• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Long (arbitrary precision) integer object implementation */
2 
3 /* XXX The functional organization of this file is terrible */
4 
5 #include "Python.h"
6 #include "longintrepr.h"
7 
8 #include <float.h>
9 #include <ctype.h>
10 #include <stddef.h>
11 
12 #include "clinic/longobject.c.h"
13 /*[clinic input]
14 class int "PyObject *" "&PyLong_Type"
15 [clinic start generated code]*/
16 /*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
17 
18 #ifndef NSMALLPOSINTS
19 #define NSMALLPOSINTS           257
20 #endif
21 #ifndef NSMALLNEGINTS
22 #define NSMALLNEGINTS           5
23 #endif
24 
25 _Py_IDENTIFIER(little);
26 _Py_IDENTIFIER(big);
27 
28 /* convert a PyLong of size 1, 0 or -1 to an sdigit */
29 #define MEDIUM_VALUE(x) (assert(-1 <= Py_SIZE(x) && Py_SIZE(x) <= 1),   \
30          Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] :   \
31              (Py_SIZE(x) == 0 ? (sdigit)0 :                             \
32               (sdigit)(x)->ob_digit[0]))
33 
34 PyObject *_PyLong_Zero = NULL;
35 PyObject *_PyLong_One = NULL;
36 
37 #if NSMALLNEGINTS + NSMALLPOSINTS > 0
38 /* Small integers are preallocated in this array so that they
39    can be shared.
40    The integers that are preallocated are those in the range
41    -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
42 */
43 static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
44 #ifdef COUNT_ALLOCS
45 Py_ssize_t _Py_quick_int_allocs, _Py_quick_neg_int_allocs;
46 #endif
47 
48 static PyObject *
get_small_int(sdigit ival)49 get_small_int(sdigit ival)
50 {
51     PyObject *v;
52     assert(-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS);
53     v = (PyObject *)&small_ints[ival + NSMALLNEGINTS];
54     Py_INCREF(v);
55 #ifdef COUNT_ALLOCS
56     if (ival >= 0)
57         _Py_quick_int_allocs++;
58     else
59         _Py_quick_neg_int_allocs++;
60 #endif
61     return v;
62 }
63 #define CHECK_SMALL_INT(ival) \
64     do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \
65         return get_small_int((sdigit)ival); \
66     } while(0)
67 
68 static PyLongObject *
maybe_small_long(PyLongObject * v)69 maybe_small_long(PyLongObject *v)
70 {
71     if (v && Py_ABS(Py_SIZE(v)) <= 1) {
72         sdigit ival = MEDIUM_VALUE(v);
73         if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
74             Py_DECREF(v);
75             return (PyLongObject *)get_small_int(ival);
76         }
77     }
78     return v;
79 }
80 #else
81 #define CHECK_SMALL_INT(ival)
82 #define maybe_small_long(val) (val)
83 #endif
84 
85 /* If a freshly-allocated int is already shared, it must
86    be a small integer, so negating it must go to PyLong_FromLong */
87 Py_LOCAL_INLINE(void)
_PyLong_Negate(PyLongObject ** x_p)88 _PyLong_Negate(PyLongObject **x_p)
89 {
90     PyLongObject *x;
91 
92     x = (PyLongObject *)*x_p;
93     if (Py_REFCNT(x) == 1) {
94         Py_SIZE(x) = -Py_SIZE(x);
95         return;
96     }
97 
98     *x_p = (PyLongObject *)PyLong_FromLong(-MEDIUM_VALUE(x));
99     Py_DECREF(x);
100 }
101 
102 /* For int multiplication, use the O(N**2) school algorithm unless
103  * both operands contain more than KARATSUBA_CUTOFF digits (this
104  * being an internal Python int digit, in base BASE).
105  */
106 #define KARATSUBA_CUTOFF 70
107 #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
108 
109 /* For exponentiation, use the binary left-to-right algorithm
110  * unless the exponent contains more than FIVEARY_CUTOFF digits.
111  * In that case, do 5 bits at a time.  The potential drawback is that
112  * a table of 2**5 intermediate results is computed.
113  */
114 #define FIVEARY_CUTOFF 8
115 
116 #define SIGCHECK(PyTryBlock)                    \
117     do {                                        \
118         if (PyErr_CheckSignals()) PyTryBlock    \
119     } while(0)
120 
121 /* Normalize (remove leading zeros from) an int object.
122    Doesn't attempt to free the storage--in most cases, due to the nature
123    of the algorithms used, this could save at most be one word anyway. */
124 
125 static PyLongObject *
long_normalize(PyLongObject * v)126 long_normalize(PyLongObject *v)
127 {
128     Py_ssize_t j = Py_ABS(Py_SIZE(v));
129     Py_ssize_t i = j;
130 
131     while (i > 0 && v->ob_digit[i-1] == 0)
132         --i;
133     if (i != j)
134         Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
135     return v;
136 }
137 
138 /* _PyLong_FromNbInt: Convert the given object to a PyLongObject
139    using the nb_int slot, if available.  Raise TypeError if either the
140    nb_int slot is not available or the result of the call to nb_int
141    returns something not of type int.
142 */
143 PyObject *
_PyLong_FromNbInt(PyObject * integral)144 _PyLong_FromNbInt(PyObject *integral)
145 {
146     PyNumberMethods *nb;
147     PyObject *result;
148 
149     /* Fast path for the case that we already have an int. */
150     if (PyLong_CheckExact(integral)) {
151         Py_INCREF(integral);
152         return integral;
153     }
154 
155     nb = Py_TYPE(integral)->tp_as_number;
156     if (nb == NULL || nb->nb_int == NULL) {
157         PyErr_Format(PyExc_TypeError,
158                      "an integer is required (got type %.200s)",
159                      Py_TYPE(integral)->tp_name);
160         return NULL;
161     }
162 
163     /* Convert using the nb_int slot, which should return something
164        of exact type int. */
165     result = nb->nb_int(integral);
166     if (!result || PyLong_CheckExact(result))
167         return result;
168     if (!PyLong_Check(result)) {
169         PyErr_Format(PyExc_TypeError,
170                      "__int__ returned non-int (type %.200s)",
171                      result->ob_type->tp_name);
172         Py_DECREF(result);
173         return NULL;
174     }
175     /* Issue #17576: warn if 'result' not of exact type int. */
176     if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
177             "__int__ returned non-int (type %.200s).  "
178             "The ability to return an instance of a strict subclass of int "
179             "is deprecated, and may be removed in a future version of Python.",
180             result->ob_type->tp_name)) {
181         Py_DECREF(result);
182         return NULL;
183     }
184     return result;
185 }
186 
187 /* Convert the given object to a PyLongObject using the nb_index or
188    nb_int slots, if available (the latter is deprecated).
189    Raise TypeError if either nb_index and nb_int slots are not
190    available or the result of the call to nb_index or nb_int
191    returns something not of type int.
192    Should be replaced with PyNumber_Index after the end of the
193    deprecation period.
194 */
195 PyObject *
_PyLong_FromNbIndexOrNbInt(PyObject * integral)196 _PyLong_FromNbIndexOrNbInt(PyObject *integral)
197 {
198     PyNumberMethods *nb;
199     PyObject *result;
200 
201     /* Fast path for the case that we already have an int. */
202     if (PyLong_CheckExact(integral)) {
203         Py_INCREF(integral);
204         return integral;
205     }
206 
207     nb = Py_TYPE(integral)->tp_as_number;
208     if (nb == NULL || (nb->nb_index == NULL && nb->nb_int == NULL)) {
209         PyErr_Format(PyExc_TypeError,
210                      "an integer is required (got type %.200s)",
211                      Py_TYPE(integral)->tp_name);
212         return NULL;
213     }
214 
215     if (nb->nb_index) {
216     /* Convert using the nb_index slot, which should return something
217        of exact type int. */
218         result = nb->nb_index(integral);
219         if (!result || PyLong_CheckExact(result))
220             return result;
221         if (!PyLong_Check(result)) {
222             PyErr_Format(PyExc_TypeError,
223                          "__index__ returned non-int (type %.200s)",
224                          result->ob_type->tp_name);
225             Py_DECREF(result);
226             return NULL;
227         }
228         /* Issue #17576: warn if 'result' not of exact type int. */
229         if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
230                 "__index__ returned non-int (type %.200s).  "
231                 "The ability to return an instance of a strict subclass of int "
232                 "is deprecated, and may be removed in a future version of Python.",
233                 result->ob_type->tp_name))
234         {
235             Py_DECREF(result);
236             return NULL;
237         }
238         return result;
239     }
240 
241     result = _PyLong_FromNbInt(integral);
242     if (result && PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
243             "an integer is required (got type %.200s).  "
244             "Implicit conversion to integers using __int__ is deprecated, "
245             "and may be removed in a future version of Python.",
246             Py_TYPE(integral)->tp_name))
247     {
248         Py_DECREF(result);
249         return NULL;
250     }
251     return result;
252 }
253 
254 
255 /* Allocate a new int object with size digits.
256    Return NULL and set exception if we run out of memory. */
257 
258 #define MAX_LONG_DIGITS \
259     ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
260 
261 PyLongObject *
_PyLong_New(Py_ssize_t size)262 _PyLong_New(Py_ssize_t size)
263 {
264     PyLongObject *result;
265     /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
266        sizeof(digit)*size.  Previous incarnations of this code used
267        sizeof(PyVarObject) instead of the offsetof, but this risks being
268        incorrect in the presence of padding between the PyVarObject header
269        and the digits. */
270     if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
271         PyErr_SetString(PyExc_OverflowError,
272                         "too many digits in integer");
273         return NULL;
274     }
275     result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
276                              size*sizeof(digit));
277     if (!result) {
278         PyErr_NoMemory();
279         return NULL;
280     }
281     return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);
282 }
283 
284 PyObject *
_PyLong_Copy(PyLongObject * src)285 _PyLong_Copy(PyLongObject *src)
286 {
287     PyLongObject *result;
288     Py_ssize_t i;
289 
290     assert(src != NULL);
291     i = Py_SIZE(src);
292     if (i < 0)
293         i = -(i);
294     if (i < 2) {
295         sdigit ival = MEDIUM_VALUE(src);
296         CHECK_SMALL_INT(ival);
297     }
298     result = _PyLong_New(i);
299     if (result != NULL) {
300         Py_SIZE(result) = Py_SIZE(src);
301         while (--i >= 0)
302             result->ob_digit[i] = src->ob_digit[i];
303     }
304     return (PyObject *)result;
305 }
306 
307 /* Create a new int object from a C long int */
308 
309 PyObject *
PyLong_FromLong(long ival)310 PyLong_FromLong(long ival)
311 {
312     PyLongObject *v;
313     unsigned long abs_ival;
314     unsigned long t;  /* unsigned so >> doesn't propagate sign bit */
315     int ndigits = 0;
316     int sign;
317 
318     CHECK_SMALL_INT(ival);
319 
320     if (ival < 0) {
321         /* negate: can't write this as abs_ival = -ival since that
322            invokes undefined behaviour when ival is LONG_MIN */
323         abs_ival = 0U-(unsigned long)ival;
324         sign = -1;
325     }
326     else {
327         abs_ival = (unsigned long)ival;
328         sign = ival == 0 ? 0 : 1;
329     }
330 
331     /* Fast path for single-digit ints */
332     if (!(abs_ival >> PyLong_SHIFT)) {
333         v = _PyLong_New(1);
334         if (v) {
335             Py_SIZE(v) = sign;
336             v->ob_digit[0] = Py_SAFE_DOWNCAST(
337                 abs_ival, unsigned long, digit);
338         }
339         return (PyObject*)v;
340     }
341 
342 #if PyLong_SHIFT==15
343     /* 2 digits */
344     if (!(abs_ival >> 2*PyLong_SHIFT)) {
345         v = _PyLong_New(2);
346         if (v) {
347             Py_SIZE(v) = 2*sign;
348             v->ob_digit[0] = Py_SAFE_DOWNCAST(
349                 abs_ival & PyLong_MASK, unsigned long, digit);
350             v->ob_digit[1] = Py_SAFE_DOWNCAST(
351                   abs_ival >> PyLong_SHIFT, unsigned long, digit);
352         }
353         return (PyObject*)v;
354     }
355 #endif
356 
357     /* Larger numbers: loop to determine number of digits */
358     t = abs_ival;
359     while (t) {
360         ++ndigits;
361         t >>= PyLong_SHIFT;
362     }
363     v = _PyLong_New(ndigits);
364     if (v != NULL) {
365         digit *p = v->ob_digit;
366         Py_SIZE(v) = ndigits*sign;
367         t = abs_ival;
368         while (t) {
369             *p++ = Py_SAFE_DOWNCAST(
370                 t & PyLong_MASK, unsigned long, digit);
371             t >>= PyLong_SHIFT;
372         }
373     }
374     return (PyObject *)v;
375 }
376 
377 /* Create a new int object from a C unsigned long int */
378 
379 PyObject *
PyLong_FromUnsignedLong(unsigned long ival)380 PyLong_FromUnsignedLong(unsigned long ival)
381 {
382     PyLongObject *v;
383     unsigned long t;
384     int ndigits = 0;
385 
386     if (ival < PyLong_BASE)
387         return PyLong_FromLong(ival);
388     /* Count the number of Python digits. */
389     t = ival;
390     while (t) {
391         ++ndigits;
392         t >>= PyLong_SHIFT;
393     }
394     v = _PyLong_New(ndigits);
395     if (v != NULL) {
396         digit *p = v->ob_digit;
397         while (ival) {
398             *p++ = (digit)(ival & PyLong_MASK);
399             ival >>= PyLong_SHIFT;
400         }
401     }
402     return (PyObject *)v;
403 }
404 
405 /* Create a new int object from a C double */
406 
407 PyObject *
PyLong_FromDouble(double dval)408 PyLong_FromDouble(double dval)
409 {
410     PyLongObject *v;
411     double frac;
412     int i, ndig, expo, neg;
413     neg = 0;
414     if (Py_IS_INFINITY(dval)) {
415         PyErr_SetString(PyExc_OverflowError,
416                         "cannot convert float infinity to integer");
417         return NULL;
418     }
419     if (Py_IS_NAN(dval)) {
420         PyErr_SetString(PyExc_ValueError,
421                         "cannot convert float NaN to integer");
422         return NULL;
423     }
424     if (dval < 0.0) {
425         neg = 1;
426         dval = -dval;
427     }
428     frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
429     if (expo <= 0)
430         return PyLong_FromLong(0L);
431     ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
432     v = _PyLong_New(ndig);
433     if (v == NULL)
434         return NULL;
435     frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
436     for (i = ndig; --i >= 0; ) {
437         digit bits = (digit)frac;
438         v->ob_digit[i] = bits;
439         frac = frac - (double)bits;
440         frac = ldexp(frac, PyLong_SHIFT);
441     }
442     if (neg)
443         Py_SIZE(v) = -(Py_SIZE(v));
444     return (PyObject *)v;
445 }
446 
447 /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
448  * anything about what happens when a signed integer operation overflows,
449  * and some compilers think they're doing you a favor by being "clever"
450  * then.  The bit pattern for the largest positive signed long is
451  * (unsigned long)LONG_MAX, and for the smallest negative signed long
452  * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
453  * However, some other compilers warn about applying unary minus to an
454  * unsigned operand.  Hence the weird "0-".
