• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread.h"
18 
19 #include <limits.h>  // for INT_MAX
20 #include <pthread.h>
21 #include <signal.h>
22 #include <sys/resource.h>
23 #include <sys/time.h>
24 
25 #if __has_feature(hwaddress_sanitizer)
26 #include <sanitizer/hwasan_interface.h>
27 #else
28 #define __hwasan_tag_pointer(p, t) (p)
29 #endif
30 
31 #include <algorithm>
32 #include <bitset>
33 #include <cerrno>
34 #include <iostream>
35 #include <list>
36 #include <sstream>
37 
38 #include "android-base/file.h"
39 #include "android-base/stringprintf.h"
40 #include "android-base/strings.h"
41 
42 #include "arch/context-inl.h"
43 #include "arch/context.h"
44 #include "art_field-inl.h"
45 #include "art_method-inl.h"
46 #include "base/atomic.h"
47 #include "base/bit_utils.h"
48 #include "base/casts.h"
49 #include "arch/context.h"
50 #include "base/file_utils.h"
51 #include "base/memory_tool.h"
52 #include "base/mutex.h"
53 #include "base/stl_util.h"
54 #include "base/systrace.h"
55 #include "base/timing_logger.h"
56 #include "base/to_str.h"
57 #include "base/utils.h"
58 #include "class_linker-inl.h"
59 #include "class_root.h"
60 #include "debugger.h"
61 #include "dex/descriptors_names.h"
62 #include "dex/dex_file-inl.h"
63 #include "dex/dex_file_annotations.h"
64 #include "dex/dex_file_types.h"
65 #include "entrypoints/entrypoint_utils.h"
66 #include "entrypoints/quick/quick_alloc_entrypoints.h"
67 #include "gc/accounting/card_table-inl.h"
68 #include "gc/accounting/heap_bitmap-inl.h"
69 #include "gc/allocator/rosalloc.h"
70 #include "gc/heap.h"
71 #include "gc/space/space-inl.h"
72 #include "gc_root.h"
73 #include "handle_scope-inl.h"
74 #include "indirect_reference_table-inl.h"
75 #include "instrumentation.h"
76 #include "interpreter/interpreter.h"
77 #include "interpreter/mterp/mterp.h"
78 #include "interpreter/shadow_frame-inl.h"
79 #include "java_frame_root_info.h"
80 #include "jni/java_vm_ext.h"
81 #include "jni/jni_internal.h"
82 #include "mirror/class-alloc-inl.h"
83 #include "mirror/class_loader.h"
84 #include "mirror/object_array-alloc-inl.h"
85 #include "mirror/object_array-inl.h"
86 #include "mirror/stack_trace_element.h"
87 #include "monitor.h"
88 #include "monitor_objects_stack_visitor.h"
89 #include "native_stack_dump.h"
90 #include "nativehelper/scoped_local_ref.h"
91 #include "nativehelper/scoped_utf_chars.h"
92 #include "nterp_helpers.h"
93 #include "nth_caller_visitor.h"
94 #include "oat_quick_method_header.h"
95 #include "obj_ptr-inl.h"
96 #include "object_lock.h"
97 #include "palette/palette.h"
98 #include "quick/quick_method_frame_info.h"
99 #include "quick_exception_handler.h"
100 #include "read_barrier-inl.h"
101 #include "reflection.h"
102 #include "reflective_handle_scope-inl.h"
103 #include "runtime-inl.h"
104 #include "runtime.h"
105 #include "runtime_callbacks.h"
106 #include "scoped_thread_state_change-inl.h"
107 #include "stack.h"
108 #include "stack_map.h"
109 #include "thread-inl.h"
110 #include "thread_list.h"
111 #include "verifier/method_verifier.h"
112 #include "verify_object.h"
113 #include "well_known_classes.h"
114 
115 #if ART_USE_FUTEXES
116 #include "linux/futex.h"
117 #include "sys/syscall.h"
118 #ifndef SYS_futex
119 #define SYS_futex __NR_futex
120 #endif
121 #endif  // ART_USE_FUTEXES
122 
123 namespace art {
124 
125 using android::base::StringAppendV;
126 using android::base::StringPrintf;
127 
128 extern "C" NO_RETURN void artDeoptimize(Thread* self);
129 
130 bool Thread::is_started_ = false;
131 pthread_key_t Thread::pthread_key_self_;
132 ConditionVariable* Thread::resume_cond_ = nullptr;
133 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
134 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
135 Thread* Thread::jit_sensitive_thread_ = nullptr;
136 #ifndef __BIONIC__
137 thread_local Thread* Thread::self_tls_ = nullptr;
138 #endif
139 
140 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
141 
142 // For implicit overflow checks we reserve an extra piece of memory at the bottom
143 // of the stack (lowest memory).  The higher portion of the memory
144 // is protected against reads and the lower is available for use while
145 // throwing the StackOverflow exception.
146 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
147 
148 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
149 
InitCardTable()150 void Thread::InitCardTable() {
151   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
152 }
153 
UnimplementedEntryPoint()154 static void UnimplementedEntryPoint() {
155   UNIMPLEMENTED(FATAL);
156 }
157 
158 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
159 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
160 
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)161 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
162   CHECK(kUseReadBarrier);
163   tls32_.is_gc_marking = is_marking;
164   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking);
165   ResetQuickAllocEntryPointsForThread(is_marking);
166 }
167 
InitTlsEntryPoints()168 void Thread::InitTlsEntryPoints() {
169   ScopedTrace trace("InitTlsEntryPoints");
170   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
171   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
172   uintptr_t* end = reinterpret_cast<uintptr_t*>(
173       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
174   for (uintptr_t* it = begin; it != end; ++it) {
175     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
176   }
177   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
178 }
179 
ResetQuickAllocEntryPointsForThread(bool is_marking)180 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
181   if (kUseReadBarrier && kRuntimeISA != InstructionSet::kX86_64) {
182     // Allocation entrypoint switching is currently only implemented for X86_64.
183     is_marking = true;
184   }
185   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
186 }
187 
188 class DeoptimizationContextRecord {
189  public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)190   DeoptimizationContextRecord(const JValue& ret_val,
191                               bool is_reference,
192                               bool from_code,
193                               ObjPtr<mirror::Throwable> pending_exception,
194                               DeoptimizationMethodType method_type,
195                               DeoptimizationContextRecord* link)
196       : ret_val_(ret_val),
197         is_reference_(is_reference),
198         from_code_(from_code),
199         pending_exception_(pending_exception.Ptr()),
200         deopt_method_type_(method_type),
201         link_(link) {}
202 
GetReturnValue() const203   JValue GetReturnValue() const { return ret_val_; }
IsReference() const204   bool IsReference() const { return is_reference_; }
GetFromCode() const205   bool GetFromCode() const { return from_code_; }
GetPendingException() const206   ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const207   DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()208   mirror::Object** GetReturnValueAsGCRoot() {
209     DCHECK(is_reference_);
210     return ret_val_.GetGCRoot();
211   }
GetPendingExceptionAsGCRoot()212   mirror::Object** GetPendingExceptionAsGCRoot() {
213     return reinterpret_cast<mirror::Object**>(&pending_exception_);
214   }
GetDeoptimizationMethodType() const215   DeoptimizationMethodType GetDeoptimizationMethodType() const {
216     return deopt_method_type_;
217   }
218 
219  private:
220   // The value returned by the method at the top of the stack before deoptimization.
221   JValue ret_val_;
222 
223   // Indicates whether the returned value is a reference. If so, the GC will visit it.
224   const bool is_reference_;
225 
226   // Whether the context was created from an explicit deoptimization in the code.
227   const bool from_code_;
228 
229   // The exception that was pending before deoptimization (or null if there was no pending
230   // exception).
231   mirror::Throwable* pending_exception_;
232 
233   // Whether the context was created for an (idempotent) runtime method.
234   const DeoptimizationMethodType deopt_method_type_;
235 
236   // A link to the previous DeoptimizationContextRecord.
237   DeoptimizationContextRecord* const link_;
238 
239   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
240 };
241 
242 class StackedShadowFrameRecord {
243  public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)244   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
245                            StackedShadowFrameType type,
246                            StackedShadowFrameRecord* link)
247       : shadow_frame_(shadow_frame),
248         type_(type),
249         link_(link) {}
250 
GetShadowFrame() const251   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const252   StackedShadowFrameType GetType() const { return type_; }
GetLink() const253   StackedShadowFrameRecord* GetLink() const { return link_; }
254 
255  private:
256   ShadowFrame* const shadow_frame_;
257   const StackedShadowFrameType type_;
258   StackedShadowFrameRecord* const link_;
259 
260   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
261 };
262 
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)263 void Thread::PushDeoptimizationContext(const JValue& return_value,
264                                        bool is_reference,
265                                        ObjPtr<mirror::Throwable> exception,
266                                        bool from_code,
267                                        DeoptimizationMethodType method_type) {
268   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
269       return_value,
270       is_reference,
271       from_code,
272       exception,
273       method_type,
274       tlsPtr_.deoptimization_context_stack);
275   tlsPtr_.deoptimization_context_stack = record;
276 }
277 
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)278 void Thread::PopDeoptimizationContext(JValue* result,
279                                       ObjPtr<mirror::Throwable>* exception,
280                                       bool* from_code,
281                                       DeoptimizationMethodType* method_type) {
282   AssertHasDeoptimizationContext();
283   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
284   tlsPtr_.deoptimization_context_stack = record->GetLink();
285   result->SetJ(record->GetReturnValue().GetJ());
286   *exception = record->GetPendingException();
287   *from_code = record->GetFromCode();
288   *method_type = record->GetDeoptimizationMethodType();
289   delete record;
290 }
291 
AssertHasDeoptimizationContext()292 void Thread::AssertHasDeoptimizationContext() {
293   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
294       << "No deoptimization context for thread " << *this;
295 }
296 
297 enum {
298   kPermitAvailable = 0,  // Incrementing consumes the permit
299   kNoPermit = 1,  // Incrementing marks as waiter waiting
300   kNoPermitWaiterWaiting = 2
301 };
302 
Park(bool is_absolute,int64_t time)303 void Thread::Park(bool is_absolute, int64_t time) {
304   DCHECK(this == Thread::Current());
305 #if ART_USE_FUTEXES
306   // Consume the permit, or mark as waiting. This cannot cause park_state to go
307   // outside of its valid range (0, 1, 2), because in all cases where 2 is
308   // assigned it is set back to 1 before returning, and this method cannot run
309   // concurrently with itself since it operates on the current thread.
310   int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed);
311   if (old_state == kNoPermit) {
312     // no permit was available. block thread until later.
313     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time);
314     bool timed_out = false;
315     if (!is_absolute && time == 0) {
316       // Thread.getState() is documented to return waiting for untimed parks.
317       ScopedThreadSuspension sts(this, ThreadState::kWaiting);
318       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
319       int result = futex(tls32_.park_state_.Address(),
320                      FUTEX_WAIT_PRIVATE,
321                      /* sleep if val = */ kNoPermitWaiterWaiting,
322                      /* timeout */ nullptr,
323                      nullptr,
324                      0);
325       // This errno check must happen before the scope is closed, to ensure that
326       // no destructors (such as ScopedThreadSuspension) overwrite errno.
327       if (result == -1) {
328         switch (errno) {
329           case EAGAIN:
330             FALLTHROUGH_INTENDED;
331           case EINTR: break;  // park() is allowed to spuriously return
332           default: PLOG(FATAL) << "Failed to park";
333         }
334       }
335     } else if (time > 0) {
336       // Only actually suspend and futex_wait if we're going to wait for some
337       // positive amount of time - the kernel will reject negative times with
338       // EINVAL, and a zero time will just noop.
339 
340       // Thread.getState() is documented to return timed wait for timed parks.
341       ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting);
342       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
343       timespec timespec;
344       int result = 0;
345       if (is_absolute) {
346         // Time is millis when scheduled for an absolute time
347         timespec.tv_nsec = (time % 1000) * 1000000;
348         timespec.tv_sec = time / 1000;
349         // This odd looking pattern is recommended by futex documentation to
350         // wait until an absolute deadline, with otherwise identical behavior to
351         // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the
352         // correct time when the system clock changes.
353         result = futex(tls32_.park_state_.Address(),
354                        FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
355                        /* sleep if val = */ kNoPermitWaiterWaiting,
356                        &timespec,
357                        nullptr,
358                        FUTEX_BITSET_MATCH_ANY);
359       } else {
360         // Time is nanos when scheduled for a relative time
361         timespec.tv_sec = time / 1000000000;
362         timespec.tv_nsec = time % 1000000000;
363         result = futex(tls32_.park_state_.Address(),
364                        FUTEX_WAIT_PRIVATE,
365                        /* sleep if val = */ kNoPermitWaiterWaiting,
366                        &timespec,
367                        nullptr,
368                        0);
369       }
370       // This errno check must happen before the scope is closed, to ensure that
371       // no destructors (such as ScopedThreadSuspension) overwrite errno.
372       if (result == -1) {
373         switch (errno) {
374           case ETIMEDOUT:
375             timed_out = true;
376             FALLTHROUGH_INTENDED;
377           case EAGAIN:
378           case EINTR: break;  // park() is allowed to spuriously return
379           default: PLOG(FATAL) << "Failed to park";
380         }
381       }
382     }
383     // Mark as no longer waiting, and consume permit if there is one.
384     tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
385     // TODO: Call to signal jvmti here
386     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out);
387   } else {
388     // the fetch_add has consumed the permit. immediately return.
389     DCHECK_EQ(old_state, kPermitAvailable);
390   }
391 #else
392   #pragma clang diagnostic push
393   #pragma clang diagnostic warning "-W#warnings"
394   #warning "LockSupport.park/unpark implemented as noops without FUTEX support."
395   #pragma clang diagnostic pop
396   UNUSED(is_absolute, time);
397   UNIMPLEMENTED(WARNING);
398   sched_yield();
399 #endif
400 }
401 
Unpark()402 void Thread::Unpark() {
403 #if ART_USE_FUTEXES
404   // Set permit available; will be consumed either by fetch_add (when the thread
405   // tries to park) or store (when the parked thread is woken up)
406   if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed)
407       == kNoPermitWaiterWaiting) {
408     int result = futex(tls32_.park_state_.Address(),
409                        FUTEX_WAKE_PRIVATE,
410                        /* number of waiters = */ 1,
411                        nullptr,
412                        nullptr,
413                        0);
414     if (result == -1) {
415       PLOG(FATAL) << "Failed to unpark";
416     }
417   }
418 #else
419   UNIMPLEMENTED(WARNING);
420 #endif
421 }
422 
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)423 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
424   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
425       sf, type, tlsPtr_.stacked_shadow_frame_record);
426   tlsPtr_.stacked_shadow_frame_record = record;
427 }
428 
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)429 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
430   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
431   if (must_be_present) {
432     DCHECK(record != nullptr);
433   } else {
434     if (record == nullptr || record->GetType() != type) {
435       return nullptr;
436     }
437   }
438   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
439   ShadowFrame* shadow_frame = record->GetShadowFrame();
440   delete record;
441   return shadow_frame;
442 }
443 
444 class FrameIdToShadowFrame {
445  public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)446   static FrameIdToShadowFrame* Create(size_t frame_id,
447                                       ShadowFrame* shadow_frame,
448                                       FrameIdToShadowFrame* next,
449                                       size_t num_vregs) {
450     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
451     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
452     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
453   }
454 
Delete(FrameIdToShadowFrame * f)455   static void Delete(FrameIdToShadowFrame* f) {
456     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
457     delete[] memory;
458   }
459 
GetFrameId() const460   size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const461   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const462   FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)463   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()464   bool* GetUpdatedVRegFlags() {
465     return updated_vreg_flags_;
466   }
467 
468  private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)469   FrameIdToShadowFrame(size_t frame_id,
470                        ShadowFrame* shadow_frame,
471                        FrameIdToShadowFrame* next)
472       : frame_id_(frame_id),
473         shadow_frame_(shadow_frame),
474         next_(next) {}
475 
476   const size_t frame_id_;
477   ShadowFrame* const shadow_frame_;
478   FrameIdToShadowFrame* next_;
479   bool updated_vreg_flags_[0];
480 
481   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
482 };
483 
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)484 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
485                                                       size_t frame_id) {
486   FrameIdToShadowFrame* found = nullptr;
487   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
488     if (record->GetFrameId() == frame_id) {
489       if (kIsDebugBuild) {
490         // Sanity check we have at most one record for this frame.
491         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
492         found = record;
493       } else {
494         return record;
495       }
496     }
497   }
498   return found;
499 }
500 
FindDebuggerShadowFrame(size_t frame_id)501 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
502   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
503       tlsPtr_.frame_id_to_shadow_frame, frame_id);
504   if (record != nullptr) {
505     return record->GetShadowFrame();
506   }
507   return nullptr;
508 }
509 
510 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)511 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
512   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
513       tlsPtr_.frame_id_to_shadow_frame, frame_id);
514   CHECK(record != nullptr);
515   return record->GetUpdatedVRegFlags();
516 }
517 
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)518 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
519                                                      uint32_t num_vregs,
520                                                      ArtMethod* method,
521                                                      uint32_t dex_pc) {
522   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
523   if (shadow_frame != nullptr) {
524     return shadow_frame;
525   }
526   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
527   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
528   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
529                                                               shadow_frame,
530                                                               tlsPtr_.frame_id_to_shadow_frame,
531                                                               num_vregs);
532   for (uint32_t i = 0; i < num_vregs; i++) {
533     // Do this to clear all references for root visitors.
534     shadow_frame->SetVRegReference(i, nullptr);
535     // This flag will be changed to true if the debugger modifies the value.
536     record->GetUpdatedVRegFlags()[i] = false;
537   }
538   tlsPtr_.frame_id_to_shadow_frame = record;
539   return shadow_frame;
540 }
541 
GetCustomTLS(const char * key)542 TLSData* Thread::GetCustomTLS(const char* key) {
543   MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
544   auto it = custom_tls_.find(key);
545   return (it != custom_tls_.end()) ? it->second.get() : nullptr;
546 }
547 
SetCustomTLS(const char * key,TLSData * data)548 void Thread::SetCustomTLS(const char* key, TLSData* data) {
549   // We will swap the old data (which might be nullptr) with this and then delete it outside of the
550   // custom_tls_lock_.
