• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 
15 #include <stdlib.h>
16 
17 #include "src/dec/alphai_dec.h"
18 #include "src/dec/vp8li_dec.h"
19 #include "src/dsp/dsp.h"
20 #include "src/dsp/lossless.h"
21 #include "src/dsp/lossless_common.h"
22 #include "src/dsp/yuv.h"
23 #include "src/utils/endian_inl_utils.h"
24 #include "src/utils/huffman_utils.h"
25 #include "src/utils/utils.h"
26 
27 #define NUM_ARGB_CACHE_ROWS          16
28 
29 static const int kCodeLengthLiterals = 16;
30 static const int kCodeLengthRepeatCode = 16;
31 static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 };
32 static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
33 
34 // -----------------------------------------------------------------------------
35 //  Five Huffman codes are used at each meta code:
36 //  1. green + length prefix codes + color cache codes,
37 //  2. alpha,
38 //  3. red,
39 //  4. blue, and,
40 //  5. distance prefix codes.
41 typedef enum {
42   GREEN = 0,
43   RED   = 1,
44   BLUE  = 2,
45   ALPHA = 3,
46   DIST  = 4
47 } HuffIndex;
48 
49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
50   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
51   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
52   NUM_DISTANCE_CODES
53 };
54 
55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
56   0, 1, 1, 1, 0
57 };
58 
59 #define NUM_CODE_LENGTH_CODES       19
60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
61   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
62 };
63 
64 #define CODE_TO_PLANE_CODES        120
65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
66   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
67   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
68   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
69   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
70   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
71   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
72   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
73   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
74   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
75   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
76   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
77   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
78 };
79 
80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
82 // distance) and lookup table sizes for them in worst case are 630 and 410
83 // respectively. Size of green alphabet depends on color cache size and is equal
84 // to 256 (green component values) + 24 (length prefix values)
85 // + color_cache_size (between 0 and 2048).
86 // All values computed for 8-bit first level lookup with Mark Adler's tool:
87 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
88 #define FIXED_TABLE_SIZE (630 * 3 + 410)
89 static const uint16_t kTableSize[12] = {
90   FIXED_TABLE_SIZE + 654,
91   FIXED_TABLE_SIZE + 656,
92   FIXED_TABLE_SIZE + 658,
93   FIXED_TABLE_SIZE + 662,
94   FIXED_TABLE_SIZE + 670,
95   FIXED_TABLE_SIZE + 686,
96   FIXED_TABLE_SIZE + 718,
97   FIXED_TABLE_SIZE + 782,
98   FIXED_TABLE_SIZE + 912,
99   FIXED_TABLE_SIZE + 1168,
100   FIXED_TABLE_SIZE + 1680,
101   FIXED_TABLE_SIZE + 2704
102 };
103 
104 static int DecodeImageStream(int xsize, int ysize,
105                              int is_level0,
106                              VP8LDecoder* const dec,
107                              uint32_t** const decoded_data);
108 
109 //------------------------------------------------------------------------------
110 
VP8LCheckSignature(const uint8_t * const data,size_t size)111 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
112   return (size >= VP8L_FRAME_HEADER_SIZE &&
113           data[0] == VP8L_MAGIC_BYTE &&
114           (data[4] >> 5) == 0);  // version
115 }
116 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)117 static int ReadImageInfo(VP8LBitReader* const br,
118                          int* const width, int* const height,
119                          int* const has_alpha) {
120   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
121   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
122   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
123   *has_alpha = VP8LReadBits(br, 1);
124   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
125   return !br->eos_;
126 }
127 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)128 int VP8LGetInfo(const uint8_t* data, size_t data_size,
129                 int* const width, int* const height, int* const has_alpha) {
130   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
131     return 0;         // not enough data
132   } else if (!VP8LCheckSignature(data, data_size)) {
133     return 0;         // bad signature
134   } else {
135     int w, h, a;
136     VP8LBitReader br;
137     VP8LInitBitReader(&br, data, data_size);
138     if (!ReadImageInfo(&br, &w, &h, &a)) {
139       return 0;
140     }
141     if (width != NULL) *width = w;
142     if (height != NULL) *height = h;
143     if (has_alpha != NULL) *has_alpha = a;
144     return 1;
145   }
146 }
147 
148 //------------------------------------------------------------------------------
149 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)150 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
151                                        VP8LBitReader* const br) {
152   int extra_bits, offset;
153   if (distance_symbol < 4) {
154     return distance_symbol + 1;
155   }
156   extra_bits = (distance_symbol - 2) >> 1;
157   offset = (2 + (distance_symbol & 1)) << extra_bits;
158   return offset + VP8LReadBits(br, extra_bits) + 1;
159 }
160 
GetCopyLength(int length_symbol,VP8LBitReader * const br)161 static WEBP_INLINE int GetCopyLength(int length_symbol,
162                                      VP8LBitReader* const br) {
163   // Length and distance prefixes are encoded the same way.
164   return GetCopyDistance(length_symbol, br);
165 }
166 
PlaneCodeToDistance(int xsize,int plane_code)167 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
168   if (plane_code > CODE_TO_PLANE_CODES) {
169     return plane_code - CODE_TO_PLANE_CODES;
170   } else {
171     const int dist_code = kCodeToPlane[plane_code - 1];
172     const int yoffset = dist_code >> 4;
173     const int xoffset = 8 - (dist_code & 0xf);
174     const int dist = yoffset * xsize + xoffset;
175     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
176   }
177 }
178 
179 //------------------------------------------------------------------------------
180 // Decodes the next Huffman code from bit-stream.