455  */
456 #define PY_ABS_LONG_MIN         (0-(unsigned long)LONG_MIN)
457 #define PY_ABS_SSIZE_T_MIN      (0-(size_t)PY_SSIZE_T_MIN)
458 
459 /* Get a C long int from an int object or any object that has an __int__
460    method.
461 
462    On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
463    the result.  Otherwise *overflow is 0.
464 
465    For other errors (e.g., TypeError), return -1 and set an error condition.
466    In this case *overflow will be 0.
467 */
468 
469 long
PyLong_AsLongAndOverflow(PyObject * vv,int * overflow)470 PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
471 {
472     /* This version by Tim Peters */
473     PyLongObject *v;
474     unsigned long x, prev;
475     long res;
476     Py_ssize_t i;
477     int sign;
478     int do_decref = 0; /* if nb_int was called */
479 
480     *overflow = 0;
481     if (vv == NULL) {
482         PyErr_BadInternalCall();
483         return -1;
484     }
485 
486     if (PyLong_Check(vv)) {
487         v = (PyLongObject *)vv;
488     }
489     else {
490         v = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(vv);
491         if (v == NULL)
492             return -1;
493         do_decref = 1;
494     }
495 
496     res = -1;
497     i = Py_SIZE(v);
498 
499     switch (i) {
500     case -1:
501         res = -(sdigit)v->ob_digit[0];
502         break;
503     case 0:
504         res = 0;
505         break;
506     case 1:
507         res = v->ob_digit[0];
508         break;
509     default:
510         sign = 1;
511         x = 0;
512         if (i < 0) {
513             sign = -1;
514             i = -(i);
515         }
516         while (--i >= 0) {
517             prev = x;
518             x = (x << PyLong_SHIFT) | v->ob_digit[i];
519             if ((x >> PyLong_SHIFT) != prev) {
520                 *overflow = sign;
521                 goto exit;
522             }
523         }
524         /* Haven't lost any bits, but casting to long requires extra
525          * care (see comment above).
526          */
527         if (x <= (unsigned long)LONG_MAX) {
528             res = (long)x * sign;
529         }
530         else if (sign < 0 && x == PY_ABS_LONG_MIN) {
531             res = LONG_MIN;
532         }
533         else {
534             *overflow = sign;
535             /* res is already set to -1 */
536         }
537     }
538   exit:
539     if (do_decref) {
540         Py_DECREF(v);
541     }
542     return res;
543 }
544 
545 /* Get a C long int from an int object or any object that has an __int__
546    method.  Return -1 and set an error if overflow occurs. */
547 
548 long
PyLong_AsLong(PyObject * obj)549 PyLong_AsLong(PyObject *obj)
550 {
551     int overflow;
552     long result = PyLong_AsLongAndOverflow(obj, &overflow);
553     if (overflow) {
554         /* XXX: could be cute and give a different
555            message for overflow == -1 */
556         PyErr_SetString(PyExc_OverflowError,
557                         "Python int too large to convert to C long");
558     }
559     return result;
560 }
561 
562 /* Get a C int from an int object or any object that has an __int__
563    method.  Return -1 and set an error if overflow occurs. */
564 
565 int
_PyLong_AsInt(PyObject * obj)566 _PyLong_AsInt(PyObject *obj)
567 {
568     int overflow;
569     long result = PyLong_AsLongAndOverflow(obj, &overflow);
570     if (overflow || result > INT_MAX || result < INT_MIN) {
571         /* XXX: could be cute and give a different
572            message for overflow == -1 */
573         PyErr_SetString(PyExc_OverflowError,
574                         "Python int too large to convert to C int");
575         return -1;
576     }
577     return (int)result;
578 }
579 
580 /* Get a Py_ssize_t from an int object.
581    Returns -1 and sets an error condition if overflow occurs. */
582 
583 Py_ssize_t
PyLong_AsSsize_t(PyObject * vv)584 PyLong_AsSsize_t(PyObject *vv) {
585     PyLongObject *v;
586     size_t x, prev;
587     Py_ssize_t i;
588     int sign;
589 
590     if (vv == NULL) {
591         PyErr_BadInternalCall();
592         return -1;
593     }
594     if (!PyLong_Check(vv)) {
595         PyErr_SetString(PyExc_TypeError, "an integer is required");
596         return -1;
597     }
598 
599     v = (PyLongObject *)vv;
600     i = Py_SIZE(v);
601     switch (i) {
602     case -1: return -(sdigit)v->ob_digit[0];
603     case 0: return 0;
604     case 1: return v->ob_digit[0];
605     }
606     sign = 1;
607     x = 0;
608     if (i < 0) {
609         sign = -1;
610         i = -(i);
611     }
612     while (--i >= 0) {
613         prev = x;
614         x = (x << PyLong_SHIFT) | v->ob_digit[i];
615         if ((x >> PyLong_SHIFT) != prev)
616             goto overflow;
617     }
618     /* Haven't lost any bits, but casting to a signed type requires
619      * extra care (see comment above).
620      */
621     if (x <= (size_t)PY_SSIZE_T_MAX) {
622         return (Py_ssize_t)x * sign;
623     }
624     else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
625         return PY_SSIZE_T_MIN;
626     }
627     /* else overflow */
628 
629   overflow:
630     PyErr_SetString(PyExc_OverflowError,
631                     "Python int too large to convert to C ssize_t");
632     return -1;
633 }
634 
635 /* Get a C unsigned long int from an int object.
636    Returns -1 and sets an error condition if overflow occurs. */
637 
638 unsigned long
PyLong_AsUnsignedLong(PyObject * vv)639 PyLong_AsUnsignedLong(PyObject *vv)
640 {
641     PyLongObject *v;
642     unsigned long x, prev;
643     Py_ssize_t i;
644 
645     if (vv == NULL) {
646         PyErr_BadInternalCall();
647         return (unsigned long)-1;
648     }
649     if (!PyLong_Check(vv)) {
650         PyErr_SetString(PyExc_TypeError, "an integer is required");
651         return (unsigned long)-1;
652     }
653 
654     v = (PyLongObject *)vv;
655     i = Py_SIZE(v);
656     x = 0;
657     if (i < 0) {
658         PyErr_SetString(PyExc_OverflowError,
659                         "can't convert negative value to unsigned int");
660         return (unsigned long) -1;
661     }
662     switch (i) {
663     case 0: return 0;
664     case 1: return v->ob_digit[0];
665     }
666     while (--i >= 0) {
667         prev = x;
668         x = (x << PyLong_SHIFT) | v->ob_digit[i];
669         if ((x >> PyLong_SHIFT) != prev) {
670             PyErr_SetString(PyExc_OverflowError,
671                             "Python int too large to convert "
672                             "to C unsigned long");
673             return (unsigned long) -1;
674         }
675     }
676     return x;
677 }
678 
679 /* Get a C size_t from an int object. Returns (size_t)-1 and sets
680    an error condition if overflow occurs. */
681 
682 size_t
PyLong_AsSize_t(PyObject * vv)683 PyLong_AsSize_t(PyObject *vv)
684 {
685     PyLongObject *v;
686     size_t x, prev;
687     Py_ssize_t i;
688 
689     if (vv == NULL) {
690         PyErr_BadInternalCall();
691         return (size_t) -1;
692     }
693     if (!PyLong_Check(vv)) {
694         PyErr_SetString(PyExc_TypeError, "an integer is required");
695         return (size_t)-1;
696     }
697 
698     v = (PyLongObject *)vv;
699     i = Py_SIZE(v);
700     x = 0;
701     if (i < 0) {
702         PyErr_SetString(PyExc_OverflowError,
703                    "can't convert negative value to size_t");
704         return (size_t) -1;
705     }
706     switch (i) {
707     case 0: return 0;
708     case 1: return v->ob_digit[0];
709     }
710     while (--i >= 0) {
711         prev = x;
712         x = (x << PyLong_SHIFT) | v->ob_digit[i];
713         if ((x >> PyLong_SHIFT) != prev) {
714             PyErr_SetString(PyExc_OverflowError,
715                 "Python int too large to convert to C size_t");
716             return (size_t) -1;
717         }
718     }
719     return x;
720 }
721 
722 /* Get a C unsigned long int from an int object, ignoring the high bits.
723    Returns -1 and sets an error condition if an error occurs. */
724 
725 static unsigned long
_PyLong_AsUnsignedLongMask(PyObject * vv)726 _PyLong_AsUnsignedLongMask(PyObject *vv)
727 {
728     PyLongObject *v;
729     unsigned long x;
730     Py_ssize_t i;
731     int sign;
732 
733     if (vv == NULL || !PyLong_Check(vv)) {
734         PyErr_BadInternalCall();
735         return (unsigned long) -1;
736     }
737     v = (PyLongObject *)vv;
738     i = Py_SIZE(v);
739     switch (i) {
740     case 0: return 0;
741     case 1: return v->ob_digit[0];
742     }
743     sign = 1;
744     x = 0;
745     if (i < 0) {
746         sign = -1;
747         i = -i;
748     }
749     while (--i >= 0) {
750         x = (x << PyLong_SHIFT) | v->ob_digit[i];
751     }
752     return x * sign;
753 }
754 
755 unsigned long
PyLong_AsUnsignedLongMask(PyObject * op)756 PyLong_AsUnsignedLongMask(PyObject *op)
757 {
758     PyLongObject *lo;
759     unsigned long val;
760 
761     if (op == NULL) {
762         PyErr_BadInternalCall();
763         return (unsigned long)-1;
764     }
765 
766     if (PyLong_Check(op)) {
767         return _PyLong_AsUnsignedLongMask(op);
768     }
769 
770     lo = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(op);
771     if (lo == NULL)
772         return (unsigned long)-1;
773 
774     val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
775     Py_DECREF(lo);
776     return val;
777 }
778 
779 int
_PyLong_Sign(PyObject * vv)780 _PyLong_Sign(PyObject *vv)
781 {
782     PyLongObject *v = (PyLongObject *)vv;
783 
784     assert(v != NULL);
785     assert(PyLong_Check(v));
786 
787     return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
788 }
789 
790 /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
791    2**k if d is nonzero, else 0. */
792 
793 static const unsigned char BitLengthTable[32] = {
794     0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
795     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
796 };
797 
798 static int
bits_in_digit(digit d)799 bits_in_digit(digit d)
800 {
801     int d_bits = 0;
802     while (d >= 32) {
803         d_bits += 6;
804         d >>= 6;
805     }
806     d_bits += (int)BitLengthTable[d];
807     return d_bits;
808 }
809 
810 size_t
_PyLong_NumBits(PyObject * vv)811 _PyLong_NumBits(PyObject *vv)
812 {
813     PyLongObject *v = (PyLongObject *)vv;
814     size_t result = 0;
815     Py_ssize_t ndigits;
816     int msd_bits;
817 
818     assert(v != NULL);
819     assert(PyLong_Check(v));
820     ndigits = Py_ABS(Py_SIZE(v));
821     assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
822     if (ndigits > 0) {
823         digit msd = v->ob_digit[ndigits - 1];
824         if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT)
825             goto Overflow;
826         result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
827         msd_bits = bits_in_digit(msd);
828         if (SIZE_MAX - msd_bits < result)
829             goto Overflow;
830         result += msd_bits;
831     }
832     return result;
833 
834   Overflow:
835     PyErr_SetString(PyExc_OverflowError, "int has too many bits "
836                     "to express in a platform size_t");
837     return (size_t)-1;
838 }
839 
840 PyObject *
_PyLong_FromByteArray(const unsigned char * bytes,size_t n,int little_endian,int is_signed)841 _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
842                       int little_endian, int is_signed)
843 {
844     const unsigned char* pstartbyte;    /* LSB of bytes */
845     int incr;                           /* direction to move pstartbyte */
846     const unsigned char* pendbyte;      /* MSB of bytes */
847     size_t numsignificantbytes;         /* number of bytes that matter */
848     Py_ssize_t ndigits;                 /* number of Python int digits */
849     PyLongObject* v;                    /* result */
850     Py_ssize_t idigit = 0;              /* next free index in v->ob_digit */
851 
852     if (n == 0)
853         return PyLong_FromLong(0L);
854 
855     if (little_endian) {
856         pstartbyte = bytes;
857         pendbyte = bytes + n - 1;
858         incr = 1;
859     }
860     else {
861         pstartbyte = bytes + n - 1;
862         pendbyte = bytes;
863         incr = -1;
864     }
865 
866     if (is_signed)
867         is_signed = *pendbyte >= 0x80;
868 
869     /* Compute numsignificantbytes.  This consists of finding the most
870        significant byte.  Leading 0 bytes are insignificant if the number
871        is positive, and leading 0xff bytes if negative. */
872     {
873         size_t i;
874         const unsigned char* p = pendbyte;
875         const int pincr = -incr;  /* search MSB to LSB */
876         const unsigned char insignificant = is_signed ? 0xff : 0x00;
877 
878         for (i = 0; i < n; ++i, p += pincr) {
879             if (*p != insignificant)
880                 break;
881         }
882         numsignificantbytes = n - i;
883         /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
884            actually has 2 significant bytes.  OTOH, 0xff0001 ==
885            -0x00ffff, so we wouldn't *need* to bump it there; but we
886            do for 0xffff = -0x0001.  To be safe without bothering to
887            check every case, bump it regardless. */
888         if (is_signed && numsignificantbytes < n)
889             ++numsignificantbytes;
890     }
891 
892     /* How many Python int digits do we need?  We have
893        8*numsignificantbytes bits, and each Python int digit has
894        PyLong_SHIFT bits, so it's the ceiling of the quotient. */
895     /* catch overflow before it happens */
896     if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
897         PyErr_SetString(PyExc_OverflowError,
898                         "byte array too long to convert to int");
899         return NULL;
900     }
901     ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
902     v = _PyLong_New(ndigits);
903     if (v == NULL)
904         return NULL;
905 
906     /* Copy the bits over.  The tricky parts are computing 2's-comp on
907        the fly for signed numbers, and dealing with the mismatch between
908        8-bit bytes and (probably) 15-bit Python digits.*/
909     {
910         size_t i;
911         twodigits carry = 1;                    /* for 2's-comp calculation */
912         twodigits accum = 0;                    /* sliding register */
913         unsigned int accumbits = 0;             /* number of bits in accum */
914         const unsigned char* p = pstartbyte;
915 
916         for (i = 0; i < numsignificantbytes; ++i, p += incr) {
917             twodigits thisbyte = *p;
918             /* Compute correction for 2's comp, if needed. */
919             if (is_signed) {
920                 thisbyte = (0xff ^ thisbyte) + carry;
921                 carry = thisbyte >> 8;
922                 thisbyte &= 0xff;
923             }
924             /* Because we're going LSB to MSB, thisbyte is
925                more significant than what's already in accum,
926                so needs to be prepended to accum. */
927             accum |= thisbyte << accumbits;
928             accumbits += 8;
929             if (accumbits >= PyLong_SHIFT) {
930                 /* There's enough to fill a Python digit. */
931                 assert(idigit < ndigits);
932                 v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
933                 ++idigit;
934                 accum >>= PyLong_SHIFT;
935                 accumbits -= PyLong_SHIFT;
936                 assert(accumbits < PyLong_SHIFT);
937             }
938         }
939         assert(accumbits < PyLong_SHIFT);
940         if (accumbits) {
941             assert(idigit < ndigits);
942             v->ob_digit[idigit] = (digit)accum;
943             ++idigit;
944         }
945     }
946 
947     Py_SIZE(v) = is_signed ? -idigit : idigit;
948     return (PyObject *)long_normalize(v);
949 }
950 
951 int
_PyLong_AsByteArray(PyLongObject * v,unsigned char * bytes,size_t n,int little_endian,int is_signed)952 _PyLong_AsByteArray(PyLongObject* v,
953                     unsigned char* bytes, size_t n,
954                     int little_endian, int is_signed)
955 {
956     Py_ssize_t i;               /* index into v->ob_digit */
957     Py_ssize_t ndigits;         /* |v->ob_size| */
958     twodigits accum;            /* sliding register */
959     unsigned int accumbits;     /* # bits in accum */
960     int do_twos_comp;           /* store 2's-comp?  is_signed and v < 0 */
961     digit carry;                /* for computing 2's-comp */
962     size_t j;                   /* # bytes filled */
963     unsigned char* p;           /* pointer to next byte in bytes */
964     int pincr;                  /* direction to move p */
965 
966     assert(v != NULL && PyLong_Check(v));
967 
968     if (Py_SIZE(v) < 0) {
969         ndigits = -(Py_SIZE(v));
970         if (!is_signed) {
971             PyErr_SetString(PyExc_OverflowError,
972                             "can't convert negative int to unsigned");
973             return -1;
974         }
975         do_twos_comp = 1;
976     }
977     else {
978         ndigits = Py_SIZE(v);
979         do_twos_comp = 0;
980     }
981 
982     if (little_endian) {
983         p = bytes;
984         pincr = 1;
985     }
986     else {
987         p = bytes + n - 1;
988         pincr = -1;
989     }
990 
991     /* Copy over all the Python digits.