551   std::unique_ptr<TLSData> old_data(data);
552   {
553     MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
554     custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data);
555   }
556 }
557 
RemoveDebuggerShadowFrameMapping(size_t frame_id)558 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
559   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
560   if (head->GetFrameId() == frame_id) {
561     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
562     FrameIdToShadowFrame::Delete(head);
563     return;
564   }
565   FrameIdToShadowFrame* prev = head;
566   for (FrameIdToShadowFrame* record = head->GetNext();
567        record != nullptr;
568        prev = record, record = record->GetNext()) {
569     if (record->GetFrameId() == frame_id) {
570       prev->SetNext(record->GetNext());
571       FrameIdToShadowFrame::Delete(record);
572       return;
573     }
574   }
575   LOG(FATAL) << "No shadow frame for frame " << frame_id;
576   UNREACHABLE();
577 }
578 
InitTid()579 void Thread::InitTid() {
580   tls32_.tid = ::art::GetTid();
581 }
582 
InitAfterFork()583 void Thread::InitAfterFork() {
584   // One thread (us) survived the fork, but we have a new tid so we need to
585   // update the value stashed in this Thread*.
586   InitTid();
587 }
588 
DeleteJPeer(JNIEnv * env)589 void Thread::DeleteJPeer(JNIEnv* env) {
590   // Make sure nothing can observe both opeer and jpeer set at the same time.
591   jobject old_jpeer = tlsPtr_.jpeer;
592   CHECK(old_jpeer != nullptr);
593   tlsPtr_.jpeer = nullptr;
594   env->DeleteGlobalRef(old_jpeer);
595 }
596 
CreateCallback(void * arg)597 void* Thread::CreateCallback(void* arg) {
598   Thread* self = reinterpret_cast<Thread*>(arg);
599   Runtime* runtime = Runtime::Current();
600   if (runtime == nullptr) {
601     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
602     return nullptr;
603   }
604   {
605     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
606     //       after self->Init().
607     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
608     // Check that if we got here we cannot be shutting down (as shutdown should never have started
609     // while threads are being born).
610     CHECK(!runtime->IsShuttingDownLocked());
611     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
612     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
613     //       the runtime in such a case. In case this ever changes, we need to make sure here to
614     //       delete the tmp_jni_env, as we own it at this point.
615     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
616     self->tlsPtr_.tmp_jni_env = nullptr;
617     Runtime::Current()->EndThreadBirth();
618   }
619   {
620     ScopedObjectAccess soa(self);
621     self->InitStringEntryPoints();
622 
623     // Copy peer into self, deleting global reference when done.
624     CHECK(self->tlsPtr_.jpeer != nullptr);
625     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
626     // Make sure nothing can observe both opeer and jpeer set at the same time.
627     self->DeleteJPeer(self->GetJniEnv());
628     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
629 
630     ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
631     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
632 
633     runtime->GetRuntimeCallbacks()->ThreadStart(self);
634 
635     // Unpark ourselves if the java peer was unparked before it started (see
636     // b/28845097#comment49 for more information)
637 
638     ArtField* unparkedField = jni::DecodeArtField(
639         WellKnownClasses::java_lang_Thread_unparkedBeforeStart);
640     bool should_unpark = false;
641     {
642       // Hold the lock here, so that if another thread calls unpark before the thread starts
643       // we don't observe the unparkedBeforeStart field before the unparker writes to it,
644       // which could cause a lost unpark.
645       art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_);
646       should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE;
647     }
648     if (should_unpark) {
649       self->Unpark();
650     }
651     // Invoke the 'run' method of our java.lang.Thread.
652     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
653     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
654     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
655     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
656   }
657   // Detach and delete self.
658   Runtime::Current()->GetThreadList()->Unregister(self);
659 
660   return nullptr;
661 }
662 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)663 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
664                                   ObjPtr<mirror::Object> thread_peer) {
665   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
666   Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer));
667   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
668   // to stop it from going away.
669   if (kIsDebugBuild) {
670     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
671     if (result != nullptr && !result->IsSuspended()) {
672       Locks::thread_list_lock_->AssertHeld(soa.Self());
673     }
674   }
675   return result;
676 }
677 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)678 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
679                                   jobject java_thread) {
680   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread));
681 }
682 
FixStackSize(size_t stack_size)683 static size_t FixStackSize(size_t stack_size) {
684   // A stack size of zero means "use the default".
685   if (stack_size == 0) {
686     stack_size = Runtime::Current()->GetDefaultStackSize();
687   }
688 
689   // Dalvik used the bionic pthread default stack size for native threads,
690   // so include that here to support apps that expect large native stacks.
691   stack_size += 1 * MB;
692 
693   // Under sanitization, frames of the interpreter may become bigger, both for C code as
694   // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization
695   // of all core classes cannot be done in all test circumstances.
696   if (kMemoryToolIsAvailable) {
697     stack_size = std::max(2 * MB, stack_size);
698   }
699 
700   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
701   if (stack_size < PTHREAD_STACK_MIN) {
702     stack_size = PTHREAD_STACK_MIN;
703   }
704 
705   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
706     // It's likely that callers are trying to ensure they have at least a certain amount of
707     // stack space, so we should add our reserved space on top of what they requested, rather
708     // than implicitly take it away from them.
709     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
710   } else {
711     // If we are going to use implicit stack checks, allocate space for the protected
712     // region at the bottom of the stack.
713     stack_size += Thread::kStackOverflowImplicitCheckSize +
714         GetStackOverflowReservedBytes(kRuntimeISA);
715   }
716 
717   // Some systems require the stack size to be a multiple of the system page size, so round up.
718   stack_size = RoundUp(stack_size, kPageSize);
719 
720   return stack_size;
721 }
722 
723 // Return the nearest page-aligned address below the current stack top.
724 NO_INLINE
FindStackTop()725 static uint8_t* FindStackTop() {
726   return reinterpret_cast<uint8_t*>(
727       AlignDown(__builtin_frame_address(0), kPageSize));
728 }
729 
730 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
731 // overflow is detected.  It is located right below the stack_begin_.
732 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()733 void Thread::InstallImplicitProtection() {
734   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
735   // Page containing current top of stack.
736   uint8_t* stack_top = FindStackTop();
737 
738   // Try to directly protect the stack.
739   VLOG(threads) << "installing stack protected region at " << std::hex <<
740         static_cast<void*>(pregion) << " to " <<
741         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
742   if (ProtectStack(/* fatal_on_error= */ false)) {
743     // Tell the kernel that we won't be needing these pages any more.
744     // NB. madvise will probably write zeroes into the memory (on linux it does).
745     uint32_t unwanted_size = stack_top - pregion - kPageSize;
746     madvise(pregion, unwanted_size, MADV_DONTNEED);
747     return;
748   }
749 
750   // There is a little complexity here that deserves a special mention.  On some
751   // architectures, the stack is created using a VM_GROWSDOWN flag
752   // to prevent memory being allocated when it's not needed.  This flag makes the
753   // kernel only allocate memory for the stack by growing down in memory.  Because we
754   // want to put an mprotected region far away from that at the stack top, we need
755   // to make sure the pages for the stack are mapped in before we call mprotect.
756   //
757   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
758   // with a non-mapped stack (usually only the main thread).
759   //
760   // We map in the stack by reading every page from the stack bottom (highest address)
761   // to the stack top. (We then madvise this away.) This must be done by reading from the
762   // current stack pointer downwards.
763   //
764   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
765   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
766   // thus have to move the stack pointer. We do this portably by using a recursive function with a
767   // large stack frame size.
768 
769   // (Defensively) first remove the protection on the protected region as we'll want to read
770   // and write it. Ignore errors.
771   UnprotectStack();
772 
773   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
774       static_cast<void*>(pregion);
775 
776   struct RecurseDownStack {
777     // This function has an intentionally large stack size.
778 #pragma GCC diagnostic push
779 #pragma GCC diagnostic ignored "-Wframe-larger-than="
780     NO_INLINE
781     static void Touch(uintptr_t target) {
782       volatile size_t zero = 0;
783       // Use a large local volatile array to ensure a large frame size. Do not use anything close
784       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
785       // there is no pragma support for this.
786       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
787       constexpr size_t kAsanMultiplier =
788 #ifdef ADDRESS_SANITIZER
789           2u;
790 #else
791           1u;
792 #endif
793       // Keep space uninitialized as it can overflow the stack otherwise (should Clang actually
794       // auto-initialize this local variable).
795       volatile char space[kPageSize - (kAsanMultiplier * 256)] __attribute__((uninitialized));
796       char sink ATTRIBUTE_UNUSED = space[zero];  // NOLINT
797       // Remove tag from the pointer. Nop in non-hwasan builds.
798       uintptr_t addr = reinterpret_cast<uintptr_t>(__hwasan_tag_pointer(space, 0));
799       if (addr >= target + kPageSize) {
800         Touch(target);
801       }
802       zero *= 2;  // Try to avoid tail recursion.
803     }
804 #pragma GCC diagnostic pop
805   };
806   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
807 
808   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
809       static_cast<void*>(pregion) << " to " <<
810       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
811 
812   // Protect the bottom of the stack to prevent read/write to it.
813   ProtectStack(/* fatal_on_error= */ true);
814 
815   // Tell the kernel that we won't be needing these pages any more.
816   // NB. madvise will probably write zeroes into the memory (on linux it does).
817   uint32_t unwanted_size = stack_top - pregion - kPageSize;
818   madvise(pregion, unwanted_size, MADV_DONTNEED);
819 }
820 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)821 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
822   CHECK(java_peer != nullptr);
823   Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
824 
825   if (VLOG_IS_ON(threads)) {
826     ScopedObjectAccess soa(env);
827 
828     ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
829     ObjPtr<mirror::String> java_name =
830         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
831     std::string thread_name;
832     if (java_name != nullptr) {
833       thread_name = java_name->ToModifiedUtf8();
834     } else {
835       thread_name = "(Unnamed)";
836     }
837 
838     VLOG(threads) << "Creating native thread for " << thread_name;
839     self->Dump(LOG_STREAM(INFO));
840   }
841 
842   Runtime* runtime = Runtime::Current();
843 
844   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
845   bool thread_start_during_shutdown = false;
846   {
847     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
848     if (runtime->IsShuttingDownLocked()) {
849       thread_start_during_shutdown = true;
850     } else {
851       runtime->StartThreadBirth();
852     }
853   }
854   if (thread_start_during_shutdown) {
855     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
856     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
857     return;
858   }
859 
860   Thread* child_thread = new Thread(is_daemon);
861   // Use global JNI ref to hold peer live while child thread starts.
862   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
863   stack_size = FixStackSize(stack_size);
864 
865   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
866   // to assign it.
867   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
868                     reinterpret_cast<jlong>(child_thread));
869 
870   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
871   // do not have a good way to report this on the child's side.
872   std::string error_msg;
873   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
874       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
875 
876   int pthread_create_result = 0;
877   if (child_jni_env_ext.get() != nullptr) {
878     pthread_t new_pthread;
879     pthread_attr_t attr;
880     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
881     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
882     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
883                        "PTHREAD_CREATE_DETACHED");
884     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
885     pthread_create_result = pthread_create(&new_pthread,
886                                            &attr,
887                                            Thread::CreateCallback,
888                                            child_thread);
889     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
890 
891     if (pthread_create_result == 0) {
892       // pthread_create started the new thread. The child is now responsible for managing the
893       // JNIEnvExt we created.
894       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
895       //       between the threads.
896       child_jni_env_ext.release();  // NOLINT pthreads API.
897       return;
898     }
899   }
900 
901   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
902   {
903     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
904     runtime->EndThreadBirth();
905   }
906   // Manually delete the global reference since Thread::Init will not have been run. Make sure
907   // nothing can observe both opeer and jpeer set at the same time.
908   child_thread->DeleteJPeer(env);
909   delete child_thread;
910   child_thread = nullptr;
911   // TODO: remove from thread group?
912   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
913   {
914     std::string msg(child_jni_env_ext.get() == nullptr ?
915         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
916         StringPrintf("pthread_create (%s stack) failed: %s",
917                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
918     ScopedObjectAccess soa(env);
919     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
920   }
921 }
922 
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)923 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
924   // This function does all the initialization that must be run by the native thread it applies to.
925   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
926   // we can handshake with the corresponding native thread when it's ready.) Check this native
927   // thread hasn't been through here already...
928   CHECK(Thread::Current() == nullptr);
929 
930   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
931   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
932   tlsPtr_.pthread_self = pthread_self();
933   CHECK(is_started_);
934 
935   ScopedTrace trace("Thread::Init");
936 
937   SetUpAlternateSignalStack();
938   if (!InitStackHwm()) {
939     return false;
940   }
941   InitCpu();
942   InitTlsEntryPoints();
943   RemoveSuspendTrigger();
944   InitCardTable();
945   InitTid();
946   {
947     ScopedTrace trace2("InitInterpreterTls");
948     interpreter::InitInterpreterTls(this);
949   }
950 
951 #ifdef __BIONIC__
952   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
953 #else
954   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
955   Thread::self_tls_ = this;
956 #endif
957   DCHECK_EQ(Thread::Current(), this);
958 
959   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
960 
961   if (jni_env_ext != nullptr) {
962     DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
963     DCHECK_EQ(jni_env_ext->GetSelf(), this);
964     tlsPtr_.jni_env = jni_env_ext;
965   } else {
966     std::string error_msg;
967     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
968     if (tlsPtr_.jni_env == nullptr) {
969       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
970       return false;
971     }
972   }
973 
974   ScopedTrace trace3("ThreadList::Register");
975   thread_list->Register(this);
976   return true;
977 }
978 
979 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)980 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
981   Runtime* runtime = Runtime::Current();
982   ScopedTrace trace("Thread::Attach");
983   if (runtime == nullptr) {
984     LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
985         ((thread_name != nullptr) ? thread_name : "(Unnamed)");
986     return nullptr;
987   }
988   Thread* self;
989   {
990     ScopedTrace trace2("Thread birth");
991     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
992     if (runtime->IsShuttingDownLocked()) {
993       LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
994           ((thread_name != nullptr) ? thread_name : "(Unnamed)");
995       return nullptr;
996     } else {
997       Runtime::Current()->StartThreadBirth();
998       self = new Thread(as_daemon);
999       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
1000       Runtime::Current()->EndThreadBirth();
1001       if (!init_success) {
1002         delete self;
1003         return nullptr;
1004       }
1005     }
1006   }
1007 
1008   self->InitStringEntryPoints();
1009 
1010   CHECK_NE(self->GetState(), kRunnable);
1011   self->SetState(kNative);
1012 
1013   // Run the action that is acting on the peer.
1014   if (!peer_action(self)) {
1015     runtime->GetThreadList()->Unregister(self);
1016     // Unregister deletes self, no need to do this here.
1017     return nullptr;
1018   }
1019 
1020   if (VLOG_IS_ON(threads)) {
1021     if (thread_name != nullptr) {
1022       VLOG(threads) << "Attaching thread " << thread_name;
1023     } else {
1024       VLOG(threads) << "Attaching unnamed thread.";
1025     }
1026     ScopedObjectAccess soa(self);
1027     self->Dump(LOG_STREAM(INFO));
1028   }
1029 
1030   {
1031     ScopedObjectAccess soa(self);
1032     runtime->GetRuntimeCallbacks()->ThreadStart(self);
1033   }
1034 
1035   return self;
1036 }
1037 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)1038 Thread* Thread::Attach(const char* thread_name,
1039                        bool as_daemon,
1040                        jobject thread_group,
1041                        bool create_peer) {
1042   auto create_peer_action = [&](Thread* self) {
1043     // If we're the main thread, ClassLinker won't be created until after we're attached,
1044     // so that thread needs a two-stage attach. Regular threads don't need this hack.
1045     // In the compiler, all threads need this hack, because no-one's going to be getting
1046     // a native peer!
1047     if (create_peer) {
1048       self->CreatePeer(thread_name, as_daemon, thread_group);
1049       if (self->IsExceptionPending()) {
1050         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
1051         // it.
1052         {
1053           ScopedObjectAccess soa(self);
1054           LOG(ERROR) << "Exception creating thread peer:";
1055           LOG(ERROR) << self->GetException()->Dump();
1056           self->ClearException();
1057         }
1058         return false;
1059       }
1060     } else {
1061       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
1062       if (thread_name != nullptr) {
1063         self->tlsPtr_.name->assign(thread_name);
1064         ::art::SetThreadName(thread_name);
1065       } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
1066         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
1067       }
1068     }
1069     return true;
1070   };
1071   return Attach(thread_name, as_daemon, create_peer_action);
1072 }
1073 
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)1074 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
1075   auto set_peer_action = [&](Thread* self) {
1076     // Install the given peer.
1077     {
1078       DCHECK(self == Thread::Current());
1079       ScopedObjectAccess soa(self);
1080       self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
1081     }
1082     self->GetJniEnv()->SetLongField(thread_peer,
1083                                     WellKnownClasses::java_lang_Thread_nativePeer,
1084                                     reinterpret_cast64<jlong>(self));
1085     return true;
1086   };
1087   return Attach(thread_name, as_daemon, set_peer_action);
1088 }
1089 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)1090 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
1091   Runtime* runtime = Runtime::Current();
1092   CHECK(runtime->IsStarted());
1093   JNIEnv* env = tlsPtr_.jni_env;
1094 
1095   if (thread_group == nullptr) {
1096     thread_group = runtime->GetMainThreadGroup();
1097   }
1098   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
1099   // Add missing null check in case of OOM b/18297817
1100   if (name != nullptr && thread_name.get() == nullptr) {
1101     CHECK(IsExceptionPending());
1102     return;
1103   }
1104   jint thread_priority = GetNativePriority();
1105   jboolean thread_is_daemon = as_daemon;
1106 
1107   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
1108   if (peer.get() == nullptr) {
1109     CHECK(IsExceptionPending());
1110     return;
1111   }
1112   {
1113     ScopedObjectAccess soa(this);
1114     tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
1115   }
1116   env->CallNonvirtualVoidMethod(peer.get(),
1117                                 WellKnownClasses::java_lang_Thread,
1118                                 WellKnownClasses::java_lang_Thread_init,
1119                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
1120   if (IsExceptionPending()) {
1121     return;
1122   }
1123 
1124   Thread* self = this;
1125   DCHECK_EQ(self, Thread::Current());
1126   env->SetLongField(peer.get(),
1127                     WellKnownClasses::java_lang_Thread_nativePeer,
1128                     reinterpret_cast64<jlong>(self));
1129 
1130   ScopedObjectAccess soa(self);
1131   StackHandleScope<1> hs(self);
1132   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
1133   if (peer_thread_name == nullptr) {
1134     // The Thread constructor should have set the Thread.name to a
1135     // non-null value. However, because we can run without code
1136     // available (in the compiler, in tests), we manually assign the
1137     // fields the constructor should have set.
