVRegs() const { 504 DCHECK(!in_ssa_form_); 505 return number_of_vregs_ - number_of_in_vregs_; 506 } 507 GetReversePostOrder()508 const ArenaVector<HBasicBlock*>& GetReversePostOrder() const { 509 return reverse_post_order_; 510 } 511 GetReversePostOrderSkipEntryBlock()512 ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const { 513 DCHECK(GetReversePostOrder()[0] == entry_block_); 514 return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1); 515 } 516 GetPostOrder()517 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const { 518 return ReverseRange(GetReversePostOrder()); 519 } 520 GetLinearOrder()521 const ArenaVector<HBasicBlock*>& GetLinearOrder() const { 522 return linear_order_; 523 } 524 GetLinearPostOrder()525 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const { 526 return ReverseRange(GetLinearOrder()); 527 } 528 HasBoundsChecks()529 bool HasBoundsChecks() const { 530 return has_bounds_checks_; 531 } 532 SetHasBoundsChecks(bool value)533 void SetHasBoundsChecks(bool value) { 534 has_bounds_checks_ = value; 535 } 536 537 // Is the code known to be robust against eliminating dead references 538 // and the effects of early finalization? IsDeadReferenceSafe()539 bool IsDeadReferenceSafe() const { return dead_reference_safe_; } 540 MarkDeadReferenceUnsafe()541 void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; } 542 IsDebuggable()543 bool IsDebuggable() const { return debuggable_; } 544 545 // Returns a constant of the given type and value. If it does not exist 546 // already, it is created and inserted into the graph. This method is only for 547 // integral types. 548 HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc); 549 550 // TODO: This is problematic for the consistency of reference type propagation 551 // because it can be created anytime after the pass and thus it will be left 552 // with an invalid type. 553 HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc); 554 555 HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) { 556 return CreateConstant(value, &cached_int_constants_, dex_pc); 557 } 558 HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) { 559 return CreateConstant(value, &cached_long_constants_, dex_pc); 560 } 561 HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) { 562 return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc); 563 } 564 HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) { 565 return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc); 566 } 567 568 HCurrentMethod* GetCurrentMethod(); 569 GetDexFile()570 const DexFile& GetDexFile() const { 571 return dex_file_; 572 } 573 GetMethodIdx()574 uint32_t GetMethodIdx() const { 575 return method_idx_; 576 } 577 578 // Get the method name (without the signature), e.g. "<init>" 579 const char* GetMethodName() const; 580 581 // Get the pretty method name (class + name + optionally signature). 582 std::string PrettyMethod(bool with_signature = true) const; 583 GetInvokeType()584 InvokeType GetInvokeType() const { 585 return invoke_type_; 586 } 587 GetInstructionSet()588 InstructionSet GetInstructionSet() const { 589 return instruction_set_; 590 } 591 IsCompilingOsr()592 bool IsCompilingOsr() const { return osr_; } 593 IsCompilingBaseline()594 bool IsCompilingBaseline() const { return baseline_; } 595 IsCompilingForSharedJitCode()596 bool IsCompilingForSharedJitCode() const { 597 return is_shared_jit_code_; 598 } 599 GetCHASingleImplementationList()600 ArenaSet<ArtMethod*>& GetCHASingleImplementationList() { 601 return cha_single_implementation_list_; 602 } 603 AddCHASingleImplementationDependency(ArtMethod * method)604 void AddCHASingleImplementationDependency(ArtMethod* method) { 605 cha_single_implementation_list_.insert(method); 606 } 607 HasShouldDeoptimizeFlag()608 bool HasShouldDeoptimizeFlag() const { 609 return number_of_cha_guards_ != 0; 610 } 611 HasTryCatch()612 bool HasTryCatch() const { return has_try_catch_; } SetHasTryCatch(bool value)613 void SetHasTryCatch(bool value) { has_try_catch_ = value; } 614 HasMonitorOperations()615 bool HasMonitorOperations() const { return has_monitor_operations_; } SetHasMonitorOperations(bool value)616 void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; } 617 HasSIMD()618 bool HasSIMD() const { return has_simd_; } SetHasSIMD(bool value)619 void SetHasSIMD(bool value) { has_simd_ = value; } 620 HasLoops()621 bool HasLoops() const { return has_loops_; } SetHasLoops(bool value)622 void SetHasLoops(bool value) { has_loops_ = value; } 623 HasIrreducibleLoops()624 bool HasIrreducibleLoops() const { return has_irreducible_loops_; } SetHasIrreducibleLoops(bool value)625 void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; } 626 GetArtMethod()627 ArtMethod* GetArtMethod() const { return art_method_; } SetArtMethod(ArtMethod * method)628 void SetArtMethod(ArtMethod* method) { art_method_ = method; } 629 630 // Returns an instruction with the opposite Boolean value from 'cond'. 631 // The instruction has been inserted into the graph, either as a constant, or 632 // before cursor. 633 HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor); 634 GetInexactObjectRti()635 ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; } 636 GetNumberOfCHAGuards()637 uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; } SetNumberOfCHAGuards(uint32_t num)638 void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; } IncrementNumberOfCHAGuards()639 void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; } 640 641 private: 642 void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const; 643 void RemoveDeadBlocks(const ArenaBitVector& visited); 644 645 template <class InstructionType, typename ValueType> 646 InstructionType* CreateConstant(ValueType value, 647 ArenaSafeMap<ValueType, InstructionType*>* cache, 648 uint32_t dex_pc = kNoDexPc) { 649 // Try to find an existing constant of the given value. 650 InstructionType* constant = nullptr; 651 auto cached_constant = cache->find(value); 652 if (cached_constant != cache->end()) { 653 constant = cached_constant->second; 654 } 655 656 // If not found or previously deleted, create and cache a new instruction. 657 // Don't bother reviving a previously deleted instruction, for simplicity. 658 if (constant == nullptr || constant->GetBlock() == nullptr) { 659 constant = new (allocator_) InstructionType(value, dex_pc); 660 cache->Overwrite(value, constant); 661 InsertConstant(constant); 662 } 663 return constant; 664 } 665 666 void InsertConstant(HConstant* instruction); 667 668 // Cache a float constant into the graph. This method should only be 669 // called by the SsaBuilder when creating "equivalent" instructions. 670 void CacheFloatConstant(HFloatConstant* constant); 671 672 // See CacheFloatConstant comment. 673 void CacheDoubleConstant(HDoubleConstant* constant); 674 675 ArenaAllocator* const allocator_; 676 ArenaStack* const arena_stack_; 677 678 // List of blocks in insertion order. 679 ArenaVector<HBasicBlock*> blocks_; 680 681 // List of blocks to perform a reverse post order tree traversal. 682 ArenaVector<HBasicBlock*> reverse_post_order_; 683 684 // List of blocks to perform a linear order tree traversal. Unlike the reverse 685 // post order, this order is not incrementally kept up-to-date. 686 ArenaVector<HBasicBlock*> linear_order_; 687 688 HBasicBlock* entry_block_; 689 HBasicBlock* exit_block_; 690 691 // The maximum number of virtual registers arguments passed to a HInvoke in this graph. 692 uint16_t maximum_number_of_out_vregs_; 693 694 // The number of virtual registers in this method. Contains the parameters. 695 uint16_t number_of_vregs_; 696 697 // The number of virtual registers used by parameters of this method. 698 uint16_t number_of_in_vregs_; 699 700 // Number of vreg size slots that the temporaries use (used in baseline compiler). 701 size_t temporaries_vreg_slots_; 702 703 // Flag whether there are bounds checks in the graph. We can skip 704 // BCE if it's false. It's only best effort to keep it up to date in 705 // the presence of code elimination so there might be false positives. 706 bool has_bounds_checks_; 707 708 // Flag whether there are try/catch blocks in the graph. We will skip 709 // try/catch-related passes if it's false. It's only best effort to keep 710 // it up to date in the presence of code elimination so there might be 711 // false positives. 712 bool has_try_catch_; 713 714 // Flag whether there are any HMonitorOperation in the graph. If yes this will mandate 715 // DexRegisterMap to be present to allow deadlock analysis for non-debuggable code. 716 bool has_monitor_operations_; 717 718 // Flag whether SIMD instructions appear in the graph. If true, the 719 // code generators may have to be more careful spilling the wider 720 // contents of SIMD registers. 721 bool has_simd_; 722 723 // Flag whether there are any loops in the graph. We can skip loop 724 // optimization if it's false. It's only best effort to keep it up 725 // to date in the presence of code elimination so there might be false 726 // positives. 727 bool has_loops_; 728 729 // Flag whether there are any irreducible loops in the graph. It's only 730 // best effort to keep it up to date in the presence of code elimination 731 // so there might be false positives. 732 bool has_irreducible_loops_; 733 734 // Is the code known to be robust against eliminating dead references 735 // and the effects of early finalization? If false, dead reference variables 736 // are kept if they might be visible to the garbage collector. 737 // Currently this means that the class was declared to be dead-reference-safe, 738 // the method accesses no reachability-sensitive fields or data, and the same 739 // is true for any methods that were inlined into the current one. 740 bool dead_reference_safe_; 741 742 // Indicates whether the graph should be compiled in a way that 743 // ensures full debuggability. If false, we can apply more 744 // aggressive optimizations that may limit the level of debugging. 745 const bool debuggable_; 746 747 // The current id to assign to a newly added instruction. See HInstruction.id_. 748 int32_t current_instruction_id_; 749 750 // The dex file from which the method is from. 751 const DexFile& dex_file_; 752 753 // The method index in the dex file. 754 const uint32_t method_idx_; 755 756 // If inlined, this encodes how the callee is being invoked. 757 const InvokeType invoke_type_; 758 759 // Whether the graph has been transformed to SSA form. Only used 760 // in debug mode to ensure we are not using properties only valid 761 // for non-SSA form (like the number of temporaries). 762 bool in_ssa_form_; 763 764 // Number of CHA guards in the graph. Used to short-circuit the 765 // CHA guard optimization pass when there is no CHA guard left. 766 uint32_t number_of_cha_guards_; 767 768 const InstructionSet instruction_set_; 769 770 // Cached constants. 771 HNullConstant* cached_null_constant_; 772 ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_; 773 ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_; 774 ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_; 775 ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_; 776 777 HCurrentMethod* cached_current_method_; 778 779 // The ArtMethod this graph is for. Note that for AOT, it may be null, 780 // for example for methods whose declaring class could not be resolved 781 // (such as when the superclass could not be found). 782 ArtMethod* art_method_; 783 784 // Keep the RTI of inexact Object to avoid having to pass stack handle 785 // collection pointer to passes which may create NullConstant. 786 ReferenceTypeInfo inexact_object_rti_; 787 788 // Whether we are compiling this graph for on stack replacement: this will 789 // make all loops seen as irreducible and emit special stack maps to mark 790 // compiled code entries which the interpreter can directly jump to. 791 const bool osr_; 792 793 // Whether we are compiling baseline (not running optimizations). This affects 794 // the code being generated. 795 const bool baseline_; 796 797 // List of methods that are assumed to have single implementation. 798 ArenaSet<ArtMethod*> cha_single_implementation_list_; 799 800 // Whether we are JIT compiling in the shared region area, putting 801 // restrictions on, for example, how literals are being generated. 802 bool is_shared_jit_code_; 803 804 friend class SsaBuilder; // For caching constants. 805 friend class SsaLivenessAnalysis; // For the linear order. 806 friend class HInliner; // For the reverse post order. 807 ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1); 808 DISALLOW_COPY_AND_ASSIGN(HGraph); 809 }; 810 811 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> { 812 public: HLoopInformation(HBasicBlock * header,HGraph * graph)813 HLoopInformation(HBasicBlock* header, HGraph* graph) 814 : header_(header), 815 suspend_check_(nullptr), 816 irreducible_(false), 817 contains_irreducible_loop_(false), 818 back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)), 819 // Make bit vector growable, as the number of blocks may change. 820 blocks_(graph->GetAllocator(), 821 graph->GetBlocks().size(), 822 true, 823 kArenaAllocLoopInfoBackEdges) { 824 back_edges_.reserve(kDefaultNumberOfBackEdges); 825 } 826 IsIrreducible()827 bool IsIrreducible() const { return irreducible_; } ContainsIrreducibleLoop()828 bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; } 829 830 void Dump(std::ostream& os); 831 GetHeader()832 HBasicBlock* GetHeader() const { 833 return header_; 834 } 835 SetHeader(HBasicBlock * block)836 void SetHeader(HBasicBlock* block) { 837 header_ = block; 838 } 839 GetSuspendCheck()840 HSuspendCheck* GetSuspendCheck() const { return suspend_check_; } SetSuspendCheck(HSuspendCheck * check)841 void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; } HasSuspendCheck()842 bool HasSuspendCheck() const { return suspend_check_ != nullptr; } 843 AddBackEdge(HBasicBlock * back_edge)844 void AddBackEdge(HBasicBlock* back_edge) { 845 back_edges_.push_back(back_edge); 846 } 847 RemoveBackEdge(HBasicBlock * back_edge)848 void RemoveBackEdge(HBasicBlock* back_edge) { 849 RemoveElement(back_edges_, back_edge); 850 } 851 IsBackEdge(const HBasicBlock & block)852 bool IsBackEdge(const HBasicBlock& block) const { 853 return ContainsElement(back_edges_, &block); 854 } 855 NumberOfBackEdges()856 size_t NumberOfBackEdges() const { 857 return back_edges_.size(); 858 } 859 860 HBasicBlock* GetPreHeader() const; 861 GetBackEdges()862 const ArenaVector<HBasicBlock*>& GetBackEdges() const { 863 return back_edges_; 864 } 865 866 // Returns the lifetime position of the back edge that has the 867 // greatest lifetime position. 868 size_t GetLifetimeEnd() const; 869 ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)870 void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) { 871 ReplaceElement(back_edges_, existing, new_back_edge); 872 } 873 874 // Finds blocks that are part of this loop. 875 void Populate(); 876 877 // Updates blocks population of the loop and all of its outer' ones recursively after the 878 // population of the inner loop is updated. 879 void PopulateInnerLoopUpwards(HLoopInformation* inner_loop); 880 881 // Returns whether this loop information contains `block`. 882 // Note that this loop information *must* be populated before entering this function. 883 bool Contains(const HBasicBlock& block) const; 884 885 // Returns whether this loop information is an inner loop of `other`. 886 // Note that `other` *must* be populated before entering this function. 887 bool IsIn(const HLoopInformation& other) const; 888 889 // Returns true if instruction is not defined within this loop. 890 bool IsDefinedOutOfTheLoop(HInstruction* instruction) const; 891 GetBlocks()892 const ArenaBitVector& GetBlocks() const { return blocks_; } 893 894 void Add(HBasicBlock* block); 895 void Remove(HBasicBlock* block); 896 ClearAllBlocks()897 void ClearAllBlocks() { 898 blocks_.ClearAllBits(); 899 } 900 901 bool HasBackEdgeNotDominatedByHeader() const; 902 IsPopulated()903 bool IsPopulated() const { 904 return blocks_.GetHighestBitSet() != -1; 905 } 906 907 bool DominatesAllBackEdges(HBasicBlock* block); 908 909 bool HasExitEdge() const; 910 911 // Resets back edge and blocks-in-loop data. ResetBasicBlockData()912 void ResetBasicBlockData() { 913 back_edges_.clear(); 914 ClearAllBlocks(); 915 } 916 917 private: 918 // Internal recursive implementation of `Populate`. 919 void PopulateRecursive(HBasicBlock* block); 920 void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized); 921 922 HBasicBlock* header_; 923 HSuspendCheck* suspend_check_; 924 bool irreducible_; 925 bool contains_irreducible_loop_; 926 ArenaVector<HBasicBlock*> back_edges_; 927 ArenaBitVector blocks_; 928 929 DISALLOW_COPY_AND_ASSIGN(HLoopInformation); 930 }; 931 932 // Stores try/catch information for basic blocks. 933 // Note that HGraph is constructed so that catch blocks cannot simultaneously 934 // be try blocks. 935 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> { 936 public: 937 // Try block information constructor. TryCatchInformation(const HTryBoundary & try_entry)938 explicit TryCatchInformation(const HTryBoundary& try_entry) 939 : try_entry_(&try_entry), 940 catch_dex_file_(nullptr), 941 catch_type_index_(dex::TypeIndex::Invalid()) { 942 DCHECK(try_entry_ != nullptr); 943 } 944 945 // Catch block information constructor. TryCatchInformation(dex::TypeIndex catch_type_index,const DexFile & dex_file)946 TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file) 947 : try_entry_(nullptr), 948 catch_dex_file_(&dex_file), 949 catch_type_index_(catch_type_index) {} 950 IsTryBlock()951 bool IsTryBlock() const { return try_entry_ != nullptr; } 952 GetTryEntry()953 const HTryBoundary& GetTryEntry() const { 954 DCHECK(IsTryBlock()); 955 return *try_entry_; 956 } 957 IsCatchBlock()958 bool IsCatchBlock() const { return catch_dex_file_ != nullptr; } 959 IsValidTypeIndex()960 bool IsValidTypeIndex() const { 961 DCHECK(IsCatchBlock()); 962 return catch_type_index_.IsValid(); 963 } 964 GetCatchTypeIndex()965 dex::TypeIndex GetCatchTypeIndex() const { 966 DCHECK(IsCatchBlock()); 967 return catch_type_index_; 968 } 969 GetCatchDexFile()970 const DexFile& GetCatchDexFile() const { 971 DCHECK(IsCatchBlock()); 972 return *catch_dex_file_; 973 } 974 SetInvalidTypeIndex()975 void SetInvalidTypeIndex() { 976 catch_type_index_ = dex::TypeIndex::Invalid(); 977 } 978 979 private: 980 // One of possibly several TryBoundary instructions entering the block's try. 981 // Only set for try blocks. 982 const HTryBoundary* try_entry_; 983 984 // Exception type information. Only set for catch blocks. 985 const DexFile* catch_dex_file_; 986 dex::TypeIndex catch_type_index_; 987 }; 988 989 static constexpr size_t kNoLifetime = -1; 990 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1); 991 992 // A block in a method. Contains the list of instructions represented 993 // as a double linked list. Each block knows its predecessors and 994 // successors. 995 996 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> { 997 public: 998 explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc) graph_(graph)999 : graph_(graph), 1000 predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)), 1001 successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)), 1002 loop_information_(nullptr), 1003 dominator_(nullptr), 1004 dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)), 1005 block_id_(kInvalidBlockId), 1006 dex_pc_(dex_pc), 1007 lifetime_start_(kNoLifetime), 1008 lifetime_end_(kNoLifetime), 1009 try_catch_information_(nullptr) { 1010 predecessors_.reserve(kDefaultNumberOfPredecessors); 1011 successors_.reserve(kDefaultNumberOfSuccessors); 1012 dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks); 1013 } 1014 GetPredecessors()1015 const ArenaVector<HBasicBlock*>& GetPredecessors() const { 1016 return predecessors_; 1017 } 1018 GetSuccessors()1019 const ArenaVector<HBasicBlock*>& GetSuccessors() const { 1020 return successors_; 1021 } 1022 1023 ArrayRef<HBasicBlock* const> GetNormalSuccessors() const; 1024 ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const; 1025 1026 bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) { 1027 return ContainsElement(successors_, block, start_from); 1028 } 1029 GetDominatedBlocks()1030 const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const { 1031 return dominated_blocks_; 1032 } 1033 IsEntryBlock()1034 bool IsEntryBlock() const { 1035 return graph_->GetEntryBlock() == this; 1036 } 1037 IsExitBlock()1038 bool IsExitBlock() const { 1039 return graph_->GetExitBlock() == this; 1040 } 1041 1042 bool IsSingleGoto() const; 1043 bool IsSingleReturn() const; 1044 bool IsSingleReturnOrReturnVoidAllowingPhis() const; 1045 bool IsSingleTryBoundary() const; 1046 1047 // Returns true if this block emits nothing but a jump. IsSingleJump()1048 bool IsSingleJump() const { 1049 HLoopInformation* loop_info = GetLoopInformation(); 1050 return (IsSingleGoto() || IsSingleTryBoundary()) 1051 // Back edges generate a suspend check. 1052 && (loop_info == nullptr || !loop_info->IsBackEdge(*this)); 1053 } 1054 AddBackEdge(HBasicBlock * back_edge)1055 void AddBackEdge(HBasicBlock* back_edge) { 1056 if (loop_information_ == nullptr) { 1057 loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_); 1058 } 1059 DCHECK_EQ(loop_information_->GetHeader(), this); 1060 loop_information_->AddBackEdge(back_edge); 1061 } 1062 1063 // Registers a back edge; if the block was not a loop header before the call associates a newly 1064 // created loop info with it. 1065 // 1066 // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop 1067 // info for all blocks during back edges recalculation. AddBackEdgeWhileUpdating(HBasicBlock * back_edge)1068 void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) { 1069 if (loop_information_ == nullptr || loop_information_->GetHeader() != this) { 1070 loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_); 1071 } 1072 loop_information_->AddBackEdge(back_edge); 1073 } 1074 GetGraph()1075 HGraph* GetGraph() const { return graph_; } SetGraph(HGraph * graph)1076 void SetGraph(HGraph* graph) { graph_ = graph; } 1077 GetBlockId()1078 uint32_t GetBlockId() const { return block_id_; } SetBlockId(int id)1079 void SetBlockId(int id) { block_id_ = id; } GetDexPc()1080 uint32_t GetDexPc() const { return dex_pc_; } 1081 GetDominator()1082 HBasicBlock* GetDominator() const { return dominator_; } SetDominator(HBasicBlock * dominator)1083 void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; } AddDominatedBlock(HBasicBlock * block)1084 void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); } 1085 RemoveDominatedBlock(HBasicBlock * block)1086 void RemoveDominatedBlock(HBasicBlock* block) { 1087 RemoveElement(dominated_blocks_, block); 1088 } 1089 ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)1090 void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) { 1091 ReplaceElement(dominated_blocks_, existing, new_block); 1092 } 1093 1094 void ClearDominanceInformation(); 1095 NumberOfBackEdges()1096 int NumberOfBackEdges() const { 1097 return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0; 1098 } 1099 GetFirstInstruction()1100 HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; } GetLastInstruction()1101 HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; } GetInstructions()1102 const HInstructionList& GetInstructions() const { return instructions_; } GetFirstPhi()1103 HInstruction* GetFirstPhi() const { return phis_.first_instruction_; } GetLastPhi()1104 HInstruction* GetLastPhi() const { return phis_.last_instruction_; } GetPhis()1105 const HInstructionList& GetPhis() const { return phis_; } 1106 1107 HInstruction* GetFirstInstructionDisregardMoves() const; 1108 AddSuccessor(HBasicBlock * block)1109 void AddSuccessor(HBasicBlock* block) { 1110 successors_.push_back(block); 1111 block->predecessors_.push_back(this); 1112 } 1113 ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)1114 void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) { 1115 size_t successor_index = GetSuccessorIndexOf(existing); 1116 existing->RemovePredecessor(this); 1117 new_block->predecessors_.push_back(this); 1118 successors_[successor_index] = new_block; 1119 } 1120 ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)1121 void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) { 1122 size_t predecessor_index = GetPredecessorIndexOf(existing); 1123 existing->RemoveSuccessor(this); 1124 new_block->successors_.push_back(this); 1125 predecessors_[predecessor_index] = new_block; 1126 } 1127 1128 // Insert `this` between `predecessor` and `successor. This method 1129 // preserves the indices, and will update the first edge found between 1130 // `predecessor` and `successor`. InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)1131 void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) { 1132 size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor); 1133 size_t successor_index = predecessor->GetSuccessorIndexOf(successor); 1134 successor->predecessors_[predecessor_index] = this; 1135 predecessor->successors_[successor_index] = this; 1136 successors_.push_back(successor); 1137 predecessors_.push_back(predecessor); 1138 } 1139 RemovePredecessor(HBasicBlock * block)1140 void RemovePredecessor(HBasicBlock* block) { 1141 predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block)); 1142 } 1143 RemoveSuccessor(HBasicBlock * block)1144 void RemoveSuccessor(HBasicBlock* block) { 1145 successors_.erase(successors_.begin() + GetSuccessorIndexOf(block)); 1146 } 1147 ClearAllPredecessors()1148 void ClearAllPredecessors() { 1149 predecessors_.clear(); 1150 } 1151 AddPredecessor(HBasicBlock * block)1152 void AddPredecessor(HBasicBlock* block) { 1153 predecessors_.push_back(block); 1154 block->successors_.push_back(this); 1155 } 1156 SwapPredecessors()1157 void SwapPredecessors() { 1158 DCHECK_EQ(predecessors_.size(), 2u); 1159 std::swap(predecessors_[0], predecessors_[1]); 1160 } 1161 SwapSuccessors()1162 void SwapSuccessors() { 1163 DCHECK_EQ(successors_.size(), 2u); 1164 std::swap(successors_[0], successors_[1]); 1165 } 1166 GetPredecessorIndexOf(HBasicBlock * predecessor)1167 size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const { 1168 return IndexOfElement(predecessors_, predecessor); 1169 } 1170 GetSuccessorIndexOf(HBasicBlock * successor)1171 size_t GetSuccessorIndexOf(HBasicBlock* successor) const { 1172 return IndexOfElement(successors_, successor); 1173 } 1174 GetSinglePredecessor()1175 HBasicBlock* GetSinglePredecessor() const { 1176 DCHECK_EQ(GetPredecessors().size(), 1u); 1177 return GetPredecessors()[0]; 1178 } 1179 GetSingleSuccessor()1180 HBasicBlock* GetSingleSuccessor() const { 1181 DCHECK_EQ(GetSuccessors().size(), 1u); 1182 return GetSuccessors()[0]; 1183 } 1184 1185 // Returns whether the first occurrence of `predecessor` in the list of 1186 // predecessors is at index `idx`. IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)1187 bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const { 1188 DCHECK_EQ(GetPredecessors()[idx], predecessor); 1189 return GetPredecessorIndexOf(predecessor) == idx; 1190 } 1191 1192 // Create a new block between this block and its predecessors. The new block 1193 // is added to the graph, all predecessor edges are relinked to it and an edge 1194 // is created to `this`. Returns the new empty block. Reverse post order or 1195 // loop and try/catch information are not updated. 1196 HBasicBlock* CreateImmediateDominator(); 1197 1198 // Split the block into two blocks just before `cursor`. Returns the newly 1199 // created, latter block. Note that this method will add the block to the 1200 // graph, create a Goto at the end of the former block and will create an edge 1201 // between the blocks. It will not, however, update the reverse post order or 1202 // loop and try/catch information. 1203 HBasicBlock* SplitBefore(HInstruction* cursor); 1204 1205 // Split the block into two blocks just before `cursor`. Returns the newly 1206 // created block. Note that this method just updates raw block information, 1207 // like predecessors, successors, dominators, and instruction list. It does not 1208 // update the graph, reverse post order, loop information, nor make sure the 1209 // blocks are consistent (for example ending with a control flow instruction). 1210 HBasicBlock* SplitBeforeForInlining(HInstruction* cursor); 1211 1212 // Similar to `SplitBeforeForInlining` but does it after `cursor`. 1213 HBasicBlock* SplitAfterForInlining(HInstruction* cursor); 1214 1215 // Merge `other` at the end of `this`. Successors and dominated blocks of 1216 // `other` are changed to be successors and dominated blocks of `this`. Note 1217 // that this method does not update the graph, reverse post order, loop 1218 // information, nor make sure the blocks are consistent (for example ending 1219 // with a control flow instruction). 1220 void MergeWithInlined(HBasicBlock* other); 1221 1222 // Replace `this` with `other`. Predecessors, successors, and dominated blocks 1223 // of `this` are moved to `other`. 1224 // Note that this method does not update the graph, reverse post order, loop 1225 // information, nor make sure the blocks are consistent (for example ending 1226 // with a control flow instruction). 1227 void ReplaceWith(HBasicBlock* other); 1228 1229 // Merges the instructions of `other` at the end of `this`. 1230 void MergeInstructionsWith(HBasicBlock* other); 1231 1232 // Merge `other` at the end of `this`. This method updates loops, reverse post 1233 // order, links to predecessors, successors, dominators and deletes the block 1234 // from the graph. The two blocks must be successive, i.e. `this` the only 1235 // predecessor of `other` and vice versa. 1236 void MergeWith(HBasicBlock* other); 1237 1238 // Disconnects `this` from all its predecessors, successors and dominator, 1239 // removes it from all loops it is included in and eventually from the graph. 1240 // The block must not dominate any other block. Predecessors and successors 1241 // are safely updated. 1242 void DisconnectAndDelete(); 1243 1244 void AddInstruction(HInstruction* instruction); 1245 // Insert `instruction` before/after an existing instruction `cursor`. 1246 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); 1247 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); 1248 // Replace phi `initial` with `replacement` within this block. 1249 void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement); 1250 // Replace instruction `initial` with `replacement` within this block. 1251 void ReplaceAndRemoveInstructionWith(HInstruction* initial, 1252 HInstruction* replacement); 1253 void AddPhi(HPhi* phi); 1254 void InsertPhiAfter(HPhi* instruction, HPhi* cursor); 1255 // RemoveInstruction and RemovePhi delete a given instruction from the respective 1256 // instruction list. With 'ensure_safety' set to true, it verifies that the 1257 // instruction is not in use and removes it from the use lists of its inputs. 1258 void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true); 1259 void RemovePhi(HPhi* phi, bool ensure_safety = true); 1260 void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true); 1261 IsLoopHeader()1262 bool IsLoopHeader() const { 1263 return IsInLoop() && (loop_information_->GetHeader() == this); 1264 } 1265 IsLoopPreHeaderFirstPredecessor()1266 bool IsLoopPreHeaderFirstPredecessor() const { 1267 DCHECK(IsLoopHeader()); 1268 return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader(); 1269 } 1270 IsFirstPredecessorBackEdge()1271 bool IsFirstPredecessorBackEdge() const { 1272 DCHECK(IsLoopHeader()); 1273 return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]); 1274 } 1275 GetLoopInformation()1276 HLoopInformation* GetLoopInformation() const { 1277 return loop_information_; 1278 } 1279 1280 // Set the loop_information_ on this block. Overrides the current 1281 // loop_information if it is an outer loop of the passed loop information. 