992        It's crucial that every Python digit except for the MSD contribute
993        exactly PyLong_SHIFT bits to the total, so first assert that the int is
994        normalized. */
995     assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
996     j = 0;
997     accum = 0;
998     accumbits = 0;
999     carry = do_twos_comp ? 1 : 0;
1000     for (i = 0; i < ndigits; ++i) {
1001         digit thisdigit = v->ob_digit[i];
1002         if (do_twos_comp) {
1003             thisdigit = (thisdigit ^ PyLong_MASK) + carry;
1004             carry = thisdigit >> PyLong_SHIFT;
1005             thisdigit &= PyLong_MASK;
1006         }
1007         /* Because we're going LSB to MSB, thisdigit is more
1008            significant than what's already in accum, so needs to be
1009            prepended to accum. */
1010         accum |= (twodigits)thisdigit << accumbits;
1011 
1012         /* The most-significant digit may be (probably is) at least
1013            partly empty. */
1014         if (i == ndigits - 1) {
1015             /* Count # of sign bits -- they needn't be stored,
1016              * although for signed conversion we need later to
1017              * make sure at least one sign bit gets stored. */
1018             digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
1019             while (s != 0) {
1020                 s >>= 1;
1021                 accumbits++;
1022             }
1023         }
1024         else
1025             accumbits += PyLong_SHIFT;
1026 
1027         /* Store as many bytes as possible. */
1028         while (accumbits >= 8) {
1029             if (j >= n)
1030                 goto Overflow;
1031             ++j;
1032             *p = (unsigned char)(accum & 0xff);
1033             p += pincr;
1034             accumbits -= 8;
1035             accum >>= 8;
1036         }
1037     }
1038 
1039     /* Store the straggler (if any). */
1040     assert(accumbits < 8);
1041     assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
1042     if (accumbits > 0) {
1043         if (j >= n)
1044             goto Overflow;
1045         ++j;
1046         if (do_twos_comp) {
1047             /* Fill leading bits of the byte with sign bits
1048                (appropriately pretending that the int had an
1049                infinite supply of sign bits). */
1050             accum |= (~(twodigits)0) << accumbits;
1051         }
1052         *p = (unsigned char)(accum & 0xff);
1053         p += pincr;
1054     }
1055     else if (j == n && n > 0 && is_signed) {
1056         /* The main loop filled the byte array exactly, so the code
1057            just above didn't get to ensure there's a sign bit, and the
1058            loop below wouldn't add one either.  Make sure a sign bit
1059            exists. */
1060         unsigned char msb = *(p - pincr);
1061         int sign_bit_set = msb >= 0x80;
1062         assert(accumbits == 0);
1063         if (sign_bit_set == do_twos_comp)
1064             return 0;
1065         else
1066             goto Overflow;
1067     }
1068 
1069     /* Fill remaining bytes with copies of the sign bit. */
1070     {
1071         unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
1072         for ( ; j < n; ++j, p += pincr)
1073             *p = signbyte;
1074     }
1075 
1076     return 0;
1077 
1078   Overflow:
1079     PyErr_SetString(PyExc_OverflowError, "int too big to convert");
1080     return -1;
1081 
1082 }
1083 
1084 /* Create a new int object from a C pointer */
1085 
1086 PyObject *
PyLong_FromVoidPtr(void * p)1087 PyLong_FromVoidPtr(void *p)
1088 {
1089 #if SIZEOF_VOID_P <= SIZEOF_LONG
1090     return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
1091 #else
1092 
1093 #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
1094 #   error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
1095 #endif
1096     return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
1097 #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
1098 
1099 }
1100 
1101 /* Get a C pointer from an int object. */
1102 
1103 void *
PyLong_AsVoidPtr(PyObject * vv)1104 PyLong_AsVoidPtr(PyObject *vv)
1105 {
1106 #if SIZEOF_VOID_P <= SIZEOF_LONG
1107     long x;
1108 
1109     if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
1110         x = PyLong_AsLong(vv);
1111     else
1112         x = PyLong_AsUnsignedLong(vv);
1113 #else
1114 
1115 #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
1116 #   error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
1117 #endif
1118     long long x;
1119 
1120     if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
1121         x = PyLong_AsLongLong(vv);
1122     else
1123         x = PyLong_AsUnsignedLongLong(vv);
1124 
1125 #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
1126 
1127     if (x == -1 && PyErr_Occurred())
1128         return NULL;
1129     return (void *)x;
1130 }
1131 
1132 /* Initial long long support by Chris Herborth (chrish@qnx.com), later
1133  * rewritten to use the newer PyLong_{As,From}ByteArray API.
1134  */
1135 
1136 #define PY_ABS_LLONG_MIN (0-(unsigned long long)PY_LLONG_MIN)
1137 
1138 /* Create a new int object from a C long long int. */
1139 
1140 PyObject *
PyLong_FromLongLong(long long ival)1141 PyLong_FromLongLong(long long ival)
1142 {
1143     PyLongObject *v;
1144     unsigned long long abs_ival;
1145     unsigned long long t;  /* unsigned so >> doesn't propagate sign bit */
1146     int ndigits = 0;
1147     int negative = 0;
1148 
1149     CHECK_SMALL_INT(ival);
1150     if (ival < 0) {
1151         /* avoid signed overflow on negation;  see comments
1152            in PyLong_FromLong above. */
1153         abs_ival = (unsigned long long)(-1-ival) + 1;
1154         negative = 1;
1155     }
1156     else {
1157         abs_ival = (unsigned long long)ival;
1158     }
1159 
1160     /* Count the number of Python digits.
1161        We used to pick 5 ("big enough for anything"), but that's a
1162        waste of time and space given that 5*15 = 75 bits are rarely
1163        needed. */
1164     t = abs_ival;
1165     while (t) {
1166         ++ndigits;
1167         t >>= PyLong_SHIFT;
1168     }
1169     v = _PyLong_New(ndigits);
1170     if (v != NULL) {
1171         digit *p = v->ob_digit;
1172         Py_SIZE(v) = negative ? -ndigits : ndigits;
1173         t = abs_ival;
1174         while (t) {
1175             *p++ = (digit)(t & PyLong_MASK);
1176             t >>= PyLong_SHIFT;
1177         }
1178     }
1179     return (PyObject *)v;
1180 }
1181 
1182 /* Create a new int object from a C unsigned long long int. */
1183 
1184 PyObject *
PyLong_FromUnsignedLongLong(unsigned long long ival)1185 PyLong_FromUnsignedLongLong(unsigned long long ival)
1186 {
1187     PyLongObject *v;
1188     unsigned long long t;
1189     int ndigits = 0;
1190 
1191     if (ival < PyLong_BASE)
1192         return PyLong_FromLong((long)ival);
1193     /* Count the number of Python digits. */
1194     t = ival;
1195     while (t) {
1196         ++ndigits;
1197         t >>= PyLong_SHIFT;
1198     }
1199     v = _PyLong_New(ndigits);
1200     if (v != NULL) {
1201         digit *p = v->ob_digit;
1202         while (ival) {
1203             *p++ = (digit)(ival & PyLong_MASK);
1204             ival >>= PyLong_SHIFT;
1205         }
1206     }
1207     return (PyObject *)v;
1208 }
1209 
1210 /* Create a new int object from a C Py_ssize_t. */
1211 
1212 PyObject *
PyLong_FromSsize_t(Py_ssize_t ival)1213 PyLong_FromSsize_t(Py_ssize_t ival)
1214 {
1215     PyLongObject *v;
1216     size_t abs_ival;
1217     size_t t;  /* unsigned so >> doesn't propagate sign bit */
1218     int ndigits = 0;
1219     int negative = 0;
1220 
1221     CHECK_SMALL_INT(ival);
1222     if (ival < 0) {
1223         /* avoid signed overflow when ival = SIZE_T_MIN */
1224         abs_ival = (size_t)(-1-ival)+1;
1225         negative = 1;
1226     }
1227     else {
1228         abs_ival = (size_t)ival;
1229     }
1230 
1231     /* Count the number of Python digits. */
1232     t = abs_ival;
1233     while (t) {
1234         ++ndigits;
1235         t >>= PyLong_SHIFT;
1236     }
1237     v = _PyLong_New(ndigits);
1238     if (v != NULL) {
1239         digit *p = v->ob_digit;
1240         Py_SIZE(v) = negative ? -ndigits : ndigits;
1241         t = abs_ival;
1242         while (t) {
1243             *p++ = (digit)(t & PyLong_MASK);
1244             t >>= PyLong_SHIFT;
1245         }
1246     }
1247     return (PyObject *)v;
1248 }
1249 
1250 /* Create a new int object from a C size_t. */
1251 
1252 PyObject *
PyLong_FromSize_t(size_t ival)1253 PyLong_FromSize_t(size_t ival)
1254 {
1255     PyLongObject *v;
1256     size_t t;
1257     int ndigits = 0;
1258 
1259     if (ival < PyLong_BASE)
1260         return PyLong_FromLong((long)ival);
1261     /* Count the number of Python digits. */
1262     t = ival;
1263     while (t) {
1264         ++ndigits;
1265         t >>= PyLong_SHIFT;
1266     }
1267     v = _PyLong_New(ndigits);
1268     if (v != NULL) {
1269         digit *p = v->ob_digit;
1270         Py_SIZE(v) = ndigits;
1271         while (ival) {
1272             *p++ = (digit)(ival & PyLong_MASK);
1273             ival >>= PyLong_SHIFT;
1274         }
1275     }
1276     return (PyObject *)v;
1277 }
1278 
1279 /* Get a C long long int from an int object or any object that has an
1280    __int__ method.  Return -1 and set an error if overflow occurs. */
1281 
1282 long long
PyLong_AsLongLong(PyObject * vv)1283 PyLong_AsLongLong(PyObject *vv)
1284 {
1285     PyLongObject *v;
1286     long long bytes;
1287     int res;
1288     int do_decref = 0; /* if nb_int was called */
1289 
1290     if (vv == NULL) {
1291         PyErr_BadInternalCall();
1292         return -1;
1293     }
1294 
1295     if (PyLong_Check(vv)) {
1296         v = (PyLongObject *)vv;
1297     }
1298     else {
1299         v = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(vv);
1300         if (v == NULL)
1301             return -1;
1302         do_decref = 1;
1303     }
1304 
1305     res = 0;
1306     switch(Py_SIZE(v)) {
1307     case -1:
1308         bytes = -(sdigit)v->ob_digit[0];
1309         break;
1310     case 0:
1311         bytes = 0;
1312         break;
1313     case 1:
1314         bytes = v->ob_digit[0];
1315         break;
1316     default:
1317         res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
1318                                   SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1);
1319     }
1320     if (do_decref) {
1321         Py_DECREF(v);
1322     }
1323 
1324     /* Plan 9 can't handle long long in ? : expressions */
1325     if (res < 0)
1326         return (long long)-1;
1327     else
1328         return bytes;
1329 }
1330 
1331 /* Get a C unsigned long long int from an int object.