1138     if (runtime->IsActiveTransaction()) {
1139       InitPeer<true>(soa,
1140                      tlsPtr_.opeer,
1141                      thread_is_daemon,
1142                      thread_group,
1143                      thread_name.get(),
1144                      thread_priority);
1145     } else {
1146       InitPeer<false>(soa,
1147                       tlsPtr_.opeer,
1148                       thread_is_daemon,
1149                       thread_group,
1150                       thread_name.get(),
1151                       thread_priority);
1152     }
1153     peer_thread_name.Assign(GetThreadName());
1154   }
1155   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
1156   if (peer_thread_name != nullptr) {
1157     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
1158   }
1159 }
1160 
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)1161 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
1162                                       const char* name,
1163                                       bool as_daemon,
1164                                       jobject thread_group) {
1165   Runtime* runtime = Runtime::Current();
1166   CHECK(!runtime->IsStarted());
1167 
1168   if (thread_group == nullptr) {
1169     thread_group = runtime->GetMainThreadGroup();
1170   }
1171   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
1172   // Add missing null check in case of OOM b/18297817
1173   if (name != nullptr && thread_name.get() == nullptr) {
1174     CHECK(Thread::Current()->IsExceptionPending());
1175     return nullptr;
1176   }
1177   jint thread_priority = kNormThreadPriority;  // Always normalize to NORM priority.
1178   jboolean thread_is_daemon = as_daemon;
1179 
1180   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
1181   if (peer.get() == nullptr) {
1182     CHECK(Thread::Current()->IsExceptionPending());
1183     return nullptr;
1184   }
1185 
1186   // We cannot call Thread.init, as it will recursively ask for currentThread.
1187 
1188   // The Thread constructor should have set the Thread.name to a
1189   // non-null value. However, because we can run without code
1190   // available (in the compiler, in tests), we manually assign the
1191   // fields the constructor should have set.
1192   ScopedObjectAccessUnchecked soa(Thread::Current());
1193   if (runtime->IsActiveTransaction()) {
1194     InitPeer<true>(soa,
1195                    soa.Decode<mirror::Object>(peer.get()),
1196                    thread_is_daemon,
1197                    thread_group,
1198                    thread_name.get(),
1199                    thread_priority);
1200   } else {
1201     InitPeer<false>(soa,
1202                     soa.Decode<mirror::Object>(peer.get()),
1203                     thread_is_daemon,
1204                     thread_group,
1205                     thread_name.get(),
1206                     thread_priority);
1207   }
1208 
1209   return peer.release();
1210 }
1211 
1212 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)1213 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
1214                       ObjPtr<mirror::Object> peer,
1215                       jboolean thread_is_daemon,
1216                       jobject thread_group,
1217                       jobject thread_name,
1218                       jint thread_priority) {
1219   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
1220       SetBoolean<kTransactionActive>(peer, thread_is_daemon);
1221   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
1222       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
1223   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
1224       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
1225   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
1226       SetInt<kTransactionActive>(peer, thread_priority);
1227 }
1228 
SetThreadName(const char * name)1229 void Thread::SetThreadName(const char* name) {
1230   tlsPtr_.name->assign(name);
1231   ::art::SetThreadName(name);
1232   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1233 }
1234 
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1235 static void GetThreadStack(pthread_t thread,
1236                            void** stack_base,
1237                            size_t* stack_size,
1238                            size_t* guard_size) {
1239 #if defined(__APPLE__)
1240   *stack_size = pthread_get_stacksize_np(thread);
1241   void* stack_addr = pthread_get_stackaddr_np(thread);
1242 
1243   // Check whether stack_addr is the base or end of the stack.
1244   // (On Mac OS 10.7, it's the end.)
1245   int stack_variable;
1246   if (stack_addr > &stack_variable) {
1247     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1248   } else {
1249     *stack_base = stack_addr;
1250   }
1251 
1252   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1253   pthread_attr_t attributes;
1254   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1255   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1256   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1257 #else
1258   pthread_attr_t attributes;
1259   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1260   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1261   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1262   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1263 
1264 #if defined(__GLIBC__)
1265   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1266   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1267   // will be broken because we'll die long before we get close to 2GB.
1268   bool is_main_thread = (::art::GetTid() == getpid());
1269   if (is_main_thread) {
1270     rlimit stack_limit;
1271     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1272       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1273     }
1274     if (stack_limit.rlim_cur == RLIM_INFINITY) {
1275       size_t old_stack_size = *stack_size;
1276 
1277       // Use the kernel default limit as our size, and adjust the base to match.
1278       *stack_size = 8 * MB;
1279       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1280 
1281       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1282                     << " to " << PrettySize(*stack_size)
1283                     << " with base " << *stack_base;
1284     }
1285   }
1286 #endif
1287 
1288 #endif
1289 }
1290 
InitStackHwm()1291 bool Thread::InitStackHwm() {
1292   ScopedTrace trace("InitStackHwm");
1293   void* read_stack_base;
1294   size_t read_stack_size;
1295   size_t read_guard_size;
1296   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1297 
1298   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1299   tlsPtr_.stack_size = read_stack_size;
1300 
1301   // The minimum stack size we can cope with is the overflow reserved bytes (typically
1302   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
1303   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
1304   // between 8K and 12K.
1305   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1306     + 4 * KB;
1307   if (read_stack_size <= min_stack) {
1308     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1309     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1310                                __LINE__,
1311                                ::android::base::ERROR,
1312                                "Attempt to attach a thread with a too-small stack");
1313     return false;
1314   }
1315 
1316   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1317   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1318                                 read_stack_base,
1319                                 PrettySize(read_stack_size).c_str(),
1320                                 PrettySize(read_guard_size).c_str());
1321 
1322   // Set stack_end_ to the bottom of the stack saving space of stack overflows
1323 
1324   Runtime* runtime = Runtime::Current();
1325   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1326 
1327   ResetDefaultStackEnd();
1328 
1329   // Install the protected region if we are doing implicit overflow checks.
1330   if (implicit_stack_check) {
1331     // The thread might have protected region at the bottom.  We need
1332     // to install our own region so we need to move the limits
1333     // of the stack to make room for it.
1334 
1335     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1336     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1337     tlsPtr_.stack_size -= read_guard_size;
1338 
1339     InstallImplicitProtection();
1340   }
1341 
1342   // Sanity check.
1343   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1344 
1345   return true;
1346 }
1347 
ShortDump(std::ostream & os) const1348 void Thread::ShortDump(std::ostream& os) const {
1349   os << "Thread[";
1350   if (GetThreadId() != 0) {
1351     // If we're in kStarting, we won't have a thin lock id or tid yet.
1352     os << GetThreadId()
1353        << ",tid=" << GetTid() << ',';
1354   }
1355   os << GetState()
1356      << ",Thread*=" << this
1357      << ",peer=" << tlsPtr_.opeer
1358      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1359      << "]";
1360 }
1361 
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1362 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1363                   bool force_dump_stack) const {
1364   DumpState(os);
1365   DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1366 }
1367 
GetThreadName() const1368 ObjPtr<mirror::String> Thread::GetThreadName() const {
1369   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1370   if (tlsPtr_.opeer == nullptr) {
1371     return nullptr;
1372   }
1373   ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1374   return name == nullptr ? nullptr : name->AsString();
1375 }
1376 
GetThreadName(std::string & name) const1377 void Thread::GetThreadName(std::string& name) const {
1378   name.assign(*tlsPtr_.name);
1379 }
1380 
GetCpuMicroTime() const1381 uint64_t Thread::GetCpuMicroTime() const {
1382 #if defined(__linux__)
1383   clockid_t cpu_clock_id;
1384   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1385   timespec now;
1386   clock_gettime(cpu_clock_id, &now);
1387   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1388 #else  // __APPLE__
1389   UNIMPLEMENTED(WARNING);
1390   return -1;
1391 #endif
1392 }
1393 
1394 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1395 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1396   LOG(ERROR) << *thread << " suspend count already zero.";
1397   Locks::thread_suspend_count_lock_->Unlock(self);
1398   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1399     Locks::mutator_lock_->SharedTryLock(self);
1400     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1401       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1402     }
1403   }
1404   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1405     Locks::thread_list_lock_->TryLock(self);
1406     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1407       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1408     }
1409   }
1410   std::ostringstream ss;
1411   Runtime::Current()->GetThreadList()->Dump(ss);
1412   LOG(FATAL) << ss.str();
1413 }
1414 
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1415 bool Thread::ModifySuspendCountInternal(Thread* self,
1416                                         int delta,
1417                                         AtomicInteger* suspend_barrier,
1418                                         SuspendReason reason) {
1419   if (kIsDebugBuild) {
1420     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1421           << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
1422     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1423     Locks::thread_suspend_count_lock_->AssertHeld(self);
1424     if (this != self && !IsSuspended()) {
1425       Locks::thread_list_lock_->AssertHeld(self);
1426     }
1427   }
1428   // User code suspensions need to be checked more closely since they originate from code outside of
1429   // the runtime's control.
1430   if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1431     Locks::user_code_suspension_lock_->AssertHeld(self);
1432     if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1433       LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1434       return false;
1435     }
1436   }
1437   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1438     UnsafeLogFatalForSuspendCount(self, this);
1439     return false;
1440   }
1441 
1442   if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1443     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1444     // deadlock. b/31683379.
1445     return false;
1446   }
1447 
1448   uint16_t flags = kSuspendRequest;
1449   if (delta > 0 && suspend_barrier != nullptr) {
1450     uint32_t available_barrier = kMaxSuspendBarriers;
1451     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1452       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1453         available_barrier = i;
1454         break;
1455       }
1456     }
1457     if (available_barrier == kMaxSuspendBarriers) {
1458       // No barrier spaces available, we can't add another.
1459       return false;
1460     }
1461     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1462     flags |= kActiveSuspendBarrier;
1463   }
1464 
1465   tls32_.suspend_count += delta;
1466   switch (reason) {
1467     case SuspendReason::kForUserCode:
1468       tls32_.user_code_suspend_count += delta;
1469       break;
1470     case SuspendReason::kInternal:
1471       break;
1472   }
1473 
1474   if (tls32_.suspend_count == 0) {
1475     AtomicClearFlag(kSuspendRequest);
1476   } else {
1477     // Two bits might be set simultaneously.
1478     tls32_.state_and_flags.as_atomic_int.fetch_or(flags, std::memory_order_seq_cst);
1479     TriggerSuspend();
1480   }
1481   return true;
1482 }
1483 
PassActiveSuspendBarriers(Thread * self)1484 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1485   // Grab the suspend_count lock and copy the current set of
1486   // barriers. Then clear the list and the flag. The ModifySuspendCount
1487   // function requires the lock so we prevent a race between setting
1488   // the kActiveSuspendBarrier flag and clearing it.
1489   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1490   {
1491     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1492     if (!ReadFlag(kActiveSuspendBarrier)) {
1493       // quick exit test: the barriers have already been claimed - this is
1494       // possible as there may be a race to claim and it doesn't matter
1495       // who wins.
1496       // All of the callers of this function (except the SuspendAllInternal)
1497       // will first test the kActiveSuspendBarrier flag without lock. Here
1498       // double-check whether the barrier has been passed with the
1499       // suspend_count lock.
1500       return false;
1501     }
1502 
1503     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1504       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1505       tlsPtr_.active_suspend_barriers[i] = nullptr;
1506     }
1507     AtomicClearFlag(kActiveSuspendBarrier);
1508   }
1509 
1510   uint32_t barrier_count = 0;
1511   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1512     AtomicInteger* pending_threads = pass_barriers[i];
1513     if (pending_threads != nullptr) {
1514       bool done = false;
1515       do {
1516         int32_t cur_val = pending_threads->load(std::memory_order_relaxed);
1517         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1518         // Reduce value by 1.
1519         done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
1520 #if ART_USE_FUTEXES
1521         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1522           futex(pending_threads->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
1523         }
1524 #endif
1525       } while (!done);
1526       ++barrier_count;
1527     }
1528   }
1529   CHECK_GT(barrier_count, 0U);
1530   return true;
1531 }
1532 
ClearSuspendBarrier(AtomicInteger * target)1533 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1534   CHECK(ReadFlag(kActiveSuspendBarrier));
1535   bool clear_flag = true;
1536   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1537     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1538     if (ptr == target) {
1539       tlsPtr_.active_suspend_barriers[i] = nullptr;
1540     } else if (ptr != nullptr) {
1541       clear_flag = false;
1542     }
1543   }
1544   if (LIKELY(clear_flag)) {
1545     AtomicClearFlag(kActiveSuspendBarrier);
1546   }
1547 }
1548 
RunCheckpointFunction()1549 void Thread::RunCheckpointFunction() {
1550   // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1551   // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1552   Closure* checkpoint;
1553   {
1554     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1555     checkpoint = tlsPtr_.checkpoint_function;
1556     if (!checkpoint_overflow_.empty()) {
1557       // Overflow list not empty, copy the first one out and continue.
1558       tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1559       checkpoint_overflow_.pop_front();
1560     } else {
1561       // No overflow checkpoints. Clear the kCheckpointRequest flag
1562       tlsPtr_.checkpoint_function = nullptr;
1563       AtomicClearFlag(kCheckpointRequest);
1564     }
1565   }
1566   // Outside the lock, run the checkpoint function.
1567   ScopedTrace trace("Run checkpoint function");
1568   CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1569   checkpoint->Run(this);
1570 }
1571 
RunEmptyCheckpoint()1572 void Thread::RunEmptyCheckpoint() {
1573   DCHECK_EQ(Thread::Current(), this);
1574   AtomicClearFlag(kEmptyCheckpointRequest);
1575   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1576 }
1577 
RequestCheckpoint(Closure * function)1578 bool Thread::RequestCheckpoint(Closure* function) {
1579   union StateAndFlags old_state_and_flags;
1580   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1581   if (old_state_and_flags.as_struct.state != kRunnable) {
1582     return false;  // Fail, thread is suspended and so can't run a checkpoint.
1583   }
1584 
1585   // We must be runnable to request a checkpoint.
1586   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1587   union StateAndFlags new_state_and_flags;
1588   new_state_and_flags.as_int = old_state_and_flags.as_int;
1589   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1590   bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1591       old_state_and_flags.as_int, new_state_and_flags.as_int);
1592   if (success) {
1593     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1594     if (tlsPtr_.checkpoint_function == nullptr) {
1595       tlsPtr_.checkpoint_function = function;
1596     } else {
1597       checkpoint_overflow_.push_back(function);
1598     }
1599     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1600     TriggerSuspend();
1601   }
1602   return success;
1603 }
1604 
RequestEmptyCheckpoint()1605 bool Thread::RequestEmptyCheckpoint() {
1606   union StateAndFlags old_state_and_flags;
1607   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1608   if (old_state_and_flags.as_struct.state != kRunnable) {
1609     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1610     // heap access (eg. the read barrier).
1611     return false;
1612   }
1613 
1614   // We must be runnable to request a checkpoint.
1615   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1616   union StateAndFlags new_state_and_flags;
1617   new_state_and_flags.as_int = old_state_and_flags.as_int;
1618   new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1619   bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1620       old_state_and_flags.as_int, new_state_and_flags.as_int);
1621   if (success) {
1622     TriggerSuspend();
1623   }
1624   return success;
1625 }
1626 
1627 class BarrierClosure : public Closure {
1628  public:
BarrierClosure(Closure * wrapped)1629   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1630 
Run(Thread * self)1631   void Run(Thread* self) override {
1632     wrapped_->Run(self);
1633     barrier_.Pass(self);
1634   }
1635 
Wait(Thread * self,ThreadState suspend_state)1636   void Wait(Thread* self, ThreadState suspend_state) {
1637     if (suspend_state != ThreadState::kRunnable) {
1638       barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1639     } else {
1640       barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1641     }
1642   }
1643 
1644  private:
1645   Closure* wrapped_;
1646   Barrier barrier_;
1647 };
1648 
1649 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState suspend_state)1650 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
1651   Thread* self = Thread::Current();
1652   if (this == Thread::Current()) {
1653     Locks::thread_list_lock_->AssertExclusiveHeld(self);
1654     // Unlock the tll before running so that the state is the same regardless of thread.
1655     Locks::thread_list_lock_->ExclusiveUnlock(self);
1656     // Asked to run on this thread. Just run.
1657     function->Run(this);
1658     return true;
1659   }
1660 
1661   // The current thread is not this thread.
1662 
1663   if (GetState() == ThreadState::kTerminated) {
1664     Locks::thread_list_lock_->ExclusiveUnlock(self);
1665     return false;
1666   }
1667 
1668   struct ScopedThreadListLockUnlock {
1669     explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1670         : self_thread(self_in) {
1671       Locks::thread_list_lock_->AssertHeld(self_thread);
1672       Locks::thread_list_lock_->Unlock(self_thread);
1673     }
1674 
1675     ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1676       Locks::thread_list_lock_->AssertNotHeld(self_thread);
1677       Locks::thread_list_lock_->Lock(self_thread);
1678     }
1679 
1680     Thread* self_thread;
1681   };
1682 
1683   for (;;) {
1684     Locks::thread_list_lock_->AssertExclusiveHeld(self);
1685     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1686     // suspend-count lock for too long.