181 // FillBitWindow(br) needs to be called at minimum every second call
182 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanCode * table,VP8LBitReader * const br)183 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
184                                   VP8LBitReader* const br) {
185   int nbits;
186   uint32_t val = VP8LPrefetchBits(br);
187   table += val & HUFFMAN_TABLE_MASK;
188   nbits = table->bits - HUFFMAN_TABLE_BITS;
189   if (nbits > 0) {
190     VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
191     val = VP8LPrefetchBits(br);
192     table += table->value;
193     table += val & ((1 << nbits) - 1);
194   }
195   VP8LSetBitPos(br, br->bit_pos_ + table->bits);
196   return table->value;
197 }
198 
199 // Reads packed symbol depending on GREEN channel
200 #define BITS_SPECIAL_MARKER 0x100  // something large enough (and a bit-mask)
201 #define PACKED_NON_LITERAL_CODE 0  // must be < NUM_LITERAL_CODES
ReadPackedSymbols(const HTreeGroup * group,VP8LBitReader * const br,uint32_t * const dst)202 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
203                                          VP8LBitReader* const br,
204                                          uint32_t* const dst) {
205   const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
206   const HuffmanCode32 code = group->packed_table[val];
207   assert(group->use_packed_table);
208   if (code.bits < BITS_SPECIAL_MARKER) {
209     VP8LSetBitPos(br, br->bit_pos_ + code.bits);
210     *dst = code.value;
211     return PACKED_NON_LITERAL_CODE;
212   } else {
213     VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
214     assert(code.value >= NUM_LITERAL_CODES);
215     return code.value;
216   }
217 }
218 
AccumulateHCode(HuffmanCode hcode,int shift,HuffmanCode32 * const huff)219 static int AccumulateHCode(HuffmanCode hcode, int shift,
220                            HuffmanCode32* const huff) {
221   huff->bits += hcode.bits;
222   huff->value |= (uint32_t)hcode.value << shift;
223   assert(huff->bits <= HUFFMAN_TABLE_BITS);
224   return hcode.bits;
225 }
226 
BuildPackedTable(HTreeGroup * const htree_group)227 static void BuildPackedTable(HTreeGroup* const htree_group) {
228   uint32_t code;
229   for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
230     uint32_t bits = code;
231     HuffmanCode32* const huff = &htree_group->packed_table[bits];
232     HuffmanCode hcode = htree_group->htrees[GREEN][bits];
233     if (hcode.value >= NUM_LITERAL_CODES) {
234       huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
235       huff->value = hcode.value;
236     } else {
237       huff->bits = 0;
238       huff->value = 0;
239       bits >>= AccumulateHCode(hcode, 8, huff);
240       bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
241       bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
242       bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
243       (void)bits;
244     }
245   }
246 }
247 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)248 static int ReadHuffmanCodeLengths(
249     VP8LDecoder* const dec, const int* const code_length_code_lengths,
250     int num_symbols, int* const code_lengths) {
251   int ok = 0;
252   VP8LBitReader* const br = &dec->br_;
253   int symbol;
254   int max_symbol;
255   int prev_code_len = DEFAULT_CODE_LENGTH;
256   HuffmanCode table[1 << LENGTHS_TABLE_BITS];
257 
258   if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
259                              code_length_code_lengths,
260                              NUM_CODE_LENGTH_CODES)) {
261     goto End;
262   }
263 
264   if (VP8LReadBits(br, 1)) {    // use length
265     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
266     max_symbol = 2 + VP8LReadBits(br, length_nbits);
267     if (max_symbol > num_symbols) {
268       goto End;
269     }
270   } else {
271     max_symbol = num_symbols;
272   }
273 
274   symbol = 0;
275   while (symbol < num_symbols) {
276     const HuffmanCode* p;
277     int code_len;
278     if (max_symbol-- == 0) break;
279     VP8LFillBitWindow(br);
280     p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
281     VP8LSetBitPos(br, br->bit_pos_ + p->bits);
282     code_len = p->value;
283     if (code_len < kCodeLengthLiterals) {
284       code_lengths[symbol++] = code_len;
285       if (code_len != 0) prev_code_len = code_len;
286     } else {
287       const int use_prev = (code_len == kCodeLengthRepeatCode);
288       const int slot = code_len - kCodeLengthLiterals;
289       const int extra_bits = kCodeLengthExtraBits[slot];
290       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
291       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
292       if (symbol + repeat > num_symbols) {
293         goto End;
294       } else {
295         const int length = use_prev ? prev_code_len : 0;
296         while (repeat-- > 0) code_lengths[symbol++] = length;
297       }
298     }
299   }
300   ok = 1;
301 
302  End:
303   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
304   return ok;
305 }
306 
307 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
308 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,HuffmanCode * const table)309 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
310                            int* const code_lengths, HuffmanCode* const table) {
311   int ok = 0;
312   int size = 0;
313   VP8LBitReader* const br = &dec->br_;
314   const int simple_code = VP8LReadBits(br, 1);
315 
316   memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
317 
318   if (simple_code) {  // Read symbols, codes & code lengths directly.
319     const int num_symbols = VP8LReadBits(br, 1) + 1;
320     const int first_symbol_len_code = VP8LReadBits(br, 1);
321     // The first code is either 1 bit or 8 bit code.
322     int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
323     code_lengths[symbol] = 1;
324     // The second code (if present), is always 8 bit long.
325     if (num_symbols == 2) {
326       symbol = VP8LReadBits(br, 8);
327       code_lengths[symbol] = 1;
328     }
329     ok = 1;
330   } else {  // Decode Huffman-coded code lengths.
331     int i;
332     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
333     const int num_codes = VP8LReadBits(br, 4) + 4;
334     if (num_codes > NUM_CODE_LENGTH_CODES) {
335       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
336       return 0;
337     }
338 
339     for (i = 0; i < num_codes; ++i) {
340       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
341     }
342     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
343                                 code_lengths);
344   }
345 
346   ok = ok && !br->eos_;
347   if (ok) {
348     size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
349                                  code_lengths, alphabet_size);
350   }
351   if (!ok || size == 0) {
352     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
353     return 0;
354   }
355   return size;
356 }
357 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)358 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
359                             int color_cache_bits, int allow_recursion) {
360   int i, j;
361   VP8LBitReader* const br = &dec->br_;
362   VP8LMetadata* const hdr = &dec->hdr_;
363   uint32_t* huffman_image = NULL;
364   HTreeGroup* htree_groups = NULL;
365   HuffmanCode* huffman_tables = NULL;
366   HuffmanCode* huffman_table = NULL;
367   int num_htree_groups = 1;
368   int num_htree_groups_max = 1;
369   int max_alphabet_size = 0;
370   int* code_lengths = NULL;
371   const int table_size = kTableSize[color_cache_bits];
372   int* mapping = NULL;
373   int ok = 0;
374 
375   if (allow_recursion && VP8LReadBits(br, 1)) {
376     // use meta Huffman codes.
377     const int huffman_precision = VP8LReadBits(br, 3) + 2;
378     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
379     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
380     const int huffman_pixs = huffman_xsize * huffman_ysize;
381     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
382                            &huffman_image)) {
383       goto Error;
384     }
385     hdr->huffman_subsample_bits_ = huffman_precision;
386     for (i = 0; i < huffman_pixs; ++i) {
387       // The huffman data is stored in red and green bytes.
388       const int group = (huffman_image[i] >> 8) & 0xffff;
389       huffman_image[i] = group;
390       if (group >= num_htree_groups_max) {
391         num_htree_groups_max = group + 1;
392       }
393     }
394     // Check the validity of num_htree_groups_max. If it seems too big, use a
395     // smaller value for later. This will prevent big memory allocations to end
396     // up with a bad bitstream anyway.
397     // The value of 1000 is totally arbitrary. We know that num_htree_groups_max
398     // is smaller than (1 << 16) and should be smaller than the number of pixels
399     // (though the format allows it to be bigger).
400     if (num_htree_groups_max > 1000 || num_htree_groups_max > xsize * ysize) {
401       // Create a mapping from the used indices to the minimal set of used
402       // values [0, num_htree_groups)
403       mapping = (int*)WebPSafeMalloc(num_htree_groups_max, sizeof(*mapping));
404       if (mapping == NULL) {
405         dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
406         goto Error;
407       }
408       // -1 means a value is unmapped, and therefore unused in the Huffman
409       // image.
410       memset(mapping, 0xff, num_htree_groups_max * sizeof(*mapping));
411       for (num_htree_groups = 0, i = 0; i < huffman_pixs; ++i) {
412         // Get the current mapping for the group and remap the Huffman image.
413         int* const mapped_group = &mapping[huffman_image[i]];
414         if (*mapped_group == -1) *mapped_group = num_htree_groups++;
415         huffman_image[i] = *mapped_group;
416       }
417     } else {
418       num_htree_groups = num_htree_groups_max;
419     }
420   }
421 
422   if (br->eos_) goto Error;
423 
424   // Find maximum alphabet size for the htree group.
425   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
426     int alphabet_size = kAlphabetSize[j];
427     if (j == 0 && color_cache_bits > 0) {
428       alphabet_size += 1 << color_cache_bits;
429     }
430     if (max_alphabet_size < alphabet_size) {
431       max_alphabet_size = alphabet_size;
432     }
433   }
434 
435   code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
436                                       sizeof(*code_lengths));
437   huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
438                                                 sizeof(*huffman_tables));
439   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
440 
441   if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
442     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
443     goto Error;
444   }
445 
446   huffman_table = huffman_tables;
447   for (i = 0; i < num_htree_groups_max; ++i) {
448     // If the index "i" is unused in the Huffman image, just make sure the
449     // coefficients are valid but do not store them.