1282 // Note that this method is called while creating the loop information. SetInLoop(HLoopInformation * info)1283 void SetInLoop(HLoopInformation* info) { 1284 if (IsLoopHeader()) { 1285 // Nothing to do. This just means `info` is an outer loop. 1286 } else if (!IsInLoop()) { 1287 loop_information_ = info; 1288 } else if (loop_information_->Contains(*info->GetHeader())) { 1289 // Block is currently part of an outer loop. Make it part of this inner loop. 1290 // Note that a non loop header having a loop information means this loop information 1291 // has already been populated 1292 loop_information_ = info; 1293 } else { 1294 // Block is part of an inner loop. Do not update the loop information. 1295 // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()` 1296 // at this point, because this method is being called while populating `info`. 1297 } 1298 } 1299 1300 // Raw update of the loop information. SetLoopInformation(HLoopInformation * info)1301 void SetLoopInformation(HLoopInformation* info) { 1302 loop_information_ = info; 1303 } 1304 IsInLoop()1305 bool IsInLoop() const { return loop_information_ != nullptr; } 1306 GetTryCatchInformation()1307 TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; } 1308 SetTryCatchInformation(TryCatchInformation * try_catch_information)1309 void SetTryCatchInformation(TryCatchInformation* try_catch_information) { 1310 try_catch_information_ = try_catch_information; 1311 } 1312 IsTryBlock()1313 bool IsTryBlock() const { 1314 return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock(); 1315 } 1316 IsCatchBlock()1317 bool IsCatchBlock() const { 1318 return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock(); 1319 } 1320 1321 // Returns the try entry that this block's successors should have. They will 1322 // be in the same try, unless the block ends in a try boundary. In that case, 1323 // the appropriate try entry will be returned. 1324 const HTryBoundary* ComputeTryEntryOfSuccessors() const; 1325 1326 bool HasThrowingInstructions() const; 1327 1328 // Returns whether this block dominates the blocked passed as parameter. 1329 bool Dominates(HBasicBlock* block) const; 1330 GetLifetimeStart()1331 size_t GetLifetimeStart() const { return lifetime_start_; } GetLifetimeEnd()1332 size_t GetLifetimeEnd() const { return lifetime_end_; } 1333 SetLifetimeStart(size_t start)1334 void SetLifetimeStart(size_t start) { lifetime_start_ = start; } SetLifetimeEnd(size_t end)1335 void SetLifetimeEnd(size_t end) { lifetime_end_ = end; } 1336 1337 bool EndsWithControlFlowInstruction() const; 1338 bool EndsWithReturn() const; 1339 bool EndsWithIf() const; 1340 bool EndsWithTryBoundary() const; 1341 bool HasSinglePhi() const; 1342 1343 private: 1344 HGraph* graph_; 1345 ArenaVector<HBasicBlock*> predecessors_; 1346 ArenaVector<HBasicBlock*> successors_; 1347 HInstructionList instructions_; 1348 HInstructionList phis_; 1349 HLoopInformation* loop_information_; 1350 HBasicBlock* dominator_; 1351 ArenaVector<HBasicBlock*> dominated_blocks_; 1352 uint32_t block_id_; 1353 // The dex program counter of the first instruction of this block. 1354 const uint32_t dex_pc_; 1355 size_t lifetime_start_; 1356 size_t lifetime_end_; 1357 TryCatchInformation* try_catch_information_; 1358 1359 friend class HGraph; 1360 friend class HInstruction; 1361 1362 DISALLOW_COPY_AND_ASSIGN(HBasicBlock); 1363 }; 1364 1365 // Iterates over the LoopInformation of all loops which contain 'block' 1366 // from the innermost to the outermost. 1367 class HLoopInformationOutwardIterator : public ValueObject { 1368 public: HLoopInformationOutwardIterator(const HBasicBlock & block)1369 explicit HLoopInformationOutwardIterator(const HBasicBlock& block) 1370 : current_(block.GetLoopInformation()) {} 1371 Done()1372 bool Done() const { return current_ == nullptr; } 1373 Advance()1374 void Advance() { 1375 DCHECK(!Done()); 1376 current_ = current_->GetPreHeader()->GetLoopInformation(); 1377 } 1378 Current()1379 HLoopInformation* Current() const { 1380 DCHECK(!Done()); 1381 return current_; 1382 } 1383 1384 private: 1385 HLoopInformation* current_; 1386 1387 DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator); 1388 }; 1389 1390 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ 1391 M(Above, Condition) \ 1392 M(AboveOrEqual, Condition) \ 1393 M(Abs, UnaryOperation) \ 1394 M(Add, BinaryOperation) \ 1395 M(And, BinaryOperation) \ 1396 M(ArrayGet, Instruction) \ 1397 M(ArrayLength, Instruction) \ 1398 M(ArraySet, Instruction) \ 1399 M(Below, Condition) \ 1400 M(BelowOrEqual, Condition) \ 1401 M(BooleanNot, UnaryOperation) \ 1402 M(BoundsCheck, Instruction) \ 1403 M(BoundType, Instruction) \ 1404 M(CheckCast, Instruction) \ 1405 M(ClassTableGet, Instruction) \ 1406 M(ClearException, Instruction) \ 1407 M(ClinitCheck, Instruction) \ 1408 M(Compare, BinaryOperation) \ 1409 M(ConstructorFence, Instruction) \ 1410 M(CurrentMethod, Instruction) \ 1411 M(ShouldDeoptimizeFlag, Instruction) \ 1412 M(Deoptimize, Instruction) \ 1413 M(Div, BinaryOperation) \ 1414 M(DivZeroCheck, Instruction) \ 1415 M(DoubleConstant, Constant) \ 1416 M(Equal, Condition) \ 1417 M(Exit, Instruction) \ 1418 M(FloatConstant, Constant) \ 1419 M(Goto, Instruction) \ 1420 M(GreaterThan, Condition) \ 1421 M(GreaterThanOrEqual, Condition) \ 1422 M(If, Instruction) \ 1423 M(InstanceFieldGet, Instruction) \ 1424 M(InstanceFieldSet, Instruction) \ 1425 M(InstanceOf, Instruction) \ 1426 M(IntConstant, Constant) \ 1427 M(IntermediateAddress, Instruction) \ 1428 M(InvokeUnresolved, Invoke) \ 1429 M(InvokeInterface, Invoke) \ 1430 M(InvokeStaticOrDirect, Invoke) \ 1431 M(InvokeVirtual, Invoke) \ 1432 M(InvokePolymorphic, Invoke) \ 1433 M(InvokeCustom, Invoke) \ 1434 M(LessThan, Condition) \ 1435 M(LessThanOrEqual, Condition) \ 1436 M(LoadClass, Instruction) \ 1437 M(LoadException, Instruction) \ 1438 M(LoadMethodHandle, Instruction) \ 1439 M(LoadMethodType, Instruction) \ 1440 M(LoadString, Instruction) \ 1441 M(LongConstant, Constant) \ 1442 M(Max, Instruction) \ 1443 M(MemoryBarrier, Instruction) \ 1444 M(Min, BinaryOperation) \ 1445 M(MonitorOperation, Instruction) \ 1446 M(Mul, BinaryOperation) \ 1447 M(NativeDebugInfo, Instruction) \ 1448 M(Neg, UnaryOperation) \ 1449 M(NewArray, Instruction) \ 1450 M(NewInstance, Instruction) \ 1451 M(Not, UnaryOperation) \ 1452 M(NotEqual, Condition) \ 1453 M(NullConstant, Instruction) \ 1454 M(NullCheck, Instruction) \ 1455 M(Or, BinaryOperation) \ 1456 M(PackedSwitch, Instruction) \ 1457 M(ParallelMove, Instruction) \ 1458 M(ParameterValue, Instruction) \ 1459 M(Phi, Instruction) \ 1460 M(Rem, BinaryOperation) \ 1461 M(Return, Instruction) \ 1462 M(ReturnVoid, Instruction) \ 1463 M(Ror, BinaryOperation) \ 1464 M(Shl, BinaryOperation) \ 1465 M(Shr, BinaryOperation) \ 1466 M(StaticFieldGet, Instruction) \ 1467 M(StaticFieldSet, Instruction) \ 1468 M(StringBuilderAppend, Instruction) \ 1469 M(UnresolvedInstanceFieldGet, Instruction) \ 1470 M(UnresolvedInstanceFieldSet, Instruction) \ 1471 M(UnresolvedStaticFieldGet, Instruction) \ 1472 M(UnresolvedStaticFieldSet, Instruction) \ 1473 M(Select, Instruction) \ 1474 M(Sub, BinaryOperation) \ 1475 M(SuspendCheck, Instruction) \ 1476 M(Throw, Instruction) \ 1477 M(TryBoundary, Instruction) \ 1478 M(TypeConversion, Instruction) \ 1479 M(UShr, BinaryOperation) \ 1480 M(Xor, BinaryOperation) \ 1481 M(VecReplicateScalar, VecUnaryOperation) \ 1482 M(VecExtractScalar, VecUnaryOperation) \ 1483 M(VecReduce, VecUnaryOperation) \ 1484 M(VecCnv, VecUnaryOperation) \ 1485 M(VecNeg, VecUnaryOperation) \ 1486 M(VecAbs, VecUnaryOperation) \ 1487 M(VecNot, VecUnaryOperation) \ 1488 M(VecAdd, VecBinaryOperation) \ 1489 M(VecHalvingAdd, VecBinaryOperation) \ 1490 M(VecSub, VecBinaryOperation) \ 1491 M(VecMul, VecBinaryOperation) \ 1492 M(VecDiv, VecBinaryOperation) \ 1493 M(VecMin, VecBinaryOperation) \ 1494 M(VecMax, VecBinaryOperation) \ 1495 M(VecAnd, VecBinaryOperation) \ 1496 M(VecAndNot, VecBinaryOperation) \ 1497 M(VecOr, VecBinaryOperation) \ 1498 M(VecXor, VecBinaryOperation) \ 1499 M(VecSaturationAdd, VecBinaryOperation) \ 1500 M(VecSaturationSub, VecBinaryOperation) \ 1501 M(VecShl, VecBinaryOperation) \ 1502 M(VecShr, VecBinaryOperation) \ 1503 M(VecUShr, VecBinaryOperation) \ 1504 M(VecSetScalars, VecOperation) \ 1505 M(VecMultiplyAccumulate, VecOperation) \ 1506 M(VecSADAccumulate, VecOperation) \ 1507 M(VecDotProd, VecOperation) \ 1508 M(VecLoad, VecMemoryOperation) \ 1509 M(VecStore, VecMemoryOperation) \ 1510 1511 /* 1512 * Instructions, shared across several (not all) architectures. 1513 */ 1514 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64) 1515 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) 1516 #else 1517 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ 1518 M(BitwiseNegatedRight, Instruction) \ 1519 M(DataProcWithShifterOp, Instruction) \ 1520 M(MultiplyAccumulate, Instruction) \ 1521 M(IntermediateAddressIndex, Instruction) 1522 #endif 1523 1524 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) 1525 1526 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) 1527 1528 #ifndef ART_ENABLE_CODEGEN_x86 1529 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) 1530 #else 1531 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ 1532 M(X86ComputeBaseMethodAddress, Instruction) \ 1533 M(X86LoadFromConstantTable, Instruction) \ 1534 M(X86FPNeg, Instruction) \ 1535 M(X86PackedSwitch, Instruction) 1536 #endif 1537 1538 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64) 1539 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) \ 1540 M(X86AndNot, Instruction) \ 1541 M(X86MaskOrResetLeastSetBit, Instruction) 1542 #else 1543 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) 1544 #endif 1545 1546 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) 1547 1548 #define FOR_EACH_CONCRETE_INSTRUCTION(M) \ 1549 FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ 1550 FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ 1551 FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \ 1552 FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \ 1553 FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ 1554 FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) \ 1555 FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) 1556 1557 #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \ 1558 M(Condition, BinaryOperation) \ 1559 M(Constant, Instruction) \ 1560 M(UnaryOperation, Instruction) \ 1561 M(BinaryOperation, Instruction) \ 1562 M(Invoke, Instruction) \ 1563 M(VecOperation, Instruction) \ 1564 M(VecUnaryOperation, VecOperation) \ 1565 M(VecBinaryOperation, VecOperation) \ 1566 M(VecMemoryOperation, VecOperation) 1567 1568 #define FOR_EACH_INSTRUCTION(M) \ 1569 FOR_EACH_CONCRETE_INSTRUCTION(M) \ 1570 FOR_EACH_ABSTRACT_INSTRUCTION(M) 1571 1572 #define FORWARD_DECLARATION(type, super) class H##type; FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1573 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION) 1574 #undef FORWARD_DECLARATION 1575 1576 #define DECLARE_INSTRUCTION(type) \ 1577 private: \ 1578 H##type& operator=(const H##type&) = delete; \ 1579 public: \ 1580 const char* DebugName() const override { return #type; } \ 1581 HInstruction* Clone(ArenaAllocator* arena) const override { \ 1582 DCHECK(IsClonable()); \ 1583 return new (arena) H##type(*this->As##type()); \ 1584 } \ 1585 void Accept(HGraphVisitor* visitor) override 1586 1587 #define DECLARE_ABSTRACT_INSTRUCTION(type) \ 1588 private: \ 1589 H##type& operator=(const H##type&) = delete; \ 1590 public: 1591 1592 #define DEFAULT_COPY_CONSTRUCTOR(type) \ 1593 explicit H##type(const H##type& other) = default; 1594 1595 template <typename T> 1596 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>, 1597 public IntrusiveForwardListNode<HUseListNode<T>> { 1598 public: 1599 // Get the instruction which has this use as one of the inputs. 1600 T GetUser() const { return user_; } 1601 // Get the position of the input record that this use corresponds to. 1602 size_t GetIndex() const { return index_; } 1603 // Set the position of the input record that this use corresponds to. 1604 void SetIndex(size_t index) { index_ = index; } 1605 1606 private: 1607 HUseListNode(T user, size_t index) 1608 : user_(user), index_(index) {} 1609 1610 T const user_; 1611 size_t index_; 1612 1613 friend class HInstruction; 1614 1615 DISALLOW_COPY_AND_ASSIGN(HUseListNode); 1616 }; 1617 1618 template <typename T> 1619 using HUseList = IntrusiveForwardList<HUseListNode<T>>; 1620 1621 // This class is used by HEnvironment and HInstruction classes to record the 1622 // instructions they use and pointers to the corresponding HUseListNodes kept 1623 // by the used instructions. 1624 template <typename T> 1625 class HUserRecord : public ValueObject { 1626 public: HUserRecord()1627 HUserRecord() : instruction_(nullptr), before_use_node_() {} HUserRecord(HInstruction * instruction)1628 explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {} 1629 HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1630 HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node) 1631 : HUserRecord(old_record.instruction_, before_use_node) {} HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1632 HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node) 1633 : instruction_(instruction), before_use_node_(before_use_node) { 1634 DCHECK(instruction_ != nullptr); 1635 } 1636 GetInstruction()1637 HInstruction* GetInstruction() const { return instruction_; } GetBeforeUseNode()1638 typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; } GetUseNode()1639 typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); } 1640 1641 private: 1642 // Instruction used by the user. 1643 HInstruction* instruction_; 1644 1645 // Iterator before the corresponding entry in the use list kept by 'instruction_'. 1646 typename HUseList<T>::iterator before_use_node_; 1647 }; 1648 1649 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>. 1650 // This is used for HInstruction::GetInputs() to return a container wrapper providing 1651 // HInstruction* values even though the underlying container has HUserRecord<>s. 1652 struct HInputExtractor { operatorHInputExtractor1653 HInstruction* operator()(HUserRecord<HInstruction*>& record) const { 1654 return record.GetInstruction(); 1655 } operatorHInputExtractor1656 const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const { 1657 return record.GetInstruction(); 1658 } 1659 }; 1660 1661 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>; 1662 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>; 1663 1664 /** 1665 * Side-effects representation. 1666 * 1667 * For write/read dependences on fields/arrays, the dependence analysis uses 1668 * type disambiguation (e.g. a float field write cannot modify the value of an 1669 * integer field read) and the access type (e.g. a reference array write cannot 1670 * modify the value of a reference field read [although it may modify the 1671 * reference fetch prior to reading the field, which is represented by its own 1672 * write/read dependence]). The analysis makes conservative points-to 1673 * assumptions on reference types (e.g. two same typed arrays are assumed to be 1674 * the same, and any reference read depends on any reference read without 1675 * further regard of its type). 1676 * 1677 * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be 1678 * alive across the point where garbage collection might happen. 1679 * 1680 * Note: Instructions with kCanTriggerGCBit do not depend on each other. 1681 * 1682 * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across 1683 * those instructions from the compiler perspective (between this instruction and the next one 1684 * in the IR). 1685 * 1686 * Note: Instructions which can cause GC only on a fatal slow path do not need 1687 * kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional 1688 * one. However the execution may return to compiled code if there is a catch block in the 1689 * current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit 1690 * set. 1691 * 1692 * The internal representation uses 38-bit and is described in the table below. 1693 * The first line indicates the side effect, and for field/array accesses the 1694 * second line indicates the type of the access (in the order of the 1695 * DataType::Type enum). 1696 * The two numbered lines below indicate the bit position in the bitfield (read 1697 * vertically). 1698 * 1699 * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W | 1700 * +-------------+---------+---------+--------------+---------+---------+ 1701 * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL| 1702 * | 3 |333333322|222222221| 1 |111111110|000000000| 1703 * | 7 |654321098|765432109| 8 |765432109|876543210| 1704 * 1705 * Note that, to ease the implementation, 'changes' bits are least significant 1706 * bits, while 'dependency' bits are most significant bits. 1707 */ 1708 class SideEffects : public ValueObject { 1709 public: SideEffects()1710 SideEffects() : flags_(0) {} 1711 None()1712 static SideEffects None() { 1713 return SideEffects(0); 1714 } 1715 All()1716 static SideEffects All() { 1717 return SideEffects(kAllChangeBits | kAllDependOnBits); 1718 } 1719 AllChanges()1720 static SideEffects AllChanges() { 1721 return SideEffects(kAllChangeBits); 1722 } 1723 AllDependencies()1724 static SideEffects AllDependencies() { 1725 return SideEffects(kAllDependOnBits); 1726 } 1727 AllExceptGCDependency()1728 static SideEffects AllExceptGCDependency() { 1729 return AllWritesAndReads().Union(SideEffects::CanTriggerGC()); 1730 } 1731 AllWritesAndReads()1732 static SideEffects AllWritesAndReads() { 1733 return SideEffects(kAllWrites | kAllReads); 1734 } 1735 AllWrites()1736 static SideEffects AllWrites() { 1737 return SideEffects(kAllWrites); 1738 } 1739 AllReads()1740 static SideEffects AllReads() { 1741 return SideEffects(kAllReads); 1742 } 1743 FieldWriteOfType(DataType::Type type,bool is_volatile)1744 static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) { 1745 return is_volatile 1746 ? AllWritesAndReads() 1747 : SideEffects(TypeFlag(type, kFieldWriteOffset)); 1748 } 1749 ArrayWriteOfType(DataType::Type type)1750 static SideEffects ArrayWriteOfType(DataType::Type type) { 1751 return SideEffects(TypeFlag(type, kArrayWriteOffset)); 1752 } 1753 FieldReadOfType(DataType::Type type,bool is_volatile)1754 static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) { 1755 return is_volatile 1756 ? AllWritesAndReads() 1757 : SideEffects(TypeFlag(type, kFieldReadOffset)); 1758 } 1759 ArrayReadOfType(DataType::Type type)1760 static SideEffects ArrayReadOfType(DataType::Type type) { 1761 return SideEffects(TypeFlag(type, kArrayReadOffset)); 1762 } 1763 1764 // Returns whether GC might happen across this instruction from the compiler perspective so 1765 // the next instruction in the IR would see that. 1766 // 1767 // See the SideEffect class comments. CanTriggerGC()1768 static SideEffects CanTriggerGC() { 1769 return SideEffects(1ULL << kCanTriggerGCBit); 1770 } 1771 1772 // Returns whether the instruction must not be alive across a GC point. 1773 // 1774 // See the SideEffect class comments. DependsOnGC()1775 static SideEffects DependsOnGC() { 1776 return SideEffects(1ULL << kDependsOnGCBit); 1777 } 1778 1779 // Combines the side-effects of this and the other. Union(SideEffects other)1780 SideEffects Union(SideEffects other) const { 1781 return SideEffects(flags_ | other.flags_); 1782 } 1783 Exclusion(SideEffects other)1784 SideEffects Exclusion(SideEffects other) const { 1785 return SideEffects(flags_ & ~other.flags_); 1786 } 1787 Add(SideEffects other)1788 void Add(SideEffects other) { 1789 flags_ |= other.flags_; 1790 } 1791 Includes(SideEffects other)1792 bool Includes(SideEffects other) const { 1793 return (other.flags_ & flags_) == other.flags_; 1794 } 1795 HasSideEffects()1796 bool HasSideEffects() const { 1797 return (flags_ & kAllChangeBits); 1798 } 1799 HasDependencies()1800 bool HasDependencies() const { 1801 return (flags_ & kAllDependOnBits); 1802 } 1803 1804 // Returns true if there are no side effects or dependencies. DoesNothing()1805 bool DoesNothing() const { 1806 return flags_ == 0; 1807 } 1808 1809 // Returns true if something is written. DoesAnyWrite()1810 bool DoesAnyWrite() const { 1811 return (flags_ & kAllWrites); 1812 } 1813 1814 // Returns true if something is read. DoesAnyRead()1815 bool DoesAnyRead() const { 1816 return (flags_ & kAllReads); 1817 } 1818 1819 // Returns true if potentially everything is written and read 1820 // (every type and every kind of access). DoesAllReadWrite()1821 bool DoesAllReadWrite() const { 1822 return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads); 1823 } 1824 DoesAll()1825 bool DoesAll() const { 1826 return flags_ == (kAllChangeBits | kAllDependOnBits); 1827 } 1828 1829 // Returns true if `this` may read something written by `other`. MayDependOn(SideEffects other)1830 bool MayDependOn(SideEffects other) const { 1831 const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits; 1832 return (other.flags_ & depends_on_flags); 1833 } 1834 1835 // Returns string representation of flags (for debugging only). 1836 // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL| ToString()1837 std::string ToString() const { 1838 std::string flags = "|"; 1839 for (int s = kLastBit; s >= 0; s--) { 1840 bool current_bit_is_set = ((flags_ >> s) & 1) != 0; 1841 if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) { 1842 // This is a bit for the GC side effect. 1843 if (current_bit_is_set) { 1844 flags += "GC"; 1845 } 1846 flags += "|"; 1847 } else { 1848 // This is a bit for the array/field analysis. 1849 // The underscore character stands for the 'can trigger GC' bit. 1850 static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD"; 1851 if (current_bit_is_set) { 1852 flags += kDebug[s]; 1853 } 1854 if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) || 1855 (s == kFieldReadOffset) || (s == kArrayReadOffset)) { 1856 flags += "|"; 1857 } 1858 } 1859 } 1860 return flags; 1861 } 1862 Equals(const SideEffects & other)1863 bool Equals(const SideEffects& other) const { return flags_ == other.flags_; } 1864 1865 private: 1866 static constexpr int kFieldArrayAnalysisBits = 9; 1867 1868 static constexpr int kFieldWriteOffset = 0; 1869 static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits; 1870 static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1; 1871 static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1; 1872 1873 static constexpr int kChangeBits = kCanTriggerGCBit + 1; 1874 1875 static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1; 1876 static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits; 1877 static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1; 1878 static constexpr int kDependsOnGCBit = kLastBitForReads + 1; 1879 1880 static constexpr int kLastBit = kDependsOnGCBit; 1881 static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits; 1882 1883 // Aliases. 1884 1885 static_assert(kChangeBits == kDependOnBits, 1886 "the 'change' bits should match the 'depend on' bits."); 1887 1888 static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1); 1889 static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits; 1890 static constexpr uint64_t kAllWrites = 1891 ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset; 1892 static constexpr uint64_t kAllReads = 1893 ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset; 1894 1895 // Translates type to bit flag. The type must correspond to a Java type. TypeFlag(DataType::Type type,int offset)1896 static uint64_t TypeFlag(DataType::Type type, int offset) { 1897 int shift; 1898 switch (type) { 1899 case DataType::Type::kReference: shift = 0; break; 1900 case DataType::Type::kBool: shift = 1; break; 1901 case DataType::Type::kInt8: shift = 2; break; 1902 case DataType::Type::kUint16: shift = 3; break; 1903 case DataType::Type::kInt16: shift = 4; break; 1904 case DataType::Type::kInt32: shift = 5; break; 1905 case DataType::Type::kInt64: shift = 6; break; 1906 case DataType::Type::kFloat32: shift = 7; break; 1907 case DataType::Type::kFloat64: shift = 8; break; 1908 default: 1909 LOG(FATAL) << "Unexpected data type " << type; 1910 UNREACHABLE(); 1911 } 1912 DCHECK_LE(kFieldWriteOffset, shift); 1913 DCHECK_LT(shift, kArrayWriteOffset); 1914 return UINT64_C(1) << (shift + offset); 1915 } 1916 1917 // Private constructor on direct flags value. SideEffects(uint64_t flags)1918 explicit SideEffects(uint64_t flags) : flags_(flags) {} 1919 1920 uint64_t flags_; 1921 }; 1922 1923 // A HEnvironment object contains the values of virtual registers at a given location. 1924 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> { 1925 public: HEnvironment(ArenaAllocator * allocator,size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)1926 ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator, 1927 size_t number_of_vregs, 1928 ArtMethod* method, 1929 uint32_t dex_pc, 1930 HInstruction* holder) 1931 : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)), 1932 locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)), 1933 parent_(nullptr), 1934 method_(method), 1935 dex_pc_(dex_pc), 1936 holder_(holder) { 1937 } 1938 HEnvironment(ArenaAllocator * allocator,const HEnvironment & to_copy,HInstruction * holder)1939 ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator, 1940 const HEnvironment& to_copy, 1941 HInstruction* holder) 1942 : HEnvironment(allocator, 1943 to_copy.Size(), 1944 to_copy.GetMethod(), 1945 to_copy.GetDexPc(), 1946 holder) {} 1947 AllocateLocations()1948 void AllocateLocations() { 1949 DCHECK(locations_.empty()); 1950 locations_.resize(vregs_.size()); 1951 } 1952 SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)1953 void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) { 1954 if (parent_ != nullptr) { 1955 parent_->SetAndCopyParentChain(allocator, parent); 1956 } else { 1957 parent_ = new (allocator) HEnvironment(allocator, *parent, holder_); 1958 parent_->CopyFrom(parent); 1959 if (parent->GetParent() != nullptr) { 1960 parent_->SetAndCopyParentChain(allocator, parent->GetParent()); 1961 } 1962 } 1963 } 1964 1965 void CopyFrom(ArrayRef<HInstruction* const> locals); 1966 void CopyFrom(HEnvironment* environment); 1967 1968 // Copy from `env`. If it's a loop phi for `loop_header`, copy the first 1969 // input to the loop phi instead. This is for inserting instructions that 1970 // require an environment (like HDeoptimization) in the loop pre-header. 1971 void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header); 1972 SetRawEnvAt(size_t index,HInstruction * instruction)1973 void SetRawEnvAt(size_t index, HInstruction* instruction) { 1974 vregs_[index] = HUserRecord<HEnvironment*>(instruction); 1975 } 1976 GetInstructionAt(size_t index)1977 HInstruction* GetInstructionAt(size_t index) const { 1978 return vregs_[index].GetInstruction(); 1979 } 1980 1981 void RemoveAsUserOfInput(size_t index) const; 1982 1983 // Replaces the input at the position 'index' with the replacement; the replacement and old 1984 // input instructions' env_uses_ lists are adjusted. The function works similar to 1985 // HInstruction::ReplaceInput. 1986 void ReplaceInput(HInstruction* replacement, size_t index); 1987 Size()1988 size_t Size() const { return vregs_.size(); } 1989 GetParent()1990 HEnvironment* GetParent() const { return parent_; } 1991 SetLocationAt(size_t index,Location location)1992 void SetLocationAt(size_t index, Location location) { 1993 locations_[index] = location; 1994 } 1995 GetLocationAt(size_t index)1996 Location GetLocationAt(size_t index) const { 1997 return locations_[index]; 1998 } 1999 GetDexPc()2000 uint32_t GetDexPc() const { 2001 return dex_pc_; 2002 } 2003 GetMethod()2004 ArtMethod* GetMethod() const { 2005 return method_; 2006 } 2007 GetHolder()2008 HInstruction* GetHolder() const { 2009 return holder_; 2010 } 2011 2012 IsFromInlinedInvoke()2013 bool IsFromInlinedInvoke() const { 2014 return GetParent() != nullptr; 2015 } 2016 2017 private: 2018 ArenaVector<HUserRecord<HEnvironment*>> vregs_; 2019 ArenaVector<Location> locations_; 2020 HEnvironment* parent_; 2021 ArtMethod* method_; 2022 const uint32_t dex_pc_; 2023 2024 // The instruction that holds this environment. 2025 HInstruction* const holder_; 2026 2027 friend class HInstruction; 2028 2029 DISALLOW_COPY_AND_ASSIGN(HEnvironment); 2030 }; 2031 2032 class HInstruction : public ArenaObject<kArenaAllocInstruction> { 2033 public: 2034 #define DECLARE_KIND(type, super) k##type, 2035 enum InstructionKind { 2036 FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND) 2037 kLastInstructionKind 2038 }; 2039 #undef DECLARE_KIND 2040 HInstruction(InstructionKind kind,SideEffects side_effects,uint32_t dex_pc)2041 HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) 2042 : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {} 2043 HInstruction(InstructionKind kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc)2044 HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc) 2045 : previous_(nullptr), 2046 next_(nullptr), 2047 block_(nullptr), 2048 dex_pc_(dex_pc), 2049 id_(-1), 2050 ssa_index_(-1), 2051 packed_fields_(0u), 2052 environment_(nullptr), 2053 locations_(nullptr), 2054 live_interval_(nullptr), 2055 lifetime_position_(kNoLifetime), 2056 side_effects_(side_effects), 2057 reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) { 2058 SetPackedField<InstructionKindField>(kind); 2059 SetPackedField<TypeField>(type); 2060 SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact()); 2061 } 2062 ~HInstruction()2063 virtual ~HInstruction() {} 2064 2065 GetNext()2066 HInstruction* GetNext() const { return next_; } GetPrevious()2067 HInstruction* GetPrevious() const { return previous_; } 2068 2069 HInstruction* GetNextDisregardingMoves() const; 2070 HInstruction* GetPreviousDisregardingMoves() const; 2071 GetBlock()2072 HBasicBlock* GetBlock() const { return block_; } GetAllocator()2073 ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); } SetBlock(HBasicBlock * block)2074 void SetBlock(HBasicBlock* block) { block_ = block; } IsInBlock()2075 bool IsInBlock() const { return block_ != nullptr; } IsInLoop()2076 bool IsInLoop() const { return block_->IsInLoop(); } IsLoopHeaderPhi()2077 bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); } IsIrreducibleLoopHeaderPhi()2078 bool IsIrreducibleLoopHeaderPhi() const { 2079 return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible(); 2080 } 2081 2082 virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0; 2083 GetInputRecords()2084 ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const { 2085 // One virtual method is enough, just const_cast<> and then re-add the const. 