1687     if (GetState() == ThreadState::kRunnable) {
1688       BarrierClosure barrier_closure(function);
1689       bool installed = false;
1690       {
1691         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1692         installed = RequestCheckpoint(&barrier_closure);
1693       }
1694       if (installed) {
1695         // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1696         // reacquire it since we don't know if 'this' hasn't been deleted yet.
1697         Locks::thread_list_lock_->ExclusiveUnlock(self);
1698         ScopedThreadStateChange sts(self, suspend_state);
1699         barrier_closure.Wait(self, suspend_state);
1700         return true;
1701       }
1702       // Fall-through.
1703     }
1704 
1705     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1706     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1707     //       certain situations.
1708     {
1709       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1710 
1711       if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1712         // Just retry the loop.
1713         sched_yield();
1714         continue;
1715       }
1716     }
1717 
1718     {
1719       // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
1720       // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
1721       ScopedThreadListLockUnlock stllu(self);
1722       {
1723         ScopedThreadStateChange sts(self, suspend_state);
1724         while (GetState() == ThreadState::kRunnable) {
1725           // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1726           // moves us to suspended.
1727           sched_yield();
1728         }
1729       }
1730 
1731       function->Run(this);
1732     }
1733 
1734     {
1735       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1736 
1737       DCHECK_NE(GetState(), ThreadState::kRunnable);
1738       bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1739       DCHECK(updated);
1740     }
1741 
1742     {
1743       // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1744       // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1745       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1746       Thread::resume_cond_->Broadcast(self);
1747     }
1748 
1749     // Release the thread_list_lock_ to be consistent with the barrier-closure path.
1750     Locks::thread_list_lock_->ExclusiveUnlock(self);
1751 
1752     return true;  // We're done, break out of the loop.
1753   }
1754 }
1755 
GetFlipFunction()1756 Closure* Thread::GetFlipFunction() {
1757   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1758   Closure* func;
1759   do {
1760     func = atomic_func->load(std::memory_order_relaxed);
1761     if (func == nullptr) {
1762       return nullptr;
1763     }
1764   } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
1765   DCHECK(func != nullptr);
1766   return func;
1767 }
1768 
SetFlipFunction(Closure * function)1769 void Thread::SetFlipFunction(Closure* function) {
1770   CHECK(function != nullptr);
1771   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1772   atomic_func->store(function, std::memory_order_seq_cst);
1773 }
1774 
FullSuspendCheck()1775 void Thread::FullSuspendCheck() {
1776   ScopedTrace trace(__FUNCTION__);
1777   VLOG(threads) << this << " self-suspending";
1778   // Make thread appear suspended to other threads, release mutator_lock_.
1779   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1780   ScopedThreadSuspension(this, kSuspended);  // NOLINT
1781   VLOG(threads) << this << " self-reviving";
1782 }
1783 
GetSchedulerGroupName(pid_t tid)1784 static std::string GetSchedulerGroupName(pid_t tid) {
1785   // /proc/<pid>/cgroup looks like this:
1786   // 2:devices:/
1787   // 1:cpuacct,cpu:/
1788   // We want the third field from the line whose second field contains the "cpu" token.
1789   std::string cgroup_file;
1790   if (!android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid),
1791                                        &cgroup_file)) {
1792     return "";
1793   }
1794   std::vector<std::string> cgroup_lines;
1795   Split(cgroup_file, '\n', &cgroup_lines);
1796   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1797     std::vector<std::string> cgroup_fields;
1798     Split(cgroup_lines[i], ':', &cgroup_fields);
1799     std::vector<std::string> cgroups;
1800     Split(cgroup_fields[1], ',', &cgroups);
1801     for (size_t j = 0; j < cgroups.size(); ++j) {
1802       if (cgroups[j] == "cpu") {
1803         return cgroup_fields[2].substr(1);  // Skip the leading slash.
1804       }
1805     }
1806   }
1807   return "";
1808 }
1809 
1810 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1811 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1812   std::string group_name;
1813   int priority;
1814   bool is_daemon = false;
1815   Thread* self = Thread::Current();
1816 
1817   // If flip_function is not null, it means we have run a checkpoint
1818   // before the thread wakes up to execute the flip function and the
1819   // thread roots haven't been forwarded.  So the following access to
1820   // the roots (opeer or methods in the frames) would be bad. Run it
1821   // here. TODO: clean up.
1822   if (thread != nullptr) {
1823     ScopedObjectAccessUnchecked soa(self);
1824     Thread* this_thread = const_cast<Thread*>(thread);
1825     Closure* flip_func = this_thread->GetFlipFunction();
1826     if (flip_func != nullptr) {
1827       flip_func->Run(this_thread);
1828     }
1829   }
1830 
1831   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1832   // cause ScopedObjectAccessUnchecked to deadlock.
1833   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1834     ScopedObjectAccessUnchecked soa(self);
1835     priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1836         ->GetInt(thread->tlsPtr_.opeer);
1837     is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1838         ->GetBoolean(thread->tlsPtr_.opeer);
1839 
1840     ObjPtr<mirror::Object> thread_group =
1841         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1842             ->GetObject(thread->tlsPtr_.opeer);
1843 
1844     if (thread_group != nullptr) {
1845       ArtField* group_name_field =
1846           jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1847       ObjPtr<mirror::String> group_name_string =
1848           group_name_field->GetObject(thread_group)->AsString();
1849       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1850     }
1851   } else if (thread != nullptr) {
1852     priority = thread->GetNativePriority();
1853   } else {
1854     PaletteStatus status = PaletteSchedGetPriority(tid, &priority);
1855     CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
1856   }
1857 
1858   std::string scheduler_group_name(GetSchedulerGroupName(tid));
1859   if (scheduler_group_name.empty()) {
1860     scheduler_group_name = "default";
1861   }
1862 
1863   if (thread != nullptr) {
1864     os << '"' << *thread->tlsPtr_.name << '"';
1865     if (is_daemon) {
1866       os << " daemon";
1867     }
1868     os << " prio=" << priority
1869        << " tid=" << thread->GetThreadId()
1870        << " " << thread->GetState();
1871     if (thread->IsStillStarting()) {
1872       os << " (still starting up)";
1873     }
1874     os << "\n";
1875   } else {
1876     os << '"' << ::art::GetThreadName(tid) << '"'
1877        << " prio=" << priority
1878        << " (not attached)\n";
1879   }
1880 
1881   if (thread != nullptr) {
1882     auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) {
1883       os << "  | group=\"" << group_name << "\""
1884          << " sCount=" << thread->tls32_.suspend_count
1885          << " dsCount=" << thread->tls32_.debug_suspend_count
1886          << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1887          << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1888          << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1889     };
1890     if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) {
1891       Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self);  // For annotalysis.
1892       suspend_log_fn();
1893     } else {
1894       MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1895       suspend_log_fn();
1896     }
1897   }
1898 
1899   os << "  | sysTid=" << tid
1900      << " nice=" << getpriority(PRIO_PROCESS, tid)
1901      << " cgrp=" << scheduler_group_name;
1902   if (thread != nullptr) {
1903     int policy;
1904     sched_param sp;
1905 #if !defined(__APPLE__)
1906     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1907     policy = sched_getscheduler(tid);
1908     if (policy == -1) {
1909       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1910     }
1911     int sched_getparam_result = sched_getparam(tid, &sp);
1912     if (sched_getparam_result == -1) {
1913       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1914       sp.sched_priority = -1;
1915     }
1916 #else
1917     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1918                        __FUNCTION__);
1919 #endif
1920     os << " sched=" << policy << "/" << sp.sched_priority
1921        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1922   }
1923   os << "\n";
1924 
1925   // Grab the scheduler stats for this thread.
1926   std::string scheduler_stats;
1927   if (android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid),
1928                                       &scheduler_stats)
1929       && !scheduler_stats.empty()) {
1930     scheduler_stats = android::base::Trim(scheduler_stats);  // Lose the trailing '\n'.
1931   } else {
1932     scheduler_stats = "0 0 0";
1933   }
1934 
1935   char native_thread_state = '?';
1936   int utime = 0;
1937   int stime = 0;
1938   int task_cpu = 0;
1939   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1940 
1941   os << "  | state=" << native_thread_state
1942      << " schedstat=( " << scheduler_stats << " )"
1943      << " utm=" << utime
1944      << " stm=" << stime
1945      << " core=" << task_cpu
1946      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1947   if (thread != nullptr) {
1948     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1949         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1950         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1951     // Dump the held mutexes.
1952     os << "  | held mutexes=";
1953     for (size_t i = 0; i < kLockLevelCount; ++i) {
1954       if (i != kMonitorLock) {
1955         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1956         if (mutex != nullptr) {
1957           os << " \"" << mutex->GetName() << "\"";
1958           if (mutex->IsReaderWriterMutex()) {
1959             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1960             if (rw_mutex->GetExclusiveOwnerTid() == tid) {
1961               os << "(exclusive held)";
1962             } else {
1963               os << "(shared held)";
1964             }
1965           }
1966         }
1967       }
1968     }
1969     os << "\n";
1970   }
1971 }
1972 
DumpState(std::ostream & os) const1973 void Thread::DumpState(std::ostream& os) const {
1974   Thread::DumpState(os, this, GetTid());
1975 }
1976 
1977 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor1978   StackDumpVisitor(std::ostream& os_in,
1979                    Thread* thread_in,
1980                    Context* context,
1981                    bool can_allocate,
1982                    bool check_suspended = true,
1983                    bool dump_locks = true)
1984       REQUIRES_SHARED(Locks::mutator_lock_)
1985       : MonitorObjectsStackVisitor(thread_in,
1986                                    context,
1987                                    check_suspended,
1988                                    can_allocate && dump_locks),
1989         os(os_in),
1990         last_method(nullptr),
1991         last_line_number(0),
1992         repetition_count(0) {}
1993 
~StackDumpVisitorart::StackDumpVisitor1994   virtual ~StackDumpVisitor() {
1995     if (frame_count == 0) {
1996       os << "  (no managed stack frames)\n";
1997     }
1998   }
1999 
2000   static constexpr size_t kMaxRepetition = 3u;
2001 
StartMethodart::StackDumpVisitor2002   VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
2003       override
2004       REQUIRES_SHARED(Locks::mutator_lock_) {
2005     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
2006     ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache();
2007     int line_number = -1;
2008     if (dex_cache != nullptr) {  // be tolerant of bad input
2009       const DexFile* dex_file = dex_cache->GetDexFile();
2010       line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
2011     }
2012     if (line_number == last_line_number && last_method == m) {
2013       ++repetition_count;
2014     } else {
2015       if (repetition_count >= kMaxRepetition) {
2016         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
2017       }
2018       repetition_count = 0;
2019       last_line_number = line_number;
2020       last_method = m;
2021     }
2022 
2023     if (repetition_count >= kMaxRepetition) {
2024       // Skip visiting=printing anything.
2025       return VisitMethodResult::kSkipMethod;
2026     }
2027 
2028     os << "  at " << m->PrettyMethod(false);
2029     if (m->IsNative()) {
2030       os << "(Native method)";
2031     } else {
2032       const char* source_file(m->GetDeclaringClassSourceFile());
2033       os << "(" << (source_file != nullptr ? source_file : "unavailable")
2034                        << ":" << line_number << ")";
2035     }
2036     os << "\n";
2037     // Go and visit locks.
2038     return VisitMethodResult::kContinueMethod;
2039   }
2040 
EndMethodart::StackDumpVisitor2041   VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
2042     return VisitMethodResult::kContinueMethod;
2043   }
2044 
VisitWaitingObjectart::StackDumpVisitor2045   void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
2046       override
2047       REQUIRES_SHARED(Locks::mutator_lock_) {
2048     PrintObject(obj, "  - waiting on ", ThreadList::kInvalidThreadId);
2049   }
VisitSleepingObjectart::StackDumpVisitor2050   void VisitSleepingObject(ObjPtr<mirror::Object> obj)
2051       override
2052       REQUIRES_SHARED(Locks::mutator_lock_) {
2053     PrintObject(obj, "  - sleeping on ", ThreadList::kInvalidThreadId);
2054   }
VisitBlockedOnObjectart::StackDumpVisitor2055   void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
2056                             ThreadState state,
2057                             uint32_t owner_tid)
2058       override
2059       REQUIRES_SHARED(Locks::mutator_lock_) {
2060     const char* msg;
2061     switch (state) {
2062       case kBlocked:
2063         msg = "  - waiting to lock ";
2064         break;
2065 
2066       case kWaitingForLockInflation:
2067         msg = "  - waiting for lock inflation of ";
2068         break;
2069 
2070       default:
2071         LOG(FATAL) << "Unreachable";
2072         UNREACHABLE();
2073     }
2074     PrintObject(obj, msg, owner_tid);
2075   }
VisitLockedObjectart::StackDumpVisitor2076   void VisitLockedObject(ObjPtr<mirror::Object> obj)
2077       override
2078       REQUIRES_SHARED(Locks::mutator_lock_) {
2079     PrintObject(obj, "  - locked ", ThreadList::kInvalidThreadId);
2080   }
2081 
PrintObjectart::StackDumpVisitor2082   void PrintObject(ObjPtr<mirror::Object> obj,
2083                    const char* msg,
2084                    uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
2085     if (obj == nullptr) {
2086       os << msg << "an unknown object";
2087     } else {
2088       if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
2089           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
2090         // Getting the identity hashcode here would result in lock inflation and suspension of the
2091         // current thread, which isn't safe if this is the only runnable thread.
2092         os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
2093                                   reinterpret_cast<intptr_t>(obj.Ptr()),
2094                                   obj->PrettyTypeOf().c_str());
2095       } else {
2096         // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
2097         // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
2098         // suspension and move pretty_object.
2099         const std::string pretty_type(obj->PrettyTypeOf());
2100         os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
2101       }
2102     }
2103     if (owner_tid != ThreadList::kInvalidThreadId) {
2104       os << " held by thread " << owner_tid;
2105     }
2106     os << "\n";
2107   }
2108 
2109   std::ostream& os;
2110   ArtMethod* last_method;
2111   int last_line_number;
2112   size_t repetition_count;
2113 };
2114 
ShouldShowNativeStack(const Thread * thread)2115 static bool ShouldShowNativeStack(const Thread* thread)
2116     REQUIRES_SHARED(Locks::mutator_lock_) {
2117   ThreadState state = thread->GetState();
2118 
2119   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
2120   if (state > kWaiting && state < kStarting) {
2121     return true;
2122   }
2123 
2124   // In an Object.wait variant or Thread.sleep? That's not interesting.
2125   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
2126     return false;
2127   }
2128 
2129   // Threads with no managed stack frames should be shown.
2130   if (!thread->HasManagedStack()) {
2131     return true;
2132   }
2133 
2134   // In some other native method? That's interesting.
2135   // We don't just check kNative because native methods will be in state kSuspended if they're
2136   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
2137   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
2138   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
2139   return current_method != nullptr && current_method->IsNative();
2140 }
2141 
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const2142 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
2143   // If flip_function is not null, it means we have run a checkpoint
2144   // before the thread wakes up to execute the flip function and the
2145   // thread roots haven't been forwarded.  So the following access to
2146   // the roots (locks or methods in the frames) would be bad. Run it
2147   // here. TODO: clean up.
2148   {
2149     Thread* this_thread = const_cast<Thread*>(this);
2150     Closure* flip_func = this_thread->GetFlipFunction();
2151     if (flip_func != nullptr) {
2152       flip_func->Run(this_thread);
2153     }
2154   }
2155 
2156   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
2157   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
2158   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
2159   // thread.
2160   ScopedExceptionStorage ses(Thread::Current());
2161 
2162   std::unique_ptr<Context> context(Context::Create());
2163   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
2164                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
2165   dumper.WalkStack();
2166 }
2167 
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const2168 void Thread::DumpStack(std::ostream& os,
2169                        bool dump_native_stack,
2170                        BacktraceMap* backtrace_map,
2171                        bool force_dump_stack) const {
2172   // TODO: we call this code when dying but may not have suspended the thread ourself. The
2173   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
2174   //       the race with the thread_suspend_count_lock_).
2175   bool dump_for_abort = (gAborting > 0);
2176   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
2177   if (!kIsDebugBuild) {
2178     // We always want to dump the stack for an abort, however, there is no point dumping another
2179     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
2180     safe_to_dump = (safe_to_dump || dump_for_abort);
2181   }
2182   if (safe_to_dump || force_dump_stack) {
2183     // If we're currently in native code, dump that stack before dumping the managed stack.
2184     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
2185       ArtMethod* method =
2186           GetCurrentMethod(nullptr,
2187                            /*check_suspended=*/ !force_dump_stack,
2188                            /*abort_on_error=*/ !(dump_for_abort || force_dump_stack));
2189       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
2190     }
2191     DumpJavaStack(os,
2192                   /*check_suspended=*/ !force_dump_stack,
2193                   /*dump_locks=*/ !force_dump_stack);
2194   } else {
2195     os << "Not able to dump stack of thread that isn't suspended";
2196   }
2197 }
2198 
ThreadExitCallback(void * arg)2199 void Thread::ThreadExitCallback(void* arg) {
2200   Thread* self = reinterpret_cast<Thread*>(arg);
2201   if (self->tls32_.thread_exit_check_count == 0) {
2202     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2203         "going to use a pthread_key_create destructor?): " << *self;
2204     CHECK(is_started_);
2205 #ifdef __BIONIC__
2206     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2207 #else
2208     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2209     Thread::self_tls_ = self;
2210 #endif
2211     self->tls32_.thread_exit_check_count = 1;
2212   } else {
2213     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2214   }
2215 }
2216 
Startup()2217 void Thread::Startup() {
2218   CHECK(!is_started_);
2219   is_started_ = true;
2220   {
2221     // MutexLock to keep annotalysis happy.
2222     //
2223     // Note we use null for the thread because Thread::Current can
2224     // return garbage since (is_started_ == true) and
2225     // Thread::pthread_key_self_ is not yet initialized.
2226     // This was seen on glibc.