450     if (mapping != NULL && mapping[i] == -1) {
451       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
452         int alphabet_size = kAlphabetSize[j];
453         if (j == 0 && color_cache_bits > 0) {
454           alphabet_size += (1 << color_cache_bits);
455         }
456         // Passing in NULL so that nothing gets filled.
457         if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, NULL)) {
458           goto Error;
459         }
460       }
461     } else {
462       HTreeGroup* const htree_group =
463           &htree_groups[(mapping == NULL) ? i : mapping[i]];
464       HuffmanCode** const htrees = htree_group->htrees;
465       int size;
466       int total_size = 0;
467       int is_trivial_literal = 1;
468       int max_bits = 0;
469       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
470         int alphabet_size = kAlphabetSize[j];
471         htrees[j] = huffman_table;
472         if (j == 0 && color_cache_bits > 0) {
473           alphabet_size += (1 << color_cache_bits);
474         }
475         size = ReadHuffmanCode(alphabet_size, dec, code_lengths, huffman_table);
476         if (size == 0) {
477           goto Error;
478         }
479         if (is_trivial_literal && kLiteralMap[j] == 1) {
480           is_trivial_literal = (huffman_table->bits == 0);
481         }
482         total_size += huffman_table->bits;
483         huffman_table += size;
484         if (j <= ALPHA) {
485           int local_max_bits = code_lengths[0];
486           int k;
487           for (k = 1; k < alphabet_size; ++k) {
488             if (code_lengths[k] > local_max_bits) {
489               local_max_bits = code_lengths[k];
490             }
491           }
492           max_bits += local_max_bits;
493         }
494       }
495       htree_group->is_trivial_literal = is_trivial_literal;
496       htree_group->is_trivial_code = 0;
497       if (is_trivial_literal) {
498         const int red = htrees[RED][0].value;
499         const int blue = htrees[BLUE][0].value;
500         const int alpha = htrees[ALPHA][0].value;
501         htree_group->literal_arb = ((uint32_t)alpha << 24) | (red << 16) | blue;
502         if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
503           htree_group->is_trivial_code = 1;
504           htree_group->literal_arb |= htrees[GREEN][0].value << 8;
505         }
506       }
507       htree_group->use_packed_table =
508           !htree_group->is_trivial_code && (max_bits < HUFFMAN_PACKED_BITS);
509       if (htree_group->use_packed_table) BuildPackedTable(htree_group);
510     }
511   }
512   ok = 1;
513 
514   // All OK. Finalize pointers.
515   hdr->huffman_image_ = huffman_image;
516   hdr->num_htree_groups_ = num_htree_groups;
517   hdr->htree_groups_ = htree_groups;
518   hdr->huffman_tables_ = huffman_tables;
519 
520  Error:
521   WebPSafeFree(code_lengths);
522   WebPSafeFree(mapping);
523   if (!ok) {
524     WebPSafeFree(huffman_image);
525     WebPSafeFree(huffman_tables);
526     VP8LHtreeGroupsFree(htree_groups);
527   }
528   return ok;
529 }
530 
531 //------------------------------------------------------------------------------
532 // Scaling.
533 
534 #if !defined(WEBP_REDUCE_SIZE)
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)535 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
536   const int num_channels = 4;
537   const int in_width = io->mb_w;
538   const int out_width = io->scaled_width;
539   const int in_height = io->mb_h;
540   const int out_height = io->scaled_height;
541   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
542   rescaler_t* work;        // Rescaler work area.
543   const uint64_t scaled_data_size = (uint64_t)out_width;
544   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
545   const uint64_t memory_size = sizeof(*dec->rescaler) +
546                                work_size * sizeof(*work) +
547                                scaled_data_size * sizeof(*scaled_data);
548   uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
549   if (memory == NULL) {
550     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
551     return 0;
552   }
553   assert(dec->rescaler_memory == NULL);
554   dec->rescaler_memory = memory;
555 
556   dec->rescaler = (WebPRescaler*)memory;
557   memory += sizeof(*dec->rescaler);
558   work = (rescaler_t*)memory;
559   memory += work_size * sizeof(*work);
560   scaled_data = (uint32_t*)memory;
561 
562   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
563                    out_width, out_height, 0, num_channels, work);
564   return 1;
565 }
566 #endif   // WEBP_REDUCE_SIZE
567 
568 //------------------------------------------------------------------------------
569 // Export to ARGB
570 
571 #if !defined(WEBP_REDUCE_SIZE)
572 
573 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)574 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
575                   int rgba_stride, uint8_t* const rgba) {
576   uint32_t* const src = (uint32_t*)rescaler->dst;
577   const int dst_width = rescaler->dst_width;
578   int num_lines_out = 0;
579   while (WebPRescalerHasPendingOutput(rescaler)) {
580     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
581     WebPRescalerExportRow(rescaler);
582     WebPMultARGBRow(src, dst_width, 1);
583     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
584     ++num_lines_out;
585   }
586   return num_lines_out;
587 }
588 
589 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)590 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
591                                 uint8_t* in, int in_stride, int mb_h,
592                                 uint8_t* const out, int out_stride) {
593   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
594   int num_lines_in = 0;
595   int num_lines_out = 0;
596   while (num_lines_in < mb_h) {
597     uint8_t* const row_in = in + num_lines_in * in_stride;
598     uint8_t* const row_out = out + num_lines_out * out_stride;
599     const int lines_left = mb_h - num_lines_in;
600     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
601     int lines_imported;
602     assert(needed_lines > 0 && needed_lines <= lines_left);
603     WebPMultARGBRows(row_in, in_stride,
604                      dec->rescaler->src_width, needed_lines, 0);
605     lines_imported =
606         WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
607     assert(lines_imported == needed_lines);
608     num_lines_in += lines_imported;
609     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
610   }
611   return num_lines_out;
612 }
613 
614 #endif   // WEBP_REDUCE_SIZE
615 
616 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)617 static int EmitRows(WEBP_CSP_MODE colorspace,
618                     const uint8_t* row_in, int in_stride,
619                     int mb_w, int mb_h,
620                     uint8_t* const out, int out_stride) {
621   int lines = mb_h;
622   uint8_t* row_out = out;
623   while (lines-- > 0) {
624     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
625     row_in += in_stride;
626     row_out += out_stride;
627   }
628   return mb_h;  // Num rows out == num rows in.
629 }
630 
631 //------------------------------------------------------------------------------
632 // Export to YUVA
633 
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)634 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
635                           const WebPDecBuffer* const output) {
636   const WebPYUVABuffer* const buf = &output->u.YUVA;
637 
638   // first, the luma plane
639   WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
640 
641   // then U/V planes
642   {
643     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
644     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
645     // even lines: store values
646     // odd lines: average with previous values
647     WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
648   }
649   // Lastly, store alpha if needed.