2086 return ArrayRef<const HUserRecord<HInstruction*>>( 2087 const_cast<HInstruction*>(this)->GetInputRecords()); 2088 } 2089 GetInputs()2090 HInputsRef GetInputs() { 2091 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); 2092 } 2093 GetInputs()2094 HConstInputsRef GetInputs() const { 2095 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); 2096 } 2097 InputCount()2098 size_t InputCount() const { return GetInputRecords().size(); } InputAt(size_t i)2099 HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); } 2100 HasInput(HInstruction * input)2101 bool HasInput(HInstruction* input) const { 2102 for (const HInstruction* i : GetInputs()) { 2103 if (i == input) { 2104 return true; 2105 } 2106 } 2107 return false; 2108 } 2109 SetRawInputAt(size_t index,HInstruction * input)2110 void SetRawInputAt(size_t index, HInstruction* input) { 2111 SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input)); 2112 } 2113 2114 virtual void Accept(HGraphVisitor* visitor) = 0; 2115 virtual const char* DebugName() const = 0; 2116 GetType()2117 DataType::Type GetType() const { 2118 return TypeField::Decode(GetPackedFields()); 2119 } 2120 NeedsEnvironment()2121 virtual bool NeedsEnvironment() const { return false; } 2122 GetDexPc()2123 uint32_t GetDexPc() const { return dex_pc_; } 2124 IsControlFlow()2125 virtual bool IsControlFlow() const { return false; } 2126 2127 // Can the instruction throw? 2128 // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance), 2129 // could throw OOME, but it is still OK to remove them if they are unused. CanThrow()2130 virtual bool CanThrow() const { return false; } 2131 2132 // Does the instruction always throw an exception unconditionally? AlwaysThrows()2133 virtual bool AlwaysThrows() const { return false; } 2134 CanThrowIntoCatchBlock()2135 bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); } 2136 HasSideEffects()2137 bool HasSideEffects() const { return side_effects_.HasSideEffects(); } DoesAnyWrite()2138 bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); } 2139 2140 // Does not apply for all instructions, but having this at top level greatly 2141 // simplifies the null check elimination. 2142 // TODO: Consider merging can_be_null into ReferenceTypeInfo. CanBeNull()2143 virtual bool CanBeNull() const { 2144 DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types"; 2145 return true; 2146 } 2147 CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)2148 virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const { 2149 return false; 2150 } 2151 2152 // If this instruction will do an implicit null check, return the `HNullCheck` associated 2153 // with it. Otherwise return null. GetImplicitNullCheck()2154 HNullCheck* GetImplicitNullCheck() const { 2155 // Go over previous non-move instructions that are emitted at use site. 2156 HInstruction* prev_not_move = GetPreviousDisregardingMoves(); 2157 while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) { 2158 if (prev_not_move->IsNullCheck()) { 2159 return prev_not_move->AsNullCheck(); 2160 } 2161 prev_not_move = prev_not_move->GetPreviousDisregardingMoves(); 2162 } 2163 return nullptr; 2164 } 2165 IsActualObject()2166 virtual bool IsActualObject() const { 2167 return GetType() == DataType::Type::kReference; 2168 } 2169 2170 void SetReferenceTypeInfo(ReferenceTypeInfo rti); 2171 GetReferenceTypeInfo()2172 ReferenceTypeInfo GetReferenceTypeInfo() const { 2173 DCHECK_EQ(GetType(), DataType::Type::kReference); 2174 return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_, 2175 GetPackedFlag<kFlagReferenceTypeIsExact>()); 2176 } 2177 AddUseAt(HInstruction * user,size_t index)2178 void AddUseAt(HInstruction* user, size_t index) { 2179 DCHECK(user != nullptr); 2180 // Note: fixup_end remains valid across push_front(). 2181 auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin(); 2182 HUseListNode<HInstruction*>* new_node = 2183 new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HInstruction*>(user, index); 2184 uses_.push_front(*new_node); 2185 FixUpUserRecordsAfterUseInsertion(fixup_end); 2186 } 2187 AddEnvUseAt(HEnvironment * user,size_t index)2188 void AddEnvUseAt(HEnvironment* user, size_t index) { 2189 DCHECK(user != nullptr); 2190 // Note: env_fixup_end remains valid across push_front(). 2191 auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin(); 2192 HUseListNode<HEnvironment*>* new_node = 2193 new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index); 2194 env_uses_.push_front(*new_node); 2195 FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end); 2196 } 2197 RemoveAsUserOfInput(size_t input)2198 void RemoveAsUserOfInput(size_t input) { 2199 HUserRecord<HInstruction*> input_use = InputRecordAt(input); 2200 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); 2201 input_use.GetInstruction()->uses_.erase_after(before_use_node); 2202 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); 2203 } 2204 RemoveAsUserOfAllInputs()2205 void RemoveAsUserOfAllInputs() { 2206 for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) { 2207 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); 2208 input_use.GetInstruction()->uses_.erase_after(before_use_node); 2209 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); 2210 } 2211 } 2212 GetUses()2213 const HUseList<HInstruction*>& GetUses() const { return uses_; } GetEnvUses()2214 const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; } 2215 HasUses()2216 bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); } HasEnvironmentUses()2217 bool HasEnvironmentUses() const { return !env_uses_.empty(); } HasNonEnvironmentUses()2218 bool HasNonEnvironmentUses() const { return !uses_.empty(); } HasOnlyOneNonEnvironmentUse()2219 bool HasOnlyOneNonEnvironmentUse() const { 2220 return !HasEnvironmentUses() && GetUses().HasExactlyOneElement(); 2221 } 2222 IsRemovable()2223 bool IsRemovable() const { 2224 return 2225 !DoesAnyWrite() && 2226 !CanThrow() && 2227 !IsSuspendCheck() && 2228 !IsControlFlow() && 2229 !IsNativeDebugInfo() && 2230 !IsParameterValue() && 2231 // If we added an explicit barrier then we should keep it. 2232 !IsMemoryBarrier() && 2233 !IsConstructorFence(); 2234 } 2235 IsDeadAndRemovable()2236 bool IsDeadAndRemovable() const { 2237 return IsRemovable() && !HasUses(); 2238 } 2239 2240 // Does this instruction strictly dominate `other_instruction`? 2241 // Returns false if this instruction and `other_instruction` are the same. 2242 // Aborts if this instruction and `other_instruction` are both phis. 2243 bool StrictlyDominates(HInstruction* other_instruction) const; 2244 GetId()2245 int GetId() const { return id_; } SetId(int id)2246 void SetId(int id) { id_ = id; } 2247 GetSsaIndex()2248 int GetSsaIndex() const { return ssa_index_; } SetSsaIndex(int ssa_index)2249 void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; } HasSsaIndex()2250 bool HasSsaIndex() const { return ssa_index_ != -1; } 2251 HasEnvironment()2252 bool HasEnvironment() const { return environment_ != nullptr; } GetEnvironment()2253 HEnvironment* GetEnvironment() const { return environment_; } 2254 // Set the `environment_` field. Raw because this method does not 2255 // update the uses lists. SetRawEnvironment(HEnvironment * environment)2256 void SetRawEnvironment(HEnvironment* environment) { 2257 DCHECK(environment_ == nullptr); 2258 DCHECK_EQ(environment->GetHolder(), this); 2259 environment_ = environment; 2260 } 2261 InsertRawEnvironment(HEnvironment * environment)2262 void InsertRawEnvironment(HEnvironment* environment) { 2263 DCHECK(environment_ != nullptr); 2264 DCHECK_EQ(environment->GetHolder(), this); 2265 DCHECK(environment->GetParent() == nullptr); 2266 environment->parent_ = environment_; 2267 environment_ = environment; 2268 } 2269 2270 void RemoveEnvironment(); 2271 2272 // Set the environment of this instruction, copying it from `environment`. While 2273 // copying, the uses lists are being updated. CopyEnvironmentFrom(HEnvironment * environment)2274 void CopyEnvironmentFrom(HEnvironment* environment) { 2275 DCHECK(environment_ == nullptr); 2276 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator(); 2277 environment_ = new (allocator) HEnvironment(allocator, *environment, this); 2278 environment_->CopyFrom(environment); 2279 if (environment->GetParent() != nullptr) { 2280 environment_->SetAndCopyParentChain(allocator, environment->GetParent()); 2281 } 2282 } 2283 CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)2284 void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment, 2285 HBasicBlock* block) { 2286 DCHECK(environment_ == nullptr); 2287 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator(); 2288 environment_ = new (allocator) HEnvironment(allocator, *environment, this); 2289 environment_->CopyFromWithLoopPhiAdjustment(environment, block); 2290 if (environment->GetParent() != nullptr) { 2291 environment_->SetAndCopyParentChain(allocator, environment->GetParent()); 2292 } 2293 } 2294 2295 // Returns the number of entries in the environment. Typically, that is the 2296 // number of dex registers in a method. It could be more in case of inlining. 2297 size_t EnvironmentSize() const; 2298 GetLocations()2299 LocationSummary* GetLocations() const { return locations_; } SetLocations(LocationSummary * locations)2300 void SetLocations(LocationSummary* locations) { locations_ = locations; } 2301 2302 void ReplaceWith(HInstruction* instruction); 2303 void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement); 2304 void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement); 2305 void ReplaceInput(HInstruction* replacement, size_t index); 2306 2307 // This is almost the same as doing `ReplaceWith()`. But in this helper, the 2308 // uses of this instruction by `other` are *not* updated. ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)2309 void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) { 2310 ReplaceWith(other); 2311 other->ReplaceInput(this, use_index); 2312 } 2313 2314 // Move `this` instruction before `cursor` 2315 void MoveBefore(HInstruction* cursor, bool do_checks = true); 2316 2317 // Move `this` before its first user and out of any loops. If there is no 2318 // out-of-loop user that dominates all other users, move the instruction 2319 // to the end of the out-of-loop common dominator of the user's blocks. 2320 // 2321 // This can be used only on non-throwing instructions with no side effects that 2322 // have at least one use but no environment uses. 2323 void MoveBeforeFirstUserAndOutOfLoops(); 2324 2325 #define INSTRUCTION_TYPE_CHECK(type, super) \ 2326 bool Is##type() const; 2327 2328 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK) 2329 #undef INSTRUCTION_TYPE_CHECK 2330 2331 #define INSTRUCTION_TYPE_CAST(type, super) \ 2332 const H##type* As##type() const; \ 2333 H##type* As##type(); 2334 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)2335 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST) 2336 #undef INSTRUCTION_TYPE_CAST 2337 2338 // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy 2339 // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for 2340 // the instruction then the behaviour of this function is undefined. 2341 // 2342 // Note: It is semantically valid to create a clone of the instruction only until 2343 // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not 2344 // copied. 2345 // 2346 // Note: HEnvironment and some other fields are not copied and are set to default values, see 2347 // 'explicit HInstruction(const HInstruction& other)' for details. 2348 virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const { 2349 LOG(FATAL) << "Cloning is not implemented for the instruction " << 2350 DebugName() << " " << GetId(); 2351 UNREACHABLE(); 2352 } 2353 2354 // Return whether instruction can be cloned (copied). IsClonable()2355 virtual bool IsClonable() const { return false; } 2356 2357 // Returns whether the instruction can be moved within the graph. 2358 // TODO: this method is used by LICM and GVN with possibly different 2359 // meanings? split and rename? CanBeMoved()2360 virtual bool CanBeMoved() const { return false; } 2361 2362 // Returns whether any data encoded in the two instructions is equal. 2363 // This method does not look at the inputs. Both instructions must be 2364 // of the same type, otherwise the method has undefined behavior. InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2365 virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const { 2366 return false; 2367 } 2368 2369 // Returns whether two instructions are equal, that is: 2370 // 1) They have the same type and contain the same data (InstructionDataEquals). 2371 // 2) Their inputs are identical. 2372 bool Equals(const HInstruction* other) const; 2373 GetKind()2374 InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); } 2375 ComputeHashCode()2376 virtual size_t ComputeHashCode() const { 2377 size_t result = GetKind(); 2378 for (const HInstruction* input : GetInputs()) { 2379 result = (result * 31) + input->GetId(); 2380 } 2381 return result; 2382 } 2383 GetSideEffects()2384 SideEffects GetSideEffects() const { return side_effects_; } SetSideEffects(SideEffects other)2385 void SetSideEffects(SideEffects other) { side_effects_ = other; } AddSideEffects(SideEffects other)2386 void AddSideEffects(SideEffects other) { side_effects_.Add(other); } 2387 GetLifetimePosition()2388 size_t GetLifetimePosition() const { return lifetime_position_; } SetLifetimePosition(size_t position)2389 void SetLifetimePosition(size_t position) { lifetime_position_ = position; } GetLiveInterval()2390 LiveInterval* GetLiveInterval() const { return live_interval_; } SetLiveInterval(LiveInterval * interval)2391 void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; } HasLiveInterval()2392 bool HasLiveInterval() const { return live_interval_ != nullptr; } 2393 IsSuspendCheckEntry()2394 bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); } 2395 2396 // Returns whether the code generation of the instruction will require to have access 2397 // to the current method. Such instructions are: 2398 // (1): Instructions that require an environment, as calling the runtime requires 2399 // to walk the stack and have the current method stored at a specific stack address. 2400 // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass 2401 // to access the dex cache. NeedsCurrentMethod()2402 bool NeedsCurrentMethod() const { 2403 return NeedsEnvironment() || IsCurrentMethod(); 2404 } 2405 2406 // Returns whether the code generation of the instruction will require to have access 2407 // to the dex cache of the current method's declaring class via the current method. NeedsDexCacheOfDeclaringClass()2408 virtual bool NeedsDexCacheOfDeclaringClass() const { return false; } 2409 2410 // Does this instruction have any use in an environment before 2411 // control flow hits 'other'? 2412 bool HasAnyEnvironmentUseBefore(HInstruction* other); 2413 2414 // Remove all references to environment uses of this instruction. 2415 // The caller must ensure that this is safe to do. 2416 void RemoveEnvironmentUsers(); 2417 IsEmittedAtUseSite()2418 bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); } MarkEmittedAtUseSite()2419 void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); } 2420 2421 protected: 2422 // If set, the machine code for this instruction is assumed to be generated by 2423 // its users. Used by liveness analysis to compute use positions accordingly. 2424 static constexpr size_t kFlagEmittedAtUseSite = 0u; 2425 static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1; 2426 static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1; 2427 static constexpr size_t kFieldInstructionKindSize = 2428 MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1)); 2429 static constexpr size_t kFieldType = 2430 kFieldInstructionKind + kFieldInstructionKindSize; 2431 static constexpr size_t kFieldTypeSize = 2432 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); 2433 static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize; 2434 static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte; 2435 2436 static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits, 2437 "Too many generic packed fields"); 2438 2439 using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>; 2440 InputRecordAt(size_t i)2441 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const { 2442 return GetInputRecords()[i]; 2443 } 2444 SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2445 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) { 2446 ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords(); 2447 input_records[index] = input; 2448 } 2449 GetPackedFields()2450 uint32_t GetPackedFields() const { 2451 return packed_fields_; 2452 } 2453 2454 template <size_t flag> GetPackedFlag()2455 bool GetPackedFlag() const { 2456 return (packed_fields_ & (1u << flag)) != 0u; 2457 } 2458 2459 template <size_t flag> 2460 void SetPackedFlag(bool value = true) { 2461 packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag); 2462 } 2463 2464 template <typename BitFieldType> GetPackedField()2465 typename BitFieldType::value_type GetPackedField() const { 2466 return BitFieldType::Decode(packed_fields_); 2467 } 2468 2469 template <typename BitFieldType> SetPackedField(typename BitFieldType::value_type value)2470 void SetPackedField(typename BitFieldType::value_type value) { 2471 DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value))); 2472 packed_fields_ = BitFieldType::Update(value, packed_fields_); 2473 } 2474 2475 // Copy construction for the instruction (used for Clone function). 2476 // 2477 // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from 2478 // prepare_for_register_allocator are not copied (set to default values). 2479 // 2480 // Copy constructors must be provided for every HInstruction type; default copy constructor is 2481 // fine for most of them. However for some of the instructions a custom copy constructor must be 2482 // specified (when instruction has non-trivially copyable fields and must have a special behaviour 2483 // for copying them). HInstruction(const HInstruction & other)2484 explicit HInstruction(const HInstruction& other) 2485 : previous_(nullptr), 2486 next_(nullptr), 2487 block_(nullptr), 2488 dex_pc_(other.dex_pc_), 2489 id_(-1), 2490 ssa_index_(-1), 2491 packed_fields_(other.packed_fields_), 2492 environment_(nullptr), 2493 locations_(nullptr), 2494 live_interval_(nullptr), 2495 lifetime_position_(kNoLifetime), 2496 side_effects_(other.side_effects_), 2497 reference_type_handle_(other.reference_type_handle_) { 2498 } 2499 2500 private: 2501 using InstructionKindField = 2502 BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>; 2503 FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2504 void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) { 2505 auto before_use_node = uses_.before_begin(); 2506 for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) { 2507 HInstruction* user = use_node->GetUser(); 2508 size_t input_index = use_node->GetIndex(); 2509 user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node)); 2510 before_use_node = use_node; 2511 } 2512 } 2513 FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2514 void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) { 2515 auto next = ++HUseList<HInstruction*>::iterator(before_use_node); 2516 if (next != uses_.end()) { 2517 HInstruction* next_user = next->GetUser(); 2518 size_t next_index = next->GetIndex(); 2519 DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this); 2520 next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node)); 2521 } 2522 } 2523 FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2524 void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) { 2525 auto before_env_use_node = env_uses_.before_begin(); 2526 for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) { 2527 HEnvironment* user = env_use_node->GetUser(); 2528 size_t input_index = env_use_node->GetIndex(); 2529 user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); 2530 before_env_use_node = env_use_node; 2531 } 2532 } 2533 FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2534 void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) { 2535 auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node); 2536 if (next != env_uses_.end()) { 2537 HEnvironment* next_user = next->GetUser(); 2538 size_t next_index = next->GetIndex(); 2539 DCHECK(next_user->vregs_[next_index].GetInstruction() == this); 2540 next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); 2541 } 2542 } 2543 2544 HInstruction* previous_; 2545 HInstruction* next_; 2546 HBasicBlock* block_; 2547 const uint32_t dex_pc_; 2548 2549 // An instruction gets an id when it is added to the graph. 2550 // It reflects creation order. A negative id means the instruction 2551 // has not been added to the graph. 2552 int id_; 2553 2554 // When doing liveness analysis, instructions that have uses get an SSA index. 2555 int ssa_index_; 2556 2557 // Packed fields. 2558 uint32_t packed_fields_; 2559 2560 // List of instructions that have this instruction as input. 2561 HUseList<HInstruction*> uses_; 2562 2563 // List of environments that contain this instruction. 2564 HUseList<HEnvironment*> env_uses_; 2565 2566 // The environment associated with this instruction. Not null if the instruction 2567 // might jump out of the method. 2568 HEnvironment* environment_; 2569 2570 // Set by the code generator. 2571 LocationSummary* locations_; 2572 2573 // Set by the liveness analysis. 2574 LiveInterval* live_interval_; 2575 2576 // Set by the liveness analysis, this is the position in a linear 2577 // order of blocks where this instruction's live interval start. 2578 size_t lifetime_position_; 2579 2580 SideEffects side_effects_; 2581 2582 // The reference handle part of the reference type info. 2583 // The IsExact() flag is stored in packed fields. 2584 // TODO: for primitive types this should be marked as invalid. 2585 ReferenceTypeInfo::TypeHandle reference_type_handle_; 2586 2587 friend class GraphChecker; 2588 friend class HBasicBlock; 2589 friend class HEnvironment; 2590 friend class HGraph; 2591 friend class HInstructionList; 2592 }; 2593 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs); 2594 2595 // Iterates over the instructions, while preserving the next instruction 2596 // in case the current instruction gets removed from the list by the user 2597 // of this iterator. 2598 class HInstructionIterator : public ValueObject { 2599 public: HInstructionIterator(const HInstructionList & instructions)2600 explicit HInstructionIterator(const HInstructionList& instructions) 2601 : instruction_(instructions.first_instruction_) { 2602 next_ = Done() ? nullptr : instruction_->GetNext(); 2603 } 2604 Done()2605 bool Done() const { return instruction_ == nullptr; } Current()2606 HInstruction* Current() const { return instruction_; } Advance()2607 void Advance() { 2608 instruction_ = next_; 2609 next_ = Done() ? nullptr : instruction_->GetNext(); 2610 } 2611 2612 private: 2613 HInstruction* instruction_; 2614 HInstruction* next_; 2615 2616 DISALLOW_COPY_AND_ASSIGN(HInstructionIterator); 2617 }; 2618 2619 // Iterates over the instructions without saving the next instruction, 2620 // therefore handling changes in the graph potentially made by the user 2621 // of this iterator. 2622 class HInstructionIteratorHandleChanges : public ValueObject { 2623 public: HInstructionIteratorHandleChanges(const HInstructionList & instructions)2624 explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions) 2625 : instruction_(instructions.first_instruction_) { 2626 } 2627 Done()2628 bool Done() const { return instruction_ == nullptr; } Current()2629 HInstruction* Current() const { return instruction_; } Advance()2630 void Advance() { 2631 instruction_ = instruction_->GetNext(); 2632 } 2633 2634 private: 2635 HInstruction* instruction_; 2636 2637 DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges); 2638 }; 2639 2640 2641 class HBackwardInstructionIterator : public ValueObject { 2642 public: HBackwardInstructionIterator(const HInstructionList & instructions)2643 explicit HBackwardInstructionIterator(const HInstructionList& instructions) 2644 : instruction_(instructions.last_instruction_) { 2645 next_ = Done() ? nullptr : instruction_->GetPrevious(); 2646 } 2647 Done()2648 bool Done() const { return instruction_ == nullptr; } Current()2649 HInstruction* Current() const { return instruction_; } Advance()2650 void Advance() { 2651 instruction_ = next_; 2652 next_ = Done() ? nullptr : instruction_->GetPrevious(); 2653 } 2654 2655 private: 2656 HInstruction* instruction_; 2657 HInstruction* next_; 2658 2659 DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator); 2660 }; 2661 2662 class HVariableInputSizeInstruction : public HInstruction { 2663 public: 2664 using HInstruction::GetInputRecords; // Keep the const version visible. GetInputRecords()2665 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override { 2666 return ArrayRef<HUserRecord<HInstruction*>>(inputs_); 2667 } 2668 2669 void AddInput(HInstruction* input); 2670 void InsertInputAt(size_t index, HInstruction* input); 2671 void RemoveInputAt(size_t index); 2672 2673 // Removes all the inputs. 2674 // Also removes this instructions from each input's use list 2675 // (for non-environment uses only). 2676 void RemoveAllInputs(); 2677 2678 protected: HVariableInputSizeInstruction(InstructionKind inst_kind,SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * allocator,size_t number_of_inputs,ArenaAllocKind kind)2679 HVariableInputSizeInstruction(InstructionKind inst_kind, 2680 SideEffects side_effects, 2681 uint32_t dex_pc, 2682 ArenaAllocator* allocator, 2683 size_t number_of_inputs, 2684 ArenaAllocKind kind) 2685 : HInstruction(inst_kind, side_effects, dex_pc), 2686 inputs_(number_of_inputs, allocator->Adapter(kind)) {} HVariableInputSizeInstruction(InstructionKind inst_kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * allocator,size_t number_of_inputs,ArenaAllocKind kind)2687 HVariableInputSizeInstruction(InstructionKind inst_kind, 2688 DataType::Type type, 2689 SideEffects side_effects, 2690 uint32_t dex_pc, 2691 ArenaAllocator* allocator, 2692 size_t number_of_inputs, 2693 ArenaAllocKind kind) 2694 : HInstruction(inst_kind, type, side_effects, dex_pc), 2695 inputs_(number_of_inputs, allocator->Adapter(kind)) {} 2696 2697 DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction); 2698 2699 ArenaVector<HUserRecord<HInstruction*>> inputs_; 2700 }; 2701 2702 template<size_t N> 2703 class HExpression : public HInstruction { 2704 public: 2705 HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) HInstruction(kind,side_effects,dex_pc)2706 : HInstruction(kind, side_effects, dex_pc), inputs_() {} 2707 HExpression<N>(InstructionKind kind, 2708 DataType::Type type, 2709 SideEffects side_effects, 2710 uint32_t dex_pc) HInstruction(kind,type,side_effects,dex_pc)2711 : HInstruction(kind, type, side_effects, dex_pc), inputs_() {} ~HExpression()2712 virtual ~HExpression() {} 2713 2714 using HInstruction::GetInputRecords; // Keep the const version visible. GetInputRecords()2715 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 2716 return ArrayRef<HUserRecord<HInstruction*>>(inputs_); 2717 } 2718 2719 protected: 2720 DEFAULT_COPY_CONSTRUCTOR(Expression<N>); 2721 2722 private: 2723 std::array<HUserRecord<HInstruction*>, N> inputs_; 2724 2725 friend class SsaBuilder; 2726 }; 2727 2728 // HExpression specialization for N=0. 2729 template<> 2730 class HExpression<0> : public HInstruction { 2731 public: 2732 using HInstruction::HInstruction; 2733 ~HExpression()2734 virtual ~HExpression() {} 2735 2736 using HInstruction::GetInputRecords; // Keep the const version visible. GetInputRecords()2737 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 2738 return ArrayRef<HUserRecord<HInstruction*>>(); 2739 } 2740 2741 protected: 2742 DEFAULT_COPY_CONSTRUCTOR(Expression<0>); 2743 2744 private: 2745 friend class SsaBuilder; 2746 }; 2747 2748 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow 2749 // instruction that branches to the exit block. 2750 class HReturnVoid final : public HExpression<0> { 2751 public: 2752 explicit HReturnVoid(uint32_t dex_pc = kNoDexPc) HExpression(kReturnVoid,SideEffects::None (),dex_pc)2753 : HExpression(kReturnVoid, SideEffects::None(), dex_pc) { 2754 } 2755 IsControlFlow()2756 bool IsControlFlow() const override { return true; } 2757 2758 DECLARE_INSTRUCTION(ReturnVoid); 2759 2760 protected: 2761 DEFAULT_COPY_CONSTRUCTOR(ReturnVoid); 2762 }; 2763 2764 // Represents dex's RETURN opcodes. A HReturn is a control flow 2765 // instruction that branches to the exit block. 2766 class HReturn final : public HExpression<1> { 2767 public: 2768 explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc) HExpression(kReturn,SideEffects::None (),dex_pc)2769 : HExpression(kReturn, SideEffects::None(), dex_pc) { 2770 SetRawInputAt(0, value); 2771 } 2772 IsControlFlow()2773 bool IsControlFlow() const override { return true; } 2774 2775 DECLARE_INSTRUCTION(Return); 2776 2777 protected: 2778 DEFAULT_COPY_CONSTRUCTOR(Return); 2779 }; 2780 2781 class HPhi final : public HVariableInputSizeInstruction { 2782 public: 2783 HPhi(ArenaAllocator* allocator, 2784 uint32_t reg_number, 2785 size_t number_of_inputs, 2786 DataType::Type type, 2787 uint32_t dex_pc = kNoDexPc) HVariableInputSizeInstruction(kPhi,ToPhiType (type),SideEffects::None (),dex_pc,allocator,number_of_inputs,kArenaAllocPhiInputs)2788 : HVariableInputSizeInstruction( 2789 kPhi, 2790 ToPhiType(type), 2791 SideEffects::None(), 2792 dex_pc, 2793 allocator, 2794 number_of_inputs, 2795 kArenaAllocPhiInputs), 2796 reg_number_(reg_number) { 2797 DCHECK_NE(GetType(), DataType::Type::kVoid); 2798 // Phis are constructed live and marked dead if conflicting or unused. 2799 // Individual steps of SsaBuilder should assume that if a phi has been 2800 // marked dead, it can be ignored and will be removed by SsaPhiElimination. 2801 SetPackedFlag<kFlagIsLive>(true); 2802 SetPackedFlag<kFlagCanBeNull>(true); 2803 } 2804 IsClonable()2805 bool IsClonable() const override { return true; } 2806 2807 // Returns a type equivalent to the given `type`, but that a `HPhi` can hold. ToPhiType(DataType::Type type)2808 static DataType::Type ToPhiType(DataType::Type type) { 2809 return DataType::Kind(type); 2810 } 2811 IsCatchPhi()2812 bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); } 2813 SetType(DataType::Type new_type)2814 void SetType(DataType::Type new_type) { 2815 // Make sure that only valid type changes occur. The following are allowed: 2816 // (1) int -> float/ref (primitive type propagation), 2817 // (2) long -> double (primitive type propagation). 2818 DCHECK(GetType() == new_type || 2819 (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) || 2820 (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) || 2821 (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64)); 2822 SetPackedField<TypeField>(new_type); 2823 } 2824 CanBeNull()2825 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); } SetCanBeNull(bool can_be_null)2826 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } 2827 GetRegNumber()2828 uint32_t GetRegNumber() const { return reg_number_; } 2829 SetDead()2830 void SetDead() { SetPackedFlag<kFlagIsLive>(false); } SetLive()2831 void SetLive() { SetPackedFlag<kFlagIsLive>(true); } IsDead()2832 bool IsDead() const { return !IsLive(); } IsLive()2833 bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); } 2834 IsVRegEquivalentOf(const HInstruction * other)2835 bool IsVRegEquivalentOf(const HInstruction* other) const { 2836 return other != nullptr 2837 && other->IsPhi() 2838 && other->AsPhi()->GetBlock() == GetBlock() 2839 && other->AsPhi()->GetRegNumber() == GetRegNumber(); 2840 } 2841 HasEquivalentPhi()2842 bool HasEquivalentPhi() const { 2843 if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) { 2844 return true; 2845 } 2846 if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) { 2847 return true; 2848 } 2849 return false; 2850 } 2851 2852 // Returns the next equivalent phi (starting from the current one) or null if there is none. 2853 // An equivalent phi is a phi having the same dex register and type. 2854 // It assumes that phis with the same dex register are adjacent. GetNextEquivalentPhiWithSameType()2855 HPhi* GetNextEquivalentPhiWithSameType() { 2856 HInstruction* next = GetNext(); 2857 while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) { 2858 if (next->GetType() == GetType()) { 2859 return next->AsPhi(); 2860 } 2861 next = next->GetNext(); 2862 } 2863 return nullptr; 2864 } 2865 2866 DECLARE_INSTRUCTION(Phi); 2867 2868 protected: 2869 DEFAULT_COPY_CONSTRUCTOR(Phi); 2870 2871 private: 2872 static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits; 2873 static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1; 2874 static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1; 2875 static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 2876 2877 const uint32_t reg_number_; 2878 }; 2879 2880 // The exit instruction is the only instruction of the exit block. 