2227     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2228     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2229                                          *Locks::thread_suspend_count_lock_);
2230   }
2231 
2232   // Allocate a TLS slot.
2233   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2234                      "self key");
2235 
2236   // Double-check the TLS slot allocation.
2237   if (pthread_getspecific(pthread_key_self_) != nullptr) {
2238     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2239   }
2240 #ifndef __BIONIC__
2241   CHECK(Thread::self_tls_ == nullptr);
2242 #endif
2243 }
2244 
FinishStartup()2245 void Thread::FinishStartup() {
2246   Runtime* runtime = Runtime::Current();
2247   CHECK(runtime->IsStarted());
2248 
2249   // Finish attaching the main thread.
2250   ScopedObjectAccess soa(Thread::Current());
2251   soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2252   soa.Self()->AssertNoPendingException();
2253 
2254   runtime->RunRootClinits(soa.Self());
2255 
2256   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2257   // threads, this is done in Thread.start() on the Java side.
2258   soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2259   soa.Self()->AssertNoPendingException();
2260 }
2261 
Shutdown()2262 void Thread::Shutdown() {
2263   CHECK(is_started_);
2264   is_started_ = false;
2265   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2266   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2267   if (resume_cond_ != nullptr) {
2268     delete resume_cond_;
2269     resume_cond_ = nullptr;
2270   }
2271 }
2272 
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2273 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2274   ScopedLocalRef<jobject> thread_jobject(
2275       soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2276   ScopedLocalRef<jobject> thread_group_jobject_scoped(
2277       soa.Env(), nullptr);
2278   jobject thread_group_jobject = thread_group;
2279   if (thread_group == nullptr || kIsDebugBuild) {
2280     // There is always a group set. Retrieve it.
2281     thread_group_jobject_scoped.reset(
2282         soa.Env()->GetObjectField(thread_jobject.get(),
2283                                   WellKnownClasses::java_lang_Thread_group));
2284     thread_group_jobject = thread_group_jobject_scoped.get();
2285     if (kIsDebugBuild && thread_group != nullptr) {
2286       CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
2287     }
2288   }
2289   soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
2290                                       WellKnownClasses::java_lang_ThreadGroup,
2291                                       WellKnownClasses::java_lang_ThreadGroup_add,
2292                                       thread_jobject.get());
2293 }
2294 
Thread(bool daemon)2295 Thread::Thread(bool daemon)
2296     : tls32_(daemon),
2297       wait_monitor_(nullptr),
2298       is_runtime_thread_(false) {
2299   wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock);
2300   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2301   tlsPtr_.instrumentation_stack =
2302       new std::map<uintptr_t, instrumentation::InstrumentationStackFrame>;
2303   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2304 
2305   static_assert((sizeof(Thread) % 4) == 0U,
2306                 "art::Thread has a size which is not a multiple of 4.");
2307   tls32_.state_and_flags.as_struct.flags = 0;
2308   tls32_.state_and_flags.as_struct.state = kNative;
2309   tls32_.interrupted.store(false, std::memory_order_relaxed);
2310   // Initialize with no permit; if the java Thread was unparked before being
2311   // started, it will unpark itself before calling into java code.
2312   tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
2313   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2314   std::fill(tlsPtr_.rosalloc_runs,
2315             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2316             gc::allocator::RosAlloc::GetDedicatedFullRun());
2317   tlsPtr_.checkpoint_function = nullptr;
2318   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2319     tlsPtr_.active_suspend_barriers[i] = nullptr;
2320   }
2321   tlsPtr_.flip_function = nullptr;
2322   tlsPtr_.thread_local_mark_stack = nullptr;
2323   tls32_.is_transitioning_to_runnable = false;
2324   tls32_.use_mterp = false;
2325   ResetTlab();
2326 }
2327 
NotifyInTheadList()2328 void Thread::NotifyInTheadList() {
2329   tls32_.use_mterp = interpreter::CanUseMterp();
2330 }
2331 
CanLoadClasses() const2332 bool Thread::CanLoadClasses() const {
2333   return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable();
2334 }
2335 
IsStillStarting() const2336 bool Thread::IsStillStarting() const {
2337   // You might think you can check whether the state is kStarting, but for much of thread startup,
2338   // the thread is in kNative; it might also be in kVmWait.
2339   // You might think you can check whether the peer is null, but the peer is actually created and
2340   // assigned fairly early on, and needs to be.
2341   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2342   // this thread _ever_ entered kRunnable".
2343   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2344       (*tlsPtr_.name == kThreadNameDuringStartup);
2345 }
2346 
AssertPendingException() const2347 void Thread::AssertPendingException() const {
2348   CHECK(IsExceptionPending()) << "Pending exception expected.";
2349 }
2350 
AssertPendingOOMException() const2351 void Thread::AssertPendingOOMException() const {
2352   AssertPendingException();
2353   auto* e = GetException();
2354   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2355       << e->Dump();
2356 }
2357 
AssertNoPendingException() const2358 void Thread::AssertNoPendingException() const {
2359   if (UNLIKELY(IsExceptionPending())) {
2360     ScopedObjectAccess soa(Thread::Current());
2361     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2362   }
2363 }
2364 
AssertNoPendingExceptionForNewException(const char * msg) const2365 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2366   if (UNLIKELY(IsExceptionPending())) {
2367     ScopedObjectAccess soa(Thread::Current());
2368     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2369         << GetException()->Dump();
2370   }
2371 }
2372 
2373 class MonitorExitVisitor : public SingleRootVisitor {
2374  public:
MonitorExitVisitor(Thread * self)2375   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2376 
2377   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2378   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2379       override NO_THREAD_SAFETY_ANALYSIS {
2380     if (self_->HoldsLock(entered_monitor)) {
2381       LOG(WARNING) << "Calling MonitorExit on object "
2382                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2383                    << " left locked by native thread "
2384                    << *Thread::Current() << " which is detaching";
2385       entered_monitor->MonitorExit(self_);
2386     }
2387   }
2388 
2389  private:
2390   Thread* const self_;
2391 };
2392 
Destroy()2393 void Thread::Destroy() {
2394   Thread* self = this;
2395   DCHECK_EQ(self, Thread::Current());
2396 
2397   if (tlsPtr_.jni_env != nullptr) {
2398     {
2399       ScopedObjectAccess soa(self);
2400       MonitorExitVisitor visitor(self);
2401       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2402       tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2403     }
2404     // Release locally held global references which releasing may require the mutator lock.
2405     if (tlsPtr_.jpeer != nullptr) {
2406       // If pthread_create fails we don't have a jni env here.
2407       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2408       tlsPtr_.jpeer = nullptr;
2409     }
2410     if (tlsPtr_.class_loader_override != nullptr) {
2411       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2412       tlsPtr_.class_loader_override = nullptr;
2413     }
2414   }
2415 
2416   if (tlsPtr_.opeer != nullptr) {
2417     ScopedObjectAccess soa(self);
2418     // We may need to call user-supplied managed code, do this before final clean-up.
2419     HandleUncaughtExceptions(soa);
2420     RemoveFromThreadGroup(soa);
2421     Runtime* runtime = Runtime::Current();
2422     if (runtime != nullptr) {
2423       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2424     }
2425 
2426     // this.nativePeer = 0;
2427     if (Runtime::Current()->IsActiveTransaction()) {
2428       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2429           ->SetLong<true>(tlsPtr_.opeer, 0);
2430     } else {
2431       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2432           ->SetLong<false>(tlsPtr_.opeer, 0);
2433     }
2434 
2435     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2436     // who is waiting.
2437     ObjPtr<mirror::Object> lock =
2438         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2439     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2440     if (lock != nullptr) {
2441       StackHandleScope<1> hs(self);
2442       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2443       ObjectLock<mirror::Object> locker(self, h_obj);
2444       locker.NotifyAll();
2445     }
2446     tlsPtr_.opeer = nullptr;
2447   }
2448 
2449   {
2450     ScopedObjectAccess soa(self);
2451     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2452   }
2453   // Mark-stack revocation must be performed at the very end. No
2454   // checkpoint/flip-function or read-barrier should be called after this.
2455   if (kUseReadBarrier) {
2456     Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2457   }
2458 }
2459 
~Thread()2460 Thread::~Thread() {
2461   CHECK(tlsPtr_.class_loader_override == nullptr);
2462   CHECK(tlsPtr_.jpeer == nullptr);
2463   CHECK(tlsPtr_.opeer == nullptr);
2464   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2465   if (initialized) {
2466     delete tlsPtr_.jni_env;
2467     tlsPtr_.jni_env = nullptr;
2468   }
2469   CHECK_NE(GetState(), kRunnable);
2470   CHECK(!ReadFlag(kCheckpointRequest));
2471   CHECK(!ReadFlag(kEmptyCheckpointRequest));
2472   CHECK(tlsPtr_.checkpoint_function == nullptr);
2473   CHECK_EQ(checkpoint_overflow_.size(), 0u);
2474   CHECK(tlsPtr_.flip_function == nullptr);
2475   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2476 
2477   if (kUseReadBarrier) {
2478     Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()
2479         ->AssertNoThreadMarkStackMapping(this);
2480     gc::accounting::AtomicStack<mirror::Object>* tl_mark_stack = GetThreadLocalMarkStack();
2481     CHECK(tl_mark_stack == nullptr) << "mark-stack: " << tl_mark_stack;
2482   }
2483   // Make sure we processed all deoptimization requests.
2484   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2485   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2486       "Not all deoptimized frames have been consumed by the debugger.";
2487 
2488   // We may be deleting a still born thread.
2489   SetStateUnsafe(kTerminated);
2490 
2491   delete wait_cond_;
2492   delete wait_mutex_;
2493 
2494   if (tlsPtr_.long_jump_context != nullptr) {
2495     delete tlsPtr_.long_jump_context;
2496   }
2497 
2498   if (initialized) {
2499     CleanupCpu();
2500   }
2501 
2502   delete tlsPtr_.instrumentation_stack;
2503   delete tlsPtr_.name;
2504   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2505 
2506   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2507 
2508   TearDownAlternateSignalStack();
2509 }
2510 
HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable & soa)2511 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2512   if (!IsExceptionPending()) {
2513     return;
2514   }
2515   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2516   ScopedThreadStateChange tsc(this, kNative);
2517 
2518   // Get and clear the exception.
2519   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2520   tlsPtr_.jni_env->ExceptionClear();
2521 
2522   // Call the Thread instance's dispatchUncaughtException(Throwable)
2523   tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2524       WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2525       exception.get());
2526 
2527   // If the dispatchUncaughtException threw, clear that exception too.
2528   tlsPtr_.jni_env->ExceptionClear();
2529 }
2530 
RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable & soa)2531 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2532   // this.group.removeThread(this);
2533   // group can be null if we're in the compiler or a test.
2534   ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2535       ->GetObject(tlsPtr_.opeer);
2536   if (ogroup != nullptr) {
2537     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2538     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2539     ScopedThreadStateChange tsc(soa.Self(), kNative);
2540     tlsPtr_.jni_env->CallVoidMethod(group.get(),
2541                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
2542                                     peer.get());
2543   }
2544 }
2545 
HandleScopeContains(jobject obj) const2546 bool Thread::HandleScopeContains(jobject obj) const {
2547   StackReference<mirror::Object>* hs_entry =
2548       reinterpret_cast<StackReference<mirror::Object>*>(obj);
2549   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2550     if (cur->Contains(hs_entry)) {
2551       return true;
2552     }
2553   }
2554   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2555   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2556 }
2557 
HandleScopeVisitRoots(RootVisitor * visitor,pid_t thread_id)2558 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
2559   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2560       visitor, RootInfo(kRootNativeStack, thread_id));
2561   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2562     cur->VisitRoots(buffered_visitor);
2563   }
2564 }
2565 
DecodeJObject(jobject obj) const2566 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2567   if (obj == nullptr) {
2568     return nullptr;
2569   }
2570   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2571   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2572   ObjPtr<mirror::Object> result;
2573   bool expect_null = false;
2574   // The "kinds" below are sorted by the frequency we expect to encounter them.
2575   if (kind == kLocal) {
2576     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
2577     // Local references do not need a read barrier.
2578     result = locals.Get<kWithoutReadBarrier>(ref);
2579   } else if (kind == kHandleScopeOrInvalid) {
2580     // TODO: make stack indirect reference table lookup more efficient.
2581     // Check if this is a local reference in the handle scope.
2582     if (LIKELY(HandleScopeContains(obj))) {
2583       // Read from handle scope.
2584       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2585       VerifyObject(result);
2586     } else {
2587       tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2588       expect_null = true;
2589       result = nullptr;
2590     }
2591   } else if (kind == kGlobal) {
2592     result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2593   } else {
2594     DCHECK_EQ(kind, kWeakGlobal);
2595     result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2596     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2597       // This is a special case where it's okay to return null.
2598       expect_null = true;
2599       result = nullptr;
2600     }
2601   }
2602 
2603   if (UNLIKELY(!expect_null && result == nullptr)) {
2604     tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p",
2605                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
2606   }
2607   return result;
2608 }
2609 
IsJWeakCleared(jweak obj) const2610 bool Thread::IsJWeakCleared(jweak obj) const {
2611   CHECK(obj != nullptr);
2612   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2613   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2614   CHECK_EQ(kind, kWeakGlobal);
2615   return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2616 }
2617 
2618 // Implements java.lang.Thread.interrupted.
Interrupted()2619 bool Thread::Interrupted() {
2620   DCHECK_EQ(Thread::Current(), this);
2621   // No other thread can concurrently reset the interrupted flag.
2622   bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst);
2623   if (interrupted) {
2624     tls32_.interrupted.store(false, std::memory_order_seq_cst);
2625   }
2626   return interrupted;
2627 }
2628 
2629 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2630 bool Thread::IsInterrupted() {
2631   return tls32_.interrupted.load(std::memory_order_seq_cst);
2632 }
2633 
Interrupt(Thread * self)2634 void Thread::Interrupt(Thread* self) {
2635   {
2636     MutexLock mu(self, *wait_mutex_);
2637     if (tls32_.interrupted.load(std::memory_order_seq_cst)) {
2638       return;
2639     }
2640     tls32_.interrupted.store(true, std::memory_order_seq_cst);
2641     NotifyLocked(self);
2642   }
2643   Unpark();
2644 }
2645 
Notify()2646 void Thread::Notify() {
2647   Thread* self = Thread::Current();
2648   MutexLock mu(self, *wait_mutex_);
2649   NotifyLocked(self);
2650 }
2651 
NotifyLocked(Thread * self)2652 void Thread::NotifyLocked(Thread* self) {
2653   if (wait_monitor_ != nullptr) {
2654     wait_cond_->Signal(self);
2655   }
2656 }
2657 
SetClassLoaderOverride(jobject class_loader_override)2658 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2659   if (tlsPtr_.class_loader_override != nullptr) {
2660     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2661   }
2662   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2663 }
2664 
2665 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2666 
2667 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2668 class FetchStackTraceVisitor : public StackVisitor {
2669  public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2670   explicit FetchStackTraceVisitor(Thread* thread,
2671                                   ArtMethodDexPcPair* saved_frames = nullptr,
2672                                   size_t max_saved_frames = 0)
2673       REQUIRES_SHARED(Locks::mutator_lock_)
2674       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2675         saved_frames_(saved_frames),
2676         max_saved_frames_(max_saved_frames) {}
2677 
VisitFrame()2678   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2679     // We want to skip frames up to and including the exception's constructor.
2680     // Note we also skip the frame if it doesn't have a method (namely the callee
2681     // save frame)
2682     ArtMethod* m = GetMethod();
2683     if (skipping_ && !m->IsRuntimeMethod() &&
2684         !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) {
2685       skipping_ = false;
2686     }
2687     if (!skipping_) {
2688       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2689         if (depth_ < max_saved_frames_) {
2690           saved_frames_[depth_].first = m;
2691           saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2692         }
2693         ++depth_;
2694       }
2695     } else {
2696       ++skip_depth_;
2697     }
2698     return true;
2699   }
2700 
GetDepth() const2701   uint32_t GetDepth() const {
2702     return depth_;
2703   }
2704 
GetSkipDepth() const2705   uint32_t GetSkipDepth() const {
2706     return skip_depth_;
2707   }
2708 
2709  private:
2710   uint32_t depth_ = 0;
2711   uint32_t skip_depth_ = 0;
2712   bool skipping_ = true;
2713   ArtMethodDexPcPair* saved_frames_;
2714   const size_t max_saved_frames_;
2715 
2716   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2717 };
2718 
2719 template<bool kTransactionActive>
2720 class BuildInternalStackTraceVisitor : public StackVisitor {
2721  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2722   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2723       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2724         self_(self),
2725         skip_depth_(skip_depth),
2726         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2727 
Init(int depth)2728   bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2729     // Allocate method trace as an object array where the first element is a pointer array that
2730     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2731     // class of the ArtMethod pointers.
2732     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2733     StackHandleScope<1> hs(self_);
2734     ObjPtr<mirror::Class> array_class =
2735         GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker);
2736     // The first element is the methods and dex pc array, the other elements are declaring classes
2737     // for the methods to ensure classes in the stack trace don't get unloaded.
2738     Handle<mirror::ObjectArray<mirror::Object>> trace(
2739         hs.NewHandle(
2740             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2741     if (trace == nullptr) {
2742       // Acquire uninterruptible_ in all paths.
2743       self_->StartAssertNoThreadSuspension("Building internal stack trace");
2744       self_->AssertPendingOOMException();
2745       return false;
2746     }
2747     ObjPtr<mirror::PointerArray> methods_and_pcs =
2748         class_linker->AllocPointerArray(self_, depth * 2);
2749     const char* last_no_suspend_cause =
2750         self_->StartAssertNoThreadSuspension("Building internal stack trace");
2751     if (methods_and_pcs == nullptr) {
2752       self_->AssertPendingOOMException();
2753       return false;
2754     }
2755     trace->Set(0, methods_and_pcs);
2756     trace_ = trace.Get();
2757     // If We are called from native, use non-transactional mode.
