• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20 
21 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
22 //#define LOG_NDEBUG 0
23 #include "VSyncPredictor.h"
24 #include <android-base/logging.h>
25 #include <android-base/stringprintf.h>
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Log.h>
29 #include <utils/Trace.h>
30 #include <algorithm>
31 #include <chrono>
32 #include <sstream>
33 
34 namespace android::scheduler {
35 using base::StringAppendF;
36 
37 static auto constexpr kMaxPercent = 100u;
38 
39 VSyncPredictor::~VSyncPredictor() = default;
40 
VSyncPredictor(nsecs_t idealPeriod,size_t historySize,size_t minimumSamplesForPrediction,uint32_t outlierTolerancePercent)41 VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize,
42                                size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent)
43       : mTraceOn(property_get_bool("debug.sf.vsp_trace", true)),
44         kHistorySize(historySize),
45         kMinimumSamplesForPrediction(minimumSamplesForPrediction),
46         kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
47         mIdealPeriod(idealPeriod) {
48     resetModel();
49 }
50 
traceInt64If(const char * name,int64_t value) const51 inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
52     if (CC_UNLIKELY(mTraceOn)) {
53         ATRACE_INT64(name, value);
54     }
55 }
56 
next(int i) const57 inline size_t VSyncPredictor::next(int i) const {
58     return (i + 1) % mTimestamps.size();
59 }
60 
validate(nsecs_t timestamp) const61 bool VSyncPredictor::validate(nsecs_t timestamp) const {
62     if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
63         return true;
64     }
65 
66     auto const aValidTimestamp = mTimestamps[mLastTimestampIndex];
67     auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod;
68     return percent < kOutlierTolerancePercent || percent > (kMaxPercent - kOutlierTolerancePercent);
69 }
70 
currentPeriod() const71 nsecs_t VSyncPredictor::currentPeriod() const {
72     std::lock_guard<std::mutex> lk(mMutex);
73     return std::get<0>(mRateMap.find(mIdealPeriod)->second);
74 }
75 
addVsyncTimestamp(nsecs_t timestamp)76 bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
77     std::lock_guard<std::mutex> lk(mMutex);
78 
79     if (!validate(timestamp)) {
80         // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
81         // don't insert this ts into mTimestamps ringbuffer.
82         if (!mTimestamps.empty()) {
83             mKnownTimestamp =
84                     std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
85         } else {
86             mKnownTimestamp = timestamp;
87         }
88         return false;
89     }
90 
91     if (mTimestamps.size() != kHistorySize) {
92         mTimestamps.push_back(timestamp);
93         mLastTimestampIndex = next(mLastTimestampIndex);
94     } else {
95         mLastTimestampIndex = next(mLastTimestampIndex);
96         mTimestamps[mLastTimestampIndex] = timestamp;
97     }
98 
99     if (mTimestamps.size() < kMinimumSamplesForPrediction) {
100         mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
101         return true;
102     }
103 
104     // This is a 'simple linear regression' calculation of Y over X, with Y being the
105     // vsync timestamps, and X being the ordinal of vsync count.
106     // The calculated slope is the vsync period.
107     // Formula for reference:
108     // Sigma_i: means sum over all timestamps.
109     // mean(variable): statistical mean of variable.
110     // X: snapped ordinal of the timestamp
111     // Y: vsync timestamp
112     //
113     //         Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
114     // slope = -------------------------------------------
115     //         Sigma_i ( X_i - mean(X) ) ^ 2
116     //
117     // intercept = mean(Y) - slope * mean(X)
118     //
119     std::vector<nsecs_t> vsyncTS(mTimestamps.size());
120     std::vector<nsecs_t> ordinals(mTimestamps.size());
121 
122     // normalizing to the oldest timestamp cuts down on error in calculating the intercept.
123     auto const oldest_ts = *std::min_element(mTimestamps.begin(), mTimestamps.end());
124     auto it = mRateMap.find(mIdealPeriod);
125     auto const currentPeriod = std::get<0>(it->second);
126     // TODO (b/144707443): its important that there's some precision in the mean of the ordinals
127     //                     for the intercept calculation, so scale the ordinals by 1000 to continue
128     //                     fixed point calculation. Explore expanding
129     //                     scheduler::utils::calculate_mean to have a fixed point fractional part.