650   if (buf->a != NULL) {
651     uint8_t* const a = buf->a + y_pos * buf->a_stride;
652 #if defined(WORDS_BIGENDIAN)
653     WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
654 #else
655     WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
656 #endif
657   }
658 }
659 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)660 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
661   WebPRescaler* const rescaler = dec->rescaler;
662   uint32_t* const src = (uint32_t*)rescaler->dst;
663   const int dst_width = rescaler->dst_width;
664   int num_lines_out = 0;
665   while (WebPRescalerHasPendingOutput(rescaler)) {
666     WebPRescalerExportRow(rescaler);
667     WebPMultARGBRow(src, dst_width, 1);
668     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
669     ++y_pos;
670     ++num_lines_out;
671   }
672   return num_lines_out;
673 }
674 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)675 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
676                                 uint8_t* in, int in_stride, int mb_h) {
677   int num_lines_in = 0;
678   int y_pos = dec->last_out_row_;
679   while (num_lines_in < mb_h) {
680     const int lines_left = mb_h - num_lines_in;
681     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
682     int lines_imported;
683     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
684     lines_imported =
685         WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
686     assert(lines_imported == needed_lines);
687     num_lines_in += lines_imported;
688     in += needed_lines * in_stride;
689     y_pos += ExportYUVA(dec, y_pos);
690   }
691   return y_pos;
692 }
693 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)694 static int EmitRowsYUVA(const VP8LDecoder* const dec,
695                         const uint8_t* in, int in_stride,
696                         int mb_w, int num_rows) {
697   int y_pos = dec->last_out_row_;
698   while (num_rows-- > 0) {
699     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
700     in += in_stride;
701     ++y_pos;
702   }
703   return y_pos;
704 }
705 
706 //------------------------------------------------------------------------------
707 // Cropping.
708 
709 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
710 // crop options. Also updates the input data pointer, so that it points to the
711 // start of the cropped window. Note that pixels are in ARGB format even if
712 // 'in_data' is uint8_t*.
713 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)714 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
715                          uint8_t** const in_data, int pixel_stride) {
716   assert(y_start < y_end);
717   assert(io->crop_left < io->crop_right);
718   if (y_end > io->crop_bottom) {
719     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
720   }
721   if (y_start < io->crop_top) {
722     const int delta = io->crop_top - y_start;
723     y_start = io->crop_top;
724     *in_data += delta * pixel_stride;
725   }
726   if (y_start >= y_end) return 0;  // Crop window is empty.
727 
728   *in_data += io->crop_left * sizeof(uint32_t);
729 
730   io->mb_y = y_start - io->crop_top;
731   io->mb_w = io->crop_right - io->crop_left;
732   io->mb_h = y_end - y_start;
733   return 1;  // Non-empty crop window.
734 }
735 
736 //------------------------------------------------------------------------------
737 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)738 static WEBP_INLINE int GetMetaIndex(
739     const uint32_t* const image, int xsize, int bits, int x, int y) {
740   if (bits == 0) return 0;
741   return image[xsize * (y >> bits) + (x >> bits)];
742 }
743 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)744 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
745                                                    int x, int y) {
746   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
747                                       hdr->huffman_subsample_bits_, x, y);
748   assert(meta_index < hdr->num_htree_groups_);
749   return hdr->htree_groups_ + meta_index;
750 }
751 
752 //------------------------------------------------------------------------------
753 // Main loop, with custom row-processing function
754 
755 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
756 
ApplyInverseTransforms(VP8LDecoder * const dec,int start_row,int num_rows,const uint32_t * const rows)757 static void ApplyInverseTransforms(VP8LDecoder* const dec,
758                                    int start_row, int num_rows,
759                                    const uint32_t* const rows) {
760   int n = dec->next_transform_;
761   const int cache_pixs = dec->width_ * num_rows;
762   const int end_row = start_row + num_rows;
763   const uint32_t* rows_in = rows;
764   uint32_t* const rows_out = dec->argb_cache_;
765 
766   // Inverse transforms.
767   while (n-- > 0) {
768     VP8LTransform* const transform = &dec->transforms_[n];
769     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
770     rows_in = rows_out;
771   }
772   if (rows_in != rows_out) {
773     // No transform called, hence just copy.
774     memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
775   }
776 }
777 
778 // Processes (transforms, scales & color-converts) the rows decoded after the
779 // last call.
ProcessRows(VP8LDecoder * const dec,int row)780 static void ProcessRows(VP8LDecoder* const dec, int row) {
781   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
782   const int num_rows = row - dec->last_row_;
783 
784   assert(row <= dec->io_->crop_bottom);
785   // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
786   // of argb_cache_), but we currently don't need more than that.
787   assert(num_rows <= NUM_ARGB_CACHE_ROWS);
788   if (num_rows > 0) {    // Emit output.
789     VP8Io* const io = dec->io_;
790     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
791     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
792     ApplyInverseTransforms(dec, dec->last_row_, num_rows, rows);
793     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
794       // Nothing to output (this time).
795     } else {
796       const WebPDecBuffer* const output = dec->output_;
797       if (WebPIsRGBMode(output->colorspace)) {  // convert to RGBA
798         const WebPRGBABuffer* const buf = &output->u.RGBA;
799         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
800         const int num_rows_out =
801 #if !defined(WEBP_REDUCE_SIZE)
802          io->use_scaling ?
803             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
804                                  rgba, buf->stride) :
805 #endif  // WEBP_REDUCE_SIZE
806             EmitRows(output->colorspace, rows_data, in_stride,
807                      io->mb_w, io->mb_h, rgba, buf->stride);
808         // Update 'last_out_row_'.
809         dec->last_out_row_ += num_rows_out;
810       } else {                              // convert to YUVA
811         dec->last_out_row_ = io->use_scaling ?
812             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
813             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
814       }
815       assert(dec->last_out_row_ <= output->height);
816     }
817   }
818 
819   // Update 'last_row_'.
820   dec->last_row_ = row;
821   assert(dec->last_row_ <= dec->height_);
822 }
823 
824 // Row-processing for the special case when alpha data contains only one
825 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)826 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
827   int i;
828   if (hdr->color_cache_size_ > 0) return 0;
829   // When the Huffman tree contains only one symbol, we can skip the
830   // call to ReadSymbol() for red/blue/alpha channels.
831   for (i = 0; i < hdr->num_htree_groups_; ++i) {
832     HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
833     if (htrees[RED][0].bits > 0) return 0;
834     if (htrees[BLUE][0].bits > 0) return 0;
835     if (htrees[ALPHA][0].bits > 0) return 0;
836   }
837   return 1;
838 }
839 
AlphaApplyFilter(ALPHDecoder * const alph_dec,int first_row,int last_row,uint8_t * out,int stride)840 static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
841                              int first_row, int last_row,
842                              uint8_t* out, int stride) {
843   if (alph_dec->filter_ != WEBP_FILTER_NONE) {
844     int y;
845     const uint8_t* prev_line = alph_dec->prev_line_;
846     assert(WebPUnfilters[alph_dec->filter_] != NULL);
847     for (y = first_row; y < last_row; ++y) {
848       WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
849       prev_line = out;
850       out += stride;
851     }
852     alph_dec->prev_line_ = prev_line;
853   }
854 }
855 
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int last_row)856 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
857   // For vertical and gradient filtering, we need to decode the part above the
858   // crop_top row, in order to have the correct spatial predictors.
859   ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
860   const int top_row =
861       (alph_dec->filter_ == WEBP_FILTER_NONE ||
862        alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
863                                                     : dec->last_row_;
864   const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
865   assert(last_row <= dec->io_->crop_bottom);
866   if (last_row > first_row) {
867     // Special method for paletted alpha data. We only process the cropped area.