2758     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2759     return true;
2760   }
2761 
RELEASE(Roles::uninterruptible_)2762   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2763     self_->EndAssertNoThreadSuspension(nullptr);
2764   }
2765 
VisitFrame()2766   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2767     if (trace_ == nullptr) {
2768       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2769     }
2770     if (skip_depth_ > 0) {
2771       skip_depth_--;
2772       return true;
2773     }
2774     ArtMethod* m = GetMethod();
2775     if (m->IsRuntimeMethod()) {
2776       return true;  // Ignore runtime frames (in particular callee save).
2777     }
2778     AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2779     return true;
2780   }
2781 
AddFrame(ArtMethod * method,uint32_t dex_pc)2782   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2783     ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2784     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2785     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2786         trace_methods_and_pcs->GetLength() / 2 + count_,
2787         dex_pc,
2788         pointer_size_);
2789     // Save the declaring class of the method to ensure that the declaring classes of the methods
2790     // do not get unloaded while the stack trace is live.
2791     trace_->Set(count_ + 1, method->GetDeclaringClass());
2792     ++count_;
2793   }
2794 
GetTraceMethodsAndPCs() const2795   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2796     return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0));
2797   }
2798 
GetInternalStackTrace() const2799   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2800     return trace_;
2801   }
2802 
2803  private:
2804   Thread* const self_;
2805   // How many more frames to skip.
2806   int32_t skip_depth_;
2807   // Current position down stack trace.
2808   uint32_t count_ = 0;
2809   // An object array where the first element is a pointer array that contains the ArtMethod
2810   // pointers on the stack and dex PCs. The rest of the elements are the declaring
2811   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2812   // the i'th frame.
2813   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2814   // For cross compilation.
2815   const PointerSize pointer_size_;
2816 
2817   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2818 };
2819 
2820 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2821 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2822   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2823   constexpr size_t kMaxSavedFrames = 256;
2824   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2825   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2826                                        &saved_frames[0],
2827                                        kMaxSavedFrames);
2828   count_visitor.WalkStack();
2829   const uint32_t depth = count_visitor.GetDepth();
2830   const uint32_t skip_depth = count_visitor.GetSkipDepth();
2831 
2832   // Build internal stack trace.
2833   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2834                                                                          const_cast<Thread*>(this),
2835                                                                          skip_depth);
2836   if (!build_trace_visitor.Init(depth)) {
2837     return nullptr;  // Allocation failed.
2838   }
2839   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2840   // than doing the stack walk twice.
2841   if (depth < kMaxSavedFrames) {
2842     for (size_t i = 0; i < depth; ++i) {
2843       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2844     }
2845   } else {
2846     build_trace_visitor.WalkStack();
2847   }
2848 
2849   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2850   if (kIsDebugBuild) {
2851     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2852     // Second half of trace_methods is dex PCs.
2853     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2854       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2855           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2856       CHECK(method != nullptr);
2857     }
2858   }
2859   return soa.AddLocalReference<jobject>(trace);
2860 }
2861 template jobject Thread::CreateInternalStackTrace<false>(
2862     const ScopedObjectAccessAlreadyRunnable& soa) const;
2863 template jobject Thread::CreateInternalStackTrace<true>(
2864     const ScopedObjectAccessAlreadyRunnable& soa) const;
2865 
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2866 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2867   // Only count the depth since we do not pass a stack frame array as an argument.
2868   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2869   count_visitor.WalkStack();
2870   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2871 }
2872 
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)2873 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
2874     const ScopedObjectAccessAlreadyRunnable& soa,
2875     ArtMethod* method,
2876     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2877   int32_t line_number;
2878   StackHandleScope<3> hs(soa.Self());
2879   auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2880   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2881   if (method->IsProxyMethod()) {
2882     line_number = -1;
2883     class_name_object.Assign(method->GetDeclaringClass()->GetName());
2884     // source_name_object intentionally left null for proxy methods
2885   } else {
2886     line_number = method->GetLineNumFromDexPC(dex_pc);
2887     // Allocate element, potentially triggering GC
2888     // TODO: reuse class_name_object via Class::name_?
2889     const char* descriptor = method->GetDeclaringClassDescriptor();
2890     CHECK(descriptor != nullptr);
2891     std::string class_name(PrettyDescriptor(descriptor));
2892     class_name_object.Assign(
2893         mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2894     if (class_name_object == nullptr) {
2895       soa.Self()->AssertPendingOOMException();
2896       return nullptr;
2897     }
2898     const char* source_file = method->GetDeclaringClassSourceFile();
2899     if (line_number == -1) {
2900       // Make the line_number field of StackTraceElement hold the dex pc.
2901       // source_name_object is intentionally left null if we failed to map the dex pc to
2902       // a line number (most probably because there is no debug info). See b/30183883.
2903       line_number = dex_pc;
2904     } else {
2905       if (source_file != nullptr) {
2906         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2907         if (source_name_object == nullptr) {
2908           soa.Self()->AssertPendingOOMException();
2909           return nullptr;
2910         }
2911       }
2912     }
2913   }
2914   const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2915   CHECK(method_name != nullptr);
2916   Handle<mirror::String> method_name_object(
2917       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2918   if (method_name_object == nullptr) {
2919     return nullptr;
2920   }
2921   return mirror::StackTraceElement::Alloc(soa.Self(),
2922                                           class_name_object,
2923                                           method_name_object,
2924                                           source_name_object,
2925                                           line_number);
2926 }
2927 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2928 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2929     const ScopedObjectAccessAlreadyRunnable& soa,
2930     jobject internal,
2931     jobjectArray output_array,
2932     int* stack_depth) {
2933   // Decode the internal stack trace into the depth, method trace and PC trace.
2934   // Subtract one for the methods and PC trace.
2935   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2936   DCHECK_GE(depth, 0);
2937 
2938   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2939 
2940   jobjectArray result;
2941 
2942   if (output_array != nullptr) {
2943     // Reuse the array we were given.
2944     result = output_array;
2945     // ...adjusting the number of frames we'll write to not exceed the array length.
2946     const int32_t traces_length =
2947         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2948     depth = std::min(depth, traces_length);
2949   } else {
2950     // Create java_trace array and place in local reference table
2951     ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces =
2952         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2953     if (java_traces == nullptr) {
2954       return nullptr;
2955     }
2956     result = soa.AddLocalReference<jobjectArray>(java_traces);
2957   }
2958 
2959   if (stack_depth != nullptr) {
2960     *stack_depth = depth;
2961   }
2962 
2963   for (int32_t i = 0; i < depth; ++i) {
2964     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2965         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2966     // Methods and dex PC trace is element 0.
2967     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2968     const ObjPtr<mirror::PointerArray> method_trace =
2969         ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0));
2970     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2971     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2972     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2973         i + method_trace->GetLength() / 2, kRuntimePointerSize);
2974     const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
2975     if (obj == nullptr) {
2976       return nullptr;
2977     }
2978     // We are called from native: use non-transactional mode.
2979     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2980   }
2981   return result;
2982 }
2983 
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2984 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2985   // This code allocates. Do not allow it to operate with a pending exception.
2986   if (IsExceptionPending()) {
2987     return nullptr;
2988   }
2989 
2990   // If flip_function is not null, it means we have run a checkpoint
2991   // before the thread wakes up to execute the flip function and the
2992   // thread roots haven't been forwarded.  So the following access to
2993   // the roots (locks or methods in the frames) would be bad. Run it
2994   // here. TODO: clean up.
2995   // Note: copied from DumpJavaStack.
2996   {
2997     Thread* this_thread = const_cast<Thread*>(this);
2998     Closure* flip_func = this_thread->GetFlipFunction();
2999     if (flip_func != nullptr) {
3000       flip_func->Run(this_thread);
3001     }
3002   }
3003 
3004   class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
3005    public:
3006     CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
3007                                       Thread* self,
3008                                       Context* context)
3009         : MonitorObjectsStackVisitor(self, context),
3010           wait_jobject_(soaa_in.Env(), nullptr),
3011           block_jobject_(soaa_in.Env(), nullptr),
3012           soaa_(soaa_in) {}
3013 
3014    protected:
3015     VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
3016         override
3017         REQUIRES_SHARED(Locks::mutator_lock_) {
3018       ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
3019           soaa_, m, GetDexPc(/* abort on error */ false));
3020       if (obj == nullptr) {
3021         return VisitMethodResult::kEndStackWalk;
3022       }
3023       stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
3024       return VisitMethodResult::kContinueMethod;
3025     }
3026 
3027     VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
3028       lock_objects_.push_back({});
3029       lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
3030 
3031       DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
3032 
3033       return VisitMethodResult::kContinueMethod;
3034     }
3035 
3036     void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
3037         override
3038         REQUIRES_SHARED(Locks::mutator_lock_) {
3039       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3040     }
3041     void VisitSleepingObject(ObjPtr<mirror::Object> obj)
3042         override
3043         REQUIRES_SHARED(Locks::mutator_lock_) {
3044       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3045     }
3046     void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
3047                               ThreadState state ATTRIBUTE_UNUSED,
3048                               uint32_t owner_tid ATTRIBUTE_UNUSED)
3049         override
3050         REQUIRES_SHARED(Locks::mutator_lock_) {
3051       block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3052     }
3053     void VisitLockedObject(ObjPtr<mirror::Object> obj)
3054         override
3055         REQUIRES_SHARED(Locks::mutator_lock_) {
3056       frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
3057     }
3058 
3059    public:
3060     std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
3061     ScopedLocalRef<jobject> wait_jobject_;
3062     ScopedLocalRef<jobject> block_jobject_;
3063     std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
3064 
3065    private:
3066     const ScopedObjectAccessAlreadyRunnable& soaa_;
3067 
3068     std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
3069   };
3070 
3071   std::unique_ptr<Context> context(Context::Create());
3072   CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
3073   dumper.WalkStack();
3074 
3075   // There should not be a pending exception. Otherwise, return with it pending.
3076   if (IsExceptionPending()) {
3077     return nullptr;
3078   }
3079 
3080   // Now go and create Java arrays.
3081 
3082   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3083 
3084   StackHandleScope<6> hs(soa.Self());
3085   Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass(
3086       soa.Self(),
3087       "[Ldalvik/system/AnnotatedStackTraceElement;"));
3088   if (h_aste_array_class == nullptr) {
3089     return nullptr;
3090   }
3091   Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType());
3092 
3093   Handle<mirror::Class> h_o_array_class =
3094       hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
3095   DCHECK(h_o_array_class != nullptr);  // Class roots must be already initialized.
3096 
3097 
3098   // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
3099   class_linker->EnsureInitialized(soa.Self(),
3100                                   h_aste_class,
3101                                   /* can_init_fields= */ true,
3102                                   /* can_init_parents= */ true);
3103   if (soa.Self()->IsExceptionPending()) {
3104     // This should not fail in a healthy runtime.
3105     return nullptr;
3106   }
3107 
3108   ArtField* stack_trace_element_field = h_aste_class->FindField(
3109       soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
3110   DCHECK(stack_trace_element_field != nullptr);
3111   ArtField* held_locks_field = h_aste_class->FindField(
3112         soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
3113   DCHECK(held_locks_field != nullptr);
3114   ArtField* blocked_on_field = h_aste_class->FindField(
3115         soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
3116   DCHECK(blocked_on_field != nullptr);
3117 
3118   size_t length = dumper.stack_trace_elements_.size();
3119   ObjPtr<mirror::ObjectArray<mirror::Object>> array =
3120       mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length);
3121   if (array == nullptr) {
3122     soa.Self()->AssertPendingOOMException();
3123     return nullptr;
3124   }
3125 
3126   ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
3127 
3128   MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
3129   MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
3130       hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
3131   for (size_t i = 0; i != length; ++i) {
3132     handle.Assign(h_aste_class->AllocObject(soa.Self()));
3133     if (handle == nullptr) {
3134       soa.Self()->AssertPendingOOMException();
3135       return nullptr;
3136     }
3137 
3138     // Set stack trace element.
3139     stack_trace_element_field->SetObject<false>(
3140         handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
3141 
3142     // Create locked-on array.
3143     if (!dumper.lock_objects_[i].empty()) {
3144       handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(),
3145                                                                 h_o_array_class.Get(),
3146                                                                 dumper.lock_objects_[i].size()));
3147       if (handle2 == nullptr) {
3148         soa.Self()->AssertPendingOOMException();
3149         return nullptr;
3150       }
3151       int32_t j = 0;
3152       for (auto& scoped_local : dumper.lock_objects_[i]) {
3153         if (scoped_local == nullptr) {
3154           continue;
3155         }
3156         handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
3157         DCHECK(!soa.Self()->IsExceptionPending());
3158         j++;
3159       }
3160       held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
3161     }
3162 
3163     // Set blocked-on object.
3164     if (i == 0) {
3165       if (dumper.block_jobject_ != nullptr) {
3166         blocked_on_field->SetObject<false>(
3167             handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
3168       }
3169     }
3170 
3171     ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
3172     soa.Env()->SetObjectArrayElement(result.get(), i, elem.get());
3173     DCHECK(!soa.Self()->IsExceptionPending());
3174   }
3175 
3176   return result.release();
3177 }
3178 
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)3179 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
3180   va_list args;
3181   va_start(args, fmt);
3182   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
3183   va_end(args);
3184 }
3185 
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)3186 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
3187                                 const char* fmt, va_list ap) {
3188   std::string msg;
3189   StringAppendV(&msg, fmt, ap);
3190   ThrowNewException(exception_class_descriptor, msg.c_str());
3191 }
3192 
ThrowNewException(const char * exception_class_descriptor,const char * msg)3193 void Thread::ThrowNewException(const char* exception_class_descriptor,
3194                                const char* msg) {
3195   // Callers should either clear or call ThrowNewWrappedException.
3196   AssertNoPendingExceptionForNewException(msg);
3197   ThrowNewWrappedException(exception_class_descriptor, msg);
3198 }
3199 
GetCurrentClassLoader(Thread * self)3200 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
3201     REQUIRES_SHARED(Locks::mutator_lock_) {
3202   ArtMethod* method = self->GetCurrentMethod(nullptr);
3203   return method != nullptr
3204       ? method->GetDeclaringClass()->GetClassLoader()
3205       : nullptr;
3206 }
3207 
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)3208 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
3209                                       const char* msg) {
3210   DCHECK_EQ(this, Thread::Current());
3211   ScopedObjectAccessUnchecked soa(this);
3212   StackHandleScope<3> hs(soa.Self());
3213   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3214   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3215   ClearException();
3216   Runtime* runtime = Runtime::Current();
3217   auto* cl = runtime->GetClassLinker();
3218   Handle<mirror::Class> exception_class(
3219       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3220   if (UNLIKELY(exception_class == nullptr)) {
3221     CHECK(IsExceptionPending());
3222     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3223     return;
3224   }
3225 
3226   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3227                                                              true))) {
3228     DCHECK(IsExceptionPending());
3229     return;
3230   }
3231   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
3232   Handle<mirror::Throwable> exception(
3233       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3234 
3235   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3236   if (exception == nullptr) {
3237     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3238     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
3239     return;
3240   }
3241 
3242   // Choose an appropriate constructor and set up the arguments.
3243   const char* signature;
3244   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3245   if (msg != nullptr) {
3246     // Ensure we remember this and the method over the String allocation.
3247     msg_string.reset(
3248         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3249     if (UNLIKELY(msg_string.get() == nullptr)) {
3250       CHECK(IsExceptionPending());  // OOME.
3251       return;
3252     }
3253     if (cause.get() == nullptr) {
3254       signature = "(Ljava/lang/String;)V";
3255     } else {
3256       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3257     }
3258   } else {
3259     if (cause.get() == nullptr) {
3260       signature = "()V";
3261     } else {
3262       signature = "(Ljava/lang/Throwable;)V";
3263     }
3264   }
3265   ArtMethod* exception_init_method =
3266       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3267 
3268   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3269       << PrettyDescriptor(exception_class_descriptor);
3270 
3271   if (UNLIKELY(!runtime->IsStarted())) {
3272     // Something is trying to throw an exception without a started runtime, which is the common
3273     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3274     // the exception fields directly.
