1 // Copyright 2018 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/codegen/reloc-info.h"
6
7 #include "src/codegen/assembler-inl.h"
8 #include "src/codegen/code-reference.h"
9 #include "src/codegen/external-reference-encoder.h"
10 #include "src/deoptimizer/deoptimize-reason.h"
11 #include "src/deoptimizer/deoptimizer.h"
12 #include "src/heap/heap-write-barrier-inl.h"
13 #include "src/objects/code-inl.h"
14 #include "src/snapshot/embedded/embedded-data.h"
15
16 namespace v8 {
17 namespace internal {
18
19 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
20
21 // -----------------------------------------------------------------------------
22 // Implementation of RelocInfoWriter and RelocIterator
23 //
24 // Relocation information is written backwards in memory, from high addresses
25 // towards low addresses, byte by byte. Therefore, in the encodings listed
26 // below, the first byte listed it at the highest address, and successive
27 // bytes in the record are at progressively lower addresses.
28 //
29 // Encoding
30 //
31 // The most common modes are given single-byte encodings. Also, it is
32 // easy to identify the type of reloc info and skip unwanted modes in
33 // an iteration.
34 //
35 // The encoding relies on the fact that there are fewer than 14
36 // different relocation modes using standard non-compact encoding.
37 //
38 // The first byte of a relocation record has a tag in its low 2 bits:
39 // Here are the record schemes, depending on the low tag and optional higher
40 // tags.
41 //
42 // Low tag:
43 // 00: embedded_object: [6-bit pc delta] 00
44 //
45 // 01: code_target: [6-bit pc delta] 01
46 //
47 // 10: wasm_stub_call: [6-bit pc delta] 10
48 //
49 // 11: long_record [6 bit reloc mode] 11
50 // followed by pc delta
51 // followed by optional data depending on type.
52 //
53 // If a pc delta exceeds 6 bits, it is split into a remainder that fits into
54 // 6 bits and a part that does not. The latter is encoded as a long record
55 // with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
56 // the following record in the usual way. The long pc jump record has variable
57 // length:
58 // pc-jump: [PC_JUMP] 11
59 // [7 bits data] 0
60 // ...
61 // [7 bits data] 1
62 // (Bits 6..31 of pc delta, with leading zeroes
63 // dropped, and last non-zero chunk tagged with 1.)
64
65 const int kTagBits = 2;
66 const int kTagMask = (1 << kTagBits) - 1;
67 const int kLongTagBits = 6;
68
69 const int kEmbeddedObjectTag = 0;
70 const int kCodeTargetTag = 1;
71 const int kWasmStubCallTag = 2;
72 const int kDefaultTag = 3;
73
74 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
75 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
76 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
77
78 const int kChunkBits = 7;
79 const int kChunkMask = (1 << kChunkBits) - 1;
80 const int kLastChunkTagBits = 1;
81 const int kLastChunkTagMask = 1;
82 const int kLastChunkTag = 1;
83
WriteLongPCJump(uint32_t pc_delta)84 uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
85 // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
86 // Otherwise write a variable length PC jump for the bits that do
87 // not fit in the kSmallPCDeltaBits bits.
88 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
89 WriteMode(RelocInfo::PC_JUMP);
90 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
91 DCHECK_GT(pc_jump, 0);
92 // Write kChunkBits size chunks of the pc_jump.
93 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
94 byte b = pc_jump & kChunkMask;
95 *--pos_ = b << kLastChunkTagBits;
96 }
97 // Tag the last chunk so it can be identified.
98 *pos_ = *pos_ | kLastChunkTag;
99 // Return the remaining kSmallPCDeltaBits of the pc_delta.