1332    Return -1 and set an error if overflow occurs. */
1333 
1334 unsigned long long
PyLong_AsUnsignedLongLong(PyObject * vv)1335 PyLong_AsUnsignedLongLong(PyObject *vv)
1336 {
1337     PyLongObject *v;
1338     unsigned long long bytes;
1339     int res;
1340 
1341     if (vv == NULL) {
1342         PyErr_BadInternalCall();
1343         return (unsigned long long)-1;
1344     }
1345     if (!PyLong_Check(vv)) {
1346         PyErr_SetString(PyExc_TypeError, "an integer is required");
1347         return (unsigned long long)-1;
1348     }
1349 
1350     v = (PyLongObject*)vv;
1351     switch(Py_SIZE(v)) {
1352     case 0: return 0;
1353     case 1: return v->ob_digit[0];
1354     }
1355 
1356     res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
1357                               SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0);
1358 
1359     /* Plan 9 can't handle long long in ? : expressions */
1360     if (res < 0)
1361         return (unsigned long long)res;
1362     else
1363         return bytes;
1364 }
1365 
1366 /* Get a C unsigned long int from an int object, ignoring the high bits.
1367    Returns -1 and sets an error condition if an error occurs. */
1368 
1369 static unsigned long long
_PyLong_AsUnsignedLongLongMask(PyObject * vv)1370 _PyLong_AsUnsignedLongLongMask(PyObject *vv)
1371 {
1372     PyLongObject *v;
1373     unsigned long long x;
1374     Py_ssize_t i;
1375     int sign;
1376 
1377     if (vv == NULL || !PyLong_Check(vv)) {
1378         PyErr_BadInternalCall();
1379         return (unsigned long long) -1;
1380     }
1381     v = (PyLongObject *)vv;
1382     switch(Py_SIZE(v)) {
1383     case 0: return 0;
1384     case 1: return v->ob_digit[0];
1385     }
1386     i = Py_SIZE(v);
1387     sign = 1;
1388     x = 0;
1389     if (i < 0) {
1390         sign = -1;
1391         i = -i;
1392     }
1393     while (--i >= 0) {
1394         x = (x << PyLong_SHIFT) | v->ob_digit[i];
1395     }
1396     return x * sign;
1397 }
1398 
1399 unsigned long long
PyLong_AsUnsignedLongLongMask(PyObject * op)1400 PyLong_AsUnsignedLongLongMask(PyObject *op)
1401 {
1402     PyLongObject *lo;
1403     unsigned long long val;
1404 
1405     if (op == NULL) {
1406         PyErr_BadInternalCall();
1407         return (unsigned long long)-1;
1408     }
1409 
1410     if (PyLong_Check(op)) {
1411         return _PyLong_AsUnsignedLongLongMask(op);
1412     }
1413 
1414     lo = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(op);
1415     if (lo == NULL)
1416         return (unsigned long long)-1;
1417 
1418     val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
1419     Py_DECREF(lo);
1420     return val;
1421 }
1422 
1423 /* Get a C long long int from an int object or any object that has an
1424    __int__ method.
1425 
1426    On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
1427    the result.  Otherwise *overflow is 0.
1428 
1429    For other errors (e.g., TypeError), return -1 and set an error condition.
1430    In this case *overflow will be 0.
1431 */
1432 
1433 long long
PyLong_AsLongLongAndOverflow(PyObject * vv,int * overflow)1434 PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
1435 {
1436     /* This version by Tim Peters */
1437     PyLongObject *v;
1438     unsigned long long x, prev;
1439     long long res;
1440     Py_ssize_t i;
1441     int sign;
1442     int do_decref = 0; /* if nb_int was called */
1443 
1444     *overflow = 0;
1445     if (vv == NULL) {
1446         PyErr_BadInternalCall();
1447         return -1;
1448     }
1449 
1450     if (PyLong_Check(vv)) {
1451         v = (PyLongObject *)vv;
1452     }
1453     else {
1454         v = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(vv);
1455         if (v == NULL)
1456             return -1;
1457         do_decref = 1;
1458     }
1459 
1460     res = -1;
1461     i = Py_SIZE(v);
1462 
1463     switch (i) {
1464     case -1:
1465         res = -(sdigit)v->ob_digit[0];
1466         break;
1467     case 0:
1468         res = 0;
1469         break;
1470     case 1:
1471         res = v->ob_digit[0];
1472         break;
1473     default:
1474         sign = 1;
1475         x = 0;
1476         if (i < 0) {
1477             sign = -1;
1478             i = -(i);
1479         }
1480         while (--i >= 0) {
1481             prev = x;
1482             x = (x << PyLong_SHIFT) + v->ob_digit[i];
1483             if ((x >> PyLong_SHIFT) != prev) {
1484                 *overflow = sign;
1485                 goto exit;
1486             }
1487         }
1488         /* Haven't lost any bits, but casting to long requires extra
1489          * care (see comment above).
1490          */
1491         if (x <= (unsigned long long)PY_LLONG_MAX) {
1492             res = (long long)x * sign;
1493         }
1494         else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
1495             res = PY_LLONG_MIN;
1496         }
1497         else {
1498             *overflow = sign;
1499             /* res is already set to -1 */
1500         }
1501     }
1502   exit:
1503     if (do_decref) {
1504         Py_DECREF(v);
1505     }
1506     return res;
1507 }
1508 
1509 int
_PyLong_UnsignedShort_Converter(PyObject * obj,void * ptr)1510 _PyLong_UnsignedShort_Converter(PyObject *obj, void *ptr)
1511 {
1512     unsigned long uval;
1513 
1514     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
1515         PyErr_SetString(PyExc_ValueError, "value must be positive");
1516         return 0;
1517     }
1518     uval = PyLong_AsUnsignedLong(obj);
1519     if (uval == (unsigned long)-1 && PyErr_Occurred())
1520         return 0;
1521     if (uval > USHRT_MAX) {
1522         PyErr_SetString(PyExc_OverflowError,
1523                         "Python int too large for C unsigned short");
1524         return 0;
1525     }
1526 
1527     *(unsigned short *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned short);
1528     return 1;
1529 }
1530 
1531 int
_PyLong_UnsignedInt_Converter(PyObject * obj,void * ptr)1532 _PyLong_UnsignedInt_Converter(PyObject *obj, void *ptr)
1533 {
1534     unsigned long uval;
1535 
1536     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
1537         PyErr_SetString(PyExc_ValueError, "value must be positive");
1538         return 0;
1539     }
1540     uval = PyLong_AsUnsignedLong(obj);
1541     if (uval == (unsigned long)-1 && PyErr_Occurred())
1542         return 0;
1543     if (uval > UINT_MAX) {
1544         PyErr_SetString(PyExc_OverflowError,
1545                         "Python int too large for C unsigned int");
1546         return 0;
1547     }
1548 
1549     *(unsigned int *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned int);
1550     return 1;
1551 }
1552 
1553 int
_PyLong_UnsignedLong_Converter(PyObject * obj,void * ptr)1554 _PyLong_UnsignedLong_Converter(PyObject *obj, void *ptr)
1555 {
1556     unsigned long uval;
1557 
1558     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
1559         PyErr_SetString(PyExc_ValueError, "value must be positive");
1560         return 0;
1561     }
1562     uval = PyLong_AsUnsignedLong(obj);
1563     if (uval == (unsigned long)-1 && PyErr_Occurred())
1564         return 0;
1565 
1566     *(unsigned long *)ptr = uval;
1567     return 1;
1568 }
1569 
1570 int
_PyLong_UnsignedLongLong_Converter(PyObject * obj,void * ptr)1571 _PyLong_UnsignedLongLong_Converter(PyObject *obj, void *ptr)
1572 {
1573     unsigned long long uval;
1574 
1575     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
1576         PyErr_SetString(PyExc_ValueError, "value must be positive");
1577         return 0;
1578     }
1579     uval = PyLong_AsUnsignedLongLong(obj);
1580     if (uval == (unsigned long long)-1 && PyErr_Occurred())
1581         return 0;
1582 
1583     *(unsigned long long *)ptr = uval;
1584     return 1;
1585 }
1586 
1587 int
_PyLong_Size_t_Converter(PyObject * obj,void * ptr)1588 _PyLong_Size_t_Converter(PyObject *obj, void *ptr)
1589 {
1590     size_t uval;
1591 
1592     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
1593         PyErr_SetString(PyExc_ValueError, "value must be positive");
1594         return 0;
1595     }
1596     uval = PyLong_AsSize_t(obj);
1597     if (uval == (size_t)-1 && PyErr_Occurred())
1598         return 0;
1599 
1600     *(size_t *)ptr = uval;
1601     return 1;
1602 }
1603 
1604 
1605 #define CHECK_BINOP(v,w)                                \
1606     do {                                                \
1607         if (!PyLong_Check(v) || !PyLong_Check(w))       \
1608             Py_RETURN_NOTIMPLEMENTED;                   \
1609     } while(0)
1610 
1611 /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
1612  * is modified in place, by adding y to it.  Carries are propagated as far as
1613  * x[m-1], and the remaining carry (0 or 1) is returned.
1614  */
1615 static digit
v_iadd(digit * x,Py_ssize_t m,digit * y,Py_ssize_t n)1616 v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1617 {
1618     Py_ssize_t i;
1619     digit carry = 0;
1620 
1621     assert(m >= n);
1622     for (i = 0; i < n; ++i) {
1623         carry += x[i] + y[i];
1624         x[i] = carry & PyLong_MASK;
1625         carry >>= PyLong_SHIFT;
1626         assert((carry & 1) == carry);
1627     }
1628     for (; carry && i < m; ++i) {
1629         carry += x[i];
1630         x[i] = carry & PyLong_MASK;
1631         carry >>= PyLong_SHIFT;
1632         assert((carry & 1) == carry);
1633     }
1634     return carry;
1635 }
1636 
1637 /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
1638  * is modified in place, by subtracting y from it.  Borrows are propagated as
1639  * far as x[m-1], and the remaining borrow (0 or 1) is returned.
1640  */
1641 static digit
v_isub(digit * x,Py_ssize_t m,digit * y,Py_ssize_t n)1642 v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1643 {
1644     Py_ssize_t i;
1645     digit borrow = 0;
1646 
1647     assert(m >= n);
1648     for (i = 0; i < n; ++i) {
1649         borrow = x[i] - y[i] - borrow;
1650         x[i] = borrow & PyLong_MASK;
1651         borrow >>= PyLong_SHIFT;
1652         borrow &= 1;            /* keep only 1 sign bit */
1653     }
1654     for (; borrow && i < m; ++i) {
1655         borrow = x[i] - borrow;
1656         x[i] = borrow & PyLong_MASK;
1657         borrow >>= PyLong_SHIFT;
1658         borrow &= 1;
1659     }
1660     return borrow;
1661 }
1662 
1663 /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
1664  * result in z[0:m], and return the d bits shifted out of the top.
1665  */
1666 static digit
v_lshift(digit * z,digit * a,Py_ssize_t m,int d)1667 v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
1668 {
1669     Py_ssize_t i;
1670     digit carry = 0;
1671 
1672     assert(0 <= d && d < PyLong_SHIFT);
1673     for (i=0; i < m; i++) {
1674         twodigits acc = (twodigits)a[i] << d | carry;
1675         z[i] = (digit)acc & PyLong_MASK;
1676         carry = (digit)(acc >> PyLong_SHIFT);
1677     }
1678     return carry;
1679 }
1680 
1681 /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
1682  * result in z[0:m], and return the d bits shifted out of the bottom.
1683  */
1684 static digit
v_rshift(digit * z,digit * a,Py_ssize_t m,int d)1685 v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
1686 {
1687     Py_ssize_t i;
1688     digit carry = 0;
1689     digit mask = ((digit)1 << d) - 1U;
1690 
1691     assert(0 <= d && d < PyLong_SHIFT);
1692     for (i=m; i-- > 0;) {
1693         twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
1694         carry = (digit)acc & mask;
1695         z[i] = (digit)(acc >> d);
1696     }
1697     return carry;
1698 }
1699 
1700 /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
1701    in pout, and returning the remainder.  pin and pout point at the LSD.
1702    It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
1703    _PyLong_Format, but that should be done with great care since ints are
1704    immutable. */
1705 
1706 static digit
inplace_divrem1(digit * pout,digit * pin,Py_ssize_t size,digit n)1707 inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
1708 {
1709     twodigits rem = 0;
1710 
1711     assert(n > 0 && n <= PyLong_MASK);
1712     pin += size;
1713     pout += size;
1714     while (--size >= 0) {
1715         digit hi;
1716         rem = (rem << PyLong_SHIFT) | *--pin;
1717         *--pout = hi = (digit)(rem / n);
1718         rem -= (twodigits)hi * n;
1719     }
1720     return (digit)rem;
1721 }
1722 
1723 /* Divide an integer by a digit, returning both the quotient
1724    (as function result) and the remainder (through *prem).