130     static constexpr int64_t kScalingFactor = 1000;
131 
132     for (auto i = 0u; i < mTimestamps.size(); i++) {
133         traceInt64If("VSP-ts", mTimestamps[i]);
134 
135         vsyncTS[i] = mTimestamps[i] - oldest_ts;
136         ordinals[i] = ((vsyncTS[i] + (currentPeriod / 2)) / currentPeriod) * kScalingFactor;
137     }
138 
139     auto meanTS = scheduler::calculate_mean(vsyncTS);
140     auto meanOrdinal = scheduler::calculate_mean(ordinals);
141     for (auto i = 0; i < vsyncTS.size(); i++) {
142         vsyncTS[i] -= meanTS;
143         ordinals[i] -= meanOrdinal;
144     }
145 
146     auto top = 0ll;
147     auto bottom = 0ll;
148     for (auto i = 0; i < vsyncTS.size(); i++) {
149         top += vsyncTS[i] * ordinals[i];
150         bottom += ordinals[i] * ordinals[i];
151     }
152 
153     if (CC_UNLIKELY(bottom == 0)) {
154         it->second = {mIdealPeriod, 0};
155         clearTimestamps();
156         return false;
157     }
158 
159     nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
160     nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
161 
162     auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod;
163     if (percent >= kOutlierTolerancePercent) {
164         it->second = {mIdealPeriod, 0};
165         clearTimestamps();
166         return false;
167     }
168 
169     traceInt64If("VSP-period", anticipatedPeriod);
170     traceInt64If("VSP-intercept", intercept);
171 
172     it->second = {anticipatedPeriod, intercept};
173 
174     ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp,
175           anticipatedPeriod, intercept);
176     return true;
177 }
178 
nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const179 nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const {
180     std::lock_guard<std::mutex> lk(mMutex);
181 
182     auto const [slope, intercept] = getVSyncPredictionModel(lk);
183 
184     if (mTimestamps.empty()) {
185         traceInt64If("VSP-mode", 1);
186         auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
187         auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1;
188         return knownTimestamp + numPeriodsOut * mIdealPeriod;
189     }
190 
191     auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());
192 
193     // See b/145667109, the ordinal calculation must take into account the intercept.
194     auto const zeroPoint = oldest + intercept;
195     auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
196     auto const prediction = (ordinalRequest * slope) + intercept + oldest;
197 
198     traceInt64If("VSP-mode", 0);
199     traceInt64If("VSP-timePoint", timePoint);
200     traceInt64If("VSP-prediction", prediction);
201 
202     auto const printer = [&, slope = slope, intercept = intercept] {
203         std::stringstream str;
204         str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
205             << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
206             << "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
207         return str.str();
208     };
209 
210     ALOGV("%s", printer().c_str());
211     LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
212                         printer().c_str());
213 
214     return prediction;
215 }
216 
getVSyncPredictionModel() const217 std::tuple<nsecs_t, nsecs_t> VSyncPredictor::getVSyncPredictionModel() const {
218     std::lock_guard<std::mutex> lk(mMutex);
219     return VSyncPredictor::getVSyncPredictionModel(lk);
220 }
221 
getVSyncPredictionModel(std::lock_guard<std::mutex> const &) const222 std::tuple<nsecs_t, nsecs_t> VSyncPredictor::getVSyncPredictionModel(
223         std::lock_guard<std::mutex> const&) const {
224     return mRateMap.find(mIdealPeriod)->second;
225 }
226 
setPeriod(nsecs_t period)227 void VSyncPredictor::setPeriod(nsecs_t period) {
228     ATRACE_CALL();
229 
230     std::lock_guard<std::mutex> lk(mMutex);
231     static constexpr size_t kSizeLimit = 30;
232     if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
233         mRateMap.erase(mRateMap.begin());
234     }
235 
236     mIdealPeriod = period;
237     if (mRateMap.find(period) == mRateMap.end()) {
238         mRateMap[mIdealPeriod] = {period, 0};
239     }
240 
241     clearTimestamps();
242 }
243 
clearTimestamps()244 void VSyncPredictor::clearTimestamps() {
245     if (!mTimestamps.empty()) {
246         auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
247         if (mKnownTimestamp) {
248             mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
249         } else {
250             mKnownTimestamp = maxRb;
251         }
252 
253         mTimestamps.clear();
254         mLastTimestampIndex = 0;
255     }
256 }
257 
needsMoreSamples() const258 bool VSyncPredictor::needsMoreSamples() const {
259     std::lock_guard<std::mutex> lk(mMutex);
260     return mTimestamps.size() < kMinimumSamplesForPrediction;
261 }
262 
resetModel()263 void VSyncPredictor::resetModel() {
264     std::lock_guard<std::mutex> lk(mMutex);
265     mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
266     clearTimestamps();
267 }
268 
dump(std::string & result) const269 void VSyncPredictor::dump(std::string& result) const {
270     std::lock_guard<std::mutex> lk(mMutex);
271     StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f);
272     StringAppendF(&result, "\tRefresh Rate Map:\n");
273     for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) {
274         StringAppendF(&result,
275                       "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
276                       idealPeriod / 1e6f, std::get<0>(periodInterceptTuple) / 1e6f,
277                       std::get<1>(periodInterceptTuple));
278     }
279 }
280 
281 } // namespace android::scheduler
282 
283 // TODO(b/129481165): remove the #pragma below and fix conversion issues
284 #pragma clang diagnostic pop // ignored "-Wconversion"
285