100 return pc_delta & kSmallPCDeltaMask;
101 }
102
WriteShortTaggedPC(uint32_t pc_delta,int tag)103 void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
104 // Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
105 pc_delta = WriteLongPCJump(pc_delta);
106 *--pos_ = pc_delta << kTagBits | tag;
107 }
108
WriteShortData(intptr_t data_delta)109 void RelocInfoWriter::WriteShortData(intptr_t data_delta) {
110 *--pos_ = static_cast<byte>(data_delta);
111 }
112
WriteMode(RelocInfo::Mode rmode)113 void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
114 STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
115 *--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
116 }
117
WriteModeAndPC(uint32_t pc_delta,RelocInfo::Mode rmode)118 void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
119 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
120 pc_delta = WriteLongPCJump(pc_delta);
121 WriteMode(rmode);
122 *--pos_ = pc_delta;
123 }
124
WriteIntData(int number)125 void RelocInfoWriter::WriteIntData(int number) {
126 for (int i = 0; i < kIntSize; i++) {
127 *--pos_ = static_cast<byte>(number);
128 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
129 number = number >> kBitsPerByte;
130 }
131 }
132
WriteData(intptr_t data_delta)133 void RelocInfoWriter::WriteData(intptr_t data_delta) {
134 for (int i = 0; i < kIntptrSize; i++) {
135 *--pos_ = static_cast<byte>(data_delta);
136 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
137 data_delta = data_delta >> kBitsPerByte;
138 }
139 }
140
Write(const RelocInfo * rinfo)141 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
142 RelocInfo::Mode rmode = rinfo->rmode();
143 #ifdef DEBUG
144 byte* begin_pos = pos_;
145 #endif
146 DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
147 DCHECK_GE(rinfo->pc() - reinterpret_cast<Address>(last_pc_), 0);
148 // Use unsigned delta-encoding for pc.
149 uint32_t pc_delta =
150 static_cast<uint32_t>(rinfo->pc() - reinterpret_cast<Address>(last_pc_));
151
152 // The two most common modes are given small tags, and usually fit in a byte.
153 if (rmode == RelocInfo::FULL_EMBEDDED_OBJECT) {
154 WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
155 } else if (rmode == RelocInfo::CODE_TARGET) {
156 WriteShortTaggedPC(pc_delta, kCodeTargetTag);
157 DCHECK_LE(begin_pos - pos_, RelocInfo::kMaxCallSize);
158 } else if (rmode == RelocInfo::WASM_STUB_CALL) {
159 WriteShortTaggedPC(pc_delta, kWasmStubCallTag);
160 } else {
161 WriteModeAndPC(pc_delta, rmode);
162 if (RelocInfo::IsDeoptReason(rmode)) {
163 DCHECK_LT(rinfo->data(), 1 << kBitsPerByte);
164 WriteShortData(rinfo->data());
165 } else if (RelocInfo::IsConstPool(rmode) ||
166 RelocInfo::IsVeneerPool(rmode) || RelocInfo::IsDeoptId(rmode) ||
167 RelocInfo::IsDeoptPosition(rmode)) {
168 WriteIntData(static_cast<int>(rinfo->data()));
169 }
170 }
171 last_pc_ = reinterpret_cast<byte*>(rinfo->pc());
172 #ifdef DEBUG
173 DCHECK_LE(begin_pos - pos_, kMaxSize);
174 #endif
175 }
176
AdvanceGetTag()177 inline int RelocIterator::AdvanceGetTag() { return *--pos_ & kTagMask; }
178
GetMode()179 inline RelocInfo::Mode RelocIterator::GetMode() {
180 return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
181 ((1 << kLongTagBits) - 1));
182 }
183
ReadShortTaggedPC()184 inline void RelocIterator::ReadShortTaggedPC() {
185 rinfo_.pc_ += *pos_ >> kTagBits;
186 }
187
AdvanceReadPC()188 inline void RelocIterator::AdvanceReadPC() { rinfo_.pc_ += *--pos_; }
189
AdvanceReadInt()190 void RelocIterator::AdvanceReadInt() {
191 int x = 0;
192 for (int i = 0; i < kIntSize; i++) {
193 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
194 }
195 rinfo_.data_ = x;
196 }
197
AdvanceReadData()198 void RelocIterator::AdvanceReadData() {
199 intptr_t x = 0;
200 for (int i = 0; i < kIntptrSize; i++) {
201 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
202 }
203 rinfo_.data_ = x;
204 }
205
AdvanceReadLongPCJump()206 void RelocIterator::AdvanceReadLongPCJump() {
207 // Read the 32-kSmallPCDeltaBits most significant bits of the
208 // pc jump in kChunkBits bit chunks and shift them into place.