3275     if (msg != nullptr) {
3276       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3277     }
3278     if (cause.get() != nullptr) {
3279       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3280     }
3281     ScopedLocalRef<jobject> trace(GetJniEnv(),
3282                                   Runtime::Current()->IsActiveTransaction()
3283                                       ? CreateInternalStackTrace<true>(soa)
3284                                       : CreateInternalStackTrace<false>(soa));
3285     if (trace.get() != nullptr) {
3286       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3287     }
3288     SetException(exception.Get());
3289   } else {
3290     jvalue jv_args[2];
3291     size_t i = 0;
3292 
3293     if (msg != nullptr) {
3294       jv_args[i].l = msg_string.get();
3295       ++i;
3296     }
3297     if (cause.get() != nullptr) {
3298       jv_args[i].l = cause.get();
3299       ++i;
3300     }
3301     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3302     InvokeWithJValues(soa, ref.get(), exception_init_method, jv_args);
3303     if (LIKELY(!IsExceptionPending())) {
3304       SetException(exception.Get());
3305     }
3306   }
3307 }
3308 
ThrowOutOfMemoryError(const char * msg)3309 void Thread::ThrowOutOfMemoryError(const char* msg) {
3310   LOG(WARNING) << "Throwing OutOfMemoryError "
3311                << '"' << msg << '"'
3312                << " (VmSize " << GetProcessStatus("VmSize")
3313                << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")");
3314   if (!tls32_.throwing_OutOfMemoryError) {
3315     tls32_.throwing_OutOfMemoryError = true;
3316     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3317     tls32_.throwing_OutOfMemoryError = false;
3318   } else {
3319     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3320     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
3321   }
3322 }
3323 
CurrentFromGdb()3324 Thread* Thread::CurrentFromGdb() {
3325   return Thread::Current();
3326 }
3327 
DumpFromGdb() const3328 void Thread::DumpFromGdb() const {
3329   std::ostringstream ss;
3330   Dump(ss);
3331   std::string str(ss.str());
3332   // log to stderr for debugging command line processes
3333   std::cerr << str;
3334 #ifdef ART_TARGET_ANDROID
3335   // log to logcat for debugging frameworks processes
3336   LOG(INFO) << str;
3337 #endif
3338 }
3339 
3340 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3341 template
3342 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3343 template
3344 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3345 
3346 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3347 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3348 #define DO_THREAD_OFFSET(x, y) \
3349     if (offset == (x).Uint32Value()) { \
3350       os << (y); \
3351       return; \
3352     }
3353   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3354   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3355   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3356   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3357   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3358   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3359   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3360   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3361   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3362   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3363   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3364   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3365   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3366 #undef DO_THREAD_OFFSET
3367 
3368 #define JNI_ENTRY_POINT_INFO(x) \
3369     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3370       os << #x; \
3371       return; \
3372     }
3373   JNI_ENTRY_POINT_INFO(pDlsymLookup)
3374   JNI_ENTRY_POINT_INFO(pDlsymLookupCritical)
3375 #undef JNI_ENTRY_POINT_INFO
3376 
3377 #define QUICK_ENTRY_POINT_INFO(x) \
3378     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3379       os << #x; \
3380       return; \
3381     }
3382   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3383   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3384   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3385   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3386   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3387   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3388   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3389   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3390   QUICK_ENTRY_POINT_INFO(pAllocStringObject)
3391   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3392   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3393   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3394   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3395   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3396   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3397   QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess)
3398   QUICK_ENTRY_POINT_INFO(pResolveType)
3399   QUICK_ENTRY_POINT_INFO(pResolveString)
3400   QUICK_ENTRY_POINT_INFO(pSet8Instance)
3401   QUICK_ENTRY_POINT_INFO(pSet8Static)
3402   QUICK_ENTRY_POINT_INFO(pSet16Instance)
3403   QUICK_ENTRY_POINT_INFO(pSet16Static)
3404   QUICK_ENTRY_POINT_INFO(pSet32Instance)
3405   QUICK_ENTRY_POINT_INFO(pSet32Static)
3406   QUICK_ENTRY_POINT_INFO(pSet64Instance)
3407   QUICK_ENTRY_POINT_INFO(pSet64Static)
3408   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3409   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3410   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3411   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3412   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3413   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3414   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3415   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3416   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3417   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3418   QUICK_ENTRY_POINT_INFO(pGet32Instance)
3419   QUICK_ENTRY_POINT_INFO(pGet32Static)
3420   QUICK_ENTRY_POINT_INFO(pGet64Instance)
3421   QUICK_ENTRY_POINT_INFO(pGet64Static)
3422   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3423   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3424   QUICK_ENTRY_POINT_INFO(pAputObject)
3425   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3426   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
3427   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3428   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
3429   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
3430   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
3431   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3432   QUICK_ENTRY_POINT_INFO(pLockObject)
3433   QUICK_ENTRY_POINT_INFO(pUnlockObject)
3434   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3435   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3436   QUICK_ENTRY_POINT_INFO(pCmplDouble)
3437   QUICK_ENTRY_POINT_INFO(pCmplFloat)
3438   QUICK_ENTRY_POINT_INFO(pCos)
3439   QUICK_ENTRY_POINT_INFO(pSin)
3440   QUICK_ENTRY_POINT_INFO(pAcos)
3441   QUICK_ENTRY_POINT_INFO(pAsin)
3442   QUICK_ENTRY_POINT_INFO(pAtan)
3443   QUICK_ENTRY_POINT_INFO(pAtan2)
3444   QUICK_ENTRY_POINT_INFO(pCbrt)
3445   QUICK_ENTRY_POINT_INFO(pCosh)
3446   QUICK_ENTRY_POINT_INFO(pExp)
3447   QUICK_ENTRY_POINT_INFO(pExpm1)
3448   QUICK_ENTRY_POINT_INFO(pHypot)
3449   QUICK_ENTRY_POINT_INFO(pLog)
3450   QUICK_ENTRY_POINT_INFO(pLog10)
3451   QUICK_ENTRY_POINT_INFO(pNextAfter)
3452   QUICK_ENTRY_POINT_INFO(pSinh)
3453   QUICK_ENTRY_POINT_INFO(pTan)
3454   QUICK_ENTRY_POINT_INFO(pTanh)
3455   QUICK_ENTRY_POINT_INFO(pFmod)
3456   QUICK_ENTRY_POINT_INFO(pL2d)
3457   QUICK_ENTRY_POINT_INFO(pFmodf)
3458   QUICK_ENTRY_POINT_INFO(pL2f)
3459   QUICK_ENTRY_POINT_INFO(pD2iz)
3460   QUICK_ENTRY_POINT_INFO(pF2iz)
3461   QUICK_ENTRY_POINT_INFO(pIdivmod)
3462   QUICK_ENTRY_POINT_INFO(pD2l)
3463   QUICK_ENTRY_POINT_INFO(pF2l)
3464   QUICK_ENTRY_POINT_INFO(pLdiv)
3465   QUICK_ENTRY_POINT_INFO(pLmod)
3466   QUICK_ENTRY_POINT_INFO(pLmul)
3467   QUICK_ENTRY_POINT_INFO(pShlLong)
3468   QUICK_ENTRY_POINT_INFO(pShrLong)
3469   QUICK_ENTRY_POINT_INFO(pUshrLong)
3470   QUICK_ENTRY_POINT_INFO(pIndexOf)
3471   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3472   QUICK_ENTRY_POINT_INFO(pMemcpy)
3473   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3474   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3475   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3476   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3477   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3478   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3479   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3480   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3481   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3482   QUICK_ENTRY_POINT_INFO(pTestSuspend)
3483   QUICK_ENTRY_POINT_INFO(pDeliverException)
3484   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3485   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3486   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3487   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3488   QUICK_ENTRY_POINT_INFO(pDeoptimize)
3489   QUICK_ENTRY_POINT_INFO(pA64Load)
3490   QUICK_ENTRY_POINT_INFO(pA64Store)
3491   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3492   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3493   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3494   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3495   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3496   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3497   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3498   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3499   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3500   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3501   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3502   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3503   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3504   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3505   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3506   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3507   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3508   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3509   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3510   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3511   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3512   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3513   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3514   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3515   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3516   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3517   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3518   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3519   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3520   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3521   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3522   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3523   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3524   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3525   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3526   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3527   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3528   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3529   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3530   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3531   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3532   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3533   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3534   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3535   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3536   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3537   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3538   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3539   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3540 
3541   QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3542   QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3543 #undef QUICK_ENTRY_POINT_INFO
3544 
3545   os << offset;
3546 }
3547 
QuickDeliverException()3548 void Thread::QuickDeliverException() {
3549   // Get exception from thread.
3550   ObjPtr<mirror::Throwable> exception = GetException();
3551   CHECK(exception != nullptr);
3552   if (exception == GetDeoptimizationException()) {
3553     artDeoptimize(this);
3554     UNREACHABLE();
3555   }
3556 
3557   ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3558 
3559   // This is a real exception: let the instrumentation know about it.
3560   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3561   if (instrumentation->HasExceptionThrownListeners() &&
3562       IsExceptionThrownByCurrentMethod(exception)) {
3563     // Instrumentation may cause GC so keep the exception object safe.
3564     StackHandleScope<1> hs(this);
3565     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3566     instrumentation->ExceptionThrownEvent(this, exception);
3567   }
3568   // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something?
3569   // Note: we do this *after* reporting the exception to instrumentation in case it now requires
3570   // deoptimization. It may happen if a debugger is attached and requests new events (single-step,
3571   // breakpoint, ...) when the exception is reported.
3572   //
3573   // Note we need to check for both force_frame_pop and force_retry_instruction. The first is
3574   // expected to happen fairly regularly but the second can only happen if we are using
3575   // instrumentation trampolines (for example with DDMS tracing). That forces us to do deopt later
3576   // and see every frame being popped. We don't need to handle it any differently.
3577   ShadowFrame* cf;
3578   bool force_deopt = false;
3579   if (Runtime::Current()->AreNonStandardExitsEnabled() || kIsDebugBuild) {
3580     NthCallerVisitor visitor(this, 0, false);
3581     visitor.WalkStack();
3582     cf = visitor.GetCurrentShadowFrame();
3583     if (cf == nullptr) {
3584       cf = FindDebuggerShadowFrame(visitor.GetFrameId());
3585     }
3586     bool force_frame_pop = cf != nullptr && cf->GetForcePopFrame();
3587     bool force_retry_instr = cf != nullptr && cf->GetForceRetryInstruction();
3588     if (kIsDebugBuild && force_frame_pop) {
3589       DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3590       NthCallerVisitor penultimate_visitor(this, 1, false);
3591       penultimate_visitor.WalkStack();
3592       ShadowFrame* penultimate_frame = penultimate_visitor.GetCurrentShadowFrame();
3593       if (penultimate_frame == nullptr) {
3594         penultimate_frame = FindDebuggerShadowFrame(penultimate_visitor.GetFrameId());
3595       }
3596     }
3597     if (force_retry_instr) {
3598       DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3599     }
3600     force_deopt = force_frame_pop || force_retry_instr;
3601   }
3602   if (Dbg::IsForcedInterpreterNeededForException(this) || force_deopt || IsForceInterpreter()) {
3603     NthCallerVisitor visitor(this, 0, false);
3604     visitor.WalkStack();
3605     if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3606       // method_type shouldn't matter due to exception handling.
3607       const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3608       // Save the exception into the deoptimization context so it can be restored
3609       // before entering the interpreter.
3610       if (force_deopt) {
3611         VLOG(deopt) << "Deopting " << cf->GetMethod()->PrettyMethod() << " for frame-pop";
3612         DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3613         // Get rid of the exception since we are doing a framepop instead.
3614         LOG(WARNING) << "Suppressing pending exception for retry-instruction/frame-pop: "
3615                      << exception->Dump();
3616         ClearException();
3617       }
3618       PushDeoptimizationContext(
3619           JValue(),
3620           /* is_reference= */ false,
3621           (force_deopt ? nullptr : exception),
3622           /* from_code= */ false,
3623           method_type);
3624       artDeoptimize(this);
3625       UNREACHABLE();
3626     } else if (visitor.caller != nullptr) {
3627       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3628                    << visitor.caller->PrettyMethod();
3629     }
3630   }
3631 
3632   // Don't leave exception visible while we try to find the handler, which may cause class
3633   // resolution.
3634   ClearException();
3635   QuickExceptionHandler exception_handler(this, false);
3636   exception_handler.FindCatch(exception);
3637   if (exception_handler.GetClearException()) {
3638     // Exception was cleared as part of delivery.
3639     DCHECK(!IsExceptionPending());
3640   } else {
3641     // Exception was put back with a throw location.
3642     DCHECK(IsExceptionPending());
3643     // Check the to-space invariant on the re-installed exception (if applicable).
3644     ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
3645   }
3646   exception_handler.DoLongJump();
3647 }
3648 
GetLongJumpContext()3649 Context* Thread::GetLongJumpContext() {
3650   Context* result = tlsPtr_.long_jump_context;
3651   if (result == nullptr) {
3652     result = Context::Create();
3653   } else {
3654     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
3655     result->Reset();
3656   }
3657   return result;
3658 }
3659 
GetCurrentMethod(uint32_t * dex_pc_out,bool check_suspended,bool abort_on_error) const3660 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out,
3661                                     bool check_suspended,
3662                                     bool abort_on_error) const {
3663   // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3664   //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java
3665   //       stack.
3666   ArtMethod* method = nullptr;
3667   uint32_t dex_pc = dex::kDexNoIndex;
3668   StackVisitor::WalkStack(
3669       [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
3670         ArtMethod* m = visitor->GetMethod();
3671         if (m->IsRuntimeMethod()) {
3672           // Continue if this is a runtime method.
3673           return true;
3674         }
3675         method = m;
3676         dex_pc = visitor->GetDexPc(abort_on_error);
3677         return false;
3678       },
3679       const_cast<Thread*>(this),
3680       /* context= */ nullptr,
3681       StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3682       check_suspended);
3683 
3684   if (dex_pc_out != nullptr) {
3685     *dex_pc_out = dex_pc;
3686   }
3687   return method;
3688 }
3689 
HoldsLock(ObjPtr<mirror::Object> object) const3690 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3691   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3692 }
3693 
3694 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
3695     REQUIRES_SHARED(Locks::mutator_lock_);
3696 
3697 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3698 template <typename RootVisitor, bool kPrecise = false>
3699 class ReferenceMapVisitor : public StackVisitor {
3700  public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3701   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3702       REQUIRES_SHARED(Locks::mutator_lock_)
3703         // We are visiting the references in compiled frames, so we do not need
3704         // to know the inlined frames.
3705       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3706         visitor_(visitor) {}
3707 
VisitFrame()3708   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
3709     if (false) {
3710       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3711                 << StringPrintf("@ PC:%04x", GetDexPc());
3712     }
3713     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3714     if (shadow_frame != nullptr) {
3715       VisitShadowFrame(shadow_frame);
3716     } else if (GetCurrentOatQuickMethodHeader()->IsNterpMethodHeader()) {
3717       VisitNterpFrame();
3718     } else {
3719       VisitQuickFrame();
3720     }
3721     return true;
3722   }
3723 
VisitShadowFrame(ShadowFrame * shadow_frame)3724   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3725     ArtMethod* m = shadow_frame->GetMethod();
3726     VisitDeclaringClass(m);
3727     DCHECK(m != nullptr);
3728     size_t num_regs = shadow_frame->NumberOfVRegs();
3729     // handle scope for JNI or References for interpreter.
3730     for (size_t reg = 0; reg < num_regs; ++reg) {
3731       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3732       if (ref != nullptr) {
3733         mirror::Object* new_ref = ref;
3734         visitor_(&new_ref, reg, this);
3735         if (new_ref != ref) {
3736           shadow_frame->SetVRegReference(reg, new_ref);
3737         }
3738       }
3739     }
3740     // Mark lock count map required for structured locking checks.
3741     shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this);
3742   }
3743 
3744  private:
3745   // Visiting the declaring class is necessary so that we don't unload the class of a method that
3746   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3747   // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3748   void VisitDeclaringClass(ArtMethod* method)
3749       REQUIRES_SHARED(Locks::mutator_lock_)
3750       NO_THREAD_SAFETY_ANALYSIS {
3751     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3752     // klass can be null for runtime methods.
3753     if (klass != nullptr) {
3754       if (kVerifyImageObjectsMarked) {
3755         gc::Heap* const heap = Runtime::Current()->GetHeap();
3756         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3757                                                                                 /*fail_ok=*/true);
3758         if (space != nullptr && space->IsImageSpace()) {
3759           bool failed = false;
3760           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3761             failed = true;
3762             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3763           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3764             failed = true;
3765             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3766           }
3767           if (failed) {
3768             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3769             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3770             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3771                                      << " klass@" << klass.Ptr();
3772             // Pretty info last in case it crashes.
3773             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3774                        << klass->PrettyClass();
3775           }
3776         }
3777       }
3778       mirror::Object* new_ref = klass.Ptr();
3779       visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kMethodDeclaringClass, this);
3780       if (new_ref != klass) {
3781         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3782       }
3783     }
3784   }
3785 
VisitNterpFrame()3786   void VisitNterpFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3787     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3788     StackReference<mirror::Object>* vreg_ref_base =
3789         reinterpret_cast<StackReference<mirror::Object>*>(NterpGetReferenceArray(cur_quick_frame));
3790     StackReference<mirror::Object>* vreg_int_base =
3791         reinterpret_cast<StackReference<mirror::Object>*>(NterpGetRegistersArray(cur_quick_frame));
3792     CodeItemDataAccessor accessor((*cur_quick_frame)->DexInstructionData());
3793     const uint16_t num_regs = accessor.RegistersSize();
3794     // An nterp frame has two arrays: a dex register array and a reference array
3795     // that shadows the dex register array but only containing references
3796     // (non-reference dex registers have nulls). See nterp_helpers.cc.
3797     for (size_t reg = 0; reg < num_regs; ++reg) {
3798       StackReference<mirror::Object>* ref_addr = vreg_ref_base + reg;
3799       mirror::Object* ref = ref_addr->AsMirrorPtr();
3800       if (ref != nullptr) {
3801         mirror::Object* new_ref = ref;
3802         visitor_(&new_ref, reg, this);
3803         if (new_ref != ref) {
3804           ref_addr->Assign(new_ref);
3805           StackReference<mirror::Object>* int_addr = vreg_int_base + reg;
3806           int_addr->Assign(new_ref);
3807         }
3808       }
3809     }
3810   }
3811 
3812   template <typename T>
3813   ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3814   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3815     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3816     DCHECK(cur_quick_frame != nullptr);
3817     ArtMethod* m = *cur_quick_frame;
3818     VisitDeclaringClass(m);
3819 
3820     // Process register map (which native and runtime methods don't have)
3821     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3822       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3823       DCHECK(method_header->IsOptimized());
3824       StackReference<mirror::Object>* vreg_base =
3825           reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame);
3826       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3827       CodeInfo code_info = kPrecise
3828           ? CodeInfo(method_header)  // We will need dex register maps.
3829           : CodeInfo::DecodeGcMasksOnly(method_header);
3830       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
3831       DCHECK(map.IsValid());
3832 
3833       T vreg_info(m, code_info, map, visitor_);
3834 
3835       // Visit stack entries that hold pointers.
3836       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map);
3837       for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) {
3838         if (stack_mask.LoadBit(i)) {
3839           StackReference<mirror::Object>* ref_addr = vreg_base + i;
3840           mirror::Object* ref = ref_addr->AsMirrorPtr();
3841           if (ref != nullptr) {
3842             mirror::Object* new_ref = ref;
3843             vreg_info.VisitStack(&new_ref, i, this);
3844             if (ref != new_ref) {
3845               ref_addr->Assign(new_ref);
3846             }
3847           }
3848         }
3849       }
3850       // Visit callee-save registers that hold pointers.