1725    The sign of a is ignored; n should not be zero. */
1726 
1727 static PyLongObject *
divrem1(PyLongObject * a,digit n,digit * prem)1728 divrem1(PyLongObject *a, digit n, digit *prem)
1729 {
1730     const Py_ssize_t size = Py_ABS(Py_SIZE(a));
1731     PyLongObject *z;
1732 
1733     assert(n > 0 && n <= PyLong_MASK);
1734     z = _PyLong_New(size);
1735     if (z == NULL)
1736         return NULL;
1737     *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
1738     return long_normalize(z);
1739 }
1740 
1741 /* Convert an integer to a base 10 string.  Returns a new non-shared
1742    string.  (Return value is non-shared so that callers can modify the
1743    returned value if necessary.) */
1744 
1745 static int
long_to_decimal_string_internal(PyObject * aa,PyObject ** p_output,_PyUnicodeWriter * writer,_PyBytesWriter * bytes_writer,char ** bytes_str)1746 long_to_decimal_string_internal(PyObject *aa,
1747                                 PyObject **p_output,
1748                                 _PyUnicodeWriter *writer,
1749                                 _PyBytesWriter *bytes_writer,
1750                                 char **bytes_str)
1751 {
1752     PyLongObject *scratch, *a;
1753     PyObject *str = NULL;
1754     Py_ssize_t size, strlen, size_a, i, j;
1755     digit *pout, *pin, rem, tenpow;
1756     int negative;
1757     int d;
1758     enum PyUnicode_Kind kind;
1759 
1760     a = (PyLongObject *)aa;
1761     if (a == NULL || !PyLong_Check(a)) {
1762         PyErr_BadInternalCall();
1763         return -1;
1764     }
1765     size_a = Py_ABS(Py_SIZE(a));
1766     negative = Py_SIZE(a) < 0;
1767 
1768     /* quick and dirty upper bound for the number of digits
1769        required to express a in base _PyLong_DECIMAL_BASE:
1770 
1771          #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
1772 
1773        But log2(a) < size_a * PyLong_SHIFT, and
1774        log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
1775                                   > 3.3 * _PyLong_DECIMAL_SHIFT
1776 
1777          size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
1778              size_a + size_a / d < size_a + size_a / floor(d),
1779        where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
1780                  (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
1781     */
1782     d = (33 * _PyLong_DECIMAL_SHIFT) /
1783         (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
1784     assert(size_a < PY_SSIZE_T_MAX/2);
1785     size = 1 + size_a + size_a / d;
1786     scratch = _PyLong_New(size);
1787     if (scratch == NULL)
1788         return -1;
1789 
1790     /* convert array of base _PyLong_BASE digits in pin to an array of
1791        base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
1792        Volume 2 (3rd edn), section 4.4, Method 1b). */
1793     pin = a->ob_digit;
1794     pout = scratch->ob_digit;
1795     size = 0;
1796     for (i = size_a; --i >= 0; ) {
1797         digit hi = pin[i];
1798         for (j = 0; j < size; j++) {
1799             twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
1800             hi = (digit)(z / _PyLong_DECIMAL_BASE);
1801             pout[j] = (digit)(z - (twodigits)hi *
1802                               _PyLong_DECIMAL_BASE);
1803         }
1804         while (hi) {
1805             pout[size++] = hi % _PyLong_DECIMAL_BASE;
1806             hi /= _PyLong_DECIMAL_BASE;
1807         }
1808         /* check for keyboard interrupt */
1809         SIGCHECK({
1810                 Py_DECREF(scratch);
1811                 return -1;
1812             });
1813     }
1814     /* pout should have at least one digit, so that the case when a = 0
1815        works correctly */
1816     if (size == 0)
1817         pout[size++] = 0;
1818 
1819     /* calculate exact length of output string, and allocate */
1820     strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
1821     tenpow = 10;
1822     rem = pout[size-1];
1823     while (rem >= tenpow) {
1824         tenpow *= 10;
1825         strlen++;
1826     }
1827     if (writer) {
1828         if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
1829             Py_DECREF(scratch);
1830             return -1;
1831         }
1832         kind = writer->kind;
1833     }
1834     else if (bytes_writer) {
1835         *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, strlen);
1836         if (*bytes_str == NULL) {
1837             Py_DECREF(scratch);
1838             return -1;
1839         }
1840     }
1841     else {
1842         str = PyUnicode_New(strlen, '9');
1843         if (str == NULL) {
1844             Py_DECREF(scratch);
1845             return -1;
1846         }
1847         kind = PyUnicode_KIND(str);
1848     }
1849 
1850 #define WRITE_DIGITS(p)                                               \
1851     do {                                                              \
1852         /* pout[0] through pout[size-2] contribute exactly            \
1853            _PyLong_DECIMAL_SHIFT digits each */                       \
1854         for (i=0; i < size - 1; i++) {                                \
1855             rem = pout[i];                                            \
1856             for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {             \
1857                 *--p = '0' + rem % 10;                                \
1858                 rem /= 10;                                            \
1859             }                                                         \
1860         }                                                             \
1861         /* pout[size-1]: always produce at least one decimal digit */ \
1862         rem = pout[i];                                                \
1863         do {                                                          \
1864             *--p = '0' + rem % 10;                                    \
1865             rem /= 10;                                                \
1866         } while (rem != 0);                                           \
1867                                                                       \
1868         /* and sign */                                                \
1869         if (negative)                                                 \
1870             *--p = '-';                                               \
1871     } while (0)
1872 
1873 #define WRITE_UNICODE_DIGITS(TYPE)                                    \
1874     do {                                                              \
1875         if (writer)                                                   \
1876             p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
1877         else                                                          \
1878             p = (TYPE*)PyUnicode_DATA(str) + strlen;                  \
1879                                                                       \
1880         WRITE_DIGITS(p);                                              \
1881                                                                       \
1882         /* check we've counted correctly */                           \
1883         if (writer)                                                   \
1884             assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
1885         else                                                          \
1886             assert(p == (TYPE*)PyUnicode_DATA(str));                  \
1887     } while (0)
1888 
1889     /* fill the string right-to-left */
1890     if (bytes_writer) {
1891         char *p = *bytes_str + strlen;
1892         WRITE_DIGITS(p);
1893         assert(p == *bytes_str);
1894     }
1895     else if (kind == PyUnicode_1BYTE_KIND) {
1896         Py_UCS1 *p;
1897         WRITE_UNICODE_DIGITS(Py_UCS1);
1898     }
1899     else if (kind == PyUnicode_2BYTE_KIND) {
1900         Py_UCS2 *p;
1901         WRITE_UNICODE_DIGITS(Py_UCS2);
1902     }
1903     else {
1904         Py_UCS4 *p;
1905         assert (kind == PyUnicode_4BYTE_KIND);
1906         WRITE_UNICODE_DIGITS(Py_UCS4);
1907     }
1908 #undef WRITE_DIGITS
1909 #undef WRITE_UNICODE_DIGITS
1910 
1911     Py_DECREF(scratch);
1912     if (writer) {
1913         writer->pos += strlen;
1914     }
1915     else if (bytes_writer) {
1916         (*bytes_str) += strlen;
1917     }
1918     else {
1919         assert(_PyUnicode_CheckConsistency(str, 1));
1920         *p_output = (PyObject *)str;
1921     }
1922     return 0;
1923 }
1924 
1925 static PyObject *
long_to_decimal_string(PyObject * aa)1926 long_to_decimal_string(PyObject *aa)
1927 {
1928     PyObject *v;
1929     if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
1930         return NULL;
1931     return v;
1932 }
1933 
1934 /* Convert an int object to a string, using a given conversion base,
1935    which should be one of 2, 8 or 16.  Return a string object.
1936    If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
1937    if alternate is nonzero. */
1938 
1939 static int
long_format_binary(PyObject * aa,int base,int alternate,PyObject ** p_output,_PyUnicodeWriter * writer,_PyBytesWriter * bytes_writer,char ** bytes_str)1940 long_format_binary(PyObject *aa, int base, int alternate,
1941                    PyObject **p_output, _PyUnicodeWriter *writer,
1942                    _PyBytesWriter *bytes_writer, char **bytes_str)
1943 {
1944     PyLongObject *a = (PyLongObject *)aa;
1945     PyObject *v = NULL;
1946     Py_ssize_t sz;
1947     Py_ssize_t size_a;
1948     enum PyUnicode_Kind kind;
1949     int negative;
1950     int bits;
1951 
1952     assert(base == 2 || base == 8 || base == 16);
1953     if (a == NULL || !PyLong_Check(a)) {
1954         PyErr_BadInternalCall();
1955         return -1;
1956     }
1957     size_a = Py_ABS(Py_SIZE(a));
1958     negative = Py_SIZE(a) < 0;
1959 
1960     /* Compute a rough upper bound for the length of the string */
1961     switch (base) {
1962     case 16:
1963         bits = 4;
1964         break;
1965     case 8:
1966         bits = 3;
1967         break;
1968     case 2:
1969         bits = 1;
1970         break;
1971     default:
1972         Py_UNREACHABLE();
1973     }
1974 
1975     /* Compute exact length 'sz' of output string. */
1976     if (size_a == 0) {
1977         sz = 1;
1978     }
1979     else {
1980         Py_ssize_t size_a_in_bits;
1981         /* Ensure overflow doesn't occur during computation of sz. */
1982         if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
1983             PyErr_SetString(PyExc_OverflowError,
1984                             "int too large to format");
1985             return -1;
1986         }
1987         size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
1988                          bits_in_digit(a->ob_digit[size_a - 1]);
1989         /* Allow 1 character for a '-' sign. */
1990         sz = negative + (size_a_in_bits + (bits - 1)) / bits;
1991     }
1992     if (alternate) {
1993         /* 2 characters for prefix  */
1994         sz += 2;
1995     }
1996 
1997     if (writer) {
1998         if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
1999             return -1;
2000         kind = writer->kind;
2001     }
2002     else if (bytes_writer) {
2003         *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, sz);
2004         if (*bytes_str == NULL)
2005             return -1;
2006     }
2007     else {
2008         v = PyUnicode_New(sz, 'x');
2009         if (v == NULL)
2010             return -1;
2011         kind = PyUnicode_KIND(v);
2012     }
2013 
2014 #define WRITE_DIGITS(p)                                                 \
2015     do {                                                                \
2016         if (size_a == 0) {                                              \
2017             *--p = '0';                                                 \
2018         }                                                               \
2019         else {                                                          \
2020             /* JRH: special case for power-of-2 bases */                \
2021             twodigits accum = 0;                                        \
2022             int accumbits = 0;   /* # of bits in accum */               \
2023             Py_ssize_t i;                                               \
2024             for (i = 0; i < size_a; ++i) {                              \
2025                 accum |= (twodigits)a->ob_digit[i] << accumbits;        \
2026                 accumbits += PyLong_SHIFT;                              \
2027                 assert(accumbits >= bits);                              \
2028                 do {                                                    \
2029                     char cdigit;                                        \
2030                     cdigit = (char)(accum & (base - 1));                \
2031                     cdigit += (cdigit < 10) ? '0' : 'a'-10;             \
2032                     *--p = cdigit;                                      \
2033                     accumbits -= bits;                                  \
2034                     accum >>= bits;                                     \
2035                 } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
2036             }                                                           \
2037         }                                                               \
2038                                                                         \
2039         if (alternate) {                                                \
2040             if (base == 16)                                             \
2041                 *--p = 'x';                                             \
2042             else if (base == 8)                                         \
2043                 *--p = 'o';                                             \
2044             else /* (base == 2) */                                      \
2045                 *--p = 'b';                                             \
2046             *--p = '0';                                                 \
2047         }                                                               \
2048         if (negative)                                                   \
2049             *--p = '-';                                                 \
2050     } while (0)
2051 
2052 #define WRITE_UNICODE_DIGITS(TYPE)                                      \
2053     do {                                                                \
2054         if (writer)                                                     \
2055             p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
2056         else                                                            \
2057             p = (TYPE*)PyUnicode_DATA(v) + sz;                          \
2058                                                                         \
2059         WRITE_DIGITS(p);                                                \
2060                                                                         \
2061         if (writer)                                                     \
2062             assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
2063         else                                                            \
2064             assert(p == (TYPE*)PyUnicode_DATA(v));                      \
2065     } while (0)
2066 
2067     if (bytes_writer) {
2068         char *p = *bytes_str + sz;
2069         WRITE_DIGITS(p);
2070         assert(p == *bytes_str);
2071     }
2072     else if (kind == PyUnicode_1BYTE_KIND) {
2073         Py_UCS1 *p;
2074         WRITE_UNICODE_DIGITS(Py_UCS1);
2075     }
2076     else if (kind == PyUnicode_2BYTE_KIND) {
2077         Py_UCS2 *p;
2078         WRITE_UNICODE_DIGITS(Py_UCS2);
2079     }
2080     else {
2081         Py_UCS4 *p;
2082         assert (kind == PyUnicode_4BYTE_KIND);
2083         WRITE_UNICODE_DIGITS(Py_UCS4);
2084     }
2085 #undef WRITE_DIGITS
2086 #undef WRITE_UNICODE_DIGITS
2087 
2088     if (writer) {
2089         writer->pos += sz;
2090     }
2091     else if (bytes_writer) {
2092         (*bytes_str) += sz;
2093     }
2094     else {
2095         assert(_PyUnicode_CheckConsistency(v, 1));
2096         *p_output = v;
2097     }
2098     return 0;
2099 }
2100 
2101 PyObject *
_PyLong_Format(PyObject * obj,int base)2102 _PyLong_Format(PyObject *obj, int base)
2103 {
2104     PyObject *str;
2105     int err;
2106     if (base == 10)
2107         err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
2108     else
2109         err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
2110     if (err == -1)
2111         return NULL;
2112     return str;
2113 }
2114 
2115 int
_PyLong_FormatWriter(_PyUnicodeWriter * writer,PyObject * obj,int base,int alternate)2116 _PyLong_FormatWriter(_PyUnicodeWriter *writer,
2117                      PyObject *obj,
2118                      int base, int alternate)
2119 {
2120     if (base == 10)
2121         return long_to_decimal_string_internal(obj, NULL, writer,
2122                                                NULL, NULL);
2123     else
2124         return long_format_binary(obj, base, alternate, NULL, writer,
2125                                   NULL, NULL);
2126 }
2127 
2128 char*
_PyLong_FormatBytesWriter(_PyBytesWriter * writer,char * str,PyObject * obj,int base,int alternate)2129 _PyLong_FormatBytesWriter(_PyBytesWriter *writer, char *str,
2130                           PyObject *obj,
2131                           int base, int alternate)
2132 {
2133     char *str2;
2134     int res;
2135     str2 = str;
2136     if (base == 10)
2137         res = long_to_decimal_string_internal(obj, NULL, NULL,
2138                                               writer, &str2);
2139     else
2140         res = long_format_binary(obj, base, alternate, NULL, NULL,
2141                                  writer, &str2);
2142     if (res < 0)
2143         return NULL;
2144     assert(str2 != NULL);
2145     return str2;
2146 }
2147 
2148 /* Table of digit values for 8-bit string -> integer conversion.
2149  * '0' maps to 0, ..., '9' maps to 9.
2150  * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
2151  * All other indices map to 37.
2152  * Note that when converting a base B string, a char c is a legitimate
2153  * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
2154  */
2155 unsigned char _PyLong_DigitValue[256] = {
2156     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2157     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2158     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2159     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
2160     37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
2161     25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
2162     37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
2163     25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
2164     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2165     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2166     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2167     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2168     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2169     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2170     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2171     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2172 };
2173 
2174 /* *str points to the first digit in a string of base `base` digits.  base
2175  * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first
2176  * non-digit (which may be *str!).  A normalized int is returned.
2177  * The point to this routine is that it takes time linear in the number of
2178  * string characters.