209 // Stop when the last chunk is encountered.
210 uint32_t pc_jump = 0;
211 for (int i = 0; i < kIntSize; i++) {
212 byte pc_jump_part = *--pos_;
213 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
214 if ((pc_jump_part & kLastChunkTagMask) == 1) break;
215 }
216 // The least significant kSmallPCDeltaBits bits will be added
217 // later.
218 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
219 }
220
ReadShortData()221 inline void RelocIterator::ReadShortData() {
222 uint8_t unsigned_b = *pos_;
223 rinfo_.data_ = unsigned_b;
224 }
225
next()226 void RelocIterator::next() {
227 DCHECK(!done());
228 // Basically, do the opposite of RelocInfoWriter::Write.
229 // Reading of data is as far as possible avoided for unwanted modes,
230 // but we must always update the pc.
231 //
232 // We exit this loop by returning when we find a mode we want.
233 while (pos_ > end_) {
234 int tag = AdvanceGetTag();
235 if (tag == kEmbeddedObjectTag) {
236 ReadShortTaggedPC();
237 if (SetMode(RelocInfo::FULL_EMBEDDED_OBJECT)) return;
238 } else if (tag == kCodeTargetTag) {
239 ReadShortTaggedPC();
240 if (SetMode(RelocInfo::CODE_TARGET)) return;
241 } else if (tag == kWasmStubCallTag) {
242 ReadShortTaggedPC();
243 if (SetMode(RelocInfo::WASM_STUB_CALL)) return;
244 } else {
245 DCHECK_EQ(tag, kDefaultTag);
246 RelocInfo::Mode rmode = GetMode();
247 if (rmode == RelocInfo::PC_JUMP) {
248 AdvanceReadLongPCJump();
249 } else {
250 AdvanceReadPC();
251 if (RelocInfo::IsDeoptReason(rmode)) {
252 Advance();
253 if (SetMode(rmode)) {
254 ReadShortData();
255 return;
256 }
257 } else if (RelocInfo::IsConstPool(rmode) ||
258 RelocInfo::IsVeneerPool(rmode) ||
259 RelocInfo::IsDeoptId(rmode) ||
260 RelocInfo::IsDeoptPosition(rmode)) {
261 if (SetMode(rmode)) {
262 AdvanceReadInt();
263 return;
264 }
265 Advance(kIntSize);
266 } else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
267 return;
268 }
269 }
270 }
271 }
272 done_ = true;
273 }
274
RelocIterator(Code code,int mode_mask)275 RelocIterator::RelocIterator(Code code, int mode_mask)
276 : RelocIterator(code, code.unchecked_relocation_info(), mode_mask) {}
277
RelocIterator(Code code,ByteArray relocation_info,int mode_mask)278 RelocIterator::RelocIterator(Code code, ByteArray relocation_info,
279 int mode_mask)
280 : RelocIterator(code, code.raw_instruction_start(), code.constant_pool(),
281 relocation_info.GetDataEndAddress(),
282 relocation_info.GetDataStartAddress(), mode_mask) {}
283
RelocIterator(const CodeReference code_reference,int mode_mask)284 RelocIterator::RelocIterator(const CodeReference code_reference, int mode_mask)
285 : RelocIterator(Code(), code_reference.instruction_start(),
286 code_reference.constant_pool(),
287 code_reference.relocation_end(),
288 code_reference.relocation_start(), mode_mask) {}
289
RelocIterator(EmbeddedData * embedded_data,Code code,int mode_mask)290 RelocIterator::RelocIterator(EmbeddedData* embedded_data, Code code,
291 int mode_mask)
292 : RelocIterator(
293 code, embedded_data->InstructionStartOfBuiltin(code.builtin_index()),
294 code.constant_pool(),
295 code.relocation_start() + code.relocation_size(),
296 code.relocation_start(), mode_mask) {}
297
RelocIterator(const CodeDesc & desc,int mode_mask)298 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask)
299 : RelocIterator(Code(), reinterpret_cast<Address>(desc.buffer), 0,
300 desc.buffer + desc.buffer_size,