3851       uint32_t register_mask = code_info.GetRegisterMaskOf(map);
3852       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3853         if (register_mask & (1 << i)) {
3854           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3855           if (kIsDebugBuild && ref_addr == nullptr) {
3856             std::string thread_name;
3857             GetThread()->GetThreadName(thread_name);
3858             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3859             DescribeStack(GetThread());
3860             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3861                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3862           }
3863           if (*ref_addr != nullptr) {
3864             vreg_info.VisitRegister(ref_addr, i, this);
3865           }
3866         }
3867       }
3868     } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
3869       // If this is a proxy method, visit its reference arguments.
3870       DCHECK(!m->IsStatic());
3871       DCHECK(!m->IsNative());
3872       std::vector<StackReference<mirror::Object>*> ref_addrs =
3873           GetProxyReferenceArguments(cur_quick_frame);
3874       for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
3875         mirror::Object* ref = ref_addr->AsMirrorPtr();
3876         if (ref != nullptr) {
3877           mirror::Object* new_ref = ref;
3878           visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kProxyReferenceArgument, this);
3879           if (ref != new_ref) {
3880             ref_addr->Assign(new_ref);
3881           }
3882         }
3883       }
3884     }
3885   }
3886 
VisitQuickFrame()3887   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3888     if (kPrecise) {
3889       VisitQuickFramePrecise();
3890     } else {
3891       VisitQuickFrameNonPrecise();
3892     }
3893   }
3894 
VisitQuickFrameNonPrecise()3895   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3896     struct UndefinedVRegInfo {
3897       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3898                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
3899                         const StackMap& map ATTRIBUTE_UNUSED,
3900                         RootVisitor& _visitor)
3901           : visitor(_visitor) {
3902       }
3903 
3904       ALWAYS_INLINE
3905       void VisitStack(mirror::Object** ref,
3906                       size_t stack_index ATTRIBUTE_UNUSED,
3907                       const StackVisitor* stack_visitor)
3908           REQUIRES_SHARED(Locks::mutator_lock_) {
3909         visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
3910       }
3911 
3912       ALWAYS_INLINE
3913       void VisitRegister(mirror::Object** ref,
3914                          size_t register_index ATTRIBUTE_UNUSED,
3915                          const StackVisitor* stack_visitor)
3916           REQUIRES_SHARED(Locks::mutator_lock_) {
3917         visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
3918       }
3919 
3920       RootVisitor& visitor;
3921     };
3922     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3923   }
3924 
VisitQuickFramePrecise()3925   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3926     struct StackMapVRegInfo {
3927       StackMapVRegInfo(ArtMethod* method,
3928                        const CodeInfo& _code_info,
3929                        const StackMap& map,
3930                        RootVisitor& _visitor)
3931           : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
3932             code_info(_code_info),
3933             dex_register_map(code_info.GetDexRegisterMapOf(map)),
3934             visitor(_visitor) {
3935         DCHECK_EQ(dex_register_map.size(), number_of_dex_registers);
3936       }
3937 
3938       // TODO: If necessary, we should consider caching a reverse map instead of the linear
3939       //       lookups for each location.
3940       void FindWithType(const size_t index,
3941                         const DexRegisterLocation::Kind kind,
3942                         mirror::Object** ref,
3943                         const StackVisitor* stack_visitor)
3944           REQUIRES_SHARED(Locks::mutator_lock_) {
3945         bool found = false;
3946         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3947           DexRegisterLocation location = dex_register_map[dex_reg];
3948           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3949             visitor(ref, dex_reg, stack_visitor);
3950             found = true;
3951           }
3952         }
3953 
3954         if (!found) {
3955           // If nothing found, report with unknown.
3956           visitor(ref, JavaFrameRootInfo::kUnknownVreg, stack_visitor);
3957         }
3958       }
3959 
3960       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3961           REQUIRES_SHARED(Locks::mutator_lock_) {
3962         const size_t stack_offset = stack_index * kFrameSlotSize;
3963         FindWithType(stack_offset,
3964                      DexRegisterLocation::Kind::kInStack,
3965                      ref,
3966                      stack_visitor);
3967       }
3968 
3969       void VisitRegister(mirror::Object** ref,
3970                          size_t register_index,
3971                          const StackVisitor* stack_visitor)
3972           REQUIRES_SHARED(Locks::mutator_lock_) {
3973         FindWithType(register_index,
3974                      DexRegisterLocation::Kind::kInRegister,
3975                      ref,
3976                      stack_visitor);
3977       }
3978 
3979       size_t number_of_dex_registers;
3980       const CodeInfo& code_info;
3981       DexRegisterMap dex_register_map;
3982       RootVisitor& visitor;
3983     };
3984     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3985   }
3986 
3987   // Visitor for when we visit a root.
3988   RootVisitor& visitor_;
3989 };
3990 
3991 class RootCallbackVisitor {
3992  public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3993   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3994 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3995   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3996       REQUIRES_SHARED(Locks::mutator_lock_) {
3997     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3998   }
3999 
4000  private:
4001   RootVisitor* const visitor_;
4002   const uint32_t tid_;
4003 };
4004 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)4005 void Thread::VisitReflectiveTargets(ReflectiveValueVisitor* visitor) {
4006   for (BaseReflectiveHandleScope* brhs = GetTopReflectiveHandleScope();
4007        brhs != nullptr;
4008        brhs = brhs->GetLink()) {
4009     brhs->VisitTargets(visitor);
4010   }
4011 }
4012 
4013 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)4014 void Thread::VisitRoots(RootVisitor* visitor) {
4015   const pid_t thread_id = GetThreadId();
4016   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
4017   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
4018     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
4019                        RootInfo(kRootNativeStack, thread_id));
4020   }
4021   if (tlsPtr_.async_exception != nullptr) {
4022     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
4023                        RootInfo(kRootNativeStack, thread_id));
4024   }
4025   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
4026   tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
4027   tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
4028   HandleScopeVisitRoots(visitor, thread_id);
4029   // Visit roots for deoptimization.
4030   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
4031     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4032     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4033     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
4034          record != nullptr;
4035          record = record->GetLink()) {
4036       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
4037            shadow_frame != nullptr;
4038            shadow_frame = shadow_frame->GetLink()) {
4039         mapper.VisitShadowFrame(shadow_frame);
4040       }
4041     }
4042   }
4043   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
4044        record != nullptr;
4045        record = record->GetLink()) {
4046     if (record->IsReference()) {
4047       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
4048                                   RootInfo(kRootThreadObject, thread_id));
4049     }
4050     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
4051                                 RootInfo(kRootThreadObject, thread_id));
4052   }
4053   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
4054     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4055     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4056     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
4057          record != nullptr;
4058          record = record->GetNext()) {
4059       mapper.VisitShadowFrame(record->GetShadowFrame());
4060     }
4061   }
4062   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
4063     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
4064   }
4065   // Visit roots on this thread's stack
4066   RuntimeContextType context;
4067   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4068   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
4069   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
4070   for (auto& entry : *GetInstrumentationStack()) {
4071     visitor->VisitRootIfNonNull(&entry.second.this_object_, RootInfo(kRootVMInternal, thread_id));
4072   }
4073 }
4074 
SweepInterpreterCache(IsMarkedVisitor * visitor)4075 void Thread::SweepInterpreterCache(IsMarkedVisitor* visitor) {
4076   for (InterpreterCache::Entry& entry : GetInterpreterCache()->GetArray()) {
4077     const Instruction* inst = reinterpret_cast<const Instruction*>(entry.first);
4078     if (inst != nullptr) {
4079       if (inst->Opcode() == Instruction::NEW_INSTANCE ||
4080           inst->Opcode() == Instruction::CHECK_CAST ||
4081           inst->Opcode() == Instruction::INSTANCE_OF ||
4082           inst->Opcode() == Instruction::NEW_ARRAY ||
4083           inst->Opcode() == Instruction::CONST_CLASS) {
4084         mirror::Class* cls = reinterpret_cast<mirror::Class*>(entry.second);
4085         if (cls == nullptr || cls == Runtime::GetWeakClassSentinel()) {
4086           // Entry got deleted in a previous sweep.
4087           continue;
4088         }
4089         Runtime::ProcessWeakClass(
4090             reinterpret_cast<GcRoot<mirror::Class>*>(&entry.second),
4091             visitor,
4092             Runtime::GetWeakClassSentinel());
4093       } else if (inst->Opcode() == Instruction::CONST_STRING ||
4094                  inst->Opcode() == Instruction::CONST_STRING_JUMBO) {
4095         mirror::Object* object = reinterpret_cast<mirror::Object*>(entry.second);
4096         mirror::Object* new_object = visitor->IsMarked(object);
4097         // We know the string is marked because it's a strongly-interned string that
4098         // is always alive (see b/117621117 for trying to make those strings weak).
4099         // The IsMarked implementation of the CMS collector returns
4100         // null for newly allocated objects, but we know those haven't moved. Therefore,
4101         // only update the entry if we get a different non-null string.
4102         if (new_object != nullptr && new_object != object) {
4103           entry.second = reinterpret_cast<size_t>(new_object);
4104         }
4105       }
4106     }
4107   }
4108 }
4109 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)4110 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
4111   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
4112     VisitRoots</* kPrecise= */ true>(visitor);
4113   } else {
4114     VisitRoots</* kPrecise= */ false>(visitor);
4115   }
4116 }
4117 
4118 class VerifyRootVisitor : public SingleRootVisitor {
4119  public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)4120   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
4121       override REQUIRES_SHARED(Locks::mutator_lock_) {
4122     VerifyObject(root);
4123   }
4124 };
4125 
VerifyStackImpl()4126 void Thread::VerifyStackImpl() {
4127   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
4128     VerifyRootVisitor visitor;
4129     std::unique_ptr<Context> context(Context::Create());
4130     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
4131     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
4132     mapper.WalkStack();
4133   }
4134 }
4135 
4136 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()4137 void Thread::SetStackEndForStackOverflow() {
4138   // During stack overflow we allow use of the full stack.
4139   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
4140     // However, we seem to have already extended to use the full stack.
4141     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
4142                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
4143     DumpStack(LOG_STREAM(ERROR));
4144     LOG(FATAL) << "Recursive stack overflow.";
4145   }
4146 
4147   tlsPtr_.stack_end = tlsPtr_.stack_begin;
4148 
4149   // Remove the stack overflow protection if is it set up.
4150   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
4151   if (implicit_stack_check) {
4152     if (!UnprotectStack()) {
4153       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
4154     }
4155   }
4156 }
4157 
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)4158 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
4159   DCHECK_LE(start, end);
4160   DCHECK_LE(end, limit);
4161   tlsPtr_.thread_local_start = start;
4162   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
4163   tlsPtr_.thread_local_end = end;
4164   tlsPtr_.thread_local_limit = limit;
4165   tlsPtr_.thread_local_objects = 0;
4166 }
4167 
ResetTlab()4168 void Thread::ResetTlab() {
4169   SetTlab(nullptr, nullptr, nullptr);
4170 }
4171 
HasTlab() const4172 bool Thread::HasTlab() const {
4173   const bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
4174   if (has_tlab) {
4175     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
4176   } else {
4177     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
4178   }
4179   return has_tlab;
4180 }
4181 
operator <<(std::ostream & os,const Thread & thread)4182 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
4183   thread.ShortDump(os);
4184   return os;
4185 }
4186 
ProtectStack(bool fatal_on_error)4187 bool Thread::ProtectStack(bool fatal_on_error) {
4188   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4189   VLOG(threads) << "Protecting stack at " << pregion;
4190   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
4191     if (fatal_on_error) {
4192       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
4193           "Reason: "
4194           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
4195     }
4196     return false;
4197   }
4198   return true;
4199 }
4200 
UnprotectStack()4201 bool Thread::UnprotectStack() {
4202   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4203   VLOG(threads) << "Unprotecting stack at " << pregion;
4204   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
4205 }
4206 
PushVerifier(verifier::MethodVerifier * verifier)4207 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
4208   verifier->link_ = tlsPtr_.method_verifier;
4209   tlsPtr_.method_verifier = verifier;
4210 }
4211 
PopVerifier(verifier::MethodVerifier * verifier)4212 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
4213   CHECK_EQ(tlsPtr_.method_verifier, verifier);
4214   tlsPtr_.method_verifier = verifier->link_;
4215 }
4216 
NumberOfHeldMutexes() const4217 size_t Thread::NumberOfHeldMutexes() const {
4218   size_t count = 0;
4219   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
4220     count += mu != nullptr ? 1 : 0;
4221   }
4222   return count;
4223 }
4224 
DeoptimizeWithDeoptimizationException(JValue * result)4225 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
4226   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
4227   ClearException();
4228   ShadowFrame* shadow_frame =
4229       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
4230   ObjPtr<mirror::Throwable> pending_exception;
4231   bool from_code = false;
4232   DeoptimizationMethodType method_type;
4233   PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
4234   SetTopOfStack(nullptr);
4235   SetTopOfShadowStack(shadow_frame);
4236 
4237   // Restore the exception that was pending before deoptimization then interpret the
4238   // deoptimized frames.
4239   if (pending_exception != nullptr) {
4240     SetException(pending_exception);
4241   }
4242   interpreter::EnterInterpreterFromDeoptimize(this,
4243                                               shadow_frame,
4244                                               result,
4245                                               from_code,
4246                                               method_type);
4247 }
4248 
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)4249 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
4250   CHECK(new_exception != nullptr);
4251   Runtime::Current()->SetAsyncExceptionsThrown();
4252   if (kIsDebugBuild) {
4253     // Make sure we are in a checkpoint.
4254     MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
4255     CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
4256         << "It doesn't look like this was called in a checkpoint! this: "
4257         << this << " count: " << GetSuspendCount();
4258   }
4259   tlsPtr_.async_exception = new_exception.Ptr();
4260 }
4261 
ObserveAsyncException()4262 bool Thread::ObserveAsyncException() {
4263   DCHECK(this == Thread::Current());
4264   if (tlsPtr_.async_exception != nullptr) {
4265     if (tlsPtr_.exception != nullptr) {
4266       LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
4267                    << tlsPtr_.exception->Dump();
4268       LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
4269     }
4270     tlsPtr_.exception = tlsPtr_.async_exception;
4271     tlsPtr_.async_exception = nullptr;
4272     return true;
4273   } else {
4274     return IsExceptionPending();
4275   }
4276 }
4277 
SetException(ObjPtr<mirror::Throwable> new_exception)4278 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4279   CHECK(new_exception != nullptr);
4280   // TODO: DCHECK(!IsExceptionPending());
4281   tlsPtr_.exception = new_exception.Ptr();
4282 }
4283 
IsAotCompiler()4284 bool Thread::IsAotCompiler() {
4285   return Runtime::Current()->IsAotCompiler();
4286 }
4287 
GetPeerFromOtherThread() const4288 mirror::Object* Thread::GetPeerFromOtherThread() const {
4289   DCHECK(tlsPtr_.jpeer == nullptr);
4290   mirror::Object* peer = tlsPtr_.opeer;
4291   if (kUseReadBarrier && Current()->GetIsGcMarking()) {
4292     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
4293     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
4294     // mark/forward it here.
4295     peer = art::ReadBarrier::Mark(peer);
4296   }
4297   return peer;
4298 }
4299 
SetReadBarrierEntrypoints()4300 void Thread::SetReadBarrierEntrypoints() {
4301   // Make sure entrypoints aren't null.
4302   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true);
4303 }
4304 
ClearAllInterpreterCaches()4305 void Thread::ClearAllInterpreterCaches() {
4306   static struct ClearInterpreterCacheClosure : Closure {
4307     void Run(Thread* thread) override {
4308       thread->GetInterpreterCache()->Clear(thread);
4309     }
4310   } closure;
4311   Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
4312 }
4313 
4314 
ReleaseLongJumpContextInternal()4315 void Thread::ReleaseLongJumpContextInternal() {
4316   // Each QuickExceptionHandler gets a long jump context and uses
4317   // it for doing the long jump, after finding catch blocks/doing deoptimization.
4318   // Both finding catch blocks and deoptimization can trigger another
4319   // exception such as a result of class loading. So there can be nested
4320   // cases of exception handling and multiple contexts being used.
4321   // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
4322   // for reuse so there is no need to always allocate a new one each time when
4323   // getting a context. Since we only keep one context for reuse, delete the
4324   // existing one since the passed in context is yet to be used for longjump.
4325   delete tlsPtr_.long_jump_context;
4326 }
4327 
SetNativePriority(int new_priority)4328 void Thread::SetNativePriority(int new_priority) {
4329   PaletteStatus status = PaletteSchedSetPriority(GetTid(), new_priority);
4330   CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
4331 }
4332 
GetNativePriority() const4333 int Thread::GetNativePriority() const {
4334   int priority = 0;
4335   PaletteStatus status = PaletteSchedGetPriority(GetTid(), &priority);
4336   CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
4337   return priority;
4338 }
4339 
IsSystemDaemon() const4340 bool Thread::IsSystemDaemon() const {
4341   if (GetPeer() == nullptr) {
4342     return false;
4343   }
4344   return jni::DecodeArtField(
4345       WellKnownClasses::java_lang_Thread_systemDaemon)->GetBoolean(GetPeer());
4346 }
4347 
ScopedExceptionStorage(art::Thread * self)4348 ScopedExceptionStorage::ScopedExceptionStorage(art::Thread* self)
4349     : self_(self), hs_(self_), excp_(hs_.NewHandle<art::mirror::Throwable>(self_->GetException())) {
4350   self_->ClearException();
4351 }
4352 
SuppressOldException(const char * message)4353 void ScopedExceptionStorage::SuppressOldException(const char* message) {
4354   CHECK(self_->IsExceptionPending()) << *self_;
4355   ObjPtr<mirror::Throwable> old_suppressed(excp_.Get());
4356   excp_.Assign(self_->GetException());
4357   LOG(WARNING) << message << "Suppressing old exception: " << old_suppressed->Dump();
4358   self_->ClearException();
4359 }
4360 
~ScopedExceptionStorage()4361 ScopedExceptionStorage::~ScopedExceptionStorage() {
4362   CHECK(!self_->IsExceptionPending()) << *self_;
4363   if (!excp_.IsNull()) {
4364     self_->SetException(excp_.Get());
4365   }
4366 }
4367 
4368 }  // namespace art
4369