2179  *
2180  * Return values:
2181  *   -1 on syntax error (exception needs to be set, *res is untouched)
2182  *   0 else (exception may be set, in that case *res is set to NULL)
2183  */
2184 static int
long_from_binary_base(const char ** str,int base,PyLongObject ** res)2185 long_from_binary_base(const char **str, int base, PyLongObject **res)
2186 {
2187     const char *p = *str;
2188     const char *start = p;
2189     char prev = 0;
2190     Py_ssize_t digits = 0;
2191     int bits_per_char;
2192     Py_ssize_t n;
2193     PyLongObject *z;
2194     twodigits accum;
2195     int bits_in_accum;
2196     digit *pdigit;
2197 
2198     assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
2199     n = base;
2200     for (bits_per_char = -1; n; ++bits_per_char) {
2201         n >>= 1;
2202     }
2203     /* count digits and set p to end-of-string */
2204     while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
2205         if (*p == '_') {
2206             if (prev == '_') {
2207                 *str = p - 1;
2208                 return -1;
2209             }
2210         } else {
2211             ++digits;
2212         }
2213         prev = *p;
2214         ++p;
2215     }
2216     if (prev == '_') {
2217         /* Trailing underscore not allowed. */
2218         *str = p - 1;
2219         return -1;
2220     }
2221 
2222     *str = p;
2223     /* n <- the number of Python digits needed,
2224             = ceiling((digits * bits_per_char) / PyLong_SHIFT). */
2225     if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
2226         PyErr_SetString(PyExc_ValueError,
2227                         "int string too large to convert");
2228         *res = NULL;
2229         return 0;
2230     }
2231     n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
2232     z = _PyLong_New(n);
2233     if (z == NULL) {
2234         *res = NULL;
2235         return 0;
2236     }
2237     /* Read string from right, and fill in int from left; i.e.,
2238      * from least to most significant in both.
2239      */
2240     accum = 0;
2241     bits_in_accum = 0;
2242     pdigit = z->ob_digit;
2243     while (--p >= start) {
2244         int k;
2245         if (*p == '_') {
2246             continue;
2247         }
2248         k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
2249         assert(k >= 0 && k < base);
2250         accum |= (twodigits)k << bits_in_accum;
2251         bits_in_accum += bits_per_char;
2252         if (bits_in_accum >= PyLong_SHIFT) {
2253             *pdigit++ = (digit)(accum & PyLong_MASK);
2254             assert(pdigit - z->ob_digit <= n);
2255             accum >>= PyLong_SHIFT;
2256             bits_in_accum -= PyLong_SHIFT;
2257             assert(bits_in_accum < PyLong_SHIFT);
2258         }
2259     }
2260     if (bits_in_accum) {
2261         assert(bits_in_accum <= PyLong_SHIFT);
2262         *pdigit++ = (digit)accum;
2263         assert(pdigit - z->ob_digit <= n);
2264     }
2265     while (pdigit - z->ob_digit < n)
2266         *pdigit++ = 0;
2267     *res = long_normalize(z);
2268     return 0;
2269 }
2270 
2271 /* Parses an int from a bytestring. Leading and trailing whitespace will be
2272  * ignored.
2273  *
2274  * If successful, a PyLong object will be returned and 'pend' will be pointing
2275  * to the first unused byte unless it's NULL.
2276  *
2277  * If unsuccessful, NULL will be returned.
2278  */
2279 PyObject *
PyLong_FromString(const char * str,char ** pend,int base)2280 PyLong_FromString(const char *str, char **pend, int base)
2281 {
2282     int sign = 1, error_if_nonzero = 0;
2283     const char *start, *orig_str = str;
2284     PyLongObject *z = NULL;
2285     PyObject *strobj;
2286     Py_ssize_t slen;
2287 
2288     if ((base != 0 && base < 2) || base > 36) {
2289         PyErr_SetString(PyExc_ValueError,
2290                         "int() arg 2 must be >= 2 and <= 36");
2291         return NULL;
2292     }
2293     while (*str != '\0' && Py_ISSPACE(Py_CHARMASK(*str))) {
2294         str++;
2295     }
2296     if (*str == '+') {
2297         ++str;
2298     }
2299     else if (*str == '-') {
2300         ++str;
2301         sign = -1;
2302     }
2303     if (base == 0) {
2304         if (str[0] != '0') {
2305             base = 10;
2306         }
2307         else if (str[1] == 'x' || str[1] == 'X') {
2308             base = 16;
2309         }
2310         else if (str[1] == 'o' || str[1] == 'O') {
2311             base = 8;
2312         }
2313         else if (str[1] == 'b' || str[1] == 'B') {
2314             base = 2;
2315         }
2316         else {
2317             /* "old" (C-style) octal literal, now invalid.
2318                it might still be zero though */
2319             error_if_nonzero = 1;
2320             base = 10;
2321         }
2322     }
2323     if (str[0] == '0' &&
2324         ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
2325          (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
2326          (base == 2  && (str[1] == 'b' || str[1] == 'B')))) {
2327         str += 2;
2328         /* One underscore allowed here. */
2329         if (*str == '_') {
2330             ++str;
2331         }
2332     }
2333     if (str[0] == '_') {
2334         /* May not start with underscores. */
2335         goto onError;
2336     }
2337 
2338     start = str;
2339     if ((base & (base - 1)) == 0) {
2340         int res = long_from_binary_base(&str, base, &z);
2341         if (res < 0) {
2342             /* Syntax error. */
2343             goto onError;
2344         }
2345     }
2346     else {
2347 /***
2348 Binary bases can be converted in time linear in the number of digits, because
2349 Python's representation base is binary.  Other bases (including decimal!) use
2350 the simple quadratic-time algorithm below, complicated by some speed tricks.
2351 
2352 First some math:  the largest integer that can be expressed in N base-B digits
2353 is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
2354 case number of Python digits needed to hold it is the smallest integer n s.t.
2355 
2356     BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
2357     BASE**n >= B**N      [taking logs to base BASE]
2358     n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
2359 
2360 The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
2361 this quickly.  A Python int with that much space is reserved near the start,
2362 and the result is computed into it.
2363 
2364 The input string is actually treated as being in base base**i (i.e., i digits
2365 are processed at a time), where two more static arrays hold:
2366 
2367     convwidth_base[base] = the largest integer i such that base**i <= BASE
2368     convmultmax_base[base] = base ** convwidth_base[base]
2369 
2370 The first of these is the largest i such that i consecutive input digits
2371 must fit in a single Python digit.  The second is effectively the input
2372 base we're really using.
2373 
2374 Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
2375 convmultmax_base[base], the result is "simply"
2376 
2377    (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
2378 
2379 where B = convmultmax_base[base].
2380 
2381 Error analysis:  as above, the number of Python digits `n` needed is worst-
2382 case
2383 
2384     n >= N * log(B)/log(BASE)
2385 
2386 where `N` is the number of input digits in base `B`.  This is computed via
2387 
2388     size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
2389 
2390 below.  Two numeric concerns are how much space this can waste, and whether
2391 the computed result can be too small.  To be concrete, assume BASE = 2**15,
2392 which is the default (and it's unlikely anyone changes that).
2393 
2394 Waste isn't a problem:  provided the first input digit isn't 0, the difference
2395 between the worst-case input with N digits and the smallest input with N
2396 digits is about a factor of B, but B is small compared to BASE so at most
2397 one allocated Python digit can remain unused on that count.  If
2398 N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
2399 and adding 1 returns a result 1 larger than necessary.  However, that can't
2400 happen:  whenever B is a power of 2, long_from_binary_base() is called
2401 instead, and it's impossible for B**i to be an integer power of 2**15 when
2402 B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
2403 an exact integer when B is not a power of 2, since B**i has a prime factor
2404 other than 2 in that case, but (2**15)**j's only prime factor is 2).
2405 
2406 The computed result can be too small if the true value of N*log(B)/log(BASE)
2407 is a little bit larger than an exact integer, but due to roundoff errors (in
2408 computing log(B), log(BASE), their quotient, and/or multiplying that by N)
2409 yields a numeric result a little less than that integer.  Unfortunately, "how
2410 close can a transcendental function get to an integer over some range?"
2411 questions are generally theoretically intractable.  Computer analysis via
2412 continued fractions is practical:  expand log(B)/log(BASE) via continued
2413 fractions, giving a sequence i/j of "the best" rational approximations.  Then
2414 j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
2415 we can get very close to being in trouble, but very rarely.  For example,
2416 76573 is a denominator in one of the continued-fraction approximations to
2417 log(10)/log(2**15), and indeed:
2418 
2419     >>> log(10)/log(2**15)*76573
2420     16958.000000654003
2421 
2422 is very close to an integer.  If we were working with IEEE single-precision,
2423 rounding errors could kill us.  Finding worst cases in IEEE double-precision
2424 requires better-than-double-precision log() functions, and Tim didn't bother.
2425 Instead the code checks to see whether the allocated space is enough as each
2426 new Python digit is added, and copies the whole thing to a larger int if not.
2427 This should happen extremely rarely, and in fact I don't have a test case
2428 that triggers it(!).  Instead the code was tested by artificially allocating
2429 just 1 digit at the start, so that the copying code was exercised for every
2430 digit beyond the first.
2431 ***/
2432         twodigits c;           /* current input character */
2433         Py_ssize_t size_z;
2434         Py_ssize_t digits = 0;
2435         int i;
2436         int convwidth;
2437         twodigits convmultmax, convmult;
2438         digit *pz, *pzstop;
2439         const char *scan, *lastdigit;
2440         char prev = 0;
2441 
2442         static double log_base_BASE[37] = {0.0e0,};
2443         static int convwidth_base[37] = {0,};
2444         static twodigits convmultmax_base[37] = {0,};
2445 
2446         if (log_base_BASE[base] == 0.0) {
2447             twodigits convmax = base;
2448             int i = 1;
2449 
2450             log_base_BASE[base] = (log((double)base) /
2451                                    log((double)PyLong_BASE));
2452             for (;;) {
2453                 twodigits next = convmax * base;
2454                 if (next > PyLong_BASE) {
2455                     break;
2456                 }
2457                 convmax = next;
2458                 ++i;
2459             }
2460             convmultmax_base[base] = convmax;
2461             assert(i > 0);
2462             convwidth_base[base] = i;
2463         }
2464 
2465         /* Find length of the string of numeric characters. */
2466         scan = str;
2467         lastdigit = str;
2468 
2469         while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base || *scan == '_') {
2470             if (*scan == '_') {
2471                 if (prev == '_') {
2472                     /* Only one underscore allowed. */
2473                     str = lastdigit + 1;
2474                     goto onError;
2475                 }
2476             }
2477             else {
2478                 ++digits;
2479                 lastdigit = scan;
2480             }
2481             prev = *scan;
2482             ++scan;
2483         }
2484         if (prev == '_') {
2485             /* Trailing underscore not allowed. */
2486             /* Set error pointer to first underscore. */
2487             str = lastdigit + 1;
2488             goto onError;
2489         }
2490 
2491         /* Create an int object that can contain the largest possible
2492          * integer with this base and length.  Note that there's no
2493          * need to initialize z->ob_digit -- no slot is read up before
2494          * being stored into.
2495          */
2496         double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
2497         if (fsize_z > (double)MAX_LONG_DIGITS) {
2498             /* The same exception as in _PyLong_New(). */
2499             PyErr_SetString(PyExc_OverflowError,
2500                             "too many digits in integer");
2501             return NULL;
2502         }
2503         size_z = (Py_ssize_t)fsize_z;
2504         /* Uncomment next line to test exceedingly rare copy code */
2505         /* size_z = 1; */
2506         assert(size_z > 0);
2507         z = _PyLong_New(size_z);
2508         if (z == NULL) {
2509             return NULL;
2510         }
2511         Py_SIZE(z) = 0;
2512 
2513         /* `convwidth` consecutive input digits are treated as a single
2514          * digit in base `convmultmax`.
2515          */
2516         convwidth = convwidth_base[base];
2517         convmultmax = convmultmax_base[base];
2518 
2519         /* Work ;-) */
2520         while (str < scan) {
2521             if (*str == '_') {
2522                 str++;
2523                 continue;
2524             }
2525             /* grab up to convwidth digits from the input string */
2526             c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
2527             for (i = 1; i < convwidth && str != scan; ++str) {
2528                 if (*str == '_') {
2529                     continue;
2530                 }
2531                 i++;
2532                 c = (twodigits)(c *  base +
2533                                 (int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
2534                 assert(c < PyLong_BASE);
2535             }
2536 
2537             convmult = convmultmax;
2538             /* Calculate the shift only if we couldn't get
2539              * convwidth digits.
2540              */
2541             if (i != convwidth) {
2542                 convmult = base;
2543                 for ( ; i > 1; --i) {
2544                     convmult *= base;
2545                 }
2546             }
2547 
2548             /* Multiply z by convmult, and add c. */
2549             pz = z->ob_digit;
2550             pzstop = pz + Py_SIZE(z);
2551             for (; pz < pzstop; ++pz) {
2552                 c += (twodigits)*pz * convmult;
2553                 *pz = (digit)(c & PyLong_MASK);
2554                 c >>= PyLong_SHIFT;
2555             }
2556             /* carry off the current end? */
2557             if (c) {
2558                 assert(c < PyLong_BASE);
2559                 if (Py_SIZE(z) < size_z) {
2560                     *pz = (digit)c;
2561                     ++Py_SIZE(z);
2562                 }
2563                 else {
2564                     PyLongObject *tmp;
2565                     /* Extremely rare.  Get more space. */
2566                     assert(Py_SIZE(z) == size_z);
2567                     tmp = _PyLong_New(size_z + 1);
2568                     if (tmp == NULL) {
2569                         Py_DECREF(z);
2570                         return NULL;
2571                     }
2572                     memcpy(tmp->ob_digit,
2573                            z->ob_digit,
2574                            sizeof(digit) * size_z);
2575                     Py_DECREF(z);
2576                     z = tmp;
2577                     z->ob_digit[size_z] = (digit)c;
2578                     ++size_z;
2579                 }
2580             }
2581         }
2582     }
2583     if (z == NULL) {
2584         return NULL;
2585     }
2586     if (error_if_nonzero) {
2587         /* reset the base to 0, else the exception message
2588            doesn't make too much sense */
2589         base = 0;
2590         if (Py_SIZE(z) != 0) {
2591             goto onError;
2592         }
2593         /* there might still be other problems, therefore base
2594            remains zero here for the same reason */
2595     }
2596     if (str == start) {
2597         goto onError;
2598     }
2599     if (sign < 0) {
2600         Py_SIZE(z) = -(Py_SIZE(z));
2601     }
2602     while (*str && Py_ISSPACE(Py_CHARMASK(*str))) {
2603         str++;
2604     }
2605     if (*str != '\0') {
2606         goto onError;
2607     }
2608     long_normalize(z);
2609     z = maybe_small_long(z);
2610     if (z == NULL) {
2611         return NULL;
2612     }
2613     if (pend != NULL) {
2614         *pend = (char *)str;
2615     }
2616     return (PyObject *) z;
2617 
2618   onError:
2619     if (pend != NULL) {
2620         *pend = (char *)str;
2621     }
2622     Py_XDECREF(z);
2623     slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
2624     strobj = PyUnicode_FromStringAndSize(orig_str, slen);
2625     if (strobj == NULL) {
2626         return NULL;
2627     }
2628     PyErr_Format(PyExc_ValueError,
2629                  "invalid literal for int() with base %d: %.200R",
2630                  base, strobj);
2631     Py_DECREF(strobj);
2632     return NULL;
2633 }
2634 
2635 /* Since PyLong_FromString doesn't have a length parameter,
2636  * check here for possible NULs in the string.