301 desc.buffer + desc.buffer_size - desc.reloc_size,
302 mode_mask) {}
303
RelocIterator(Vector<byte> instructions,Vector<const byte> reloc_info,Address const_pool,int mode_mask)304 RelocIterator::RelocIterator(Vector<byte> instructions,
305 Vector<const byte> reloc_info, Address const_pool,
306 int mode_mask)
307 : RelocIterator(Code(), reinterpret_cast<Address>(instructions.begin()),
308 const_pool, reloc_info.begin() + reloc_info.size(),
309 reloc_info.begin(), mode_mask) {}
310
RelocIterator(Code host,Address pc,Address constant_pool,const byte * pos,const byte * end,int mode_mask)311 RelocIterator::RelocIterator(Code host, Address pc, Address constant_pool,
312 const byte* pos, const byte* end, int mode_mask)
313 : pos_(pos), end_(end), mode_mask_(mode_mask) {
314 // Relocation info is read backwards.
315 DCHECK_GE(pos_, end_);
316 rinfo_.host_ = host;
317 rinfo_.pc_ = pc;
318 rinfo_.constant_pool_ = constant_pool;
319 if (mode_mask_ == 0) pos_ = end_;
320 next();
321 }
322
323 // -----------------------------------------------------------------------------
324 // Implementation of RelocInfo
325
326 // static
OffHeapTargetIsCodedSpecially()327 bool RelocInfo::OffHeapTargetIsCodedSpecially() {
328 #if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_ARM64) || \
329 defined(V8_TARGET_ARCH_X64)
330 return false;
331 #elif defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_MIPS) || \
332 defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) || \
333 defined(V8_TARGET_ARCH_PPC64) || defined(V8_TARGET_ARCH_S390)
334 return true;
335 #endif
336 }
337
wasm_call_address() const338 Address RelocInfo::wasm_call_address() const {
339 DCHECK_EQ(rmode_, WASM_CALL);
340 return Assembler::target_address_at(pc_, constant_pool_);
341 }
342
set_wasm_call_address(Address address,ICacheFlushMode icache_flush_mode)343 void RelocInfo::set_wasm_call_address(Address address,
344 ICacheFlushMode icache_flush_mode) {
345 DCHECK_EQ(rmode_, WASM_CALL);
346 Assembler::set_target_address_at(pc_, constant_pool_, address,
347 icache_flush_mode);
348 }
349
wasm_stub_call_address() const350 Address RelocInfo::wasm_stub_call_address() const {
351 DCHECK_EQ(rmode_, WASM_STUB_CALL);
352 return Assembler::target_address_at(pc_, constant_pool_);
353 }
354
set_wasm_stub_call_address(Address address,ICacheFlushMode icache_flush_mode)355 void RelocInfo::set_wasm_stub_call_address(Address address,
356 ICacheFlushMode icache_flush_mode) {
357 DCHECK_EQ(rmode_, WASM_STUB_CALL);
358 Assembler::set_target_address_at(pc_, constant_pool_, address,
359 icache_flush_mode);
360 }
361
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)362 void RelocInfo::set_target_address(Address target,
363 WriteBarrierMode write_barrier_mode,
364 ICacheFlushMode icache_flush_mode) {
365 DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
366 IsWasmCall(rmode_));
367 Assembler::set_target_address_at(pc_, constant_pool_, target,
368 icache_flush_mode);
369 if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
370 IsCodeTargetMode(rmode_) && !FLAG_disable_write_barriers) {
371 Code target_code = Code::GetCodeFromTargetAddress(target);
372 WriteBarrier::Marking(host(), this, target_code);
373 }
374 }
375
HasTargetAddressAddress() const376 bool RelocInfo::HasTargetAddressAddress() const {
377 // TODO(jgruber): Investigate whether WASM_CALL is still appropriate on
378 // non-intel platforms now that wasm code is no longer on the heap.