2881 // Instructions aborting the method (HThrow and HReturn) must branch to the 2882 // exit block. 2883 class HExit final : public HExpression<0> { 2884 public: 2885 explicit HExit(uint32_t dex_pc = kNoDexPc) HExpression(kExit,SideEffects::None (),dex_pc)2886 : HExpression(kExit, SideEffects::None(), dex_pc) { 2887 } 2888 IsControlFlow()2889 bool IsControlFlow() const override { return true; } 2890 2891 DECLARE_INSTRUCTION(Exit); 2892 2893 protected: 2894 DEFAULT_COPY_CONSTRUCTOR(Exit); 2895 }; 2896 2897 // Jumps from one block to another. 2898 class HGoto final : public HExpression<0> { 2899 public: 2900 explicit HGoto(uint32_t dex_pc = kNoDexPc) HExpression(kGoto,SideEffects::None (),dex_pc)2901 : HExpression(kGoto, SideEffects::None(), dex_pc) { 2902 } 2903 IsClonable()2904 bool IsClonable() const override { return true; } IsControlFlow()2905 bool IsControlFlow() const override { return true; } 2906 GetSuccessor()2907 HBasicBlock* GetSuccessor() const { 2908 return GetBlock()->GetSingleSuccessor(); 2909 } 2910 2911 DECLARE_INSTRUCTION(Goto); 2912 2913 protected: 2914 DEFAULT_COPY_CONSTRUCTOR(Goto); 2915 }; 2916 2917 class HConstant : public HExpression<0> { 2918 public: 2919 explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc) HExpression(kind,type,SideEffects::None (),dex_pc)2920 : HExpression(kind, type, SideEffects::None(), dex_pc) { 2921 } 2922 CanBeMoved()2923 bool CanBeMoved() const override { return true; } 2924 2925 // Is this constant -1 in the arithmetic sense? IsMinusOne()2926 virtual bool IsMinusOne() const { return false; } 2927 // Is this constant 0 in the arithmetic sense? IsArithmeticZero()2928 virtual bool IsArithmeticZero() const { return false; } 2929 // Is this constant a 0-bit pattern? IsZeroBitPattern()2930 virtual bool IsZeroBitPattern() const { return false; } 2931 // Is this constant 1 in the arithmetic sense? IsOne()2932 virtual bool IsOne() const { return false; } 2933 2934 virtual uint64_t GetValueAsUint64() const = 0; 2935 2936 DECLARE_ABSTRACT_INSTRUCTION(Constant); 2937 2938 protected: 2939 DEFAULT_COPY_CONSTRUCTOR(Constant); 2940 }; 2941 2942 class HNullConstant final : public HConstant { 2943 public: InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2944 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 2945 return true; 2946 } 2947 GetValueAsUint64()2948 uint64_t GetValueAsUint64() const override { return 0; } 2949 ComputeHashCode()2950 size_t ComputeHashCode() const override { return 0; } 2951 2952 // The null constant representation is a 0-bit pattern. IsZeroBitPattern()2953 bool IsZeroBitPattern() const override { return true; } 2954 2955 DECLARE_INSTRUCTION(NullConstant); 2956 2957 protected: 2958 DEFAULT_COPY_CONSTRUCTOR(NullConstant); 2959 2960 private: 2961 explicit HNullConstant(uint32_t dex_pc = kNoDexPc) HConstant(kNullConstant,DataType::Type::kReference,dex_pc)2962 : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) { 2963 } 2964 2965 friend class HGraph; 2966 }; 2967 2968 // Constants of the type int. Those can be from Dex instructions, or 2969 // synthesized (for example with the if-eqz instruction). 2970 class HIntConstant final : public HConstant { 2971 public: GetValue()2972 int32_t GetValue() const { return value_; } 2973 GetValueAsUint64()2974 uint64_t GetValueAsUint64() const override { 2975 return static_cast<uint64_t>(static_cast<uint32_t>(value_)); 2976 } 2977 InstructionDataEquals(const HInstruction * other)2978 bool InstructionDataEquals(const HInstruction* other) const override { 2979 DCHECK(other->IsIntConstant()) << other->DebugName(); 2980 return other->AsIntConstant()->value_ == value_; 2981 } 2982 ComputeHashCode()2983 size_t ComputeHashCode() const override { return GetValue(); } 2984 IsMinusOne()2985 bool IsMinusOne() const override { return GetValue() == -1; } IsArithmeticZero()2986 bool IsArithmeticZero() const override { return GetValue() == 0; } IsZeroBitPattern()2987 bool IsZeroBitPattern() const override { return GetValue() == 0; } IsOne()2988 bool IsOne() const override { return GetValue() == 1; } 2989 2990 // Integer constants are used to encode Boolean values as well, 2991 // where 1 means true and 0 means false. IsTrue()2992 bool IsTrue() const { return GetValue() == 1; } IsFalse()2993 bool IsFalse() const { return GetValue() == 0; } 2994 2995 DECLARE_INSTRUCTION(IntConstant); 2996 2997 protected: 2998 DEFAULT_COPY_CONSTRUCTOR(IntConstant); 2999 3000 private: 3001 explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) HConstant(kIntConstant,DataType::Type::kInt32,dex_pc)3002 : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) { 3003 } 3004 explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc) HConstant(kIntConstant,DataType::Type::kInt32,dex_pc)3005 : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), 3006 value_(value ? 1 : 0) { 3007 } 3008 3009 const int32_t value_; 3010 3011 friend class HGraph; 3012 ART_FRIEND_TEST(GraphTest, InsertInstructionBefore); 3013 ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast); 3014 }; 3015 3016 class HLongConstant final : public HConstant { 3017 public: GetValue()3018 int64_t GetValue() const { return value_; } 3019 GetValueAsUint64()3020 uint64_t GetValueAsUint64() const override { return value_; } 3021 InstructionDataEquals(const HInstruction * other)3022 bool InstructionDataEquals(const HInstruction* other) const override { 3023 DCHECK(other->IsLongConstant()) << other->DebugName(); 3024 return other->AsLongConstant()->value_ == value_; 3025 } 3026 ComputeHashCode()3027 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } 3028 IsMinusOne()3029 bool IsMinusOne() const override { return GetValue() == -1; } IsArithmeticZero()3030 bool IsArithmeticZero() const override { return GetValue() == 0; } IsZeroBitPattern()3031 bool IsZeroBitPattern() const override { return GetValue() == 0; } IsOne()3032 bool IsOne() const override { return GetValue() == 1; } 3033 3034 DECLARE_INSTRUCTION(LongConstant); 3035 3036 protected: 3037 DEFAULT_COPY_CONSTRUCTOR(LongConstant); 3038 3039 private: 3040 explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) HConstant(kLongConstant,DataType::Type::kInt64,dex_pc)3041 : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc), 3042 value_(value) { 3043 } 3044 3045 const int64_t value_; 3046 3047 friend class HGraph; 3048 }; 3049 3050 class HFloatConstant final : public HConstant { 3051 public: GetValue()3052 float GetValue() const { return value_; } 3053 GetValueAsUint64()3054 uint64_t GetValueAsUint64() const override { 3055 return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_)); 3056 } 3057 InstructionDataEquals(const HInstruction * other)3058 bool InstructionDataEquals(const HInstruction* other) const override { 3059 DCHECK(other->IsFloatConstant()) << other->DebugName(); 3060 return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64(); 3061 } 3062 ComputeHashCode()3063 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } 3064 IsMinusOne()3065 bool IsMinusOne() const override { 3066 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f)); 3067 } IsArithmeticZero()3068 bool IsArithmeticZero() const override { 3069 return std::fpclassify(value_) == FP_ZERO; 3070 } IsArithmeticPositiveZero()3071 bool IsArithmeticPositiveZero() const { 3072 return IsArithmeticZero() && !std::signbit(value_); 3073 } IsArithmeticNegativeZero()3074 bool IsArithmeticNegativeZero() const { 3075 return IsArithmeticZero() && std::signbit(value_); 3076 } IsZeroBitPattern()3077 bool IsZeroBitPattern() const override { 3078 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f); 3079 } IsOne()3080 bool IsOne() const override { 3081 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f); 3082 } IsNaN()3083 bool IsNaN() const { 3084 return std::isnan(value_); 3085 } 3086 3087 DECLARE_INSTRUCTION(FloatConstant); 3088 3089 protected: 3090 DEFAULT_COPY_CONSTRUCTOR(FloatConstant); 3091 3092 private: 3093 explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc) HConstant(kFloatConstant,DataType::Type::kFloat32,dex_pc)3094 : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc), 3095 value_(value) { 3096 } 3097 explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc) HConstant(kFloatConstant,DataType::Type::kFloat32,dex_pc)3098 : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc), 3099 value_(bit_cast<float, int32_t>(value)) { 3100 } 3101 3102 const float value_; 3103 3104 // Only the SsaBuilder and HGraph can create floating-point constants. 3105 friend class SsaBuilder; 3106 friend class HGraph; 3107 }; 3108 3109 class HDoubleConstant final : public HConstant { 3110 public: GetValue()3111 double GetValue() const { return value_; } 3112 GetValueAsUint64()3113 uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); } 3114 InstructionDataEquals(const HInstruction * other)3115 bool InstructionDataEquals(const HInstruction* other) const override { 3116 DCHECK(other->IsDoubleConstant()) << other->DebugName(); 3117 return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64(); 3118 } 3119 ComputeHashCode()3120 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } 3121 IsMinusOne()3122 bool IsMinusOne() const override { 3123 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0)); 3124 } IsArithmeticZero()3125 bool IsArithmeticZero() const override { 3126 return std::fpclassify(value_) == FP_ZERO; 3127 } IsArithmeticPositiveZero()3128 bool IsArithmeticPositiveZero() const { 3129 return IsArithmeticZero() && !std::signbit(value_); 3130 } IsArithmeticNegativeZero()3131 bool IsArithmeticNegativeZero() const { 3132 return IsArithmeticZero() && std::signbit(value_); 3133 } IsZeroBitPattern()3134 bool IsZeroBitPattern() const override { 3135 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0)); 3136 } IsOne()3137 bool IsOne() const override { 3138 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0); 3139 } IsNaN()3140 bool IsNaN() const { 3141 return std::isnan(value_); 3142 } 3143 3144 DECLARE_INSTRUCTION(DoubleConstant); 3145 3146 protected: 3147 DEFAULT_COPY_CONSTRUCTOR(DoubleConstant); 3148 3149 private: 3150 explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) HConstant(kDoubleConstant,DataType::Type::kFloat64,dex_pc)3151 : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc), 3152 value_(value) { 3153 } 3154 explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc) HConstant(kDoubleConstant,DataType::Type::kFloat64,dex_pc)3155 : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc), 3156 value_(bit_cast<double, int64_t>(value)) { 3157 } 3158 3159 const double value_; 3160 3161 // Only the SsaBuilder and HGraph can create floating-point constants. 3162 friend class SsaBuilder; 3163 friend class HGraph; 3164 }; 3165 3166 // Conditional branch. A block ending with an HIf instruction must have 3167 // two successors. 3168 class HIf final : public HExpression<1> { 3169 public: 3170 explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc) HExpression(kIf,SideEffects::None (),dex_pc)3171 : HExpression(kIf, SideEffects::None(), dex_pc) { 3172 SetRawInputAt(0, input); 3173 } 3174 IsClonable()3175 bool IsClonable() const override { return true; } IsControlFlow()3176 bool IsControlFlow() const override { return true; } 3177 IfTrueSuccessor()3178 HBasicBlock* IfTrueSuccessor() const { 3179 return GetBlock()->GetSuccessors()[0]; 3180 } 3181 IfFalseSuccessor()3182 HBasicBlock* IfFalseSuccessor() const { 3183 return GetBlock()->GetSuccessors()[1]; 3184 } 3185 3186 DECLARE_INSTRUCTION(If); 3187 3188 protected: 3189 DEFAULT_COPY_CONSTRUCTOR(If); 3190 }; 3191 3192 3193 // Abstract instruction which marks the beginning and/or end of a try block and 3194 // links it to the respective exception handlers. Behaves the same as a Goto in 3195 // non-exceptional control flow. 3196 // Normal-flow successor is stored at index zero, exception handlers under 3197 // higher indices in no particular order. 3198 class HTryBoundary final : public HExpression<0> { 3199 public: 3200 enum class BoundaryKind { 3201 kEntry, 3202 kExit, 3203 kLast = kExit 3204 }; 3205 3206 // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive 3207 // across the catch block entering edges as GC might happen during throwing an exception. 3208 // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no 3209 // HInstruction which a catch block must start from. 3210 explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc) 3211 : HExpression(kTryBoundary, 3212 (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC() 3213 : SideEffects::None(), 3214 dex_pc) { 3215 SetPackedField<BoundaryKindField>(kind); 3216 } 3217 IsControlFlow()3218 bool IsControlFlow() const override { return true; } 3219 3220 // Returns the block's non-exceptional successor (index zero). GetNormalFlowSuccessor()3221 HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; } 3222 GetExceptionHandlers()3223 ArrayRef<HBasicBlock* const> GetExceptionHandlers() const { 3224 return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u); 3225 } 3226 3227 // Returns whether `handler` is among its exception handlers (non-zero index 3228 // successors). HasExceptionHandler(const HBasicBlock & handler)3229 bool HasExceptionHandler(const HBasicBlock& handler) const { 3230 DCHECK(handler.IsCatchBlock()); 3231 return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */); 3232 } 3233 3234 // If not present already, adds `handler` to its block's list of exception 3235 // handlers. AddExceptionHandler(HBasicBlock * handler)3236 void AddExceptionHandler(HBasicBlock* handler) { 3237 if (!HasExceptionHandler(*handler)) { 3238 GetBlock()->AddSuccessor(handler); 3239 } 3240 } 3241 GetBoundaryKind()3242 BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); } IsEntry()3243 bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; } 3244 3245 bool HasSameExceptionHandlersAs(const HTryBoundary& other) const; 3246 3247 DECLARE_INSTRUCTION(TryBoundary); 3248 3249 protected: 3250 DEFAULT_COPY_CONSTRUCTOR(TryBoundary); 3251 3252 private: 3253 static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits; 3254 static constexpr size_t kFieldBoundaryKindSize = 3255 MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast)); 3256 static constexpr size_t kNumberOfTryBoundaryPackedBits = 3257 kFieldBoundaryKind + kFieldBoundaryKindSize; 3258 static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits, 3259 "Too many packed fields."); 3260 using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>; 3261 }; 3262 3263 // Deoptimize to interpreter, upon checking a condition. 3264 class HDeoptimize final : public HVariableInputSizeInstruction { 3265 public: 3266 // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move 3267 // across. HDeoptimize(ArenaAllocator * allocator,HInstruction * cond,DeoptimizationKind kind,uint32_t dex_pc)3268 HDeoptimize(ArenaAllocator* allocator, 3269 HInstruction* cond, 3270 DeoptimizationKind kind, 3271 uint32_t dex_pc) 3272 : HVariableInputSizeInstruction( 3273 kDeoptimize, 3274 SideEffects::All(), 3275 dex_pc, 3276 allocator, 3277 /* number_of_inputs= */ 1, 3278 kArenaAllocMisc) { 3279 SetPackedFlag<kFieldCanBeMoved>(false); 3280 SetPackedField<DeoptimizeKindField>(kind); 3281 SetRawInputAt(0, cond); 3282 } 3283 IsClonable()3284 bool IsClonable() const override { return true; } 3285 3286 // Use this constructor when the `HDeoptimize` guards an instruction, and any user 3287 // that relies on the deoptimization to pass should have its input be the `HDeoptimize` 3288 // instead of `guard`. 3289 // We set CanTriggerGC to prevent any intermediate address to be live 3290 // at the point of the `HDeoptimize`. HDeoptimize(ArenaAllocator * allocator,HInstruction * cond,HInstruction * guard,DeoptimizationKind kind,uint32_t dex_pc)3291 HDeoptimize(ArenaAllocator* allocator, 3292 HInstruction* cond, 3293 HInstruction* guard, 3294 DeoptimizationKind kind, 3295 uint32_t dex_pc) 3296 : HVariableInputSizeInstruction( 3297 kDeoptimize, 3298 guard->GetType(), 3299 SideEffects::CanTriggerGC(), 3300 dex_pc, 3301 allocator, 3302 /* number_of_inputs= */ 2, 3303 kArenaAllocMisc) { 3304 SetPackedFlag<kFieldCanBeMoved>(true); 3305 SetPackedField<DeoptimizeKindField>(kind); 3306 SetRawInputAt(0, cond); 3307 SetRawInputAt(1, guard); 3308 } 3309 CanBeMoved()3310 bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); } 3311 InstructionDataEquals(const HInstruction * other)3312 bool InstructionDataEquals(const HInstruction* other) const override { 3313 return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind()); 3314 } 3315 NeedsEnvironment()3316 bool NeedsEnvironment() const override { return true; } 3317 CanThrow()3318 bool CanThrow() const override { return true; } 3319 GetDeoptimizationKind()3320 DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); } 3321 GuardsAnInput()3322 bool GuardsAnInput() const { 3323 return InputCount() == 2; 3324 } 3325 GuardedInput()3326 HInstruction* GuardedInput() const { 3327 DCHECK(GuardsAnInput()); 3328 return InputAt(1); 3329 } 3330 RemoveGuard()3331 void RemoveGuard() { 3332 RemoveInputAt(1); 3333 } 3334 3335 DECLARE_INSTRUCTION(Deoptimize); 3336 3337 protected: 3338 DEFAULT_COPY_CONSTRUCTOR(Deoptimize); 3339 3340 private: 3341 static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits; 3342 static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1; 3343 static constexpr size_t kFieldDeoptimizeKindSize = 3344 MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast)); 3345 static constexpr size_t kNumberOfDeoptimizePackedBits = 3346 kFieldDeoptimizeKind + kFieldDeoptimizeKindSize; 3347 static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits, 3348 "Too many packed fields."); 3349 using DeoptimizeKindField = 3350 BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>; 3351 }; 3352 3353 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization. 3354 // The compiled code checks this flag value in a guard before devirtualized call and 3355 // if it's true, starts to do deoptimization. 3356 // It has a 4-byte slot on stack. 3357 // TODO: allocate a register for this flag. 3358 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction { 3359 public: 3360 // CHA guards are only optimized in a separate pass and it has no side effects 3361 // with regard to other passes. HShouldDeoptimizeFlag(ArenaAllocator * allocator,uint32_t dex_pc)3362 HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc) 3363 : HVariableInputSizeInstruction(kShouldDeoptimizeFlag, 3364 DataType::Type::kInt32, 3365 SideEffects::None(), 3366 dex_pc, 3367 allocator, 3368 0, 3369 kArenaAllocCHA) { 3370 } 3371 3372 // We do all CHA guard elimination/motion in a single pass, after which there is no 3373 // further guard elimination/motion since a guard might have been used for justification 3374 // of the elimination of another guard. Therefore, we pretend this guard cannot be moved 3375 // to avoid other optimizations trying to move it. CanBeMoved()3376 bool CanBeMoved() const override { return false; } 3377 3378 DECLARE_INSTRUCTION(ShouldDeoptimizeFlag); 3379 3380 protected: 3381 DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag); 3382 }; 3383 3384 // Represents the ArtMethod that was passed as a first argument to 3385 // the method. It is used by instructions that depend on it, like 3386 // instructions that work with the dex cache. 3387 class HCurrentMethod final : public HExpression<0> { 3388 public: 3389 explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc) HExpression(kCurrentMethod,type,SideEffects::None (),dex_pc)3390 : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) { 3391 } 3392 3393 DECLARE_INSTRUCTION(CurrentMethod); 3394 3395 protected: 3396 DEFAULT_COPY_CONSTRUCTOR(CurrentMethod); 3397 }; 3398 3399 // Fetches an ArtMethod from the virtual table or the interface method table 3400 // of a class. 3401 class HClassTableGet final : public HExpression<1> { 3402 public: 3403 enum class TableKind { 3404 kVTable, 3405 kIMTable, 3406 kLast = kIMTable 3407 }; HClassTableGet(HInstruction * cls,DataType::Type type,TableKind kind,size_t index,uint32_t dex_pc)3408 HClassTableGet(HInstruction* cls, 3409 DataType::Type type, 3410 TableKind kind, 3411 size_t index, 3412 uint32_t dex_pc) 3413 : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc), 3414 index_(index) { 3415 SetPackedField<TableKindField>(kind); 3416 SetRawInputAt(0, cls); 3417 } 3418 IsClonable()3419 bool IsClonable() const override { return true; } CanBeMoved()3420 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other)3421 bool InstructionDataEquals(const HInstruction* other) const override { 3422 return other->AsClassTableGet()->GetIndex() == index_ && 3423 other->AsClassTableGet()->GetPackedFields() == GetPackedFields(); 3424 } 3425 GetTableKind()3426 TableKind GetTableKind() const { return GetPackedField<TableKindField>(); } GetIndex()3427 size_t GetIndex() const { return index_; } 3428 3429 DECLARE_INSTRUCTION(ClassTableGet); 3430 3431 protected: 3432 DEFAULT_COPY_CONSTRUCTOR(ClassTableGet); 3433 3434 private: 3435 static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits; 3436 static constexpr size_t kFieldTableKindSize = 3437 MinimumBitsToStore(static_cast<size_t>(TableKind::kLast)); 3438 static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize; 3439 static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits, 3440 "Too many packed fields."); 3441 using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>; 3442 3443 // The index of the ArtMethod in the table. 3444 const size_t index_; 3445 }; 3446 3447 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will 3448 // have one successor for each entry in the switch table, and the final successor 3449 // will be the block containing the next Dex opcode. 3450 class HPackedSwitch final : public HExpression<1> { 3451 public: 3452 HPackedSwitch(int32_t start_value, 3453 uint32_t num_entries, 3454 HInstruction* input, 3455 uint32_t dex_pc = kNoDexPc) HExpression(kPackedSwitch,SideEffects::None (),dex_pc)3456 : HExpression(kPackedSwitch, SideEffects::None(), dex_pc), 3457 start_value_(start_value), 3458 num_entries_(num_entries) { 3459 SetRawInputAt(0, input); 3460 } 3461 IsClonable()3462 bool IsClonable() const override { return true; } 3463 IsControlFlow()3464 bool IsControlFlow() const override { return true; } 3465 GetStartValue()3466 int32_t GetStartValue() const { return start_value_; } 3467 GetNumEntries()3468 uint32_t GetNumEntries() const { return num_entries_; } 3469 GetDefaultBlock()3470 HBasicBlock* GetDefaultBlock() const { 3471 // Last entry is the default block. 3472 return GetBlock()->GetSuccessors()[num_entries_]; 3473 } 3474 DECLARE_INSTRUCTION(PackedSwitch); 3475 3476 protected: 3477 DEFAULT_COPY_CONSTRUCTOR(PackedSwitch); 3478 3479 private: 3480 const int32_t start_value_; 3481 const uint32_t num_entries_; 3482 }; 3483 3484 class HUnaryOperation : public HExpression<1> { 3485 public: 3486 HUnaryOperation(InstructionKind kind, 3487 DataType::Type result_type, 3488 HInstruction* input, 3489 uint32_t dex_pc = kNoDexPc) HExpression(kind,result_type,SideEffects::None (),dex_pc)3490 : HExpression(kind, result_type, SideEffects::None(), dex_pc) { 3491 SetRawInputAt(0, input); 3492 } 3493 3494 // All of the UnaryOperation instructions are clonable. IsClonable()3495 bool IsClonable() const override { return true; } 3496 GetInput()3497 HInstruction* GetInput() const { return InputAt(0); } GetResultType()3498 DataType::Type GetResultType() const { return GetType(); } 3499 CanBeMoved()3500 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3501 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 3502 return true; 3503 } 3504 3505 // Try to statically evaluate `this` and return a HConstant 3506 // containing the result of this evaluation. If `this` cannot 3507 // be evaluated as a constant, return null. 3508 HConstant* TryStaticEvaluation() const; 3509 3510 // Apply this operation to `x`. 3511 virtual HConstant* Evaluate(HIntConstant* x) const = 0; 3512 virtual HConstant* Evaluate(HLongConstant* x) const = 0; 3513 virtual HConstant* Evaluate(HFloatConstant* x) const = 0; 3514 virtual HConstant* Evaluate(HDoubleConstant* x) const = 0; 3515 3516 DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation); 3517 3518 protected: 3519 DEFAULT_COPY_CONSTRUCTOR(UnaryOperation); 3520 }; 3521 3522 class HBinaryOperation : public HExpression<2> { 3523 public: 3524 HBinaryOperation(InstructionKind kind, 3525 DataType::Type result_type, 3526 HInstruction* left, 3527 HInstruction* right, 3528 SideEffects side_effects = SideEffects::None(), 3529 uint32_t dex_pc = kNoDexPc) HExpression(kind,result_type,side_effects,dex_pc)3530 : HExpression(kind, result_type, side_effects, dex_pc) { 3531 SetRawInputAt(0, left); 3532 SetRawInputAt(1, right); 3533 } 3534 3535 // All of the BinaryOperation instructions are clonable. IsClonable()3536 bool IsClonable() const override { return true; } 3537 GetLeft()3538 HInstruction* GetLeft() const { return InputAt(0); } GetRight()3539 HInstruction* GetRight() const { return InputAt(1); } GetResultType()3540 DataType::Type GetResultType() const { return GetType(); } 3541 IsCommutative()3542 virtual bool IsCommutative() const { return false; } 3543 3544 // Put constant on the right. 3545 // Returns whether order is changed. OrderInputsWithConstantOnTheRight()3546 bool OrderInputsWithConstantOnTheRight() { 3547 HInstruction* left = InputAt(0); 3548 HInstruction* right = InputAt(1); 3549 if (left->IsConstant() && !right->IsConstant()) { 3550 ReplaceInput(right, 0); 3551 ReplaceInput(left, 1); 3552 return true; 3553 } 3554 return false; 3555 } 3556 3557 // Order inputs by instruction id, but favor constant on the right side. 3558 // This helps GVN for commutative ops. OrderInputs()3559 void OrderInputs() { 3560 DCHECK(IsCommutative()); 3561 HInstruction* left = InputAt(0); 3562 HInstruction* right = InputAt(1); 3563 if (left == right || (!left->IsConstant() && right->IsConstant())) { 3564 return; 3565 } 3566 if (OrderInputsWithConstantOnTheRight()) { 3567 return; 3568 } 3569 // Order according to instruction id. 3570 if (left->GetId() > right->GetId()) { 3571 ReplaceInput(right, 0); 3572 ReplaceInput(left, 1); 3573 } 3574 } 3575 CanBeMoved()3576 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3577 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 3578 return true; 3579 } 3580 3581 // Try to statically evaluate `this` and return a HConstant 3582 // containing the result of this evaluation. If `this` cannot 3583 // be evaluated as a constant, return null. 3584 HConstant* TryStaticEvaluation() const; 3585 3586 // Apply this operation to `x` and `y`. Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3587 virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, 3588 HNullConstant* y ATTRIBUTE_UNUSED) const { 3589 LOG(FATAL) << DebugName() << " is not defined for the (null, null) case."; 3590 UNREACHABLE(); 3591 } 3592 virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0; 3593 virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0; Evaluate(HLongConstant * x ATTRIBUTE_UNUSED,HIntConstant * y ATTRIBUTE_UNUSED)3594 virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED, 3595 HIntConstant* y ATTRIBUTE_UNUSED) const { 3596 LOG(FATAL) << DebugName() << " is not defined for the (long, int) case."; 3597 UNREACHABLE(); 3598 } 3599 virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0; 3600 virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0; 3601 3602 // Returns an input that can legally be used as the right input and is 3603 // constant, or null. 3604 HConstant* GetConstantRight() const; 3605 3606 // If `GetConstantRight()` returns one of the input, this returns the other 3607 // one. Otherwise it returns null. 3608 HInstruction* GetLeastConstantLeft() const; 3609 3610 DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation); 3611 3612 protected: 3613 DEFAULT_COPY_CONSTRUCTOR(BinaryOperation); 3614 }; 3615 3616 // The comparison bias applies for floating point operations and indicates how NaN 3617 // comparisons are treated: 3618 enum class ComparisonBias { 3619 kNoBias, // bias is not applicable (i.e. for long operation) 3620 kGtBias, // return 1 for NaN comparisons 3621 kLtBias, // return -1 for NaN comparisons 3622 kLast = kLtBias 3623 }; 3624 3625 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs); 3626 3627 class HCondition : public HBinaryOperation { 3628 public: 3629 HCondition(InstructionKind kind, 3630 HInstruction* first, 3631 HInstruction* second, 3632 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kind,DataType::Type::kBool,first,second,SideEffects::None (),dex_pc)3633 : HBinaryOperation(kind, 3634 DataType::Type::kBool, 3635 first, 3636 second, 3637 SideEffects::None(), 3638 dex_pc) { 3639 SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias); 3640 } 3641 3642 // For code generation purposes, returns whether this instruction is just before 3643 // `instruction`, and disregard moves in between. 3644 bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const; 3645 3646 DECLARE_ABSTRACT_INSTRUCTION(Condition); 3647 3648 virtual IfCondition GetCondition() const = 0; 3649 3650 virtual IfCondition GetOppositeCondition() const = 0; 3651 IsGtBias()3652 bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; } IsLtBias()3653 bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; } 3654 GetBias()3655 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } SetBias(ComparisonBias bias)3656 void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); } 3657 InstructionDataEquals(const HInstruction * other)3658 bool InstructionDataEquals(const HInstruction* other) const override { 3659 return GetPackedFields() == other->AsCondition()->GetPackedFields(); 3660 } 3661 IsFPConditionTrueIfNaN()3662 bool IsFPConditionTrueIfNaN() const { 3663 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 3664 IfCondition if_cond = GetCondition(); 3665 if (if_cond == kCondNE) { 3666 return true; 3667 } else if (if_cond == kCondEQ) { 3668 return false; 3669 } 3670 return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias(); 3671 } 3672 IsFPConditionFalseIfNaN()3673 bool IsFPConditionFalseIfNaN() const { 3674 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 3675 IfCondition if_cond = GetCondition(); 3676 if (if_cond == kCondEQ) { 3677 return true; 3678 } else if (if_cond == kCondNE) { 3679 return false; 3680 } 3681 return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias(); 3682 } 3683 3684 protected: 3685 // Needed if we merge a HCompare into a HCondition. 