2637  *
2638  * Reports an invalid literal as a bytes object.
2639  */
2640 PyObject *
_PyLong_FromBytes(const char * s,Py_ssize_t len,int base)2641 _PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
2642 {
2643     PyObject *result, *strobj;
2644     char *end = NULL;
2645 
2646     result = PyLong_FromString(s, &end, base);
2647     if (end == NULL || (result != NULL && end == s + len))
2648         return result;
2649     Py_XDECREF(result);
2650     strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
2651     if (strobj != NULL) {
2652         PyErr_Format(PyExc_ValueError,
2653                      "invalid literal for int() with base %d: %.200R",
2654                      base, strobj);
2655         Py_DECREF(strobj);
2656     }
2657     return NULL;
2658 }
2659 
2660 PyObject *
PyLong_FromUnicode(Py_UNICODE * u,Py_ssize_t length,int base)2661 PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
2662 {
2663     PyObject *v, *unicode = PyUnicode_FromWideChar(u, length);
2664     if (unicode == NULL)
2665         return NULL;
2666     v = PyLong_FromUnicodeObject(unicode, base);
2667     Py_DECREF(unicode);
2668     return v;
2669 }
2670 
2671 PyObject *
PyLong_FromUnicodeObject(PyObject * u,int base)2672 PyLong_FromUnicodeObject(PyObject *u, int base)
2673 {
2674     PyObject *result, *asciidig;
2675     const char *buffer;
2676     char *end = NULL;
2677     Py_ssize_t buflen;
2678 
2679     asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
2680     if (asciidig == NULL)
2681         return NULL;
2682     assert(PyUnicode_IS_ASCII(asciidig));
2683     /* Simply get a pointer to existing ASCII characters. */
2684     buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
2685     assert(buffer != NULL);
2686 
2687     result = PyLong_FromString(buffer, &end, base);
2688     if (end == NULL || (result != NULL && end == buffer + buflen)) {
2689         Py_DECREF(asciidig);
2690         return result;
2691     }
2692     Py_DECREF(asciidig);
2693     Py_XDECREF(result);
2694     PyErr_Format(PyExc_ValueError,
2695                  "invalid literal for int() with base %d: %.200R",
2696                  base, u);
2697     return NULL;
2698 }
2699 
2700 /* forward */
2701 static PyLongObject *x_divrem
2702     (PyLongObject *, PyLongObject *, PyLongObject **);
2703 static PyObject *long_long(PyObject *v);
2704 
2705 /* Int division with remainder, top-level routine */
2706 
2707 static int
long_divrem(PyLongObject * a,PyLongObject * b,PyLongObject ** pdiv,PyLongObject ** prem)2708 long_divrem(PyLongObject *a, PyLongObject *b,
2709             PyLongObject **pdiv, PyLongObject **prem)
2710 {
2711     Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
2712     PyLongObject *z;
2713 
2714     if (size_b == 0) {
2715         PyErr_SetString(PyExc_ZeroDivisionError,
2716                         "integer division or modulo by zero");
2717         return -1;
2718     }
2719     if (size_a < size_b ||
2720         (size_a == size_b &&
2721          a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
2722         /* |a| < |b|. */
2723         *prem = (PyLongObject *)long_long((PyObject *)a);
2724         if (*prem == NULL) {
2725             return -1;
2726         }
2727         Py_INCREF(_PyLong_Zero);
2728         *pdiv = (PyLongObject*)_PyLong_Zero;
2729         return 0;
2730     }
2731     if (size_b == 1) {
2732         digit rem = 0;
2733         z = divrem1(a, b->ob_digit[0], &rem);
2734         if (z == NULL)
2735             return -1;
2736         *prem = (PyLongObject *) PyLong_FromLong((long)rem);
2737         if (*prem == NULL) {
2738             Py_DECREF(z);
2739             return -1;
2740         }
2741     }
2742     else {
2743         z = x_divrem(a, b, prem);
2744         if (z == NULL)
2745             return -1;
2746     }
2747     /* Set the signs.
2748        The quotient z has the sign of a*b;
2749        the remainder r has the sign of a,
2750        so a = b*z + r. */
2751     if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) {
2752         _PyLong_Negate(&z);
2753         if (z == NULL) {
2754             Py_CLEAR(*prem);
2755             return -1;
2756         }
2757     }
2758     if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
2759         _PyLong_Negate(prem);
2760         if (*prem == NULL) {
2761             Py_DECREF(z);
2762             Py_CLEAR(*prem);
2763             return -1;
2764         }
2765     }
2766     *pdiv = maybe_small_long(z);
2767     return 0;
2768 }
2769 
2770 /* Unsigned int division with remainder -- the algorithm.  The arguments v1
2771    and w1 should satisfy 2 <= Py_ABS(Py_SIZE(w1)) <= Py_ABS(Py_SIZE(v1)). */
2772 
2773 static PyLongObject *
x_divrem(PyLongObject * v1,PyLongObject * w1,PyLongObject ** prem)2774 x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
2775 {
2776     PyLongObject *v, *w, *a;
2777     Py_ssize_t i, k, size_v, size_w;
2778     int d;
2779     digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
2780     twodigits vv;
2781     sdigit zhi;
2782     stwodigits z;
2783 
2784     /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
2785        edn.), section 4.3.1, Algorithm D], except that we don't explicitly
2786        handle the special case when the initial estimate q for a quotient
2787        digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
2788        that won't overflow a digit. */
2789 
2790     /* allocate space; w will also be used to hold the final remainder */
2791     size_v = Py_ABS(Py_SIZE(v1));
2792     size_w = Py_ABS(Py_SIZE(w1));
2793     assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
2794     v = _PyLong_New(size_v+1);
2795     if (v == NULL) {
2796         *prem = NULL;
2797         return NULL;
2798     }
2799     w = _PyLong_New(size_w);
2800     if (w == NULL) {
2801         Py_DECREF(v);
2802         *prem = NULL;
2803         return NULL;
2804     }
2805 
2806     /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
2807        shift v1 left by the same amount.  Results go into w and v. */
2808     d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
2809     carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
2810     assert(carry == 0);
2811     carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
2812     if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
2813         v->ob_digit[size_v] = carry;
2814         size_v++;
2815     }
2816 
2817     /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
2818        at most (and usually exactly) k = size_v - size_w digits. */
2819     k = size_v - size_w;
2820     assert(k >= 0);
2821     a = _PyLong_New(k);
2822     if (a == NULL) {
2823         Py_DECREF(w);
2824         Py_DECREF(v);
2825         *prem = NULL;
2826         return NULL;
2827     }
2828     v0 = v->ob_digit;
2829     w0 = w->ob_digit;
2830     wm1 = w0[size_w-1];
2831     wm2 = w0[size_w-2];
2832     for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
2833         /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
2834            single-digit quotient q, remainder in vk[0:size_w]. */
2835 
2836         SIGCHECK({
2837                 Py_DECREF(a);
2838                 Py_DECREF(w);
2839                 Py_DECREF(v);
2840                 *prem = NULL;
2841                 return NULL;
2842             });
2843 
2844         /* estimate quotient digit q; may overestimate by 1 (rare) */
2845         vtop = vk[size_w];
2846         assert(vtop <= wm1);
2847         vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
2848         q = (digit)(vv / wm1);
2849         r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
2850         while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
2851                                      | vk[size_w-2])) {
2852             --q;
2853             r += wm1;
2854             if (r >= PyLong_BASE)
2855                 break;
2856         }
2857         assert(q <= PyLong_BASE);
2858 
2859         /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
2860         zhi = 0;
2861         for (i = 0; i < size_w; ++i) {
2862             /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
2863                -PyLong_BASE * q <= z < PyLong_BASE */
2864             z = (sdigit)vk[i] + zhi -
2865                 (stwodigits)q * (stwodigits)w0[i];
2866             vk[i] = (digit)z & PyLong_MASK;
2867             zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
2868                                                     z, PyLong_SHIFT);
2869         }
2870 
2871         /* add w back if q was too large (this branch taken rarely) */
2872         assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
2873         if ((sdigit)vtop + zhi < 0) {
2874             carry = 0;
2875             for (i = 0; i < size_w; ++i) {
2876                 carry += vk[i] + w0[i];
2877                 vk[i] = carry & PyLong_MASK;
2878                 carry >>= PyLong_SHIFT;
2879             }
2880             --q;
2881         }
2882 
2883         /* store quotient digit */
2884         assert(q < PyLong_BASE);
2885         *--ak = q;
2886     }
2887 
2888     /* unshift remainder; we reuse w to store the result */
2889     carry = v_rshift(w0, v0, size_w, d);
2890     assert(carry==0);
2891     Py_DECREF(v);
2892 
2893     *prem = long_normalize(w);
2894     return long_normalize(a);
2895 }
2896 
2897 /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
2898    abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is
2899    rounded to DBL_MANT_DIG significant bits using round-half-to-even.
2900    If a == 0, return 0.0 and set *e = 0.  If the resulting exponent
2901    e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
2902    -1.0. */
2903 
2904 /* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
2905 #if DBL_MANT_DIG == 53
2906 #define EXP2_DBL_MANT_DIG 9007199254740992.0
2907 #else
2908 #define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
2909 #endif
2910 
2911 double
_PyLong_Frexp(PyLongObject * a,Py_ssize_t * e)2912 _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
2913 {
2914     Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
2915     /* See below for why x_digits is always large enough. */
2916     digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
2917     double dx;
2918     /* Correction term for round-half-to-even rounding.  For a digit x,
2919        "x + half_even_correction[x & 7]" gives x rounded to the nearest
2920        multiple of 4, rounding ties to a multiple of 8. */
2921     static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
2922 
2923     a_size = Py_ABS(Py_SIZE(a));
2924     if (a_size == 0) {
2925         /* Special case for 0: significand 0.0, exponent 0. */
2926         *e = 0;
2927         return 0.0;
2928     }
2929     a_bits = bits_in_digit(a->ob_digit[a_size-1]);
2930     /* The following is an overflow-free version of the check
2931        "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
2932     if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
2933         (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
2934          a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
2935         goto overflow;
2936     a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
2937 
2938     /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
2939        (shifting left if a_bits <= DBL_MANT_DIG + 2).
2940 
2941        Number of digits needed for result: write // for floor division.
2942        Then if shifting left, we end up using
2943 
2944          1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
2945 
2946        digits.  If shifting right, we use
2947 
2948          a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
2949 
2950        digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
2951        the inequalities
2952 
2953          m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
2954          m // PyLong_SHIFT - n // PyLong_SHIFT <=
2955                                           1 + (m - n - 1) // PyLong_SHIFT,
2956 
2957        valid for any integers m and n, we find that x_size satisfies
2958 
2959          x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
2960 
2961        in both cases.
2962     */
2963     if (a_bits <= DBL_MANT_DIG + 2) {
2964         shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
2965         shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
2966         x_size = 0;
2967         while (x_size < shift_digits)
2968             x_digits[x_size++] = 0;
2969         rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
2970                        (int)shift_bits);
2971         x_size += a_size;
2972         x_digits[x_size++] = rem;
2973     }
2974     else {
2975         shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
2976         shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
2977         rem = v_rshift(x_digits, a->ob_digit + shift_digits,
2978                        a_size - shift_digits, (int)shift_bits);
2979         x_size = a_size - shift_digits;
2980         /* For correct rounding below, we need the least significant
2981            bit of x to be 'sticky' for this shift: if any of the bits
2982            shifted out was nonzero, we set the least significant bit
2983            of x. */
2984         if (rem)
2985             x_digits[0] |= 1;
2986         else
2987             while (shift_digits > 0)
2988                 if (a->ob_digit[--shift_digits]) {
2989                     x_digits[0] |= 1;
2990                     break;
2991                 }
2992     }
2993     assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
2994 
2995     /* Round, and convert to double. */
2996     x_digits[0] += half_even_correction[x_digits[0] & 7];
2997     dx = x_digits[--x_size];
2998     while (x_size > 0)
2999         dx = dx * PyLong_BASE + x_digits[--x_size];
3000 
3001     /* Rescale;  make correction if result is 1.0. */
3002     dx /= 4.0 * EXP2_DBL_MANT_DIG;
3003     if (dx == 1.0) {
3004         if (a_bits == PY_SSIZE_T_MAX)
3005             goto overflow;
3006         dx = 0.5;
3007         a_bits += 1;
3008     }
3009 
3010     *e = a_bits;
3011     return Py_SIZE(a) < 0 ? -dx : dx;
3012 
3013   overflow:
3014     /* exponent > PY_SSIZE_T_MAX */
3015     PyErr_SetString(PyExc_OverflowError,
3016                     "huge integer: number of bits overflows a Py_ssize_t");
3017     *e = 0;
3018     return -1.0;
3019 }
3020 
3021 /* Get a C double from an int object.  Rounds to the nearest double,
3022    using the round-half-to-even rule in the case of a tie. */
3023 
3024 double
PyLong_AsDouble(PyObject * v)3025 PyLong_AsDouble(PyObject *v)
3026 {
3027     Py_ssize_t exponent;
3028     double x;
3029 
3030     if (v == NULL) {
3031         PyErr_BadInternalCall();
3032         return -1.0;
3033     }
3034     if (!PyLong_Check(v)) {
3035         PyErr_SetString(PyExc_TypeError, "an integer is required");
3036         return -1.0;
3037     }
3038     if (Py_ABS(Py_SIZE(v)) <= 1) {
3039         /* Fast path; single digit long (31 bits) will cast safely
3040            to double.  This improves performance of FP/long operations
3041            by 20%.