379 #if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_X64)
380 static constexpr int kTargetAddressAddressModeMask =
381 ModeMask(CODE_TARGET) | ModeMask(FULL_EMBEDDED_OBJECT) |
382 ModeMask(COMPRESSED_EMBEDDED_OBJECT) | ModeMask(EXTERNAL_REFERENCE) |
383 ModeMask(OFF_HEAP_TARGET) | ModeMask(RUNTIME_ENTRY) |
384 ModeMask(WASM_CALL) | ModeMask(WASM_STUB_CALL);
385 #else
386 static constexpr int kTargetAddressAddressModeMask =
387 ModeMask(CODE_TARGET) | ModeMask(RELATIVE_CODE_TARGET) |
388 ModeMask(FULL_EMBEDDED_OBJECT) | ModeMask(EXTERNAL_REFERENCE) |
389 ModeMask(OFF_HEAP_TARGET) | ModeMask(RUNTIME_ENTRY) | ModeMask(WASM_CALL);
390 #endif
391 return (ModeMask(rmode_) & kTargetAddressAddressModeMask) != 0;
392 }
393
RequiresRelocationAfterCodegen(const CodeDesc & desc)394 bool RelocInfo::RequiresRelocationAfterCodegen(const CodeDesc& desc) {
395 RelocIterator it(desc, RelocInfo::PostCodegenRelocationMask());
396 return !it.done();
397 }
398
RequiresRelocation(Code code)399 bool RelocInfo::RequiresRelocation(Code code) {
400 RelocIterator it(code, RelocInfo::kApplyMask);
401 return !it.done();
402 }
403
404 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)405 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
406 switch (rmode) {
407 case NONE:
408 return "no reloc";
409 case COMPRESSED_EMBEDDED_OBJECT:
410 return "compressed embedded object";
411 case FULL_EMBEDDED_OBJECT:
412 return "full embedded object";
413 case CODE_TARGET:
414 return "code target";
415 case RELATIVE_CODE_TARGET:
416 return "relative code target";
417 case RUNTIME_ENTRY:
418 return "runtime entry";
419 case EXTERNAL_REFERENCE:
420 return "external reference";
421 case INTERNAL_REFERENCE:
422 return "internal reference";
423 case INTERNAL_REFERENCE_ENCODED:
424 return "encoded internal reference";
425 case OFF_HEAP_TARGET:
426 return "off heap target";
427 case DEOPT_SCRIPT_OFFSET:
428 return "deopt script offset";
429 case DEOPT_INLINING_ID:
430 return "deopt inlining id";
431 case DEOPT_REASON:
432 return "deopt reason";
433 case DEOPT_ID:
434 return "deopt index";
435 case CONST_POOL:
436 return "constant pool";
437 case VENEER_POOL:
438 return "veneer pool";
439 case WASM_CALL:
440 return "internal wasm call";
441 case WASM_STUB_CALL:
442 return "wasm stub call";
443 case NUMBER_OF_MODES:
444 case PC_JUMP:
445 UNREACHABLE();
446 }
447 return "unknown relocation type";
448 }
449
Print(Isolate * isolate,std::ostream & os)450 void RelocInfo::Print(Isolate* isolate, std::ostream& os) { // NOLINT
451 os << reinterpret_cast<const void*>(pc_) << " " << RelocModeName(rmode_);
452 if (rmode_ == DEOPT_SCRIPT_OFFSET || rmode_ == DEOPT_INLINING_ID) {
453 os << " (" << data() << ")";
454 } else if (rmode_ == DEOPT_REASON) {
455 os << " ("
456 << DeoptimizeReasonToString(static_cast<DeoptimizeReason>(data_)) << ")";
457 } else if (rmode_ == FULL_EMBEDDED_OBJECT) {
458 os << " (" << Brief(target_object()) << ")";