3686 static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits; 3687 static constexpr size_t kFieldComparisonBiasSize = 3688 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); 3689 static constexpr size_t kNumberOfConditionPackedBits = 3690 kFieldComparisonBias + kFieldComparisonBiasSize; 3691 static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 3692 using ComparisonBiasField = 3693 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; 3694 3695 template <typename T> Compare(T x,T y)3696 int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } 3697 3698 template <typename T> CompareFP(T x,T y)3699 int32_t CompareFP(T x, T y) const { 3700 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 3701 DCHECK_NE(GetBias(), ComparisonBias::kNoBias); 3702 // Handle the bias. 3703 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y); 3704 } 3705 3706 // Return an integer constant containing the result of a condition evaluated at compile time. MakeConstantCondition(bool value,uint32_t dex_pc)3707 HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const { 3708 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); 3709 } 3710 3711 DEFAULT_COPY_CONSTRUCTOR(Condition); 3712 }; 3713 3714 // Instruction to check if two inputs are equal to each other. 3715 class HEqual final : public HCondition { 3716 public: 3717 HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) HCondition(kEqual,first,second,dex_pc)3718 : HCondition(kEqual, first, second, dex_pc) { 3719 } 3720 IsCommutative()3721 bool IsCommutative() const override { return true; } 3722 Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3723 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, 3724 HNullConstant* y ATTRIBUTE_UNUSED) const override { 3725 return MakeConstantCondition(true, GetDexPc()); 3726 } Evaluate(HIntConstant * x,HIntConstant * y)3727 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3728 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3729 } 3730 // In the following Evaluate methods, a HCompare instruction has 3731 // been merged into this HEqual instruction; evaluate it as 3732 // `Compare(x, y) == 0`. Evaluate(HLongConstant * x,HLongConstant * y)3733 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3734 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), 3735 GetDexPc()); 3736 } Evaluate(HFloatConstant * x,HFloatConstant * y)3737 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3738 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3739 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)3740 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3741 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3742 } 3743 3744 DECLARE_INSTRUCTION(Equal); 3745 GetCondition()3746 IfCondition GetCondition() const override { 3747 return kCondEQ; 3748 } 3749 GetOppositeCondition()3750 IfCondition GetOppositeCondition() const override { 3751 return kCondNE; 3752 } 3753 3754 protected: 3755 DEFAULT_COPY_CONSTRUCTOR(Equal); 3756 3757 private: Compute(T x,T y)3758 template <typename T> static bool Compute(T x, T y) { return x == y; } 3759 }; 3760 3761 class HNotEqual final : public HCondition { 3762 public: 3763 HNotEqual(HInstruction* first, HInstruction* second, 3764 uint32_t dex_pc = kNoDexPc) HCondition(kNotEqual,first,second,dex_pc)3765 : HCondition(kNotEqual, first, second, dex_pc) { 3766 } 3767 IsCommutative()3768 bool IsCommutative() const override { return true; } 3769 Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3770 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, 3771 HNullConstant* y ATTRIBUTE_UNUSED) const override { 3772 return MakeConstantCondition(false, GetDexPc()); 3773 } Evaluate(HIntConstant * x,HIntConstant * y)3774 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3775 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3776 } 3777 // In the following Evaluate methods, a HCompare instruction has 3778 // been merged into this HNotEqual instruction; evaluate it as 3779 // `Compare(x, y) != 0`. Evaluate(HLongConstant * x,HLongConstant * y)3780 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3781 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3782 } Evaluate(HFloatConstant * x,HFloatConstant * y)3783 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3784 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3785 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)3786 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3787 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3788 } 3789 3790 DECLARE_INSTRUCTION(NotEqual); 3791 GetCondition()3792 IfCondition GetCondition() const override { 3793 return kCondNE; 3794 } 3795 GetOppositeCondition()3796 IfCondition GetOppositeCondition() const override { 3797 return kCondEQ; 3798 } 3799 3800 protected: 3801 DEFAULT_COPY_CONSTRUCTOR(NotEqual); 3802 3803 private: Compute(T x,T y)3804 template <typename T> static bool Compute(T x, T y) { return x != y; } 3805 }; 3806 3807 class HLessThan final : public HCondition { 3808 public: 3809 HLessThan(HInstruction* first, HInstruction* second, 3810 uint32_t dex_pc = kNoDexPc) HCondition(kLessThan,first,second,dex_pc)3811 : HCondition(kLessThan, first, second, dex_pc) { 3812 } 3813 Evaluate(HIntConstant * x,HIntConstant * y)3814 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3815 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3816 } 3817 // In the following Evaluate methods, a HCompare instruction has 3818 // been merged into this HLessThan instruction; evaluate it as 3819 // `Compare(x, y) < 0`. Evaluate(HLongConstant * x,HLongConstant * y)3820 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3821 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3822 } Evaluate(HFloatConstant * x,HFloatConstant * y)3823 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3824 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3825 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)3826 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3827 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3828 } 3829 3830 DECLARE_INSTRUCTION(LessThan); 3831 GetCondition()3832 IfCondition GetCondition() const override { 3833 return kCondLT; 3834 } 3835 GetOppositeCondition()3836 IfCondition GetOppositeCondition() const override { 3837 return kCondGE; 3838 } 3839 3840 protected: 3841 DEFAULT_COPY_CONSTRUCTOR(LessThan); 3842 3843 private: Compute(T x,T y)3844 template <typename T> static bool Compute(T x, T y) { return x < y; } 3845 }; 3846 3847 class HLessThanOrEqual final : public HCondition { 3848 public: 3849 HLessThanOrEqual(HInstruction* first, HInstruction* second, 3850 uint32_t dex_pc = kNoDexPc) HCondition(kLessThanOrEqual,first,second,dex_pc)3851 : HCondition(kLessThanOrEqual, first, second, dex_pc) { 3852 } 3853 Evaluate(HIntConstant * x,HIntConstant * y)3854 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3855 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3856 } 3857 // In the following Evaluate methods, a HCompare instruction has 3858 // been merged into this HLessThanOrEqual instruction; evaluate it as 3859 // `Compare(x, y) <= 0`. Evaluate(HLongConstant * x,HLongConstant * y)3860 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3861 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3862 } Evaluate(HFloatConstant * x,HFloatConstant * y)3863 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3864 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3865 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)3866 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3867 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3868 } 3869 3870 DECLARE_INSTRUCTION(LessThanOrEqual); 3871 GetCondition()3872 IfCondition GetCondition() const override { 3873 return kCondLE; 3874 } 3875 GetOppositeCondition()3876 IfCondition GetOppositeCondition() const override { 3877 return kCondGT; 3878 } 3879 3880 protected: 3881 DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual); 3882 3883 private: Compute(T x,T y)3884 template <typename T> static bool Compute(T x, T y) { return x <= y; } 3885 }; 3886 3887 class HGreaterThan final : public HCondition { 3888 public: 3889 HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) HCondition(kGreaterThan,first,second,dex_pc)3890 : HCondition(kGreaterThan, first, second, dex_pc) { 3891 } 3892 Evaluate(HIntConstant * x,HIntConstant * y)3893 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3894 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3895 } 3896 // In the following Evaluate methods, a HCompare instruction has 3897 // been merged into this HGreaterThan instruction; evaluate it as 3898 // `Compare(x, y) > 0`. Evaluate(HLongConstant * x,HLongConstant * y)3899 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3900 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3901 } Evaluate(HFloatConstant * x,HFloatConstant * y)3902 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3903 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3904 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)3905 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3906 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3907 } 3908 3909 DECLARE_INSTRUCTION(GreaterThan); 3910 GetCondition()3911 IfCondition GetCondition() const override { 3912 return kCondGT; 3913 } 3914 GetOppositeCondition()3915 IfCondition GetOppositeCondition() const override { 3916 return kCondLE; 3917 } 3918 3919 protected: 3920 DEFAULT_COPY_CONSTRUCTOR(GreaterThan); 3921 3922 private: Compute(T x,T y)3923 template <typename T> static bool Compute(T x, T y) { return x > y; } 3924 }; 3925 3926 class HGreaterThanOrEqual final : public HCondition { 3927 public: 3928 HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) HCondition(kGreaterThanOrEqual,first,second,dex_pc)3929 : HCondition(kGreaterThanOrEqual, first, second, dex_pc) { 3930 } 3931 Evaluate(HIntConstant * x,HIntConstant * y)3932 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3933 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3934 } 3935 // In the following Evaluate methods, a HCompare instruction has 3936 // been merged into this HGreaterThanOrEqual instruction; evaluate it as 3937 // `Compare(x, y) >= 0`. Evaluate(HLongConstant * x,HLongConstant * y)3938 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3939 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3940 } Evaluate(HFloatConstant * x,HFloatConstant * y)3941 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3942 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3943 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)3944 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3945 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3946 } 3947 3948 DECLARE_INSTRUCTION(GreaterThanOrEqual); 3949 GetCondition()3950 IfCondition GetCondition() const override { 3951 return kCondGE; 3952 } 3953 GetOppositeCondition()3954 IfCondition GetOppositeCondition() const override { 3955 return kCondLT; 3956 } 3957 3958 protected: 3959 DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual); 3960 3961 private: Compute(T x,T y)3962 template <typename T> static bool Compute(T x, T y) { return x >= y; } 3963 }; 3964 3965 class HBelow final : public HCondition { 3966 public: 3967 HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) HCondition(kBelow,first,second,dex_pc)3968 : HCondition(kBelow, first, second, dex_pc) { 3969 } 3970 Evaluate(HIntConstant * x,HIntConstant * y)3971 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3972 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3973 } Evaluate(HLongConstant * x,HLongConstant * y)3974 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3975 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3976 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3977 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 3978 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 3979 LOG(FATAL) << DebugName() << " is not defined for float values"; 3980 UNREACHABLE(); 3981 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3982 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 3983 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 3984 LOG(FATAL) << DebugName() << " is not defined for double values"; 3985 UNREACHABLE(); 3986 } 3987 3988 DECLARE_INSTRUCTION(Below); 3989 GetCondition()3990 IfCondition GetCondition() const override { 3991 return kCondB; 3992 } 3993 GetOppositeCondition()3994 IfCondition GetOppositeCondition() const override { 3995 return kCondAE; 3996 } 3997 3998 protected: 3999 DEFAULT_COPY_CONSTRUCTOR(Below); 4000 4001 private: Compute(T x,T y)4002 template <typename T> static bool Compute(T x, T y) { 4003 return MakeUnsigned(x) < MakeUnsigned(y); 4004 } 4005 }; 4006 4007 class HBelowOrEqual final : public HCondition { 4008 public: 4009 HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) HCondition(kBelowOrEqual,first,second,dex_pc)4010 : HCondition(kBelowOrEqual, first, second, dex_pc) { 4011 } 4012 Evaluate(HIntConstant * x,HIntConstant * y)4013 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4014 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4015 } Evaluate(HLongConstant * x,HLongConstant * y)4016 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4017 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4018 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4019 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 4020 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 4021 LOG(FATAL) << DebugName() << " is not defined for float values"; 4022 UNREACHABLE(); 4023 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4024 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 4025 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 4026 LOG(FATAL) << DebugName() << " is not defined for double values"; 4027 UNREACHABLE(); 4028 } 4029 4030 DECLARE_INSTRUCTION(BelowOrEqual); 4031 GetCondition()4032 IfCondition GetCondition() const override { 4033 return kCondBE; 4034 } 4035 GetOppositeCondition()4036 IfCondition GetOppositeCondition() const override { 4037 return kCondA; 4038 } 4039 4040 protected: 4041 DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual); 4042 4043 private: Compute(T x,T y)4044 template <typename T> static bool Compute(T x, T y) { 4045 return MakeUnsigned(x) <= MakeUnsigned(y); 4046 } 4047 }; 4048 4049 class HAbove final : public HCondition { 4050 public: 4051 HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) HCondition(kAbove,first,second,dex_pc)4052 : HCondition(kAbove, first, second, dex_pc) { 4053 } 4054 Evaluate(HIntConstant * x,HIntConstant * y)4055 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4056 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4057 } Evaluate(HLongConstant * x,HLongConstant * y)4058 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4059 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4060 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4061 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 4062 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 4063 LOG(FATAL) << DebugName() << " is not defined for float values"; 4064 UNREACHABLE(); 4065 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4066 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 4067 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 4068 LOG(FATAL) << DebugName() << " is not defined for double values"; 4069 UNREACHABLE(); 4070 } 4071 4072 DECLARE_INSTRUCTION(Above); 4073 GetCondition()4074 IfCondition GetCondition() const override { 4075 return kCondA; 4076 } 4077 GetOppositeCondition()4078 IfCondition GetOppositeCondition() const override { 4079 return kCondBE; 4080 } 4081 4082 protected: 4083 DEFAULT_COPY_CONSTRUCTOR(Above); 4084 4085 private: Compute(T x,T y)4086 template <typename T> static bool Compute(T x, T y) { 4087 return MakeUnsigned(x) > MakeUnsigned(y); 4088 } 4089 }; 4090 4091 class HAboveOrEqual final : public HCondition { 4092 public: 4093 HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) HCondition(kAboveOrEqual,first,second,dex_pc)4094 : HCondition(kAboveOrEqual, first, second, dex_pc) { 4095 } 4096 Evaluate(HIntConstant * x,HIntConstant * y)4097 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4098 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4099 } Evaluate(HLongConstant * x,HLongConstant * y)4100 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4101 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4102 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4103 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 4104 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 4105 LOG(FATAL) << DebugName() << " is not defined for float values"; 4106 UNREACHABLE(); 4107 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4108 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 4109 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 4110 LOG(FATAL) << DebugName() << " is not defined for double values"; 4111 UNREACHABLE(); 4112 } 4113 4114 DECLARE_INSTRUCTION(AboveOrEqual); 4115 GetCondition()4116 IfCondition GetCondition() const override { 4117 return kCondAE; 4118 } 4119 GetOppositeCondition()4120 IfCondition GetOppositeCondition() const override { 4121 return kCondB; 4122 } 4123 4124 protected: 4125 DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual); 4126 4127 private: Compute(T x,T y)4128 template <typename T> static bool Compute(T x, T y) { 4129 return MakeUnsigned(x) >= MakeUnsigned(y); 4130 } 4131 }; 4132 4133 // Instruction to check how two inputs compare to each other. 4134 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1. 4135 class HCompare final : public HBinaryOperation { 4136 public: 4137 // Note that `comparison_type` is the type of comparison performed 4138 // between the comparison's inputs, not the type of the instantiated 4139 // HCompare instruction (which is always DataType::Type::kInt). HCompare(DataType::Type comparison_type,HInstruction * first,HInstruction * second,ComparisonBias bias,uint32_t dex_pc)4140 HCompare(DataType::Type comparison_type, 4141 HInstruction* first, 4142 HInstruction* second, 4143 ComparisonBias bias, 4144 uint32_t dex_pc) 4145 : HBinaryOperation(kCompare, 4146 DataType::Type::kInt32, 4147 first, 4148 second, 4149 SideEffectsForArchRuntimeCalls(comparison_type), 4150 dex_pc) { 4151 SetPackedField<ComparisonBiasField>(bias); 4152 DCHECK_EQ(comparison_type, DataType::Kind(first->GetType())); 4153 DCHECK_EQ(comparison_type, DataType::Kind(second->GetType())); 4154 } 4155 4156 template <typename T> Compute(T x,T y)4157 int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } 4158 4159 template <typename T> ComputeFP(T x,T y)4160 int32_t ComputeFP(T x, T y) const { 4161 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 4162 DCHECK_NE(GetBias(), ComparisonBias::kNoBias); 4163 // Handle the bias. 4164 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y); 4165 } 4166 Evaluate(HIntConstant * x,HIntConstant * y)4167 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4168 // Note that there is no "cmp-int" Dex instruction so we shouldn't 4169 // reach this code path when processing a freshly built HIR 4170 // graph. However HCompare integer instructions can be synthesized 4171 // by the instruction simplifier to implement IntegerCompare and 4172 // IntegerSignum intrinsics, so we have to handle this case. 4173 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4174 } Evaluate(HLongConstant * x,HLongConstant * y)4175 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4176 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4177 } Evaluate(HFloatConstant * x,HFloatConstant * y)4178 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 4179 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 4180 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)4181 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 4182 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 4183 } 4184 InstructionDataEquals(const HInstruction * other)4185 bool InstructionDataEquals(const HInstruction* other) const override { 4186 return GetPackedFields() == other->AsCompare()->GetPackedFields(); 4187 } 4188 GetBias()4189 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } 4190 4191 // Does this compare instruction have a "gt bias" (vs an "lt bias")? 4192 // Only meaningful for floating-point comparisons. IsGtBias()4193 bool IsGtBias() const { 4194 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 4195 return GetBias() == ComparisonBias::kGtBias; 4196 } 4197 SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED)4198 static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) { 4199 // Comparisons do not require a runtime call in any back end. 4200 return SideEffects::None(); 4201 } 4202 4203 DECLARE_INSTRUCTION(Compare); 4204 4205 protected: 4206 static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits; 4207 static constexpr size_t kFieldComparisonBiasSize = 4208 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); 4209 static constexpr size_t kNumberOfComparePackedBits = 4210 kFieldComparisonBias + kFieldComparisonBiasSize; 4211 static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 4212 using ComparisonBiasField = 4213 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; 4214 4215 // Return an integer constant containing the result of a comparison evaluated at compile time. MakeConstantComparison(int32_t value,uint32_t dex_pc)4216 HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const { 4217 DCHECK(value == -1 || value == 0 || value == 1) << value; 4218 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); 4219 } 4220 4221 DEFAULT_COPY_CONSTRUCTOR(Compare); 4222 }; 4223 4224 class HNewInstance final : public HExpression<1> { 4225 public: HNewInstance(HInstruction * cls,uint32_t dex_pc,dex::TypeIndex type_index,const DexFile & dex_file,bool finalizable,QuickEntrypointEnum entrypoint)4226 HNewInstance(HInstruction* cls, 4227 uint32_t dex_pc, 4228 dex::TypeIndex type_index, 4229 const DexFile& dex_file, 4230 bool finalizable, 4231 QuickEntrypointEnum entrypoint) 4232 : HExpression(kNewInstance, 4233 DataType::Type::kReference, 4234 SideEffects::CanTriggerGC(), 4235 dex_pc), 4236 type_index_(type_index), 4237 dex_file_(dex_file), 4238 entrypoint_(entrypoint) { 4239 SetPackedFlag<kFlagFinalizable>(finalizable); 4240 SetRawInputAt(0, cls); 4241 } 4242 IsClonable()4243 bool IsClonable() const override { return true; } 4244 GetTypeIndex()4245 dex::TypeIndex GetTypeIndex() const { return type_index_; } GetDexFile()4246 const DexFile& GetDexFile() const { return dex_file_; } 4247 4248 // Calls runtime so needs an environment. NeedsEnvironment()4249 bool NeedsEnvironment() const override { return true; } 4250 4251 // Can throw errors when out-of-memory or if it's not instantiable/accessible. CanThrow()4252 bool CanThrow() const override { return true; } 4253 NeedsChecks()4254 bool NeedsChecks() const { 4255 return entrypoint_ == kQuickAllocObjectWithChecks; 4256 } 4257 IsFinalizable()4258 bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); } 4259 CanBeNull()4260 bool CanBeNull() const override { return false; } 4261 GetEntrypoint()4262 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } 4263 SetEntrypoint(QuickEntrypointEnum entrypoint)4264 void SetEntrypoint(QuickEntrypointEnum entrypoint) { 4265 entrypoint_ = entrypoint; 4266 } 4267 GetLoadClass()4268 HLoadClass* GetLoadClass() const { 4269 HInstruction* input = InputAt(0); 4270 if (input->IsClinitCheck()) { 4271 input = input->InputAt(0); 4272 } 4273 DCHECK(input->IsLoadClass()); 4274 return input->AsLoadClass(); 4275 } 4276 4277 bool IsStringAlloc() const; 4278 4279 DECLARE_INSTRUCTION(NewInstance); 4280 4281 protected: 4282 DEFAULT_COPY_CONSTRUCTOR(NewInstance); 4283 4284 private: 4285 static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits; 4286 static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1; 4287 static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits, 4288 "Too many packed fields."); 4289 4290 const dex::TypeIndex type_index_; 4291 const DexFile& dex_file_; 4292 QuickEntrypointEnum entrypoint_; 4293 }; 4294 4295 enum IntrinsicNeedsEnvironmentOrCache { 4296 kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache. 4297 kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache. 4298 }; 4299 4300 enum IntrinsicSideEffects { 4301 kNoSideEffects, // Intrinsic does not have any heap memory side effects. 4302 kReadSideEffects, // Intrinsic may read heap memory. 4303 kWriteSideEffects, // Intrinsic may write heap memory. 4304 kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC. 4305 }; 4306 4307 enum IntrinsicExceptions { 4308 kNoThrow, // Intrinsic does not throw any exceptions. 4309 kCanThrow // Intrinsic may throw exceptions. 4310 }; 4311 4312 class HInvoke : public HVariableInputSizeInstruction { 4313 public: 4314 bool NeedsEnvironment() const override; 4315 SetArgumentAt(size_t index,HInstruction * argument)4316 void SetArgumentAt(size_t index, HInstruction* argument) { 4317 SetRawInputAt(index, argument); 4318 } 4319 4320 // Return the number of arguments. This number can be lower than 4321 // the number of inputs returned by InputCount(), as some invoke 4322 // instructions (e.g. HInvokeStaticOrDirect) can have non-argument 4323 // inputs at the end of their list of inputs. GetNumberOfArguments()4324 uint32_t GetNumberOfArguments() const { return number_of_arguments_; } 4325 GetDexMethodIndex()4326 uint32_t GetDexMethodIndex() const { return dex_method_index_; } 4327 GetInvokeType()4328 InvokeType GetInvokeType() const { 4329 return GetPackedField<InvokeTypeField>(); 4330 } 4331 GetIntrinsic()4332 Intrinsics GetIntrinsic() const { 4333 return intrinsic_; 4334 } 4335 4336 void SetIntrinsic(Intrinsics intrinsic, 4337 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache, 4338 IntrinsicSideEffects side_effects, 4339 IntrinsicExceptions exceptions); 4340 IsFromInlinedInvoke()4341 bool IsFromInlinedInvoke() const { 4342 return GetEnvironment()->IsFromInlinedInvoke(); 4343 } 4344 SetCanThrow(bool can_throw)4345 void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); } 4346 CanThrow()4347 bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); } 4348 SetAlwaysThrows(bool always_throws)4349 void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); } 4350 AlwaysThrows()4351 bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); } 4352 CanBeMoved()4353 bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); } 4354 InstructionDataEquals(const HInstruction * other)4355 bool InstructionDataEquals(const HInstruction* other) const override { 4356 return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_; 4357 } 4358 GetIntrinsicOptimizations()4359 uint32_t* GetIntrinsicOptimizations() { 4360 return &intrinsic_optimizations_; 4361 } 4362 GetIntrinsicOptimizations()4363 const uint32_t* GetIntrinsicOptimizations() const { 4364 return &intrinsic_optimizations_; 4365 } 4366 IsIntrinsic()4367 bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; } 4368 GetResolvedMethod()4369 ArtMethod* GetResolvedMethod() const { return resolved_method_; } 4370 void SetResolvedMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_); 4371 4372 DECLARE_ABSTRACT_INSTRUCTION(Invoke); 4373 4374 protected: 4375 static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits; 4376 static constexpr size_t kFieldInvokeTypeSize = 4377 MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); 4378 static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize; 4379 static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1; 4380 static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1; 4381 static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 4382 using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>; 4383 HInvoke(InstructionKind kind,ArenaAllocator * allocator,uint32_t number_of_arguments,uint32_t number_of_other_inputs,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,InvokeType invoke_type)4384 HInvoke(InstructionKind kind, 4385 ArenaAllocator* allocator, 4386 uint32_t number_of_arguments, 4387 uint32_t number_of_other_inputs, 4388 DataType::Type return_type, 4389 uint32_t dex_pc, 4390 uint32_t dex_method_index, 4391 ArtMethod* resolved_method, 4392 InvokeType invoke_type) 4393 : HVariableInputSizeInstruction( 4394 kind, 4395 return_type, 4396 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. 4397 dex_pc, 4398 allocator, 4399 number_of_arguments + number_of_other_inputs, 4400 kArenaAllocInvokeInputs), 4401 number_of_arguments_(number_of_arguments), 4402 dex_method_index_(dex_method_index), 4403 intrinsic_(Intrinsics::kNone), 4404 intrinsic_optimizations_(0) { 4405 SetPackedField<InvokeTypeField>(invoke_type); 4406 SetPackedFlag<kFlagCanThrow>(true); 4407 // Check mutator lock, constructors lack annotalysis support. 4408 Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current()); 4409 SetResolvedMethod(resolved_method); 4410 } 4411 4412 DEFAULT_COPY_CONSTRUCTOR(Invoke); 4413 4414 uint32_t number_of_arguments_; 4415 ArtMethod* resolved_method_; 4416 const uint32_t dex_method_index_; 4417 Intrinsics intrinsic_; 4418 4419 // A magic word holding optimizations for intrinsics. See intrinsics.h. 4420 uint32_t intrinsic_optimizations_; 4421 }; 4422 4423 class HInvokeUnresolved final : public HInvoke { 4424 public: HInvokeUnresolved(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,InvokeType invoke_type)4425 HInvokeUnresolved(ArenaAllocator* allocator, 4426 uint32_t number_of_arguments, 4427 DataType::Type return_type, 4428 uint32_t dex_pc, 4429 uint32_t dex_method_index, 4430 InvokeType invoke_type) 4431 : HInvoke(kInvokeUnresolved, 4432 allocator, 4433 number_of_arguments, 4434 /* number_of_other_inputs= */ 0u, 4435 return_type, 4436 dex_pc, 4437 dex_method_index, 4438 nullptr, 4439 invoke_type) { 4440 } 4441 IsClonable()4442 bool IsClonable() const override { return true; } 4443 4444 DECLARE_INSTRUCTION(InvokeUnresolved); 4445 4446 protected: 4447 DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved); 4448 }; 4449 4450 class HInvokePolymorphic final : public HInvoke { 4451 public: HInvokePolymorphic(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index)4452 HInvokePolymorphic(ArenaAllocator* allocator, 4453 uint32_t number_of_arguments, 4454 DataType::Type return_type, 4455 uint32_t dex_pc, 4456 uint32_t dex_method_index) 4457 : HInvoke(kInvokePolymorphic, 4458 allocator, 4459 number_of_arguments, 4460 /* number_of_other_inputs= */ 0u, 4461 return_type, 4462 dex_pc, 4463 dex_method_index, 4464 nullptr, 4465 kVirtual) { 4466 } 4467 IsClonable()4468 bool IsClonable() const override { return true; } 4469 4470 DECLARE_INSTRUCTION(InvokePolymorphic); 4471 4472 protected: 4473 DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic); 4474 }; 4475 4476 class HInvokeCustom final : public HInvoke { 4477 public: HInvokeCustom(ArenaAllocator * allocator,uint32_t number_of_arguments,uint32_t call_site_index,DataType::Type return_type,uint32_t dex_pc)4478 HInvokeCustom(ArenaAllocator* allocator, 4479 uint32_t number_of_arguments, 4480 uint32_t call_site_index, 4481 DataType::Type return_type, 4482 uint32_t dex_pc) 4483 : HInvoke(kInvokeCustom, 4484 allocator, 4485 number_of_arguments, 4486 /* number_of_other_inputs= */ 0u, 4487 return_type, 4488 dex_pc, 4489 /* dex_method_index= */ dex::kDexNoIndex, 4490 /* resolved_method= */ nullptr, 4491 kStatic), 4492 call_site_index_(call_site_index) { 4493 } 4494 GetCallSiteIndex()4495 uint32_t GetCallSiteIndex() const { return call_site_index_; } 4496 IsClonable()4497 bool IsClonable() const override { return true; } 4498 4499 DECLARE_INSTRUCTION(InvokeCustom); 4500 4501 protected: 4502 DEFAULT_COPY_CONSTRUCTOR(InvokeCustom); 4503 4504 private: 4505 uint32_t call_site_index_; 4506 }; 4507 4508 class HInvokeStaticOrDirect final : public HInvoke { 4509 public: 4510 // Requirements of this method call regarding the class 4511 // initialization (clinit) check of its declaring class. 