868     const int width = dec->io_->width;
869     uint8_t* out = alph_dec->output_ + width * first_row;
870     const uint8_t* const in =
871       (uint8_t*)dec->pixels_ + dec->width_ * first_row;
872     VP8LTransform* const transform = &dec->transforms_[0];
873     assert(dec->next_transform_ == 1);
874     assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
875     VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
876                                         in, out);
877     AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
878   }
879   dec->last_row_ = dec->last_out_row_ = last_row;
880 }
881 
882 //------------------------------------------------------------------------------
883 // Helper functions for fast pattern copy (8b and 32b)
884 
885 // cyclic rotation of pattern word
Rotate8b(uint32_t V)886 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
887 #if defined(WORDS_BIGENDIAN)
888   return ((V & 0xff000000u) >> 24) | (V << 8);
889 #else
890   return ((V & 0xffu) << 24) | (V >> 8);
891 #endif
892 }
893 
894 // copy 1, 2 or 4-bytes pattern
CopySmallPattern8b(const uint8_t * src,uint8_t * dst,int length,uint32_t pattern)895 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
896                                            int length, uint32_t pattern) {
897   int i;
898   // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
899   while ((uintptr_t)dst & 3) {
900     *dst++ = *src++;
901     pattern = Rotate8b(pattern);
902     --length;
903   }
904   // Copy the pattern 4 bytes at a time.
905   for (i = 0; i < (length >> 2); ++i) {
906     ((uint32_t*)dst)[i] = pattern;
907   }
908   // Finish with left-overs. 'pattern' is still correctly positioned,
909   // so no Rotate8b() call is needed.
910   for (i <<= 2; i < length; ++i) {
911     dst[i] = src[i];
912   }
913 }
914 
CopyBlock8b(uint8_t * const dst,int dist,int length)915 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
916   const uint8_t* src = dst - dist;
917   if (length >= 8) {
918     uint32_t pattern = 0;
919     switch (dist) {
920       case 1:
921         pattern = src[0];
922 #if defined(__arm__) || defined(_M_ARM)   // arm doesn't like multiply that much
923         pattern |= pattern << 8;
924         pattern |= pattern << 16;
925 #elif defined(WEBP_USE_MIPS_DSP_R2)
926         __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
927 #else
928         pattern = 0x01010101u * pattern;
929 #endif
930         break;
931       case 2:
932 #if !defined(WORDS_BIGENDIAN)
933         memcpy(&pattern, src, sizeof(uint16_t));
934 #else
935         pattern = ((uint32_t)src[0] << 8) | src[1];
936 #endif
937 #if defined(__arm__) || defined(_M_ARM)
938         pattern |= pattern << 16;
939 #elif defined(WEBP_USE_MIPS_DSP_R2)
940         __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
941 #else
942         pattern = 0x00010001u * pattern;
943 #endif
944         break;
945       case 4:
946         memcpy(&pattern, src, sizeof(uint32_t));
947         break;
948       default:
949         goto Copy;
950         break;
951     }
952     CopySmallPattern8b(src, dst, length, pattern);
953     return;
954   }
955  Copy:
956   if (dist >= length) {  // no overlap -> use memcpy()
957     memcpy(dst, src, length * sizeof(*dst));
958   } else {
959     int i;
960     for (i = 0; i < length; ++i) dst[i] = src[i];
961   }
962 }
963 
964 // copy pattern of 1 or 2 uint32_t's
CopySmallPattern32b(const uint32_t * src,uint32_t * dst,int length,uint64_t pattern)965 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
966                                             uint32_t* dst,
967                                             int length, uint64_t pattern) {
968   int i;
969   if ((uintptr_t)dst & 4) {           // Align 'dst' to 8-bytes boundary.
970     *dst++ = *src++;
971     pattern = (pattern >> 32) | (pattern << 32);
972     --length;
973   }
974   assert(0 == ((uintptr_t)dst & 7));
975   for (i = 0; i < (length >> 1); ++i) {
976     ((uint64_t*)dst)[i] = pattern;    // Copy the pattern 8 bytes at a time.
977   }
978   if (length & 1) {                   // Finish with left-over.
979     dst[i << 1] = src[i << 1];
980   }
981 }
982 
CopyBlock32b(uint32_t * const dst,int dist,int length)983 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
984                                      int dist, int length) {
985   const uint32_t* const src = dst - dist;
986   if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
987     uint64_t pattern;
988     if (dist == 1) {
989       pattern = (uint64_t)src[0];
990       pattern |= pattern << 32;
991     } else {
992       memcpy(&pattern, src, sizeof(pattern));
993     }
994     CopySmallPattern32b(src, dst, length, pattern);
995   } else if (dist >= length) {  // no overlap
996     memcpy(dst, src, length * sizeof(*dst));
997   } else {
998     int i;
999     for (i = 0; i < length; ++i) dst[i] = src[i];
1000   }
1001 }
1002 
1003 //------------------------------------------------------------------------------
1004 
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)1005 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
1006                            int width, int height, int last_row) {
1007   int ok = 1;
1008   int row = dec->last_pixel_ / width;
1009   int col = dec->last_pixel_ % width;
1010   VP8LBitReader* const br = &dec->br_;
1011   VP8LMetadata* const hdr = &dec->hdr_;
1012   int pos = dec->last_pixel_;         // current position
1013   const int end = width * height;     // End of data
1014   const int last = width * last_row;  // Last pixel to decode
1015   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1016   const int mask = hdr->huffman_mask_;
1017   const HTreeGroup* htree_group =
1018       (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1019   assert(pos <= end);
1020   assert(last_row <= height);
1021   assert(Is8bOptimizable(hdr));
1022 
1023   while (!br->eos_ && pos < last) {
1024     int code;
1025     // Only update when changing tile.
1026     if ((col & mask) == 0) {
1027       htree_group = GetHtreeGroupForPos(hdr, col, row);
1028     }
1029     assert(htree_group != NULL);
1030     VP8LFillBitWindow(br);
1031     code = ReadSymbol(htree_group->htrees[GREEN], br);
1032     if (code < NUM_LITERAL_CODES) {  // Literal
1033       data[pos] = code;
1034       ++pos;
1035       ++col;
1036       if (col >= width) {
1037         col = 0;
1038         ++row;
1039         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1040           ExtractPalettedAlphaRows(dec, row);
1041         }
1042       }
1043     } else if (code < len_code_limit) {  // Backward reference
1044       int dist_code, dist;
1045       const int length_sym = code - NUM_LITERAL_CODES;
1046       const int length = GetCopyLength(length_sym, br);
1047       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1048       VP8LFillBitWindow(br);
1049       dist_code = GetCopyDistance(dist_symbol, br);
1050       dist = PlaneCodeToDistance(width, dist_code);
1051       if (pos >= dist && end - pos >= length) {
1052         CopyBlock8b(data + pos, dist, length);
1053       } else {
1054         ok = 0;
1055         goto End;
1056       }
1057       pos += length;
1058       col += length;
1059       while (col >= width) {
1060         col -= width;
1061         ++row;
1062         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1063           ExtractPalettedAlphaRows(dec, row);
1064         }
1065       }
1066       if (pos < last && (col & mask)) {
1067         htree_group = GetHtreeGroupForPos(hdr, col, row);
1068       }
1069     } else {  // Not reached
1070       ok = 0;
1071       goto End;
1072     }
1073     br->eos_ = VP8LIsEndOfStream(br);
1074   }
1075   // Process the remaining rows corresponding to last row-block.