459 } else if (rmode_ == COMPRESSED_EMBEDDED_OBJECT) {
460 os << " (" << Brief(target_object()) << " compressed)";
461 } else if (rmode_ == EXTERNAL_REFERENCE) {
462 if (isolate) {
463 ExternalReferenceEncoder ref_encoder(isolate);
464 os << " ("
465 << ref_encoder.NameOfAddress(isolate, target_external_reference())
466 << ") ";
467 }
468 os << " (" << reinterpret_cast<const void*>(target_external_reference())
469 << ")";
470 } else if (IsCodeTargetMode(rmode_)) {
471 const Address code_target = target_address();
472 Code code = Code::GetCodeFromTargetAddress(code_target);
473 DCHECK(code.IsCode());
474 os << " (" << CodeKindToString(code.kind());
475 if (Builtins::IsBuiltin(code)) {
476 os << " " << Builtins::name(code.builtin_index());
477 }
478 os << ") (" << reinterpret_cast<const void*>(target_address()) << ")";
479 } else if (IsRuntimeEntry(rmode_)) {
480 // Deoptimization bailouts are stored as runtime entries.
481 DeoptimizeKind type;
482 if (Deoptimizer::IsDeoptimizationEntry(isolate, target_address(), &type)) {
483 os << " (" << Deoptimizer::MessageFor(type, false)
484 << " deoptimization bailout)";
485 }
486 } else if (IsConstPool(rmode_)) {
487 os << " (size " << static_cast<int>(data_) << ")";
488 }
489
490 os << "\n";
491 }
492 #endif // ENABLE_DISASSEMBLER
493
494 #ifdef VERIFY_HEAP
Verify(Isolate * isolate)495 void RelocInfo::Verify(Isolate* isolate) {
496 switch (rmode_) {
497 case COMPRESSED_EMBEDDED_OBJECT:
498 case FULL_EMBEDDED_OBJECT:
499 Object::VerifyPointer(isolate, target_object());
500 break;
501 case CODE_TARGET:
502 case RELATIVE_CODE_TARGET: {
503 // convert inline target address to code object
504 Address addr = target_address();
505 CHECK_NE(addr, kNullAddress);
506 // Check that we can find the right code object.
507 Code code = Code::GetCodeFromTargetAddress(addr);
508 Object found = isolate->FindCodeObject(addr);
509 CHECK(found.IsCode());
510 CHECK(code.address() == HeapObject::cast(found).address());
511 break;
512 }
513 case INTERNAL_REFERENCE:
514 case INTERNAL_REFERENCE_ENCODED: {
515 Address target = target_internal_reference();
516 Address pc = target_internal_reference_address();
517 Code code = Code::cast(isolate->FindCodeObject(pc));
518 CHECK(target >= code.InstructionStart());
519 CHECK(target <= code.InstructionEnd());
520 break;
521 }
522 case OFF_HEAP_TARGET: {
523 Address addr = target_off_heap_target();
524 CHECK_NE(addr, kNullAddress);
525 CHECK(!InstructionStream::TryLookupCode(isolate, addr).is_null());
526 break;
527 }
528 case RUNTIME_ENTRY:
529 case EXTERNAL_REFERENCE:
530 case DEOPT_SCRIPT_OFFSET:
531 case DEOPT_INLINING_ID:
532 case DEOPT_REASON:
533 case DEOPT_ID:
534 case CONST_POOL:
535 case VENEER_POOL:
536 case WASM_CALL:
537 case WASM_STUB_CALL:
538 case NONE:
539 break;
540 case NUMBER_OF_MODES:
541 case PC_JUMP:
542 UNREACHABLE();
543 }
544 }
545 #endif // VERIFY_HEAP
546
547 } // namespace internal
548 } // namespace v8
549