• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""A TensorSpec class."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import numpy as np
22
23from tensorflow.python import _pywrap_utils
24from tensorflow.python.framework import common_shapes
25from tensorflow.python.framework import dtypes
26from tensorflow.python.framework import ops
27from tensorflow.python.framework import tensor_shape
28from tensorflow.python.framework import type_spec
29from tensorflow.python.util.tf_export import tf_export
30
31
32class DenseSpec(type_spec.TypeSpec):
33  """Describes a dense object with shape, dtype, and name."""
34
35  __slots__ = ["_shape", "_shape_tuple", "_dtype", "_name"]
36
37  _component_specs = property(lambda self: self)
38
39  def __init__(self, shape, dtype=dtypes.float32, name=None):
40    """Creates a TensorSpec.
41
42    Args:
43      shape: Value convertible to `tf.TensorShape`. The shape of the tensor.
44      dtype: Value convertible to `tf.DType`. The type of the tensor values.
45      name: Optional name for the Tensor.
46
47    Raises:
48      TypeError: If shape is not convertible to a `tf.TensorShape`, or dtype is
49        not convertible to a `tf.DType`.
50    """
51    self._shape = tensor_shape.TensorShape(shape)
52    try:
53      self._shape_tuple = tuple(self.shape.as_list())
54    except ValueError:
55      self._shape_tuple = None
56    self._dtype = dtypes.as_dtype(dtype)
57    self._name = name
58
59  @classmethod
60  def from_spec(cls, spec, name=None):
61    return cls(spec.shape, spec.dtype, name or spec.name)
62
63  @property
64  def shape(self):
65    """Returns the `TensorShape` that represents the shape of the tensor."""
66    return self._shape
67
68  @property
69  def dtype(self):
70    """Returns the `dtype` of elements in the tensor."""
71    return self._dtype
72
73  @property
74  def name(self):
75    """Returns the (optionally provided) name of the described tensor."""
76    return self._name
77
78  def is_compatible_with(self, spec_or_value):
79    return (isinstance(spec_or_value, (DenseSpec, self.value_type)) and
80            self._dtype.is_compatible_with(spec_or_value.dtype) and
81            self._shape.is_compatible_with(spec_or_value.shape))
82
83  def __repr__(self):
84    return "{}(shape={}, dtype={}, name={})".format(
85        type(self).__name__, self.shape, repr(self.dtype), repr(self.name))
86
87  def __hash__(self):
88    return hash((self._shape_tuple, self.dtype))
89
90  def __eq__(self, other):
91    # pylint: disable=protected-access
92    return (type(self) is type(other) and
93            self._shape_tuple == other._shape_tuple
94            and self._dtype == other._dtype
95            and self._name == other._name)
96
97  def __ne__(self, other):
98    return not self == other
99
100  def most_specific_compatible_type(self, other):
101    if (type(self) is not type(other)) or (self._dtype != other.dtype):
102      raise ValueError("Types are not compatible: %r vs %r" % (self, other))
103    shape = self._shape.most_specific_compatible_shape(other.shape)
104    name = self._name if self._name == other.name else None
105    return type(self)(shape, self._dtype, name)
106
107  def _serialize(self):
108    return (self._shape, self._dtype, self._name)
109
110  def _to_legacy_output_types(self):
111    return self._dtype
112
113  def _to_legacy_output_shapes(self):
114    return self._shape
115
116  def _to_legacy_output_classes(self):
117    return self.value_type
118
119
120@tf_export("TensorSpec")
121class TensorSpec(DenseSpec, type_spec.BatchableTypeSpec):
122  """Describes a tf.Tensor.
123
124  Metadata for describing the `tf.Tensor` objects accepted or returned
125  by some TensorFlow APIs.
126  """
127
128  __slots__ = []
129
130  def is_compatible_with(self, spec_or_tensor):  # pylint:disable=useless-super-delegation
131    """Returns True if spec_or_tensor is compatible with this TensorSpec.
132
133    Two tensors are considered compatible if they have the same dtype
134    and their shapes are compatible (see `tf.TensorShape.is_compatible_with`).
135
136    Args:
137      spec_or_tensor: A tf.TensorSpec or a tf.Tensor
138
139    Returns:
140      True if spec_or_tensor is compatible with self.
141    """
142    return super(TensorSpec, self).is_compatible_with(spec_or_tensor)
143
144  @classmethod
145  def from_tensor(cls, tensor, name=None):
146    if isinstance(tensor, ops.EagerTensor):
147      return TensorSpec(tensor.shape, tensor.dtype, name)
148    elif isinstance(tensor, ops.Tensor):
149      return TensorSpec(tensor.shape, tensor.dtype, name or tensor.op.name)
150    else:
151      raise ValueError("`tensor` should be a tf.Tensor")
152
153  value_type = property(lambda self: ops.Tensor)
154
155  def _to_components(self, value):
156    try:
157      value = ops.convert_to_tensor(value, self._dtype)
158    except (TypeError, ValueError):
159      raise ValueError("Value %r is not convertible to a tensor with dtype %s "
160                       "and shape %s." % (value, self._dtype, self._shape))
161    if not value.shape.is_compatible_with(self._shape):
162      raise ValueError("Value %r is not convertible to a tensor with dtype %s "
163                       "and shape %s." % (value, self._dtype, self._shape))
164    return value
165
166  def _from_components(self, components):
167    return components
168
169  def _from_compatible_tensor_list(self, tensor_list):
170    # TODO(b/112266545): It would be cleaner to create a new `ensure_shape()`
171    # op here and return that, instead of mutating the input's shape using
172    # `Tensor.set_shape()`. However, that would add extra ops, which could
173    # impact performance. When this bug is resolved, we should be able to add
174    # the `ensure_shape()` ops and optimize them away using contextual shape
175    # information.