1076   ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row);
1077 
1078  End:
1079   br->eos_ = VP8LIsEndOfStream(br);
1080   if (!ok || (br->eos_ && pos < end)) {
1081     ok = 0;
1082     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
1083                             : VP8_STATUS_BITSTREAM_ERROR;
1084   } else {
1085     dec->last_pixel_ = pos;
1086   }
1087   return ok;
1088 }
1089 
SaveState(VP8LDecoder * const dec,int last_pixel)1090 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
1091   assert(dec->incremental_);
1092   dec->saved_br_ = dec->br_;
1093   dec->saved_last_pixel_ = last_pixel;
1094   if (dec->hdr_.color_cache_size_ > 0) {
1095     VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
1096   }
1097 }
1098 
RestoreState(VP8LDecoder * const dec)1099 static void RestoreState(VP8LDecoder* const dec) {
1100   assert(dec->br_.eos_);
1101   dec->status_ = VP8_STATUS_SUSPENDED;
1102   dec->br_ = dec->saved_br_;
1103   dec->last_pixel_ = dec->saved_last_pixel_;
1104   if (dec->hdr_.color_cache_size_ > 0) {
1105     VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
1106   }
1107 }
1108 
1109 #define SYNC_EVERY_N_ROWS 8  // minimum number of rows between check-points
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)1110 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
1111                            int width, int height, int last_row,
1112                            ProcessRowsFunc process_func) {
1113   int row = dec->last_pixel_ / width;
1114   int col = dec->last_pixel_ % width;
1115   VP8LBitReader* const br = &dec->br_;
1116   VP8LMetadata* const hdr = &dec->hdr_;
1117   uint32_t* src = data + dec->last_pixel_;
1118   uint32_t* last_cached = src;
1119   uint32_t* const src_end = data + width * height;     // End of data
1120   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
1121   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1122   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
1123   int next_sync_row = dec->incremental_ ? row : 1 << 24;
1124   VP8LColorCache* const color_cache =
1125       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
1126   const int mask = hdr->huffman_mask_;
1127   const HTreeGroup* htree_group =
1128       (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1129   assert(dec->last_row_ < last_row);
1130   assert(src_last <= src_end);
1131 
1132   while (src < src_last) {
1133     int code;
1134     if (row >= next_sync_row) {
1135       SaveState(dec, (int)(src - data));
1136       next_sync_row = row + SYNC_EVERY_N_ROWS;
1137     }
1138     // Only update when changing tile. Note we could use this test:
1139     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
1140     // but that's actually slower and needs storing the previous col/row.
1141     if ((col & mask) == 0) {
1142       htree_group = GetHtreeGroupForPos(hdr, col, row);
1143     }
1144     assert(htree_group != NULL);
1145     if (htree_group->is_trivial_code) {
1146       *src = htree_group->literal_arb;
1147       goto AdvanceByOne;
1148     }
1149     VP8LFillBitWindow(br);
1150     if (htree_group->use_packed_table) {
1151       code = ReadPackedSymbols(htree_group, br, src);
1152       if (VP8LIsEndOfStream(br)) break;
1153       if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
1154     } else {
1155       code = ReadSymbol(htree_group->htrees[GREEN], br);
1156     }
1157     if (VP8LIsEndOfStream(br)) break;
1158     if (code < NUM_LITERAL_CODES) {  // Literal
1159       if (htree_group->is_trivial_literal) {
1160         *src = htree_group->literal_arb | (code << 8);
1161       } else {
1162         int red, blue, alpha;
1163         red = ReadSymbol(htree_group->htrees[RED], br);
1164         VP8LFillBitWindow(br);
1165         blue = ReadSymbol(htree_group->htrees[BLUE], br);
1166         alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
1167         if (VP8LIsEndOfStream(br)) break;
1168         *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
1169       }
1170     AdvanceByOne:
1171       ++src;
1172       ++col;
1173       if (col >= width) {
1174         col = 0;
1175         ++row;
1176         if (process_func != NULL) {
1177           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1178             process_func(dec, row);
1179           }
1180         }
1181         if (color_cache != NULL) {
1182           while (last_cached < src) {
1183             VP8LColorCacheInsert(color_cache, *last_cached++);
1184           }
1185         }
1186       }
1187     } else if (code < len_code_limit) {  // Backward reference
1188       int dist_code, dist;
1189       const int length_sym = code - NUM_LITERAL_CODES;
1190       const int length = GetCopyLength(length_sym, br);
1191       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1192       VP8LFillBitWindow(br);
1193       dist_code = GetCopyDistance(dist_symbol, br);
1194       dist = PlaneCodeToDistance(width, dist_code);
1195 
1196       if (VP8LIsEndOfStream(br)) break;
1197       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
1198         goto Error;
1199       } else {
1200         CopyBlock32b(src, dist, length);
1201       }
1202       src += length;
1203       col += length;
1204       while (col >= width) {
1205         col -= width;
1206         ++row;
1207         if (process_func != NULL) {
1208           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1209             process_func(dec, row);
1210           }
1211         }
1212       }
1213       // Because of the check done above (before 'src' was incremented by
1214       // 'length'), the following holds true.
1215       assert(src <= src_end);
1216       if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
1217       if (color_cache != NULL) {
1218         while (last_cached < src) {
1219           VP8LColorCacheInsert(color_cache, *last_cached++);
1220         }
1221       }
1222     } else if (code < color_cache_limit) {  // Color cache
1223       const int key = code - len_code_limit;
1224       assert(color_cache != NULL);
1225       while (last_cached < src) {
1226         VP8LColorCacheInsert(color_cache, *last_cached++);
1227       }
1228       *src = VP8LColorCacheLookup(color_cache, key);
1229       goto AdvanceByOne;
1230     } else {  // Not reached
1231       goto Error;
1232     }
1233   }
1234 
1235   br->eos_ = VP8LIsEndOfStream(br);
1236   if (dec->incremental_ && br->eos_ && src < src_end) {
1237     RestoreState(dec);
1238   } else if (!br->eos_) {
1239     // Process the remaining rows corresponding to last row-block.
1240     if (process_func != NULL) {
1241       process_func(dec, row > last_row ? last_row : row);
1242     }
1243     dec->status_ = VP8_STATUS_OK;
1244     dec->last_pixel_ = (int)(src - data);  // end-of-scan marker
1245   } else {
1246     // if not incremental, and we are past the end of buffer (eos_=1), then this
1247     // is a real bitstream error.
1248     goto Error;
1249   }
1250   return 1;
1251 
1252  Error:
1253   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1254   return 0;
1255 }
1256 
1257 // -----------------------------------------------------------------------------
1258 // VP8LTransform
1259 
ClearTransform(VP8LTransform * const transform)1260 static void ClearTransform(VP8LTransform* const transform) {
1261   WebPSafeFree(transform->data_);
1262   transform->data_ = NULL;
1263 }
1264 
1265 // For security reason, we need to remap the color map to span
1266 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)1267 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
1268   int i;
1269   const int final_num_colors = 1 << (8 >> transform->bits_);
1270   uint32_t* const new_color_map =
1271       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
1272                                 sizeof(*new_color_map));
1273   if (new_color_map == NULL) {
1274     return 0;
1275   } else {
1276     uint8_t* const data = (uint8_t*)transform->data_;
1277     uint8_t* const new_data = (uint8_t*)new_color_map;
1278     new_color_map[0] = transform->data_[0];
1279     for (i = 4; i < 4 * num_colors; ++i) {
1280       // Equivalent to AddPixelEq(), on a byte-basis.