4512 enum class ClinitCheckRequirement { 4513 kNone, // Class already initialized. 4514 kExplicit, // Static call having explicit clinit check as last input. 4515 kImplicit, // Static call implicitly requiring a clinit check. 4516 kLast = kImplicit 4517 }; 4518 4519 // Determines how to load the target ArtMethod*. 4520 enum class MethodLoadKind { 4521 // Use a String init ArtMethod* loaded from Thread entrypoints. 4522 kStringInit, 4523 4524 // Use the method's own ArtMethod* loaded by the register allocator. 4525 kRecursive, 4526 4527 // Use PC-relative boot image ArtMethod* address that will be known at link time. 4528 // Used for boot image methods referenced by boot image code. 4529 kBootImageLinkTimePcRelative, 4530 4531 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. 4532 // Used for app->boot calls with relocatable image. 4533 kBootImageRelRo, 4534 4535 // Load from an entry in the .bss section using a PC-relative load. 4536 // Used for methods outside boot image referenced by AOT-compiled app and boot image code. 4537 kBssEntry, 4538 4539 // Use ArtMethod* at a known address, embed the direct address in the code. 4540 // Used for for JIT-compiled calls. 4541 kJitDirectAddress, 4542 4543 // Make a runtime call to resolve and call the method. This is the last-resort-kind 4544 // used when other kinds are unimplemented on a particular architecture. 4545 kRuntimeCall, 4546 }; 4547 4548 // Determines the location of the code pointer. 4549 enum class CodePtrLocation { 4550 // Recursive call, use local PC-relative call instruction. 4551 kCallSelf, 4552 4553 // Use code pointer from the ArtMethod*. 4554 // Used when we don't know the target code. This is also the last-resort-kind used when 4555 // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture. 4556 kCallArtMethod, 4557 }; 4558 4559 struct DispatchInfo { 4560 MethodLoadKind method_load_kind; 4561 CodePtrLocation code_ptr_location; 4562 // The method load data holds 4563 // - thread entrypoint offset for kStringInit method if this is a string init invoke. 4564 // Note that there are multiple string init methods, each having its own offset. 4565 // - the method address for kDirectAddress 4566 uint64_t method_load_data; 4567 }; 4568 HInvokeStaticOrDirect(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t method_index,ArtMethod * resolved_method,DispatchInfo dispatch_info,InvokeType invoke_type,MethodReference target_method,ClinitCheckRequirement clinit_check_requirement)4569 HInvokeStaticOrDirect(ArenaAllocator* allocator, 4570 uint32_t number_of_arguments, 4571 DataType::Type return_type, 4572 uint32_t dex_pc, 4573 uint32_t method_index, 4574 ArtMethod* resolved_method, 4575 DispatchInfo dispatch_info, 4576 InvokeType invoke_type, 4577 MethodReference target_method, 4578 ClinitCheckRequirement clinit_check_requirement) 4579 : HInvoke(kInvokeStaticOrDirect, 4580 allocator, 4581 number_of_arguments, 4582 // There is potentially one extra argument for the HCurrentMethod node, and 4583 // potentially one other if the clinit check is explicit. 4584 (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) + 4585 (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u), 4586 return_type, 4587 dex_pc, 4588 method_index, 4589 resolved_method, 4590 invoke_type), 4591 target_method_(target_method), 4592 dispatch_info_(dispatch_info) { 4593 SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement); 4594 } 4595 IsClonable()4596 bool IsClonable() const override { return true; } 4597 SetDispatchInfo(const DispatchInfo & dispatch_info)4598 void SetDispatchInfo(const DispatchInfo& dispatch_info) { 4599 bool had_current_method_input = HasCurrentMethodInput(); 4600 bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind); 4601 4602 // Using the current method is the default and once we find a better 4603 // method load kind, we should not go back to using the current method. 4604 DCHECK(had_current_method_input || !needs_current_method_input); 4605 4606 if (had_current_method_input && !needs_current_method_input) { 4607 DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod()); 4608 RemoveInputAt(GetSpecialInputIndex()); 4609 } 4610 dispatch_info_ = dispatch_info; 4611 } 4612 GetDispatchInfo()4613 DispatchInfo GetDispatchInfo() const { 4614 return dispatch_info_; 4615 } 4616 AddSpecialInput(HInstruction * input)4617 void AddSpecialInput(HInstruction* input) { 4618 // We allow only one special input. 4619 DCHECK(!IsStringInit() && !HasCurrentMethodInput()); 4620 DCHECK(InputCount() == GetSpecialInputIndex() || 4621 (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck())); 4622 InsertInputAt(GetSpecialInputIndex(), input); 4623 } 4624 4625 using HInstruction::GetInputRecords; // Keep the const version visible. GetInputRecords()4626 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override { 4627 ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords(); 4628 if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) { 4629 DCHECK(!input_records.empty()); 4630 DCHECK_GT(input_records.size(), GetNumberOfArguments()); 4631 HInstruction* last_input = input_records.back().GetInstruction(); 4632 // Note: `last_input` may be null during arguments setup. 4633 if (last_input != nullptr) { 4634 // `last_input` is the last input of a static invoke marked as having 4635 // an explicit clinit check. It must either be: 4636 // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or 4637 // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation. 4638 DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName(); 4639 } 4640 } 4641 return input_records; 4642 } 4643 CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)4644 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { 4645 // We access the method via the dex cache so we can't do an implicit null check. 4646 // TODO: for intrinsics we can generate implicit null checks. 4647 return false; 4648 } 4649 CanBeNull()4650 bool CanBeNull() const override { 4651 return GetType() == DataType::Type::kReference && !IsStringInit(); 4652 } 4653 4654 // Get the index of the special input, if any. 4655 // 4656 // If the invoke HasCurrentMethodInput(), the "special input" is the current 4657 // method pointer; otherwise there may be one platform-specific special input, 4658 // such as PC-relative addressing base. GetSpecialInputIndex()4659 uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); } HasSpecialInput()4660 bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); } 4661 GetMethodLoadKind()4662 MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; } GetCodePtrLocation()4663 CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; } IsRecursive()4664 bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; } 4665 bool NeedsDexCacheOfDeclaringClass() const override; IsStringInit()4666 bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; } HasMethodAddress()4667 bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; } HasPcRelativeMethodLoadKind()4668 bool HasPcRelativeMethodLoadKind() const { 4669 return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative || 4670 GetMethodLoadKind() == MethodLoadKind::kBootImageRelRo || 4671 GetMethodLoadKind() == MethodLoadKind::kBssEntry; 4672 } HasCurrentMethodInput()4673 bool HasCurrentMethodInput() const { 4674 // This function can be called only after the invoke has been fully initialized by the builder. 4675 if (NeedsCurrentMethodInput(GetMethodLoadKind())) { 4676 DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod()); 4677 return true; 4678 } else { 4679 DCHECK(InputCount() == GetSpecialInputIndex() || 4680 !InputAt(GetSpecialInputIndex())->IsCurrentMethod()); 4681 return false; 4682 } 4683 } 4684 GetStringInitEntryPoint()4685 QuickEntrypointEnum GetStringInitEntryPoint() const { 4686 DCHECK(IsStringInit()); 4687 return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data); 4688 } 4689 GetMethodAddress()4690 uint64_t GetMethodAddress() const { 4691 DCHECK(HasMethodAddress()); 4692 return dispatch_info_.method_load_data; 4693 } 4694 4695 const DexFile& GetDexFileForPcRelativeDexCache() const; 4696 GetClinitCheckRequirement()4697 ClinitCheckRequirement GetClinitCheckRequirement() const { 4698 return GetPackedField<ClinitCheckRequirementField>(); 4699 } 4700 4701 // Is this instruction a call to a static method? IsStatic()4702 bool IsStatic() const { 4703 return GetInvokeType() == kStatic; 4704 } 4705 GetTargetMethod()4706 MethodReference GetTargetMethod() const { 4707 return target_method_; 4708 } 4709 4710 // Remove the HClinitCheck or the replacement HLoadClass (set as last input by 4711 // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck) 4712 // instruction; only relevant for static calls with explicit clinit check. RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement)4713 void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) { 4714 DCHECK(IsStaticWithExplicitClinitCheck()); 4715 size_t last_input_index = inputs_.size() - 1u; 4716 HInstruction* last_input = inputs_.back().GetInstruction(); 4717 DCHECK(last_input != nullptr); 4718 DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName(); 4719 RemoveAsUserOfInput(last_input_index); 4720 inputs_.pop_back(); 4721 SetPackedField<ClinitCheckRequirementField>(new_requirement); 4722 DCHECK(!IsStaticWithExplicitClinitCheck()); 4723 } 4724 4725 // Is this a call to a static method whose declaring class has an 4726 // explicit initialization check in the graph? IsStaticWithExplicitClinitCheck()4727 bool IsStaticWithExplicitClinitCheck() const { 4728 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit); 4729 } 4730 4731 // Is this a call to a static method whose declaring class has an 4732 // implicit intialization check requirement? IsStaticWithImplicitClinitCheck()4733 bool IsStaticWithImplicitClinitCheck() const { 4734 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit); 4735 } 4736 4737 // Does this method load kind need the current method as an input? NeedsCurrentMethodInput(MethodLoadKind kind)4738 static bool NeedsCurrentMethodInput(MethodLoadKind kind) { 4739 return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kRuntimeCall; 4740 } 4741 4742 DECLARE_INSTRUCTION(InvokeStaticOrDirect); 4743 4744 protected: 4745 DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect); 4746 4747 private: 4748 static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits; 4749 static constexpr size_t kFieldClinitCheckRequirementSize = 4750 MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast)); 4751 static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits = 4752 kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize; 4753 static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits, 4754 "Too many packed fields."); 4755 using ClinitCheckRequirementField = BitField<ClinitCheckRequirement, 4756 kFieldClinitCheckRequirement, 4757 kFieldClinitCheckRequirementSize>; 4758 4759 // Cached values of the resolved method, to avoid needing the mutator lock. 4760 const MethodReference target_method_; 4761 DispatchInfo dispatch_info_; 4762 }; 4763 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs); 4764 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs); 4765 4766 class HInvokeVirtual final : public HInvoke { 4767 public: HInvokeVirtual(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t vtable_index)4768 HInvokeVirtual(ArenaAllocator* allocator, 4769 uint32_t number_of_arguments, 4770 DataType::Type return_type, 4771 uint32_t dex_pc, 4772 uint32_t dex_method_index, 4773 ArtMethod* resolved_method, 4774 uint32_t vtable_index) 4775 : HInvoke(kInvokeVirtual, 4776 allocator, 4777 number_of_arguments, 4778 0u, 4779 return_type, 4780 dex_pc, 4781 dex_method_index, 4782 resolved_method, 4783 kVirtual), 4784 vtable_index_(vtable_index) { 4785 } 4786 IsClonable()4787 bool IsClonable() const override { return true; } 4788 CanBeNull()4789 bool CanBeNull() const override { 4790 switch (GetIntrinsic()) { 4791 case Intrinsics::kThreadCurrentThread: 4792 case Intrinsics::kStringBufferAppend: 4793 case Intrinsics::kStringBufferToString: 4794 case Intrinsics::kStringBuilderAppendObject: 4795 case Intrinsics::kStringBuilderAppendString: 4796 case Intrinsics::kStringBuilderAppendCharSequence: 4797 case Intrinsics::kStringBuilderAppendCharArray: 4798 case Intrinsics::kStringBuilderAppendBoolean: 4799 case Intrinsics::kStringBuilderAppendChar: 4800 case Intrinsics::kStringBuilderAppendInt: 4801 case Intrinsics::kStringBuilderAppendLong: 4802 case Intrinsics::kStringBuilderAppendFloat: 4803 case Intrinsics::kStringBuilderAppendDouble: 4804 case Intrinsics::kStringBuilderToString: 4805 return false; 4806 default: 4807 return HInvoke::CanBeNull(); 4808 } 4809 } 4810 CanDoImplicitNullCheckOn(HInstruction * obj)4811 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 4812 // TODO: Add implicit null checks in intrinsics. 4813 return (obj == InputAt(0)) && !IsIntrinsic(); 4814 } 4815 GetVTableIndex()4816 uint32_t GetVTableIndex() const { return vtable_index_; } 4817 4818 DECLARE_INSTRUCTION(InvokeVirtual); 4819 4820 protected: 4821 DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual); 4822 4823 private: 4824 // Cached value of the resolved method, to avoid needing the mutator lock. 4825 const uint32_t vtable_index_; 4826 }; 4827 4828 class HInvokeInterface final : public HInvoke { 4829 public: HInvokeInterface(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t imt_index)4830 HInvokeInterface(ArenaAllocator* allocator, 4831 uint32_t number_of_arguments, 4832 DataType::Type return_type, 4833 uint32_t dex_pc, 4834 uint32_t dex_method_index, 4835 ArtMethod* resolved_method, 4836 uint32_t imt_index) 4837 : HInvoke(kInvokeInterface, 4838 allocator, 4839 number_of_arguments, 4840 0u, 4841 return_type, 4842 dex_pc, 4843 dex_method_index, 4844 resolved_method, 4845 kInterface), 4846 imt_index_(imt_index) { 4847 } 4848 IsClonable()4849 bool IsClonable() const override { return true; } 4850 CanDoImplicitNullCheckOn(HInstruction * obj)4851 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 4852 // TODO: Add implicit null checks in intrinsics. 4853 return (obj == InputAt(0)) && !IsIntrinsic(); 4854 } 4855 NeedsDexCacheOfDeclaringClass()4856 bool NeedsDexCacheOfDeclaringClass() const override { 4857 // The assembly stub currently needs it. 4858 return true; 4859 } 4860 GetImtIndex()4861 uint32_t GetImtIndex() const { return imt_index_; } 4862 4863 DECLARE_INSTRUCTION(InvokeInterface); 4864 4865 protected: 4866 DEFAULT_COPY_CONSTRUCTOR(InvokeInterface); 4867 4868 private: 4869 // Cached value of the resolved method, to avoid needing the mutator lock. 4870 const uint32_t imt_index_; 4871 }; 4872 4873 class HNeg final : public HUnaryOperation { 4874 public: 4875 HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) HUnaryOperation(kNeg,result_type,input,dex_pc)4876 : HUnaryOperation(kNeg, result_type, input, dex_pc) { 4877 DCHECK_EQ(result_type, DataType::Kind(input->GetType())); 4878 } 4879 Compute(T x)4880 template <typename T> static T Compute(T x) { return -x; } 4881 Evaluate(HIntConstant * x)4882 HConstant* Evaluate(HIntConstant* x) const override { 4883 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); 4884 } Evaluate(HLongConstant * x)4885 HConstant* Evaluate(HLongConstant* x) const override { 4886 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); 4887 } Evaluate(HFloatConstant * x)4888 HConstant* Evaluate(HFloatConstant* x) const override { 4889 return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc()); 4890 } Evaluate(HDoubleConstant * x)4891 HConstant* Evaluate(HDoubleConstant* x) const override { 4892 return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc()); 4893 } 4894 4895 DECLARE_INSTRUCTION(Neg); 4896 4897 protected: 4898 DEFAULT_COPY_CONSTRUCTOR(Neg); 4899 }; 4900 4901 class HNewArray final : public HExpression<2> { 4902 public: HNewArray(HInstruction * cls,HInstruction * length,uint32_t dex_pc,size_t component_size_shift)4903 HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift) 4904 : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) { 4905 SetRawInputAt(0, cls); 4906 SetRawInputAt(1, length); 4907 SetPackedField<ComponentSizeShiftField>(component_size_shift); 4908 } 4909 IsClonable()4910 bool IsClonable() const override { return true; } 4911 4912 // Calls runtime so needs an environment. NeedsEnvironment()4913 bool NeedsEnvironment() const override { return true; } 4914 4915 // May throw NegativeArraySizeException, OutOfMemoryError, etc. CanThrow()4916 bool CanThrow() const override { return true; } 4917 CanBeNull()4918 bool CanBeNull() const override { return false; } 4919 GetLoadClass()4920 HLoadClass* GetLoadClass() const { 4921 DCHECK(InputAt(0)->IsLoadClass()); 4922 return InputAt(0)->AsLoadClass(); 4923 } 4924 GetLength()4925 HInstruction* GetLength() const { 4926 return InputAt(1); 4927 } 4928 GetComponentSizeShift()4929 size_t GetComponentSizeShift() { 4930 return GetPackedField<ComponentSizeShiftField>(); 4931 } 4932 4933 DECLARE_INSTRUCTION(NewArray); 4934 4935 protected: 4936 DEFAULT_COPY_CONSTRUCTOR(NewArray); 4937 4938 private: 4939 static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits; 4940 static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u); 4941 static constexpr size_t kNumberOfNewArrayPackedBits = 4942 kFieldComponentSizeShift + kFieldComponentSizeShiftSize; 4943 static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 4944 using ComponentSizeShiftField = 4945 BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>; 4946 }; 4947 4948 class HAdd final : public HBinaryOperation { 4949 public: 4950 HAdd(DataType::Type result_type, 4951 HInstruction* left, 4952 HInstruction* right, 4953 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kAdd,result_type,left,right,SideEffects::None (),dex_pc)4954 : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) { 4955 } 4956 IsCommutative()4957 bool IsCommutative() const override { return true; } 4958 Compute(T x,T y)4959 template <typename T> static T Compute(T x, T y) { return x + y; } 4960 Evaluate(HIntConstant * x,HIntConstant * y)4961 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4962 return GetBlock()->GetGraph()->GetIntConstant( 4963 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4964 } Evaluate(HLongConstant * x,HLongConstant * y)4965 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4966 return GetBlock()->GetGraph()->GetLongConstant( 4967 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4968 } Evaluate(HFloatConstant * x,HFloatConstant * y)4969 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 4970 return GetBlock()->GetGraph()->GetFloatConstant( 4971 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4972 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)4973 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 4974 return GetBlock()->GetGraph()->GetDoubleConstant( 4975 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4976 } 4977 4978 DECLARE_INSTRUCTION(Add); 4979 4980 protected: 4981 DEFAULT_COPY_CONSTRUCTOR(Add); 4982 }; 4983 4984 class HSub final : public HBinaryOperation { 4985 public: 4986 HSub(DataType::Type result_type, 4987 HInstruction* left, 4988 HInstruction* right, 4989 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kSub,result_type,left,right,SideEffects::None (),dex_pc)4990 : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) { 4991 } 4992 Compute(T x,T y)4993 template <typename T> static T Compute(T x, T y) { return x - y; } 4994 Evaluate(HIntConstant * x,HIntConstant * y)4995 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4996 return GetBlock()->GetGraph()->GetIntConstant( 4997 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4998 } Evaluate(HLongConstant * x,HLongConstant * y)4999 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5000 return GetBlock()->GetGraph()->GetLongConstant( 5001 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5002 } Evaluate(HFloatConstant * x,HFloatConstant * y)5003 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 5004 return GetBlock()->GetGraph()->GetFloatConstant( 5005 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5006 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)5007 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 5008 return GetBlock()->GetGraph()->GetDoubleConstant( 5009 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5010 } 5011 5012 DECLARE_INSTRUCTION(Sub); 5013 5014 protected: 5015 DEFAULT_COPY_CONSTRUCTOR(Sub); 5016 }; 5017 5018 class HMul final : public HBinaryOperation { 5019 public: 5020 HMul(DataType::Type result_type, 5021 HInstruction* left, 5022 HInstruction* right, 5023 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kMul,result_type,left,right,SideEffects::None (),dex_pc)5024 : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) { 5025 } 5026 IsCommutative()5027 bool IsCommutative() const override { return true; } 5028 Compute(T x,T y)5029 template <typename T> static T Compute(T x, T y) { return x * y; } 5030 Evaluate(HIntConstant * x,HIntConstant * y)5031 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5032 return GetBlock()->GetGraph()->GetIntConstant( 5033 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5034 } Evaluate(HLongConstant * x,HLongConstant * y)5035 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5036 return GetBlock()->GetGraph()->GetLongConstant( 5037 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5038 } Evaluate(HFloatConstant * x,HFloatConstant * y)5039 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 5040 return GetBlock()->GetGraph()->GetFloatConstant( 5041 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5042 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)5043 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 5044 return GetBlock()->GetGraph()->GetDoubleConstant( 5045 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5046 } 5047 5048 DECLARE_INSTRUCTION(Mul); 5049 5050 protected: 5051 DEFAULT_COPY_CONSTRUCTOR(Mul); 5052 }; 5053 5054 class HDiv final : public HBinaryOperation { 5055 public: HDiv(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5056 HDiv(DataType::Type result_type, 5057 HInstruction* left, 5058 HInstruction* right, 5059 uint32_t dex_pc) 5060 : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) { 5061 } 5062 5063 template <typename T> ComputeIntegral(T x,T y)5064 T ComputeIntegral(T x, T y) const { 5065 DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType(); 5066 // Our graph structure ensures we never have 0 for `y` during 5067 // constant folding. 5068 DCHECK_NE(y, 0); 5069 // Special case -1 to avoid getting a SIGFPE on x86(_64). 5070 return (y == -1) ? -x : x / y; 5071 } 5072 5073 template <typename T> ComputeFP(T x,T y)5074 T ComputeFP(T x, T y) const { 5075 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); 5076 return x / y; 5077 } 5078 Evaluate(HIntConstant * x,HIntConstant * y)5079 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5080 return GetBlock()->GetGraph()->GetIntConstant( 5081 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5082 } Evaluate(HLongConstant * x,HLongConstant * y)5083 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5084 return GetBlock()->GetGraph()->GetLongConstant( 5085 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5086 } Evaluate(HFloatConstant * x,HFloatConstant * y)5087 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 5088 return GetBlock()->GetGraph()->GetFloatConstant( 5089 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 5090 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)5091 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 5092 return GetBlock()->GetGraph()->GetDoubleConstant( 5093 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 5094 } 5095 5096 DECLARE_INSTRUCTION(Div); 5097 5098 protected: 5099 DEFAULT_COPY_CONSTRUCTOR(Div); 5100 }; 5101 5102 class HRem final : public HBinaryOperation { 5103 public: HRem(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5104 HRem(DataType::Type result_type, 5105 HInstruction* left, 5106 HInstruction* right, 5107 uint32_t dex_pc) 5108 : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) { 5109 } 5110 5111 template <typename T> ComputeIntegral(T x,T y)5112 T ComputeIntegral(T x, T y) const { 5113 DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType(); 5114 // Our graph structure ensures we never have 0 for `y` during 5115 // constant folding. 5116 DCHECK_NE(y, 0); 5117 // Special case -1 to avoid getting a SIGFPE on x86(_64). 5118 return (y == -1) ? 0 : x % y; 5119 } 5120 5121 template <typename T> ComputeFP(T x,T y)5122 T ComputeFP(T x, T y) const { 5123 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); 5124 return std::fmod(x, y); 5125 } 5126 Evaluate(HIntConstant * x,HIntConstant * y)5127 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5128 return GetBlock()->GetGraph()->GetIntConstant( 5129 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5130 } Evaluate(HLongConstant * x,HLongConstant * y)5131 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5132 return GetBlock()->GetGraph()->GetLongConstant( 5133 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5134 } Evaluate(HFloatConstant * x,HFloatConstant * y)5135 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 5136 return GetBlock()->GetGraph()->GetFloatConstant( 5137 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 5138 } Evaluate(HDoubleConstant * x,HDoubleConstant * y)5139 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 5140 return GetBlock()->GetGraph()->GetDoubleConstant( 5141 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 5142 } 5143 5144 DECLARE_INSTRUCTION(Rem); 5145 5146 protected: 5147 DEFAULT_COPY_CONSTRUCTOR(Rem); 5148 }; 5149 5150 class HMin final : public HBinaryOperation { 5151 public: HMin(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5152 HMin(DataType::Type result_type, 5153 HInstruction* left, 5154 HInstruction* right, 5155 uint32_t dex_pc) 5156 : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {} 5157 IsCommutative()5158 bool IsCommutative() const override { return true; } 5159 5160 // Evaluation for integral values. ComputeIntegral(T x,T y)5161 template <typename T> static T ComputeIntegral(T x, T y) { 5162 return (x <= y) ? x : y; 5163 } 5164 Evaluate(HIntConstant * x,HIntConstant * y)5165 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5166 return GetBlock()->GetGraph()->GetIntConstant( 5167 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5168 } Evaluate(HLongConstant * x,HLongConstant * y)5169 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5170 return GetBlock()->GetGraph()->GetLongConstant( 5171 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5172 } 5173 // TODO: Evaluation for floating-point values. Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5174 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5175 HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5176 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5177 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } 5178 5179 DECLARE_INSTRUCTION(Min); 5180 5181 protected: 5182 DEFAULT_COPY_CONSTRUCTOR(Min); 5183 }; 5184 5185 class HMax final : public HBinaryOperation { 5186 public: HMax(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5187 HMax(DataType::Type result_type, 5188 HInstruction* left, 5189 HInstruction* right, 5190 uint32_t dex_pc) 5191 : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {} 5192 IsCommutative()5193 bool IsCommutative() const override { return true; } 5194 5195 // Evaluation for integral values. ComputeIntegral(T x,T y)5196 template <typename T> static T ComputeIntegral(T x, T y) { 5197 return (x >= y) ? x : y; 5198 } 5199 Evaluate(HIntConstant * x,HIntConstant * y)5200 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5201 return GetBlock()->GetGraph()->GetIntConstant( 5202 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5203 } Evaluate(HLongConstant * x,HLongConstant * y)5204 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5205 return GetBlock()->GetGraph()->GetLongConstant( 5206 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5207 } 5208 // TODO: Evaluation for floating-point values. Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5209 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5210 HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5211 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5212 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } 5213 5214 DECLARE_INSTRUCTION(Max); 5215 5216 protected: 5217 DEFAULT_COPY_CONSTRUCTOR(Max); 5218 }; 5219 5220 class HAbs final : public HUnaryOperation { 5221 public: 5222 HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) HUnaryOperation(kAbs,result_type,input,dex_pc)5223 : HUnaryOperation(kAbs, result_type, input, dex_pc) {} 5224 5225 // Evaluation for integral values. ComputeIntegral(T x)5226 template <typename T> static T ComputeIntegral(T x) { 5227 return x < 0 ? -x : x; 5228 } 5229 5230 // Evaluation for floating-point values. 5231 // Note, as a "quality of implementation", rather than pure "spec compliance", 5232 // we require that Math.abs() clears the sign bit (but changes nothing else) 5233 // for all floating-point numbers, including NaN (signaling NaN may become quiet though). 