176    assert len(tensor_list) == 1
177    tensor_list[0].set_shape(self._shape)
178    return tensor_list[0]
179
180  def _to_batchable_tensor_list(self, value, batched=False):
181    if batched and self._shape.merge_with(value.shape).ndims == 0:
182      raise ValueError("Unbatching a tensor is only supported for rank >= 1")
183    return self._to_components(value)
184
185  def _batch(self, batch_size):
186    return TensorSpec(
187        tensor_shape.TensorShape([batch_size]).concatenate(self._shape),
188        self._dtype)
189
190  def _unbatch(self):
191    if self._shape.ndims == 0:
192      raise ValueError("Unbatching a tensor is only supported for rank >= 1")
193    return TensorSpec(self._shape[1:], self._dtype)
194
195
196# TODO(b/133606651): Should is_compatible_with should check min/max bounds?
197class BoundedTensorSpec(TensorSpec):
198  """A `TensorSpec` that specifies minimum and maximum values.
199
200  Example usage:
201  ```python
202  spec = tensor_spec.BoundedTensorSpec((1, 2, 3), tf.float32, 0, (5, 5, 5))
203  tf_minimum = tf.convert_to_tensor(spec.minimum, dtype=spec.dtype)
204  tf_maximum = tf.convert_to_tensor(spec.maximum, dtype=spec.dtype)
205  ```
206
207  Bounds are meant to be inclusive. This is especially important for
208  integer types. The following spec will be satisfied by tensors
209  with values in the set {0, 1, 2}:
210  ```python
211  spec = tensor_spec.BoundedTensorSpec((3, 5), tf.int32, 0, 2)
212  ```
213  """
214
215  __slots__ = ("_minimum", "_maximum")
216
217  def __init__(self, shape, dtype, minimum, maximum, name=None):
218    """Initializes a new `BoundedTensorSpec`.
219
220    Args:
221      shape: Value convertible to `tf.TensorShape`. The shape of the tensor.
222      dtype: Value convertible to `tf.DType`. The type of the tensor values.
223      minimum: Number or sequence specifying the minimum element bounds
224        (inclusive). Must be broadcastable to `shape`.
225      maximum: Number or sequence specifying the maximum element bounds
226        (inclusive). Must be broadcastable to `shape`.
227      name: Optional string containing a semantic name for the corresponding
228        array. Defaults to `None`.
229
230    Raises:
231      ValueError: If `minimum` or `maximum` are not provided or not
232        broadcastable to `shape`.
233      TypeError: If the shape is not an iterable or if the `dtype` is an invalid
234        numpy dtype.
235    """
236    super(BoundedTensorSpec, self).__init__(shape, dtype, name)
237
238    if minimum is None or maximum is None:
239      raise ValueError("minimum and maximum must be provided; but saw "
240                       "'%s' and '%s'" % (minimum, maximum))
241
242    try:
243      minimum_shape = np.shape(minimum)
244      common_shapes.broadcast_shape(
245          tensor_shape.TensorShape(minimum_shape), self.shape)
246    except ValueError as exception:
247      raise ValueError("minimum is not compatible with shape. "
248                       "Message: {!r}.".format(exception))
249
250    try:
251      maximum_shape = np.shape(maximum)
252      common_shapes.broadcast_shape(
253          tensor_shape.TensorShape(maximum_shape), self.shape)
254    except ValueError as exception:
255      raise ValueError("maximum is not compatible with shape. "
256                       "Message: {!r}.".format(exception))
257
258    self._minimum = np.array(minimum, dtype=self.dtype.as_numpy_dtype)
259    self._minimum.setflags(write=False)
260
261    self._maximum = np.array(maximum, dtype=self.dtype.as_numpy_dtype)
262    self._maximum.setflags(write=False)
263
264  @classmethod
265  def from_spec(cls, spec):
266    dtype = dtypes.as_dtype(spec.dtype)
267    minimum = getattr(spec, "minimum", dtype.min)
268    maximum = getattr(spec, "maximum", dtype.max)
269    return BoundedTensorSpec(spec.shape, dtype, minimum, maximum, spec.name)
270
271  @property
272  def minimum(self):
273    """Returns a NumPy array specifying the minimum bounds (inclusive)."""
274    return self._minimum
275
276  @property
277  def maximum(self):
278    """Returns a NumPy array specifying the maximum bounds (inclusive)."""
279    return self._maximum
280
281  def __repr__(self):
282    s = "BoundedTensorSpec(shape={}, dtype={}, name={}, minimum={}, maximum={})"
283    return s.format(self.shape, repr(self.dtype), repr(self.name),
284                    repr(self.minimum), repr(self.maximum))
285
286  def __eq__(self, other):
287    tensor_spec_eq = super(BoundedTensorSpec, self).__eq__(other)
288    return (tensor_spec_eq and np.allclose(self.minimum, other.minimum) and
289            np.allclose(self.maximum, other.maximum))
290
291  def __hash__(self):
292    return hash((self._shape_tuple, self.dtype))
293
294  def __reduce__(self):
295    return BoundedTensorSpec, (self._shape, self._dtype, self._minimum,
296                               self._maximum, self._name)
297
298  def _serialize(self):
299    return (self._shape, self._dtype, self._minimum, self._maximum, self._name)
300
301
302_pywrap_utils.RegisterType("TensorSpec", TensorSpec)
303
304
305# Note: we do not include Tensor names when constructing TypeSpecs.
306type_spec.register_type_spec_from_value_converter(
307    ops.Tensor,
308    lambda tensor: TensorSpec(tensor.shape, tensor.dtype))
309
310type_spec.register_type_spec_from_value_converter(
311    np.ndarray,
312    lambda array: TensorSpec(array.shape, array.dtype))
313