1281       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
1282     }
1283     for (; i < 4 * final_num_colors; ++i) {
1284       new_data[i] = 0;  // black tail.
1285     }
1286     WebPSafeFree(transform->data_);
1287     transform->data_ = new_color_map;
1288   }
1289   return 1;
1290 }
1291 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)1292 static int ReadTransform(int* const xsize, int const* ysize,
1293                          VP8LDecoder* const dec) {
1294   int ok = 1;
1295   VP8LBitReader* const br = &dec->br_;
1296   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
1297   const VP8LImageTransformType type =
1298       (VP8LImageTransformType)VP8LReadBits(br, 2);
1299 
1300   // Each transform type can only be present once in the stream.
1301   if (dec->transforms_seen_ & (1U << type)) {
1302     return 0;  // Already there, let's not accept the second same transform.
1303   }
1304   dec->transforms_seen_ |= (1U << type);
1305 
1306   transform->type_ = type;
1307   transform->xsize_ = *xsize;
1308   transform->ysize_ = *ysize;
1309   transform->data_ = NULL;
1310   ++dec->next_transform_;
1311   assert(dec->next_transform_ <= NUM_TRANSFORMS);
1312 
1313   switch (type) {
1314     case PREDICTOR_TRANSFORM:
1315     case CROSS_COLOR_TRANSFORM:
1316       transform->bits_ = VP8LReadBits(br, 3) + 2;
1317       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
1318                                                transform->bits_),
1319                              VP8LSubSampleSize(transform->ysize_,
1320                                                transform->bits_),
1321                              0, dec, &transform->data_);
1322       break;
1323     case COLOR_INDEXING_TRANSFORM: {
1324        const int num_colors = VP8LReadBits(br, 8) + 1;
1325        const int bits = (num_colors > 16) ? 0
1326                       : (num_colors > 4) ? 1
1327                       : (num_colors > 2) ? 2
1328                       : 3;
1329        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1330        transform->bits_ = bits;
1331        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
1332        ok = ok && ExpandColorMap(num_colors, transform);
1333       break;
1334     }
1335     case SUBTRACT_GREEN:
1336       break;
1337     default:
1338       assert(0);    // can't happen
1339       break;
1340   }
1341 
1342   return ok;
1343 }
1344 
1345 // -----------------------------------------------------------------------------
1346 // VP8LMetadata
1347 
InitMetadata(VP8LMetadata * const hdr)1348 static void InitMetadata(VP8LMetadata* const hdr) {
1349   assert(hdr != NULL);
1350   memset(hdr, 0, sizeof(*hdr));
1351 }
1352 
ClearMetadata(VP8LMetadata * const hdr)1353 static void ClearMetadata(VP8LMetadata* const hdr) {
1354   assert(hdr != NULL);
1355 
1356   WebPSafeFree(hdr->huffman_image_);
1357   WebPSafeFree(hdr->huffman_tables_);
1358   VP8LHtreeGroupsFree(hdr->htree_groups_);
1359   VP8LColorCacheClear(&hdr->color_cache_);
1360   VP8LColorCacheClear(&hdr->saved_color_cache_);
1361   InitMetadata(hdr);
1362 }
1363 
1364 // -----------------------------------------------------------------------------
1365 // VP8LDecoder
1366 
VP8LNew(void)1367 VP8LDecoder* VP8LNew(void) {
1368   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1369   if (dec == NULL) return NULL;
1370   dec->status_ = VP8_STATUS_OK;
1371   dec->state_ = READ_DIM;
1372 
1373   VP8LDspInit();  // Init critical function pointers.
1374 
1375   return dec;
1376 }
1377 
VP8LClear(VP8LDecoder * const dec)1378 void VP8LClear(VP8LDecoder* const dec) {
1379   int i;
1380   if (dec == NULL) return;
1381   ClearMetadata(&dec->hdr_);
1382 
1383   WebPSafeFree(dec->pixels_);
1384   dec->pixels_ = NULL;
1385   for (i = 0; i < dec->next_transform_; ++i) {
1386     ClearTransform(&dec->transforms_[i]);
1387   }
1388   dec->next_transform_ = 0;
1389   dec->transforms_seen_ = 0;
1390 
1391   WebPSafeFree(dec->rescaler_memory);
1392   dec->rescaler_memory = NULL;
1393 
1394   dec->output_ = NULL;   // leave no trace behind
1395 }
1396 
VP8LDelete(VP8LDecoder * const dec)1397 void VP8LDelete(VP8LDecoder* const dec) {
1398   if (dec != NULL) {
1399     VP8LClear(dec);
1400     WebPSafeFree(dec);
1401   }
1402 }
1403 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1404 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1405   VP8LMetadata* const hdr = &dec->hdr_;
1406   const int num_bits = hdr->huffman_subsample_bits_;
1407   dec->width_ = width;
1408   dec->height_ = height;
1409 
1410   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1411   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1412 }
1413 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1414 static int DecodeImageStream(int xsize, int ysize,
1415                              int is_level0,
1416                              VP8LDecoder* const dec,
1417                              uint32_t** const decoded_data) {
1418   int ok = 1;
1419   int transform_xsize = xsize;
1420   int transform_ysize = ysize;
1421   VP8LBitReader* const br = &dec->br_;
1422   VP8LMetadata* const hdr = &dec->hdr_;
1423   uint32_t* data = NULL;
1424   int color_cache_bits = 0;
1425 
1426   // Read the transforms (may recurse).
1427   if (is_level0) {
1428     while (ok && VP8LReadBits(br, 1)) {
1429       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1430     }
1431   }
1432 
1433   // Color cache
1434   if (ok && VP8LReadBits(br, 1)) {
1435     color_cache_bits = VP8LReadBits(br, 4);
1436     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1437     if (!ok) {
1438       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1439       goto End;
1440     }
1441   }
1442 
1443   // Read the Huffman codes (may recurse).
1444   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1445                               color_cache_bits, is_level0);
1446   if (!ok) {
1447     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1448     goto End;
1449   }
1450 
1451   // Finish setting up the color-cache
1452   if (color_cache_bits > 0) {
1453     hdr->color_cache_size_ = 1 << color_cache_bits;
1454     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1455       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1456       ok = 0;
1457       goto End;
1458     }
1459   } else {
1460     hdr->color_cache_size_ = 0;
1461   }
1462   UpdateDecoder(dec, transform_xsize, transform_ysize);
1463 
1464   if (is_level0) {   // level 0 complete
1465     dec->state_ = READ_HDR;
1466     goto End;
1467   }
1468 
1469   {
1470     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1471     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1472     if (data == NULL) {
1473       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1474       ok = 0;
1475       goto End;
1476     }
1477   }
1478 
1479   // Use the Huffman trees to decode the LZ77 encoded data.
1480   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1481                        transform_ysize, NULL);
1482   ok = ok && !br->eos_;
1483 
1484  End:
1485   if (!ok) {
1486     WebPSafeFree(data);
1487     ClearMetadata(hdr);
1488   } else {
1489     if (decoded_data != NULL) {
1490       *decoded_data = data;
1491     } else {
1492       // We allocate image data in this function only for transforms. At level 0
1493       // (that is: not the transforms), we shouldn't have allocated anything.
1494       assert(data == NULL);
1495       assert(is_level0);
1496     }
1497     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
1498     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1499   }
1500   return ok;
1501 }
1502 
1503 //------------------------------------------------------------------------------
1504 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1505 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1506   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1507   // Scratch buffer corresponding to top-prediction row for transforming the
1508   // first row in the row-blocks. Not needed for paletted alpha.