5234 // http://b/30758343 ComputeFP(T x)5235 template <typename T, typename S> static T ComputeFP(T x) { 5236 S bits = bit_cast<S, T>(x); 5237 return bit_cast<T, S>(bits & std::numeric_limits<S>::max()); 5238 } 5239 Evaluate(HIntConstant * x)5240 HConstant* Evaluate(HIntConstant* x) const override { 5241 return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc()); 5242 } Evaluate(HLongConstant * x)5243 HConstant* Evaluate(HLongConstant* x) const override { 5244 return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc()); 5245 } Evaluate(HFloatConstant * x)5246 HConstant* Evaluate(HFloatConstant* x) const override { 5247 return GetBlock()->GetGraph()->GetFloatConstant( 5248 ComputeFP<float, int32_t>(x->GetValue()), GetDexPc()); 5249 } Evaluate(HDoubleConstant * x)5250 HConstant* Evaluate(HDoubleConstant* x) const override { 5251 return GetBlock()->GetGraph()->GetDoubleConstant( 5252 ComputeFP<double, int64_t>(x->GetValue()), GetDexPc()); 5253 } 5254 5255 DECLARE_INSTRUCTION(Abs); 5256 5257 protected: 5258 DEFAULT_COPY_CONSTRUCTOR(Abs); 5259 }; 5260 5261 class HDivZeroCheck final : public HExpression<1> { 5262 public: 5263 // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException` 5264 // constructor. However it can only do it on a fatal slow path so execution never returns to the 5265 // instruction following the current one; thus 'SideEffects::None()' is used. HDivZeroCheck(HInstruction * value,uint32_t dex_pc)5266 HDivZeroCheck(HInstruction* value, uint32_t dex_pc) 5267 : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) { 5268 SetRawInputAt(0, value); 5269 } 5270 IsClonable()5271 bool IsClonable() const override { return true; } CanBeMoved()5272 bool CanBeMoved() const override { return true; } 5273 InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5274 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5275 return true; 5276 } 5277 NeedsEnvironment()5278 bool NeedsEnvironment() const override { return true; } CanThrow()5279 bool CanThrow() const override { return true; } 5280 5281 DECLARE_INSTRUCTION(DivZeroCheck); 5282 5283 protected: 5284 DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck); 5285 }; 5286 5287 class HShl final : public HBinaryOperation { 5288 public: 5289 HShl(DataType::Type result_type, 5290 HInstruction* value, 5291 HInstruction* distance, 5292 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kShl,result_type,value,distance,SideEffects::None (),dex_pc)5293 : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) { 5294 DCHECK_EQ(result_type, DataType::Kind(value->GetType())); 5295 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); 5296 } 5297 5298 template <typename T> Compute(T value,int32_t distance,int32_t max_shift_distance)5299 static T Compute(T value, int32_t distance, int32_t max_shift_distance) { 5300 return value << (distance & max_shift_distance); 5301 } 5302 Evaluate(HIntConstant * value,HIntConstant * distance)5303 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { 5304 return GetBlock()->GetGraph()->GetIntConstant( 5305 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); 5306 } Evaluate(HLongConstant * value,HIntConstant * distance)5307 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { 5308 return GetBlock()->GetGraph()->GetLongConstant( 5309 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); 5310 } Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5311 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, 5312 HLongConstant* distance ATTRIBUTE_UNUSED) const override { 5313 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; 5314 UNREACHABLE(); 5315 } Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5316 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, 5317 HFloatConstant* distance ATTRIBUTE_UNUSED) const override { 5318 LOG(FATAL) << DebugName() << " is not defined for float values"; 5319 UNREACHABLE(); 5320 } Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5321 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, 5322 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { 5323 LOG(FATAL) << DebugName() << " is not defined for double values"; 5324 UNREACHABLE(); 5325 } 5326 5327 DECLARE_INSTRUCTION(Shl); 5328 5329 protected: 5330 DEFAULT_COPY_CONSTRUCTOR(Shl); 5331 }; 5332 5333 class HShr final : public HBinaryOperation { 5334 public: 5335 HShr(DataType::Type result_type, 5336 HInstruction* value, 5337 HInstruction* distance, 5338 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kShr,result_type,value,distance,SideEffects::None (),dex_pc)5339 : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) { 5340 DCHECK_EQ(result_type, DataType::Kind(value->GetType())); 5341 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); 5342 } 5343 5344 template <typename T> Compute(T value,int32_t distance,int32_t max_shift_distance)5345 static T Compute(T value, int32_t distance, int32_t max_shift_distance) { 5346 return value >> (distance & max_shift_distance); 5347 } 5348 Evaluate(HIntConstant * value,HIntConstant * distance)5349 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { 5350 return GetBlock()->GetGraph()->GetIntConstant( 5351 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); 5352 } Evaluate(HLongConstant * value,HIntConstant * distance)5353 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { 5354 return GetBlock()->GetGraph()->GetLongConstant( 5355 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); 5356 } Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5357 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, 5358 HLongConstant* distance ATTRIBUTE_UNUSED) const override { 5359 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; 5360 UNREACHABLE(); 5361 } Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5362 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, 5363 HFloatConstant* distance ATTRIBUTE_UNUSED) const override { 5364 LOG(FATAL) << DebugName() << " is not defined for float values"; 5365 UNREACHABLE(); 5366 } Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5367 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, 5368 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { 5369 LOG(FATAL) << DebugName() << " is not defined for double values"; 5370 UNREACHABLE(); 5371 } 5372 5373 DECLARE_INSTRUCTION(Shr); 5374 5375 protected: 5376 DEFAULT_COPY_CONSTRUCTOR(Shr); 5377 }; 5378 5379 class HUShr final : public HBinaryOperation { 5380 public: 5381 HUShr(DataType::Type result_type, 5382 HInstruction* value, 5383 HInstruction* distance, 5384 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kUShr,result_type,value,distance,SideEffects::None (),dex_pc)5385 : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) { 5386 DCHECK_EQ(result_type, DataType::Kind(value->GetType())); 5387 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); 5388 } 5389 5390 template <typename T> Compute(T value,int32_t distance,int32_t max_shift_distance)5391 static T Compute(T value, int32_t distance, int32_t max_shift_distance) { 5392 typedef typename std::make_unsigned<T>::type V; 5393 V ux = static_cast<V>(value); 5394 return static_cast<T>(ux >> (distance & max_shift_distance)); 5395 } 5396 Evaluate(HIntConstant * value,HIntConstant * distance)5397 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { 5398 return GetBlock()->GetGraph()->GetIntConstant( 5399 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); 5400 } Evaluate(HLongConstant * value,HIntConstant * distance)5401 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { 5402 return GetBlock()->GetGraph()->GetLongConstant( 5403 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); 5404 } Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5405 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, 5406 HLongConstant* distance ATTRIBUTE_UNUSED) const override { 5407 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; 5408 UNREACHABLE(); 5409 } Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5410 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, 5411 HFloatConstant* distance ATTRIBUTE_UNUSED) const override { 5412 LOG(FATAL) << DebugName() << " is not defined for float values"; 5413 UNREACHABLE(); 5414 } Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5415 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, 5416 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { 5417 LOG(FATAL) << DebugName() << " is not defined for double values"; 5418 UNREACHABLE(); 5419 } 5420 5421 DECLARE_INSTRUCTION(UShr); 5422 5423 protected: 5424 DEFAULT_COPY_CONSTRUCTOR(UShr); 5425 }; 5426 5427 class HAnd final : public HBinaryOperation { 5428 public: 5429 HAnd(DataType::Type result_type, 5430 HInstruction* left, 5431 HInstruction* right, 5432 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kAnd,result_type,left,right,SideEffects::None (),dex_pc)5433 : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) { 5434 } 5435 IsCommutative()5436 bool IsCommutative() const override { return true; } 5437 Compute(T x,T y)5438 template <typename T> static T Compute(T x, T y) { return x & y; } 5439 Evaluate(HIntConstant * x,HIntConstant * y)5440 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5441 return GetBlock()->GetGraph()->GetIntConstant( 5442 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5443 } Evaluate(HLongConstant * x,HLongConstant * y)5444 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5445 return GetBlock()->GetGraph()->GetLongConstant( 5446 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5447 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5448 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5449 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 5450 LOG(FATAL) << DebugName() << " is not defined for float values"; 5451 UNREACHABLE(); 5452 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5453 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5454 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 5455 LOG(FATAL) << DebugName() << " is not defined for double values"; 5456 UNREACHABLE(); 5457 } 5458 5459 DECLARE_INSTRUCTION(And); 5460 5461 protected: 5462 DEFAULT_COPY_CONSTRUCTOR(And); 5463 }; 5464 5465 class HOr final : public HBinaryOperation { 5466 public: 5467 HOr(DataType::Type result_type, 5468 HInstruction* left, 5469 HInstruction* right, 5470 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kOr,result_type,left,right,SideEffects::None (),dex_pc)5471 : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) { 5472 } 5473 IsCommutative()5474 bool IsCommutative() const override { return true; } 5475 Compute(T x,T y)5476 template <typename T> static T Compute(T x, T y) { return x | y; } 5477 Evaluate(HIntConstant * x,HIntConstant * y)5478 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5479 return GetBlock()->GetGraph()->GetIntConstant( 5480 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5481 } Evaluate(HLongConstant * x,HLongConstant * y)5482 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5483 return GetBlock()->GetGraph()->GetLongConstant( 5484 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5485 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5486 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5487 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 5488 LOG(FATAL) << DebugName() << " is not defined for float values"; 5489 UNREACHABLE(); 5490 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5491 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5492 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 5493 LOG(FATAL) << DebugName() << " is not defined for double values"; 5494 UNREACHABLE(); 5495 } 5496 5497 DECLARE_INSTRUCTION(Or); 5498 5499 protected: 5500 DEFAULT_COPY_CONSTRUCTOR(Or); 5501 }; 5502 5503 class HXor final : public HBinaryOperation { 5504 public: 5505 HXor(DataType::Type result_type, 5506 HInstruction* left, 5507 HInstruction* right, 5508 uint32_t dex_pc = kNoDexPc) HBinaryOperation(kXor,result_type,left,right,SideEffects::None (),dex_pc)5509 : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) { 5510 } 5511 IsCommutative()5512 bool IsCommutative() const override { return true; } 5513 Compute(T x,T y)5514 template <typename T> static T Compute(T x, T y) { return x ^ y; } 5515 Evaluate(HIntConstant * x,HIntConstant * y)5516 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5517 return GetBlock()->GetGraph()->GetIntConstant( 5518 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5519 } Evaluate(HLongConstant * x,HLongConstant * y)5520 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5521 return GetBlock()->GetGraph()->GetLongConstant( 5522 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5523 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5524 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5525 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 5526 LOG(FATAL) << DebugName() << " is not defined for float values"; 5527 UNREACHABLE(); 5528 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5529 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5530 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 5531 LOG(FATAL) << DebugName() << " is not defined for double values"; 5532 UNREACHABLE(); 5533 } 5534 5535 DECLARE_INSTRUCTION(Xor); 5536 5537 protected: 5538 DEFAULT_COPY_CONSTRUCTOR(Xor); 5539 }; 5540 5541 class HRor final : public HBinaryOperation { 5542 public: HRor(DataType::Type result_type,HInstruction * value,HInstruction * distance)5543 HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance) 5544 : HBinaryOperation(kRor, result_type, value, distance) { 5545 DCHECK_EQ(result_type, DataType::Kind(value->GetType())); 5546 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); 5547 } 5548 5549 template <typename T> Compute(T value,int32_t distance,int32_t max_shift_value)5550 static T Compute(T value, int32_t distance, int32_t max_shift_value) { 5551 typedef typename std::make_unsigned<T>::type V; 5552 V ux = static_cast<V>(value); 5553 if ((distance & max_shift_value) == 0) { 5554 return static_cast<T>(ux); 5555 } else { 5556 const V reg_bits = sizeof(T) * 8; 5557 return static_cast<T>(ux >> (distance & max_shift_value)) | 5558 (value << (reg_bits - (distance & max_shift_value))); 5559 } 5560 } 5561 Evaluate(HIntConstant * value,HIntConstant * distance)5562 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { 5563 return GetBlock()->GetGraph()->GetIntConstant( 5564 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); 5565 } Evaluate(HLongConstant * value,HIntConstant * distance)5566 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { 5567 return GetBlock()->GetGraph()->GetLongConstant( 5568 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); 5569 } Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5570 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, 5571 HLongConstant* distance ATTRIBUTE_UNUSED) const override { 5572 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; 5573 UNREACHABLE(); 5574 } Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5575 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, 5576 HFloatConstant* distance ATTRIBUTE_UNUSED) const override { 5577 LOG(FATAL) << DebugName() << " is not defined for float values"; 5578 UNREACHABLE(); 5579 } Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5580 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, 5581 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { 5582 LOG(FATAL) << DebugName() << " is not defined for double values"; 5583 UNREACHABLE(); 5584 } 5585 5586 DECLARE_INSTRUCTION(Ror); 5587 5588 protected: 5589 DEFAULT_COPY_CONSTRUCTOR(Ror); 5590 }; 5591 5592 // The value of a parameter in this method. Its location depends on 5593 // the calling convention. 5594 class HParameterValue final : public HExpression<0> { 5595 public: 5596 HParameterValue(const DexFile& dex_file, 5597 dex::TypeIndex type_index, 5598 uint8_t index, 5599 DataType::Type parameter_type, 5600 bool is_this = false) HExpression(kParameterValue,parameter_type,SideEffects::None (),kNoDexPc)5601 : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc), 5602 dex_file_(dex_file), 5603 type_index_(type_index), 5604 index_(index) { 5605 SetPackedFlag<kFlagIsThis>(is_this); 5606 SetPackedFlag<kFlagCanBeNull>(!is_this); 5607 } 5608 GetDexFile()5609 const DexFile& GetDexFile() const { return dex_file_; } GetTypeIndex()5610 dex::TypeIndex GetTypeIndex() const { return type_index_; } GetIndex()5611 uint8_t GetIndex() const { return index_; } IsThis()5612 bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); } 5613 CanBeNull()5614 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); } SetCanBeNull(bool can_be_null)5615 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } 5616 5617 DECLARE_INSTRUCTION(ParameterValue); 5618 5619 protected: 5620 DEFAULT_COPY_CONSTRUCTOR(ParameterValue); 5621 5622 private: 5623 // Whether or not the parameter value corresponds to 'this' argument. 5624 static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits; 5625 static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1; 5626 static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1; 5627 static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits, 5628 "Too many packed fields."); 5629 5630 const DexFile& dex_file_; 5631 const dex::TypeIndex type_index_; 5632 // The index of this parameter in the parameters list. Must be less 5633 // than HGraph::number_of_in_vregs_. 5634 const uint8_t index_; 5635 }; 5636 5637 class HNot final : public HUnaryOperation { 5638 public: 5639 HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) HUnaryOperation(kNot,result_type,input,dex_pc)5640 : HUnaryOperation(kNot, result_type, input, dex_pc) { 5641 } 5642 CanBeMoved()5643 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5644 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5645 return true; 5646 } 5647 Compute(T x)5648 template <typename T> static T Compute(T x) { return ~x; } 5649 Evaluate(HIntConstant * x)5650 HConstant* Evaluate(HIntConstant* x) const override { 5651 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); 5652 } Evaluate(HLongConstant * x)5653 HConstant* Evaluate(HLongConstant* x) const override { 5654 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); 5655 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5656 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override { 5657 LOG(FATAL) << DebugName() << " is not defined for float values"; 5658 UNREACHABLE(); 5659 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5660 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override { 5661 LOG(FATAL) << DebugName() << " is not defined for double values"; 5662 UNREACHABLE(); 5663 } 5664 5665 DECLARE_INSTRUCTION(Not); 5666 5667 protected: 5668 DEFAULT_COPY_CONSTRUCTOR(Not); 5669 }; 5670 5671 class HBooleanNot final : public HUnaryOperation { 5672 public: 5673 explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc) HUnaryOperation(kBooleanNot,DataType::Type::kBool,input,dex_pc)5674 : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) { 5675 } 5676 CanBeMoved()5677 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5678 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5679 return true; 5680 } 5681 Compute(T x)5682 template <typename T> static bool Compute(T x) { 5683 DCHECK(IsUint<1>(x)) << x; 5684 return !x; 5685 } 5686 Evaluate(HIntConstant * x)5687 HConstant* Evaluate(HIntConstant* x) const override { 5688 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); 5689 } Evaluate(HLongConstant * x ATTRIBUTE_UNUSED)5690 HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override { 5691 LOG(FATAL) << DebugName() << " is not defined for long values"; 5692 UNREACHABLE(); 5693 } Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5694 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override { 5695 LOG(FATAL) << DebugName() << " is not defined for float values"; 5696 UNREACHABLE(); 5697 } Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5698 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override { 5699 LOG(FATAL) << DebugName() << " is not defined for double values"; 5700 UNREACHABLE(); 5701 } 5702 5703 DECLARE_INSTRUCTION(BooleanNot); 5704 5705 protected: 5706 DEFAULT_COPY_CONSTRUCTOR(BooleanNot); 5707 }; 5708 5709 class HTypeConversion final : public HExpression<1> { 5710 public: 5711 // Instantiate a type conversion of `input` to `result_type`. 5712 HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) HExpression(kTypeConversion,result_type,SideEffects::None (),dex_pc)5713 : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) { 5714 SetRawInputAt(0, input); 5715 // Invariant: We should never generate a conversion to a Boolean value. 5716 DCHECK_NE(DataType::Type::kBool, result_type); 5717 } 5718 GetInput()5719 HInstruction* GetInput() const { return InputAt(0); } GetInputType()5720 DataType::Type GetInputType() const { return GetInput()->GetType(); } GetResultType()5721 DataType::Type GetResultType() const { return GetType(); } 5722 IsClonable()5723 bool IsClonable() const override { return true; } CanBeMoved()5724 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5725 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5726 return true; 5727 } 5728 // Return whether the conversion is implicit. This includes conversion to the same type. IsImplicitConversion()5729 bool IsImplicitConversion() const { 5730 return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType()); 5731 } 5732 5733 // Try to statically evaluate the conversion and return a HConstant 5734 // containing the result. If the input cannot be converted, return nullptr. 5735 HConstant* TryStaticEvaluation() const; 5736 5737 DECLARE_INSTRUCTION(TypeConversion); 5738 5739 protected: 5740 DEFAULT_COPY_CONSTRUCTOR(TypeConversion); 5741 }; 5742 5743 static constexpr uint32_t kNoRegNumber = -1; 5744 5745 class HNullCheck final : public HExpression<1> { 5746 public: 5747 // `HNullCheck` can trigger GC, as it may call the `NullPointerException` 5748 // constructor. However it can only do it on a fatal slow path so execution never returns to the 5749 // instruction following the current one; thus 'SideEffects::None()' is used. HNullCheck(HInstruction * value,uint32_t dex_pc)5750 HNullCheck(HInstruction* value, uint32_t dex_pc) 5751 : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) { 5752 SetRawInputAt(0, value); 5753 } 5754 IsClonable()5755 bool IsClonable() const override { return true; } CanBeMoved()5756 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5757 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5758 return true; 5759 } 5760 NeedsEnvironment()5761 bool NeedsEnvironment() const override { return true; } 5762 CanThrow()5763 bool CanThrow() const override { return true; } 5764 CanBeNull()5765 bool CanBeNull() const override { return false; } 5766 5767 DECLARE_INSTRUCTION(NullCheck); 5768 5769 protected: 5770 DEFAULT_COPY_CONSTRUCTOR(NullCheck); 5771 }; 5772 5773 // Embeds an ArtField and all the information required by the compiler. We cache 5774 // that information to avoid requiring the mutator lock every time we need it. 5775 class FieldInfo : public ValueObject { 5776 public: FieldInfo(ArtField * field,MemberOffset field_offset,DataType::Type field_type,bool is_volatile,uint32_t index,uint16_t declaring_class_def_index,const DexFile & dex_file)5777 FieldInfo(ArtField* field, 5778 MemberOffset field_offset, 5779 DataType::Type field_type, 5780 bool is_volatile, 5781 uint32_t index, 5782 uint16_t declaring_class_def_index, 5783 const DexFile& dex_file) 5784 : field_(field), 5785 field_offset_(field_offset), 5786 field_type_(field_type), 5787 is_volatile_(is_volatile), 5788 index_(index), 5789 declaring_class_def_index_(declaring_class_def_index), 5790 dex_file_(dex_file) {} 5791 GetField()5792 ArtField* GetField() const { return field_; } GetFieldOffset()5793 MemberOffset GetFieldOffset() const { return field_offset_; } GetFieldType()5794 DataType::Type GetFieldType() const { return field_type_; } GetFieldIndex()5795 uint32_t GetFieldIndex() const { return index_; } GetDeclaringClassDefIndex()5796 uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;} GetDexFile()5797 const DexFile& GetDexFile() const { return dex_file_; } IsVolatile()5798 bool IsVolatile() const { return is_volatile_; } 5799 5800 private: 5801 ArtField* const field_; 5802 const MemberOffset field_offset_; 5803 const DataType::Type field_type_; 5804 const bool is_volatile_; 5805 const uint32_t index_; 5806 const uint16_t declaring_class_def_index_; 5807 const DexFile& dex_file_; 5808 }; 5809 5810 class HInstanceFieldGet final : public HExpression<1> { 5811 public: HInstanceFieldGet(HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5812 HInstanceFieldGet(HInstruction* value, 5813 ArtField* field, 5814 DataType::Type field_type, 5815 MemberOffset field_offset, 5816 bool is_volatile, 5817 uint32_t field_idx, 5818 uint16_t declaring_class_def_index, 5819 const DexFile& dex_file, 5820 uint32_t dex_pc) 5821 : HExpression(kInstanceFieldGet, 5822 field_type, 5823 SideEffects::FieldReadOfType(field_type, is_volatile), 5824 dex_pc), 5825 field_info_(field, 5826 field_offset, 5827 field_type, 5828 is_volatile, 5829 field_idx, 5830 declaring_class_def_index, 5831 dex_file) { 5832 SetRawInputAt(0, value); 5833 } 5834 IsClonable()5835 bool IsClonable() const override { return true; } CanBeMoved()5836 bool CanBeMoved() const override { return !IsVolatile(); } 5837 InstructionDataEquals(const HInstruction * other)5838 bool InstructionDataEquals(const HInstruction* other) const override { 5839 const HInstanceFieldGet* other_get = other->AsInstanceFieldGet(); 5840 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); 5841 } 5842 CanDoImplicitNullCheckOn(HInstruction * obj)5843 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 5844 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); 5845 } 5846 ComputeHashCode()5847 size_t ComputeHashCode() const override { 5848 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); 5849 } 5850 GetFieldInfo()5851 const FieldInfo& GetFieldInfo() const { return field_info_; } GetFieldOffset()5852 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } GetFieldType()5853 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } IsVolatile()5854 bool IsVolatile() const { return field_info_.IsVolatile(); } 5855 SetType(DataType::Type new_type)5856 void SetType(DataType::Type new_type) { 5857 DCHECK(DataType::IsIntegralType(GetType())); 5858 DCHECK(DataType::IsIntegralType(new_type)); 5859 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); 5860 SetPackedField<TypeField>(new_type); 5861 } 5862 5863 DECLARE_INSTRUCTION(InstanceFieldGet); 5864 5865 protected: 5866 DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet); 5867 5868 private: 5869 const FieldInfo field_info_; 5870 }; 5871 5872 class HInstanceFieldSet final : public HExpression<2> { 5873 public: HInstanceFieldSet(HInstruction * object,HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5874 HInstanceFieldSet(HInstruction* object, 5875 HInstruction* value, 5876 ArtField* field, 5877 DataType::Type field_type, 5878 MemberOffset field_offset, 5879 bool is_volatile, 5880 uint32_t field_idx, 5881 uint16_t declaring_class_def_index, 5882 const DexFile& dex_file, 5883 uint32_t dex_pc) 5884 : HExpression(kInstanceFieldSet, 5885 SideEffects::FieldWriteOfType(field_type, is_volatile), 5886 dex_pc), 5887 field_info_(field, 5888 field_offset, 5889 field_type, 5890 is_volatile, 5891 field_idx, 5892 declaring_class_def_index, 5893 dex_file) { 5894 SetPackedFlag<kFlagValueCanBeNull>(true); 5895 SetRawInputAt(0, object); 5896 SetRawInputAt(1, value); 5897 } 5898 IsClonable()5899 bool IsClonable() const override { return true; } 5900 CanDoImplicitNullCheckOn(HInstruction * obj)5901 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 5902 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); 5903 } 5904 GetFieldInfo()5905 const FieldInfo& GetFieldInfo() const { return field_info_; } GetFieldOffset()5906 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } GetFieldType()5907 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } IsVolatile()5908 bool IsVolatile() const { return field_info_.IsVolatile(); } GetValue()5909 HInstruction* GetValue() const { return InputAt(1); } GetValueCanBeNull()5910 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } ClearValueCanBeNull()5911 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } 5912 5913 DECLARE_INSTRUCTION(InstanceFieldSet); 5914 5915 protected: 5916 DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet); 5917 5918 private: 5919 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; 5920 static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1; 5921 static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits, 5922 "Too many packed fields."); 5923 5924 const FieldInfo field_info_; 5925 }; 5926 5927 class HArrayGet final : public HExpression<2> { 5928 public: HArrayGet(HInstruction * array,HInstruction * index,DataType::Type type,uint32_t dex_pc)5929 HArrayGet(HInstruction* array, 5930 HInstruction* index, 5931 DataType::Type type, 5932 uint32_t dex_pc) 5933 : HArrayGet(array, 5934 index, 5935 type, 5936 SideEffects::ArrayReadOfType(type), 5937 dex_pc, 5938 /* is_string_char_at= */ false) { 5939 } 5940 HArrayGet(HInstruction * array,HInstruction * index,DataType::Type type,SideEffects side_effects,uint32_t dex_pc,bool is_string_char_at)5941 HArrayGet(HInstruction* array, 5942 HInstruction* index, 5943 DataType::Type type, 5944 SideEffects side_effects, 5945 uint32_t dex_pc, 5946 bool is_string_char_at) 5947 : HExpression(kArrayGet, type, side_effects, dex_pc) { 5948 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); 5949 SetRawInputAt(0, array); 5950 SetRawInputAt(1, index); 5951 } 5952 IsClonable()5953 bool IsClonable() const override { return true; } CanBeMoved()5954 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5955 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5956 return true; 5957 } CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)5958 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { 5959 // TODO: We can be smarter here. 5960 // Currently, unless the array is the result of NewArray, the array access is always 5961 // preceded by some form of null NullCheck necessary for the bounds check, usually 5962 // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for 5963 // dynamic BCE. There are cases when these could be removed to produce better code. 5964 // If we ever add optimizations to do so we should allow an implicit check here 5965 // (as long as the address falls in the first page). 5966 // 5967 // As an example of such fancy optimization, we could eliminate BoundsCheck for 5968 // a = cond ? new int[1] : null; 5969 // a[0]; // The Phi does not need bounds check for either input. 5970 return false; 5971 } 5972 IsEquivalentOf(HArrayGet * other)5973 bool IsEquivalentOf(HArrayGet* other) const { 5974 bool result = (GetDexPc() == other->GetDexPc()); 5975 if (kIsDebugBuild && result) { 5976 DCHECK_EQ(GetBlock(), other->GetBlock()); 5977 DCHECK_EQ(GetArray(), other->GetArray()); 5978 DCHECK_EQ(GetIndex(), other->GetIndex()); 5979 if (DataType::IsIntOrLongType(GetType())) { 5980 DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType(); 5981 } else { 5982 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); 5983 DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType(); 5984 } 5985 } 5986 return result; 5987 } 5988 IsStringCharAt()5989 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } 5990 GetArray()5991 HInstruction* GetArray() const { return InputAt(0); } GetIndex()5992 HInstruction* GetIndex() const { return InputAt(1); } 5993 SetType(DataType::Type new_type)5994 void SetType(DataType::Type new_type) { 5995 DCHECK(DataType::IsIntegralType(GetType())); 5996 DCHECK(DataType::IsIntegralType(new_type)); 5997 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); 5998 SetPackedField<TypeField>(new_type); 5999 } 6000 6001 DECLARE_INSTRUCTION(ArrayGet); 6002 6003 protected: 6004 DEFAULT_COPY_CONSTRUCTOR(ArrayGet); 6005 6006 private: 6007 // We treat a String as an array, creating the HArrayGet from String.charAt() 6008 // intrinsic in the instruction simplifier. We can always determine whether 6009 // a particular HArrayGet is actually a String.charAt() by looking at the type 6010 // of the input but that requires holding the mutator lock, so we prefer to use 6011 // a flag, so that code generators don't need to do the locking. 6012 static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits; 6013 static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1; 6014 static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits, 6015 "Too many packed fields."); 6016 }; 6017 6018 class HArraySet final : public HExpression<3> { 6019 public: HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,DataType::Type expected_component_type,uint32_t dex_pc)6020 HArraySet(HInstruction* array, 6021 HInstruction* index, 6022 HInstruction* value, 6023 DataType::Type expected_component_type, 6024 uint32_t dex_pc) 6025 : HArraySet(array, 6026 index, 6027 value, 6028 expected_component_type, 6029 // Make a best guess for side effects now, may be refined during SSA building. 