1509   const uint64_t cache_top_pixels = (uint16_t)final_width;
1510   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1511   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1512   const uint64_t total_num_pixels =
1513       num_pixels + cache_top_pixels + cache_pixels;
1514 
1515   assert(dec->width_ <= final_width);
1516   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1517   if (dec->pixels_ == NULL) {
1518     dec->argb_cache_ = NULL;    // for sanity check
1519     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1520     return 0;
1521   }
1522   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1523   return 1;
1524 }
1525 
AllocateInternalBuffers8b(VP8LDecoder * const dec)1526 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1527   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1528   dec->argb_cache_ = NULL;    // for sanity check
1529   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1530   if (dec->pixels_ == NULL) {
1531     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1532     return 0;
1533   }
1534   return 1;
1535 }
1536 
1537 //------------------------------------------------------------------------------
1538 
1539 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int last_row)1540 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) {
1541   int cur_row = dec->last_row_;
1542   int num_rows = last_row - cur_row;
1543   const uint32_t* in = dec->pixels_ + dec->width_ * cur_row;
1544 
1545   assert(last_row <= dec->io_->crop_bottom);
1546   while (num_rows > 0) {
1547     const int num_rows_to_process =
1548         (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows;
1549     // Extract alpha (which is stored in the green plane).
1550     ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
1551     uint8_t* const output = alph_dec->output_;
1552     const int width = dec->io_->width;      // the final width (!= dec->width_)
1553     const int cache_pixs = width * num_rows_to_process;
1554     uint8_t* const dst = output + width * cur_row;
1555     const uint32_t* const src = dec->argb_cache_;
1556     ApplyInverseTransforms(dec, cur_row, num_rows_to_process, in);
1557     WebPExtractGreen(src, dst, cache_pixs);
1558     AlphaApplyFilter(alph_dec,
1559                      cur_row, cur_row + num_rows_to_process, dst, width);
1560     num_rows -= num_rows_to_process;
1561     in += num_rows_to_process * dec->width_;
1562     cur_row += num_rows_to_process;
1563   }
1564   assert(cur_row == last_row);
1565   dec->last_row_ = dec->last_out_row_ = last_row;
1566 }
1567 
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size)1568 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1569                           const uint8_t* const data, size_t data_size) {
1570   int ok = 0;
1571   VP8LDecoder* dec = VP8LNew();
1572 
1573   if (dec == NULL) return 0;
1574 
1575   assert(alph_dec != NULL);
1576 
1577   dec->width_ = alph_dec->width_;
1578   dec->height_ = alph_dec->height_;
1579   dec->io_ = &alph_dec->io_;
1580   dec->io_->opaque = alph_dec;
1581   dec->io_->width = alph_dec->width_;
1582   dec->io_->height = alph_dec->height_;
1583 
1584   dec->status_ = VP8_STATUS_OK;
1585   VP8LInitBitReader(&dec->br_, data, data_size);
1586 
1587   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
1588     goto Err;
1589   }
1590 
1591   // Special case: if alpha data uses only the color indexing transform and
1592   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1593   // method that only needs allocation of 1 byte per pixel (alpha channel).
1594   if (dec->next_transform_ == 1 &&
1595       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1596       Is8bOptimizable(&dec->hdr_)) {
1597     alph_dec->use_8b_decode_ = 1;
1598     ok = AllocateInternalBuffers8b(dec);
1599   } else {
1600     // Allocate internal buffers (note that dec->width_ may have changed here).
1601     alph_dec->use_8b_decode_ = 0;
1602     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1603   }
1604 
1605   if (!ok) goto Err;
1606 
1607   // Only set here, once we are sure it is valid (to avoid thread races).
1608   alph_dec->vp8l_dec_ = dec;
1609   return 1;
1610 
1611  Err:
1612   VP8LDelete(dec);
1613   return 0;
1614 }
1615 
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1616 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1617   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1618   assert(dec != NULL);
1619   assert(last_row <= dec->height_);
1620 
1621   if (dec->last_row_ >= last_row) {
1622     return 1;  // done
1623   }
1624 
1625   if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing();
1626 
1627   // Decode (with special row processing).
1628   return alph_dec->use_8b_decode_ ?
1629       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1630                       last_row) :
1631       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1632                       last_row, ExtractAlphaRows);
1633 }
1634 
1635 //------------------------------------------------------------------------------
1636 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1637 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1638   int width, height, has_alpha;
1639 
1640   if (dec == NULL) return 0;
1641   if (io == NULL) {
1642     dec->status_ = VP8_STATUS_INVALID_PARAM;
1643     return 0;
1644   }
1645 
1646   dec->io_ = io;
1647   dec->status_ = VP8_STATUS_OK;
1648   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1649   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1650     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1651     goto Error;
1652   }
1653   dec->state_ = READ_DIM;
1654   io->width = width;
1655   io->height = height;
1656 
1657   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1658   return 1;
1659 
1660  Error:
1661   VP8LClear(dec);
1662   assert(dec->status_ != VP8_STATUS_OK);
1663   return 0;
1664 }
1665 
VP8LDecodeImage(VP8LDecoder * const dec)1666 int VP8LDecodeImage(VP8LDecoder* const dec) {
1667   VP8Io* io = NULL;
1668   WebPDecParams* params = NULL;
1669 
1670   // Sanity checks.
1671   if (dec == NULL) return 0;
1672 
1673   assert(dec->hdr_.huffman_tables_ != NULL);
1674   assert(dec->hdr_.htree_groups_ != NULL);
1675   assert(dec->hdr_.num_htree_groups_ > 0);
1676 
1677   io = dec->io_;
1678   assert(io != NULL);
1679   params = (WebPDecParams*)io->opaque;
1680   assert(params != NULL);
1681 
1682   // Initialization.
1683   if (dec->state_ != READ_DATA) {
1684     dec->output_ = params->output;
1685     assert(dec->output_ != NULL);
1686 
1687     if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1688       dec->status_ = VP8_STATUS_INVALID_PARAM;
1689       goto Err;
1690     }
1691 
1692     if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1693 
1694 #if !defined(WEBP_REDUCE_SIZE)
1695     if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1696 #else
1697     if (io->use_scaling) {
1698       dec->status_ = VP8_STATUS_INVALID_PARAM;
1699       goto Err;
1700     }
1701 #endif
1702     if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1703       // need the alpha-multiply functions for premultiplied output or rescaling
1704       WebPInitAlphaProcessing();
1705     }
1706 
1707     if (!WebPIsRGBMode(dec->output_->colorspace)) {
1708       WebPInitConvertARGBToYUV();
1709       if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
1710     }
1711     if (dec->incremental_) {
1712       if (dec->hdr_.color_cache_size_ > 0 &&
1713           dec->hdr_.saved_color_cache_.colors_ == NULL) {
1714         if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
1715                                 dec->hdr_.color_cache_.hash_bits_)) {
1716           dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1717           goto Err;
1718         }
1719       }
1720     }
1721     dec->state_ = READ_DATA;
1722   }
1723 
1724   // Decode.
1725   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1726                        io->crop_bottom, ProcessRows)) {
1727     goto Err;
1728   }
1729 
1730   params->last_y = dec->last_out_row_;
1731   return 1;
1732 
1733  Err:
1734   VP8LClear(dec);
1735   assert(dec->status_ != VP8_STATUS_OK);
1736   return 0;
1737 }
1738 
1739 //------------------------------------------------------------------------------
1740