6030 ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)), 6031 dex_pc) { 6032 } 6033 HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,DataType::Type expected_component_type,SideEffects side_effects,uint32_t dex_pc)6034 HArraySet(HInstruction* array, 6035 HInstruction* index, 6036 HInstruction* value, 6037 DataType::Type expected_component_type, 6038 SideEffects side_effects, 6039 uint32_t dex_pc) 6040 : HExpression(kArraySet, side_effects, dex_pc) { 6041 SetPackedField<ExpectedComponentTypeField>(expected_component_type); 6042 SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference); 6043 SetPackedFlag<kFlagValueCanBeNull>(true); 6044 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false); 6045 SetRawInputAt(0, array); 6046 SetRawInputAt(1, index); 6047 SetRawInputAt(2, value); 6048 } 6049 IsClonable()6050 bool IsClonable() const override { return true; } 6051 NeedsEnvironment()6052 bool NeedsEnvironment() const override { 6053 // We call a runtime method to throw ArrayStoreException. 6054 return NeedsTypeCheck(); 6055 } 6056 6057 // Can throw ArrayStoreException. CanThrow()6058 bool CanThrow() const override { return NeedsTypeCheck(); } 6059 CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)6060 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { 6061 // TODO: Same as for ArrayGet. 6062 return false; 6063 } 6064 ClearNeedsTypeCheck()6065 void ClearNeedsTypeCheck() { 6066 SetPackedFlag<kFlagNeedsTypeCheck>(false); 6067 } 6068 ClearValueCanBeNull()6069 void ClearValueCanBeNull() { 6070 SetPackedFlag<kFlagValueCanBeNull>(false); 6071 } 6072 SetStaticTypeOfArrayIsObjectArray()6073 void SetStaticTypeOfArrayIsObjectArray() { 6074 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true); 6075 } 6076 GetValueCanBeNull()6077 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } NeedsTypeCheck()6078 bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); } StaticTypeOfArrayIsObjectArray()6079 bool StaticTypeOfArrayIsObjectArray() const { 6080 return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(); 6081 } 6082 GetArray()6083 HInstruction* GetArray() const { return InputAt(0); } GetIndex()6084 HInstruction* GetIndex() const { return InputAt(1); } GetValue()6085 HInstruction* GetValue() const { return InputAt(2); } 6086 GetComponentType()6087 DataType::Type GetComponentType() const { 6088 return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType()); 6089 } 6090 GetComponentType(DataType::Type value_type,DataType::Type expected_component_type)6091 static DataType::Type GetComponentType(DataType::Type value_type, 6092 DataType::Type expected_component_type) { 6093 // The Dex format does not type floating point index operations. Since the 6094 // `expected_component_type` comes from SSA building and can therefore not 6095 // be correct, we also check what is the value type. If it is a floating 6096 // point type, we must use that type. 6097 return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64)) 6098 ? value_type 6099 : expected_component_type; 6100 } 6101 GetRawExpectedComponentType()6102 DataType::Type GetRawExpectedComponentType() const { 6103 return GetPackedField<ExpectedComponentTypeField>(); 6104 } 6105 ComputeSideEffects(DataType::Type type)6106 static SideEffects ComputeSideEffects(DataType::Type type) { 6107 return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type)); 6108 } 6109 SideEffectsForArchRuntimeCalls(DataType::Type value_type)6110 static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) { 6111 return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC() 6112 : SideEffects::None(); 6113 } 6114 6115 DECLARE_INSTRUCTION(ArraySet); 6116 6117 protected: 6118 DEFAULT_COPY_CONSTRUCTOR(ArraySet); 6119 6120 private: 6121 static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits; 6122 static constexpr size_t kFieldExpectedComponentTypeSize = 6123 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); 6124 static constexpr size_t kFlagNeedsTypeCheck = 6125 kFieldExpectedComponentType + kFieldExpectedComponentTypeSize; 6126 static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1; 6127 // Cached information for the reference_type_info_ so that codegen 6128 // does not need to inspect the static type. 6129 static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1; 6130 static constexpr size_t kNumberOfArraySetPackedBits = 6131 kFlagStaticTypeOfArrayIsObjectArray + 1; 6132 static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 6133 using ExpectedComponentTypeField = 6134 BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>; 6135 }; 6136 6137 class HArrayLength final : public HExpression<1> { 6138 public: 6139 HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false) HExpression(kArrayLength,DataType::Type::kInt32,SideEffects::None (),dex_pc)6140 : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) { 6141 SetPackedFlag<kFlagIsStringLength>(is_string_length); 6142 // Note that arrays do not change length, so the instruction does not 6143 // depend on any write. 6144 SetRawInputAt(0, array); 6145 } 6146 IsClonable()6147 bool IsClonable() const override { return true; } CanBeMoved()6148 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6149 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 6150 return true; 6151 } CanDoImplicitNullCheckOn(HInstruction * obj)6152 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 6153 return obj == InputAt(0); 6154 } 6155 IsStringLength()6156 bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); } 6157 6158 DECLARE_INSTRUCTION(ArrayLength); 6159 6160 protected: 6161 DEFAULT_COPY_CONSTRUCTOR(ArrayLength); 6162 6163 private: 6164 // We treat a String as an array, creating the HArrayLength from String.length() 6165 // or String.isEmpty() intrinsic in the instruction simplifier. We can always 6166 // determine whether a particular HArrayLength is actually a String.length() by 6167 // looking at the type of the input but that requires holding the mutator lock, so 6168 // we prefer to use a flag, so that code generators don't need to do the locking. 6169 static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits; 6170 static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1; 6171 static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits, 6172 "Too many packed fields."); 6173 }; 6174 6175 class HBoundsCheck final : public HExpression<2> { 6176 public: 6177 // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException` 6178 // constructor. However it can only do it on a fatal slow path so execution never returns to the 6179 // instruction following the current one; thus 'SideEffects::None()' is used. 6180 HBoundsCheck(HInstruction* index, 6181 HInstruction* length, 6182 uint32_t dex_pc, 6183 bool is_string_char_at = false) 6184 : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) { 6185 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType())); 6186 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); 6187 SetRawInputAt(0, index); 6188 SetRawInputAt(1, length); 6189 } 6190 IsClonable()6191 bool IsClonable() const override { return true; } CanBeMoved()6192 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6193 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 6194 return true; 6195 } 6196 NeedsEnvironment()6197 bool NeedsEnvironment() const override { return true; } 6198 CanThrow()6199 bool CanThrow() const override { return true; } 6200 IsStringCharAt()6201 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } 6202 GetIndex()6203 HInstruction* GetIndex() const { return InputAt(0); } 6204 6205 DECLARE_INSTRUCTION(BoundsCheck); 6206 6207 protected: 6208 DEFAULT_COPY_CONSTRUCTOR(BoundsCheck); 6209 6210 private: 6211 static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits; 6212 static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1; 6213 static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits, 6214 "Too many packed fields."); 6215 }; 6216 6217 class HSuspendCheck final : public HExpression<0> { 6218 public: 6219 explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc) HExpression(kSuspendCheck,SideEffects::CanTriggerGC (),dex_pc)6220 : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc), 6221 slow_path_(nullptr) { 6222 } 6223 IsClonable()6224 bool IsClonable() const override { return true; } 6225 NeedsEnvironment()6226 bool NeedsEnvironment() const override { 6227 return true; 6228 } 6229 SetSlowPath(SlowPathCode * slow_path)6230 void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; } GetSlowPath()6231 SlowPathCode* GetSlowPath() const { return slow_path_; } 6232 6233 DECLARE_INSTRUCTION(SuspendCheck); 6234 6235 protected: 6236 DEFAULT_COPY_CONSTRUCTOR(SuspendCheck); 6237 6238 private: 6239 // Only used for code generation, in order to share the same slow path between back edges 6240 // of a same loop. 6241 SlowPathCode* slow_path_; 6242 }; 6243 6244 // Pseudo-instruction which provides the native debugger with mapping information. 6245 // It ensures that we can generate line number and local variables at this point. 6246 class HNativeDebugInfo : public HExpression<0> { 6247 public: HNativeDebugInfo(uint32_t dex_pc)6248 explicit HNativeDebugInfo(uint32_t dex_pc) 6249 : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) { 6250 } 6251 NeedsEnvironment()6252 bool NeedsEnvironment() const override { 6253 return true; 6254 } 6255 6256 DECLARE_INSTRUCTION(NativeDebugInfo); 6257 6258 protected: 6259 DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo); 6260 }; 6261 6262 /** 6263 * Instruction to load a Class object. 6264 */ 6265 class HLoadClass final : public HInstruction { 6266 public: 6267 // Determines how to load the Class. 6268 enum class LoadKind { 6269 // We cannot load this class. See HSharpening::SharpenLoadClass. 6270 kInvalid = -1, 6271 6272 // Use the Class* from the method's own ArtMethod*. 6273 kReferrersClass, 6274 6275 // Use PC-relative boot image Class* address that will be known at link time. 6276 // Used for boot image classes referenced by boot image code. 6277 kBootImageLinkTimePcRelative, 6278 6279 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. 6280 // Used for boot image classes referenced by apps in AOT-compiled code. 6281 kBootImageRelRo, 6282 6283 // Load from an entry in the .bss section using a PC-relative load. 6284 // Used for classes outside boot image referenced by AOT-compiled app and boot image code. 6285 kBssEntry, 6286 6287 // Use a known boot image Class* address, embedded in the code by the codegen. 6288 // Used for boot image classes referenced by apps in JIT-compiled code. 6289 kJitBootImageAddress, 6290 6291 // Load from the root table associated with the JIT compiled method. 6292 kJitTableAddress, 6293 6294 // Load using a simple runtime call. This is the fall-back load kind when 6295 // the codegen is unable to use another appropriate kind. 6296 kRuntimeCall, 6297 6298 kLast = kRuntimeCall 6299 }; 6300 HLoadClass(HCurrentMethod * current_method,dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,bool is_referrers_class,uint32_t dex_pc,bool needs_access_check)6301 HLoadClass(HCurrentMethod* current_method, 6302 dex::TypeIndex type_index, 6303 const DexFile& dex_file, 6304 Handle<mirror::Class> klass, 6305 bool is_referrers_class, 6306 uint32_t dex_pc, 6307 bool needs_access_check) 6308 : HInstruction(kLoadClass, 6309 DataType::Type::kReference, 6310 SideEffectsForArchRuntimeCalls(), 6311 dex_pc), 6312 special_input_(HUserRecord<HInstruction*>(current_method)), 6313 type_index_(type_index), 6314 dex_file_(dex_file), 6315 klass_(klass) { 6316 // Referrers class should not need access check. We never inline unverified 6317 // methods so we can't possibly end up in this situation. 6318 DCHECK(!is_referrers_class || !needs_access_check); 6319 6320 SetPackedField<LoadKindField>( 6321 is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall); 6322 SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check); 6323 SetPackedFlag<kFlagIsInBootImage>(false); 6324 SetPackedFlag<kFlagGenerateClInitCheck>(false); 6325 SetPackedFlag<kFlagValidLoadedClassRTI>(false); 6326 } 6327 IsClonable()6328 bool IsClonable() const override { return true; } 6329 6330 void SetLoadKind(LoadKind load_kind); 6331 GetLoadKind()6332 LoadKind GetLoadKind() const { 6333 return GetPackedField<LoadKindField>(); 6334 } 6335 HasPcRelativeLoadKind()6336 bool HasPcRelativeLoadKind() const { 6337 return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || 6338 GetLoadKind() == LoadKind::kBootImageRelRo || 6339 GetLoadKind() == LoadKind::kBssEntry; 6340 } 6341 CanBeMoved()6342 bool CanBeMoved() const override { return true; } 6343 6344 bool InstructionDataEquals(const HInstruction* other) const override; 6345 ComputeHashCode()6346 size_t ComputeHashCode() const override { return type_index_.index_; } 6347 CanBeNull()6348 bool CanBeNull() const override { return false; } 6349 NeedsEnvironment()6350 bool NeedsEnvironment() const override { 6351 return CanCallRuntime(); 6352 } 6353 SetMustGenerateClinitCheck(bool generate_clinit_check)6354 void SetMustGenerateClinitCheck(bool generate_clinit_check) { 6355 // The entrypoint the code generator is going to call does not do 6356 // clinit of the class. 6357 DCHECK(!NeedsAccessCheck()); 6358 SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check); 6359 } 6360 CanCallRuntime()6361 bool CanCallRuntime() const { 6362 return NeedsAccessCheck() || 6363 MustGenerateClinitCheck() || 6364 GetLoadKind() == LoadKind::kRuntimeCall || 6365 GetLoadKind() == LoadKind::kBssEntry; 6366 } 6367 CanThrow()6368 bool CanThrow() const override { 6369 return NeedsAccessCheck() || 6370 MustGenerateClinitCheck() || 6371 // If the class is in the boot image, the lookup in the runtime call cannot throw. 6372 ((GetLoadKind() == LoadKind::kRuntimeCall || 6373 GetLoadKind() == LoadKind::kBssEntry) && 6374 !IsInBootImage()); 6375 } 6376 GetLoadedClassRTI()6377 ReferenceTypeInfo GetLoadedClassRTI() { 6378 if (GetPackedFlag<kFlagValidLoadedClassRTI>()) { 6379 // Note: The is_exact flag from the return value should not be used. 6380 return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true); 6381 } else { 6382 return ReferenceTypeInfo::CreateInvalid(); 6383 } 6384 } 6385 6386 // Loaded class RTI is marked as valid by RTP if the klass_ is admissible. SetValidLoadedClassRTI()6387 void SetValidLoadedClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) { 6388 DCHECK(klass_ != nullptr); 6389 SetPackedFlag<kFlagValidLoadedClassRTI>(true); 6390 } 6391 GetTypeIndex()6392 dex::TypeIndex GetTypeIndex() const { return type_index_; } GetDexFile()6393 const DexFile& GetDexFile() const { return dex_file_; } 6394 NeedsDexCacheOfDeclaringClass()6395 bool NeedsDexCacheOfDeclaringClass() const override { 6396 return GetLoadKind() == LoadKind::kRuntimeCall; 6397 } 6398 SideEffectsForArchRuntimeCalls()6399 static SideEffects SideEffectsForArchRuntimeCalls() { 6400 return SideEffects::CanTriggerGC(); 6401 } 6402 IsReferrersClass()6403 bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; } NeedsAccessCheck()6404 bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); } IsInBootImage()6405 bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); } MustGenerateClinitCheck()6406 bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); } 6407 MustResolveTypeOnSlowPath()6408 bool MustResolveTypeOnSlowPath() const { 6409 // Check that this instruction has a slow path. 6410 DCHECK(GetLoadKind() != LoadKind::kRuntimeCall); // kRuntimeCall calls on main path. 6411 DCHECK(GetLoadKind() == LoadKind::kBssEntry || MustGenerateClinitCheck()); 6412 return GetLoadKind() == LoadKind::kBssEntry; 6413 } 6414 MarkInBootImage()6415 void MarkInBootImage() { 6416 SetPackedFlag<kFlagIsInBootImage>(true); 6417 } 6418 6419 void AddSpecialInput(HInstruction* special_input); 6420 6421 using HInstruction::GetInputRecords; // Keep the const version visible. GetInputRecords()6422 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 6423 return ArrayRef<HUserRecord<HInstruction*>>( 6424 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); 6425 } 6426 GetClass()6427 Handle<mirror::Class> GetClass() const { 6428 return klass_; 6429 } 6430 6431 DECLARE_INSTRUCTION(LoadClass); 6432 6433 protected: 6434 DEFAULT_COPY_CONSTRUCTOR(LoadClass); 6435 6436 private: 6437 static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits; 6438 static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1; 6439 // Whether this instruction must generate the initialization check. 6440 // Used for code generation. 6441 static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1; 6442 static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1; 6443 static constexpr size_t kFieldLoadKindSize = 6444 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); 6445 static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize; 6446 static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1; 6447 static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields."); 6448 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; 6449 HasTypeReference(LoadKind load_kind)6450 static bool HasTypeReference(LoadKind load_kind) { 6451 return load_kind == LoadKind::kReferrersClass || 6452 load_kind == LoadKind::kBootImageLinkTimePcRelative || 6453 load_kind == LoadKind::kBssEntry || 6454 load_kind == LoadKind::kRuntimeCall; 6455 } 6456 6457 void SetLoadKindInternal(LoadKind load_kind); 6458 6459 // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass. 6460 // For other load kinds it's empty or possibly some architecture-specific instruction 6461 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative. 6462 HUserRecord<HInstruction*> special_input_; 6463 6464 // A type index and dex file where the class can be accessed. The dex file can be: 6465 // - The compiling method's dex file if the class is defined there too. 6466 // - The compiling method's dex file if the class is referenced there. 6467 // - The dex file where the class is defined. When the load kind can only be 6468 // kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`. 6469 const dex::TypeIndex type_index_; 6470 const DexFile& dex_file_; 6471 6472 Handle<mirror::Class> klass_; 6473 }; 6474 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs); 6475 6476 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). SetLoadKind(LoadKind load_kind)6477 inline void HLoadClass::SetLoadKind(LoadKind load_kind) { 6478 // The load kind should be determined before inserting the instruction to the graph. 6479 DCHECK(GetBlock() == nullptr); 6480 DCHECK(GetEnvironment() == nullptr); 6481 SetPackedField<LoadKindField>(load_kind); 6482 if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) { 6483 special_input_ = HUserRecord<HInstruction*>(nullptr); 6484 } 6485 if (!NeedsEnvironment()) { 6486 SetSideEffects(SideEffects::None()); 6487 } 6488 } 6489 6490 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). AddSpecialInput(HInstruction * special_input)6491 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) { 6492 // The special input is used for PC-relative loads on some architectures, 6493 // including literal pool loads, which are PC-relative too. 6494 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || 6495 GetLoadKind() == LoadKind::kBootImageRelRo || 6496 GetLoadKind() == LoadKind::kBssEntry || 6497 GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind(); 6498 DCHECK(special_input_.GetInstruction() == nullptr); 6499 special_input_ = HUserRecord<HInstruction*>(special_input); 6500 special_input->AddUseAt(this, 0); 6501 } 6502 6503 class HLoadString final : public HInstruction { 6504 public: 6505 // Determines how to load the String. 6506 enum class LoadKind { 6507 // Use PC-relative boot image String* address that will be known at link time. 6508 // Used for boot image strings referenced by boot image code. 6509 kBootImageLinkTimePcRelative, 6510 6511 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. 6512 // Used for boot image strings referenced by apps in AOT-compiled code. 6513 kBootImageRelRo, 6514 6515 // Load from an entry in the .bss section using a PC-relative load. 6516 // Used for strings outside boot image referenced by AOT-compiled app and boot image code. 6517 kBssEntry, 6518 6519 // Use a known boot image String* address, embedded in the code by the codegen. 6520 // Used for boot image strings referenced by apps in JIT-compiled code. 6521 kJitBootImageAddress, 6522 6523 // Load from the root table associated with the JIT compiled method. 6524 kJitTableAddress, 6525 6526 // Load using a simple runtime call. This is the fall-back load kind when 6527 // the codegen is unable to use another appropriate kind. 6528 kRuntimeCall, 6529 6530 kLast = kRuntimeCall, 6531 }; 6532 HLoadString(HCurrentMethod * current_method,dex::StringIndex string_index,const DexFile & dex_file,uint32_t dex_pc)6533 HLoadString(HCurrentMethod* current_method, 6534 dex::StringIndex string_index, 6535 const DexFile& dex_file, 6536 uint32_t dex_pc) 6537 : HInstruction(kLoadString, 6538 DataType::Type::kReference, 6539 SideEffectsForArchRuntimeCalls(), 6540 dex_pc), 6541 special_input_(HUserRecord<HInstruction*>(current_method)), 6542 string_index_(string_index), 6543 dex_file_(dex_file) { 6544 SetPackedField<LoadKindField>(LoadKind::kRuntimeCall); 6545 } 6546 IsClonable()6547 bool IsClonable() const override { return true; } 6548 6549 void SetLoadKind(LoadKind load_kind); 6550 GetLoadKind()6551 LoadKind GetLoadKind() const { 6552 return GetPackedField<LoadKindField>(); 6553 } 6554 HasPcRelativeLoadKind()6555 bool HasPcRelativeLoadKind() const { 6556 return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || 6557 GetLoadKind() == LoadKind::kBootImageRelRo || 6558 GetLoadKind() == LoadKind::kBssEntry; 6559 } 6560 GetDexFile()6561 const DexFile& GetDexFile() const { 6562 return dex_file_; 6563 } 6564 GetStringIndex()6565 dex::StringIndex GetStringIndex() const { 6566 return string_index_; 6567 } 6568 GetString()6569 Handle<mirror::String> GetString() const { 6570 return string_; 6571 } 6572 SetString(Handle<mirror::String> str)6573 void SetString(Handle<mirror::String> str) { 6574 string_ = str; 6575 } 6576 CanBeMoved()6577 bool CanBeMoved() const override { return true; } 6578 6579 bool InstructionDataEquals(const HInstruction* other) const override; 6580 ComputeHashCode()6581 size_t ComputeHashCode() const override { return string_index_.index_; } 6582 6583 // Will call the runtime if we need to load the string through 6584 // the dex cache and the string is not guaranteed to be there yet. NeedsEnvironment()6585 bool NeedsEnvironment() const override { 6586 LoadKind load_kind = GetLoadKind(); 6587 if (load_kind == LoadKind::kBootImageLinkTimePcRelative || 6588 load_kind == LoadKind::kBootImageRelRo || 6589 load_kind == LoadKind::kJitBootImageAddress || 6590 load_kind == LoadKind::kJitTableAddress) { 6591 return false; 6592 } 6593 return true; 6594 } 6595 NeedsDexCacheOfDeclaringClass()6596 bool NeedsDexCacheOfDeclaringClass() const override { 6597 return GetLoadKind() == LoadKind::kRuntimeCall; 6598 } 6599 CanBeNull()6600 bool CanBeNull() const override { return false; } CanThrow()6601 bool CanThrow() const override { return NeedsEnvironment(); } 6602 SideEffectsForArchRuntimeCalls()6603 static SideEffects SideEffectsForArchRuntimeCalls() { 6604 return SideEffects::CanTriggerGC(); 6605 } 6606 6607 void AddSpecialInput(HInstruction* special_input); 6608 6609 using HInstruction::GetInputRecords; // Keep the const version visible. GetInputRecords()6610 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 6611 return ArrayRef<HUserRecord<HInstruction*>>( 6612 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); 6613 } 6614 6615 DECLARE_INSTRUCTION(LoadString); 6616 6617 protected: 6618 DEFAULT_COPY_CONSTRUCTOR(LoadString); 6619 6620 private: 6621 static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits; 6622 static constexpr size_t kFieldLoadKindSize = 6623 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); 6624 static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize; 6625 static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 6626 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; 6627 6628 void SetLoadKindInternal(LoadKind load_kind); 6629 6630 // The special input is the HCurrentMethod for kRuntimeCall. 6631 // For other load kinds it's empty or possibly some architecture-specific instruction 6632 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative. 6633 HUserRecord<HInstruction*> special_input_; 6634 6635 dex::StringIndex string_index_; 6636 const DexFile& dex_file_; 6637 6638 Handle<mirror::String> string_; 6639 }; 6640 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs); 6641 6642 // Note: defined outside class to see operator<<(., HLoadString::LoadKind). SetLoadKind(LoadKind load_kind)6643 inline void HLoadString::SetLoadKind(LoadKind load_kind) { 6644 // The load kind should be determined before inserting the instruction to the graph. 6645 DCHECK(GetBlock() == nullptr); 6646 DCHECK(GetEnvironment() == nullptr); 6647 DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall); 6648 SetPackedField<LoadKindField>(load_kind); 6649 if (load_kind != LoadKind::kRuntimeCall) { 6650 special_input_ = HUserRecord<HInstruction*>(nullptr); 6651 } 6652 if (!NeedsEnvironment()) { 6653 SetSideEffects(SideEffects::None()); 6654 } 6655 } 6656 6657 // Note: defined outside class to see operator<<(., HLoadString::LoadKind). AddSpecialInput(HInstruction * special_input)6658 inline void HLoadString::AddSpecialInput(HInstruction* special_input) { 6659 // The special input is used for PC-relative loads on some architectures, 6660 // including literal pool loads, which are PC-relative too. 6661 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || 6662 GetLoadKind() == LoadKind::kBootImageRelRo || 6663 GetLoadKind() == LoadKind::kBssEntry || 6664 GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind(); 6665 // HLoadString::GetInputRecords() returns an empty array at this point, 6666 // so use the GetInputRecords() from the base class to set the input record. 6667 DCHECK(special_input_.GetInstruction() == nullptr); 6668 special_input_ = HUserRecord<HInstruction*>(special_input); 6669 special_input->AddUseAt(this, 0); 6670 } 6671 6672 class HLoadMethodHandle final : public HInstruction { 6673 public: HLoadMethodHandle(HCurrentMethod * current_method,uint16_t method_handle_idx,const DexFile & dex_file,uint32_t dex_pc)6674 HLoadMethodHandle(HCurrentMethod* current_method, 6675 uint16_t method_handle_idx, 6676 const DexFile& dex_file, 6677 uint32_t dex_pc) 6678 : HInstruction(kLoadMethodHandle, 6679 DataType::Type::kReference, 6680 SideEffectsForArchRuntimeCalls(), 6681 dex_pc), 6682 special_input_(HUserRecord<HInstruction*>(current_method)), 6683 method_handle_idx_(method_handle_idx), 6684 dex_file_(dex_file) { 6685 } 6686 6687 using HInstruction::GetInputRecords; // Keep the const version visible. GetInputRecords()6688 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 6689 return ArrayRef<HUserRecord<HInstruction*>>( 6690 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); 6691 } 6692 IsClonable()6693 bool IsClonable() const override { return true; } 6694 GetMethodHandleIndex()6695 uint16_t GetMethodHandleIndex() const { return method_handle_idx_; } 6696 GetDexFile()6697 const DexFile& GetDexFile() const { return dex_file_; } 6698 SideEffectsForArchRuntimeCalls()6699 static SideEffects SideEffectsForArchRuntimeCalls() { 6700 return SideEffects::CanTriggerGC(); 6701 } 6702 6703 DECLARE_INSTRUCTION(LoadMethodHandle); 6704 6705 protected: 6706 DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle); 6707 6708 private: 6709 // The special input is the HCurrentMethod for kRuntimeCall. 6710 HUserRecord<HInstruction*> special_input_; 6711 6712 const uint16_t method_handle_idx_; 6713 const DexFile& dex_file_; 6714 }; 6715 6716 class HLoadMethodType final : public HInstruction { 6717 public: HLoadMethodType(HCurrentMethod * current_method,dex::ProtoIndex proto_index,const DexFile & dex_file,uint32_t dex_pc)6718 HLoadMethodType(HCurrentMethod* current_method, 6719 dex::ProtoIndex proto_index, 6720 const DexFile& dex_file, 6721 uint32_t dex_pc) 6722 : HInstruction(kLoadMethodType, 6723 DataType::Type::kReference, 6724 SideEffectsForArchRuntimeCalls(), 6725 dex_pc), 6726 special_input_(HUserRecord<HInstruction*>(current_method)), 6727 proto_index_(proto_index), 6728 dex_file_(dex_file) { 6729 } 6730 6731 using HInstruction::GetInputRecords; // Keep the const version visible. GetInputRecords()6732 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 6733 return ArrayRef<HUserRecord<HInstruction*>>( 6734 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); 6735 } 6736 IsClonable()6737 bool IsClonable() const override { return true; } 6738 GetProtoIndex()6739 dex::ProtoIndex GetProtoIndex() const { return proto_index_; } 6740 GetDexFile()6741 const DexFile& GetDexFile() const { return dex_file_; } 6742 SideEffectsForArchRuntimeCalls()6743 static SideEffects SideEffectsForArchRuntimeCalls() { 6744 return SideEffects::CanTriggerGC(); 6745 } 6746 6747 DECLARE_INSTRUCTION(LoadMethodType); 6748 6749 protected: 6750 DEFAULT_COPY_CONSTRUCTOR(LoadMethodType); 6751 6752 private: 6753 // The special input is the HCurrentMethod for kRuntimeCall. 6754 HUserRecord<HInstruction*> special_input_; 6755 6756 const dex::ProtoIndex proto_index_; 6757 const DexFile& dex_file_; 6758 }; 6759 6760 /** 6761 * Performs an initialization check on its Class object input. 6762 */ 6763 class HClinitCheck final : public HExpression<1> { 6764 public: HClinitCheck(HLoadClass * constant,uint32_t dex_pc)6765 HClinitCheck(HLoadClass* constant, uint32_t dex_pc) 6766 : HExpression( 6767 kClinitCheck, 6768 DataType::Type::kReference, 6769 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. 6770 dex_pc) { 6771 SetRawInputAt(0, constant); 6772 } 6773 // TODO: Make ClinitCheck clonable. CanBeMoved()6774 bool CanBeMoved() const override { return true; } InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6775 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 6776 return true; 6777 } 6778 NeedsEnvironment()6779 bool NeedsEnvironment() const override { 6780 // May call runtime to initialize the class. 6781 return true; 6782 } 6783 CanThrow()6784 bool CanThrow() const override { return true; } 6785 GetLoadClass()6786 HLoadClass* GetLoadClass() const { 6787 DCHECK(InputAt(0)->IsLoadClass()); 6788 return InputAt(0)->AsLoadClass(); 6789 } 6790 6791 DECLARE_INSTRUCTION(ClinitCheck); 6792 6793 6794 protected: 6795 DEFAULT_COPY_CONSTRUCTOR(ClinitCheck); 6796 }; 6797 6798 class HStaticFieldGet final : public HExpression<1> { 6799 public: HStaticFieldGet(HInstruction * cls,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)6800 HStaticFieldGet(HInstruction* cls, 6801 ArtField* field, 6802 DataType::Type field_type, 6803 MemberOffset field_offset, 6804 bool is_volatile, 6805 uint32_t field_idx, 6806 uint16_t declaring_class_def_index, 6807 const DexFile& dex_file, 6808 uint32_t dex_pc) 6809 : HExpression(kStaticFieldGet, 6810 field_type, 6811 SideEffects::FieldReadOfType(field_type, is_volatile), 6812 dex_pc), 6813 field_info_(field, 6814 field_offset, 6815 field_type, 6816 is_volatile, 6817 field_idx, 6818 declaring_class_def_index, 6819 dex_file) { 6820 SetRawInputAt(0, cls); 6821 } 6822 6823 IsClonable()6824 bool IsClonable() const override { return true; } CanBeMoved()6825 bool CanBeMoved() const override { return !IsVolatile(); } 6826 InstructionDataEquals(const HInstruction * other)6827 bool InstructionDataEquals(const HInstruction* other) const override { 6828 const HStaticFieldGet* other_get = other->AsStaticFieldGet(); 6829 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); 6830 } 6831 ComputeHashCode()6832 size_t ComputeHashCode() const override { 6833 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); 6834 } 6835 GetFieldInfo()6836 const FieldInfo& GetFieldInfo() const { return field_info_; } GetFieldOffset()6837