3042         */
3043         return (double)MEDIUM_VALUE((PyLongObject *)v);
3044     }
3045     x = _PyLong_Frexp((PyLongObject *)v, &exponent);
3046     if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
3047         PyErr_SetString(PyExc_OverflowError,
3048                         "int too large to convert to float");
3049         return -1.0;
3050     }
3051     return ldexp(x, (int)exponent);
3052 }
3053 
3054 /* Methods */
3055 
3056 static int
long_compare(PyLongObject * a,PyLongObject * b)3057 long_compare(PyLongObject *a, PyLongObject *b)
3058 {
3059     Py_ssize_t sign;
3060 
3061     if (Py_SIZE(a) != Py_SIZE(b)) {
3062         sign = Py_SIZE(a) - Py_SIZE(b);
3063     }
3064     else {
3065         Py_ssize_t i = Py_ABS(Py_SIZE(a));
3066         while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
3067             ;
3068         if (i < 0)
3069             sign = 0;
3070         else {
3071             sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
3072             if (Py_SIZE(a) < 0)
3073                 sign = -sign;
3074         }
3075     }
3076     return sign < 0 ? -1 : sign > 0 ? 1 : 0;
3077 }
3078 
3079 static PyObject *
long_richcompare(PyObject * self,PyObject * other,int op)3080 long_richcompare(PyObject *self, PyObject *other, int op)
3081 {
3082     int result;
3083     CHECK_BINOP(self, other);
3084     if (self == other)
3085         result = 0;
3086     else
3087         result = long_compare((PyLongObject*)self, (PyLongObject*)other);
3088     Py_RETURN_RICHCOMPARE(result, 0, op);
3089 }
3090 
3091 static Py_hash_t
long_hash(PyLongObject * v)3092 long_hash(PyLongObject *v)
3093 {
3094     Py_uhash_t x;
3095     Py_ssize_t i;
3096     int sign;
3097 
3098     i = Py_SIZE(v);
3099     switch(i) {
3100     case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
3101     case 0: return 0;
3102     case 1: return v->ob_digit[0];
3103     }
3104     sign = 1;
3105     x = 0;
3106     if (i < 0) {
3107         sign = -1;
3108         i = -(i);
3109     }
3110     while (--i >= 0) {
3111         /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
3112            want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo
3113            _PyHASH_MODULUS.
3114 
3115            The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
3116            amounts to a rotation of the bits of x.  To see this, write
3117 
3118              x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
3119 
3120            where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
3121            PyLong_SHIFT bits of x (those that are shifted out of the
3122            original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
3123            _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
3124            bits of x, shifted up.  Then since 2**_PyHASH_BITS is
3125            congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
3126            congruent to y modulo _PyHASH_MODULUS.  So
3127 
3128              x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
3129 
3130            The right-hand side is just the result of rotating the
3131            _PyHASH_BITS bits of x left by PyLong_SHIFT places; since
3132            not all _PyHASH_BITS bits of x are 1s, the same is true
3133            after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
3134            the reduction of x*2**PyLong_SHIFT modulo
3135            _PyHASH_MODULUS. */
3136         x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
3137             (x >> (_PyHASH_BITS - PyLong_SHIFT));
3138         x += v->ob_digit[i];
3139         if (x >= _PyHASH_MODULUS)
3140             x -= _PyHASH_MODULUS;
3141     }
3142     x = x * sign;
3143     if (x == (Py_uhash_t)-1)
3144         x = (Py_uhash_t)-2;
3145     return (Py_hash_t)x;
3146 }
3147 
3148 
3149 /* Add the absolute values of two integers. */
3150 
3151 static PyLongObject *
x_add(PyLongObject * a,PyLongObject * b)3152 x_add(PyLongObject *a, PyLongObject *b)
3153 {
3154     Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
3155     PyLongObject *z;
3156     Py_ssize_t i;
3157     digit carry = 0;
3158 
3159     /* Ensure a is the larger of the two: */
3160     if (size_a < size_b) {
3161         { PyLongObject *temp = a; a = b; b = temp; }
3162         { Py_ssize_t size_temp = size_a;
3163             size_a = size_b;
3164             size_b = size_temp; }
3165     }
3166     z = _PyLong_New(size_a+1);
3167     if (z == NULL)
3168         return NULL;
3169     for (i = 0; i < size_b; ++i) {
3170         carry += a->ob_digit[i] + b->ob_digit[i];
3171         z->ob_digit[i] = carry & PyLong_MASK;
3172         carry >>= PyLong_SHIFT;
3173     }
3174     for (; i < size_a; ++i) {
3175         carry += a->ob_digit[i];
3176         z->ob_digit[i] = carry & PyLong_MASK;
3177         carry >>= PyLong_SHIFT;
3178     }
3179     z->ob_digit[i] = carry;
3180     return long_normalize(z);
3181 }
3182 
3183 /* Subtract the absolute values of two integers. */
3184 
3185 static PyLongObject *
x_sub(PyLongObject * a,PyLongObject * b)3186 x_sub(PyLongObject *a, PyLongObject *b)
3187 {
3188     Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
3189     PyLongObject *z;
3190     Py_ssize_t i;
3191     int sign = 1;
3192     digit borrow = 0;
3193 
3194     /* Ensure a is the larger of the two: */
3195     if (size_a < size_b) {
3196         sign = -1;
3197         { PyLongObject *temp = a; a = b; b = temp; }
3198         { Py_ssize_t size_temp = size_a;
3199             size_a = size_b;
3200             size_b = size_temp; }
3201     }
3202     else if (size_a == size_b) {
3203         /* Find highest digit where a and b differ: */
3204         i = size_a;
3205         while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
3206             ;
3207         if (i < 0)
3208             return (PyLongObject *)PyLong_FromLong(0);
3209         if (a->ob_digit[i] < b->ob_digit[i]) {
3210             sign = -1;
3211             { PyLongObject *temp = a; a = b; b = temp; }
3212         }
3213         size_a = size_b = i+1;
3214     }
3215     z = _PyLong_New(size_a);
3216     if (z == NULL)
3217         return NULL;
3218     for (i = 0; i < size_b; ++i) {
3219         /* The following assumes unsigned arithmetic
3220            works module 2**N for some N>PyLong_SHIFT. */
3221         borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
3222         z->ob_digit[i] = borrow & PyLong_MASK;
3223         borrow >>= PyLong_SHIFT;
3224         borrow &= 1; /* Keep only one sign bit */
3225     }
3226     for (; i < size_a; ++i) {
3227         borrow = a->ob_digit[i] - borrow;
3228         z->ob_digit[i] = borrow & PyLong_MASK;
3229         borrow >>= PyLong_SHIFT;
3230         borrow &= 1; /* Keep only one sign bit */
3231     }
3232     assert(borrow == 0);
3233     if (sign < 0) {
3234         Py_SIZE(z) = -Py_SIZE(z);
3235     }
3236     return long_normalize(z);
3237 }
3238 
3239 static PyObject *
long_add(PyLongObject * a,PyLongObject * b)3240 long_add(PyLongObject *a, PyLongObject *b)
3241 {
3242     PyLongObject *z;
3243 
3244     CHECK_BINOP(a, b);
3245 
3246     if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
3247         return PyLong_FromLong(MEDIUM_VALUE(a) + MEDIUM_VALUE(b));
3248     }
3249     if (Py_SIZE(a) < 0) {
3250         if (Py_SIZE(b) < 0) {
3251             z = x_add(a, b);
3252             if (z != NULL) {
3253                 /* x_add received at least one multiple-digit int,
3254                    and thus z must be a multiple-digit int.
3255                    That also means z is not an element of
3256                    small_ints, so negating it in-place is safe. */
3257                 assert(Py_REFCNT(z) == 1);
3258                 Py_SIZE(z) = -(Py_SIZE(z));
3259             }
3260         }
3261         else
3262             z = x_sub(b, a);
3263     }
3264     else {
3265         if (Py_SIZE(b) < 0)
3266             z = x_sub(a, b);
3267         else
3268             z = x_add(a, b);
3269     }
3270     return (PyObject *)z;
3271 }
3272 
3273 static PyObject *
long_sub(PyLongObject * a,PyLongObject * b)3274 long_sub(PyLongObject *a, PyLongObject *b)
3275 {
3276     PyLongObject *z;
3277 
3278     CHECK_BINOP(a, b);
3279 
3280     if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
3281         return PyLong_FromLong(MEDIUM_VALUE(a) - MEDIUM_VALUE(b));
3282     }
3283     if (Py_SIZE(a) < 0) {
3284         if (Py_SIZE(b) < 0)
3285             z = x_sub(a, b);
3286         else
3287             z = x_add(a, b);
3288         if (z != NULL) {
3289             assert(Py_SIZE(z) == 0 || Py_REFCNT(z) == 1);
3290             Py_SIZE(z) = -(Py_SIZE(z));
3291         }
3292     }
3293     else {
3294         if (Py_SIZE(b) < 0)
3295             z = x_add(a, b);
3296         else
3297             z = x_sub(a, b);
3298     }
3299     return (PyObject *)z;
3300 }
3301 
3302 /* Grade school multiplication, ignoring the signs.
3303  * Returns the absolute value of the product, or NULL if error.
3304  */
3305 static PyLongObject *
x_mul(PyLongObject * a,PyLongObject * b)3306 x_mul(PyLongObject *a, PyLongObject *b)
3307 {
3308     PyLongObject *z;
3309     Py_ssize_t size_a = Py_ABS(Py_SIZE(a));
3310     Py_ssize_t size_b = Py_ABS(Py_SIZE(b));
3311     Py_ssize_t i;
3312 
3313     z = _PyLong_New(size_a + size_b);
3314     if (z == NULL)
3315         return NULL;
3316 
3317     memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
3318     if (a == b) {
3319         /* Efficient squaring per HAC, Algorithm 14.16:
3320          * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
3321          * Gives slightly less than a 2x speedup when a == b,
3322          * via exploiting that each entry in the multiplication
3323          * pyramid appears twice (except for the size_a squares).
3324          */
3325         for (i = 0; i < size_a; ++i) {
3326             twodigits carry;
3327             twodigits f = a->ob_digit[i];
3328             digit *pz = z->ob_digit + (i << 1);
3329             digit *pa = a->ob_digit + i + 1;
3330             digit *paend = a->ob_digit + size_a;
3331 
3332             SIGCHECK({
3333                     Py_DECREF(z);
3334                     return NULL;
3335                 });
3336 
3337             carry = *pz + f * f;
3338             *pz++ = (digit)(carry & PyLong_MASK);
3339             carry >>= PyLong_SHIFT;
3340             assert(carry <= PyLong_MASK);
3341 
3342             /* Now f is added in twice in each column of the
3343              * pyramid it appears.  Same as adding f<<1 once.
3344              */
3345             f <<= 1;
3346             while (pa < paend) {
3347                 carry += *pz + *pa++ * f;
3348                 *pz++ = (digit)(carry & PyLong_MASK);
3349                 carry >>= PyLong_SHIFT;
3350                 assert(carry <= (PyLong_MASK << 1));
3351             }
3352             if (carry) {
3353                 carry += *pz;
3354                 *pz++ = (digit)(carry & PyLong_MASK);
3355                 carry >>= PyLong_SHIFT;
3356             }
3357             if (carry)
3358                 *pz += (digit)(carry & PyLong_MASK);
3359             assert((carry >> PyLong_SHIFT) == 0);
3360         }
3361     }
3362     else {      /* a is not the same as b -- gradeschool int mult */
3363         for (i = 0; i < size_a; ++i) {
3364             twodigits carry = 0;
3365             twodigits f = a->ob_digit[i];
3366             digit *pz = z->ob_digit + i;
3367             digit *pb = b->ob_digit;
3368             digit *pbend = b->ob_digit + size_b;
3369 
3370             SIGCHECK({
3371                     Py_DECREF(z);
3372                     return NULL;
3373                 });
3374 
3375             while (pb < pbend) {
3376                 carry += *pz + *pb++ * f;
3377                 *pz++ = (digit)(carry & PyLong_MASK);
3378                 carry >>= PyLong_SHIFT;
3379                 assert(carry <= PyLong_MASK);
3380             }
3381             if (carry)
3382                 *pz += (digit)(carry & PyLong_MASK);
3383             assert((carry >> PyLong_SHIFT) == 0);
3384         }
3385     }
3386     return long_normalize(z);
3387 }
3388 
3389 /* A helper for Karatsuba multiplication (k_mul).
3390    Takes an int "n" and an integer "size" representing the place to
3391    split, and sets low and high such that abs(n) == (high << size) + low,
3392    viewing the shift as being by digits.  The sign bit is ignored, and
3393    the return values are >= 0.
3394    Returns 0 on success, -1 on failure.
3395 */
3396 static int
kmul_split(PyLongObject * n,Py_ssize_t size,PyLongObject ** high,PyLongObject ** low)3397 kmul_split(PyLongObject *n,
3398            Py_ssize_t size,
3399            PyLongObject **high,
3400            PyLongObject **low)
3401 {
3402     PyLongObject *hi, *lo;
3403     Py_ssize_t size_lo, size_hi;
3404     const Py_ssize_t size_n = Py_ABS(Py_SIZE(n));
3405 
3406     size_lo = Py_MIN(size_n, size);
3407     size_hi = size_n - size_lo;
3408 
3409     if ((hi = _PyLong_New(size_hi)) == NULL)
3410         return -1;
3411     if ((lo = _PyLong_New(size_lo)) == NULL) {
3412         Py_DECREF(hi);
3413         return -1;
3414     }
3415 
3416     memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
3417     memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
3418 
3419     *high = long_normalize(hi);
3420     *low = long_normalize(lo);
3421     return 0;
3422 }
3423 
3424 static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
3425 
3426 /* Karatsuba multiplication.  Ignores the input signs, and returns the
3427  * absolute value of the product (or NULL if error).
3428  * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
3429  */
3430 static PyLongObject *
k_mul(PyLongObject * a,PyLongObject * b)3431 k_mul(PyLongObject *a, PyLongObject *b)
3432 {
3433     Py_ssize_t asize = Py_ABS(Py_SIZE(a));
3434     Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
3435     PyLongObject *ah = NULL;
3436     PyLongObject *al = NULL;
3437     PyLongObject *bh = NULL;
3438     PyLongObject *bl = NULL;
3439     PyLongObject *ret = NULL;
3440     PyLongObject *t1, *t2, *t3;
3441     Py_ssize_t shift;           /* the number of digits we split off */
3442     Py_ssize_t i;
3443 
3444     /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
3445      * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
3446      * Then the original product is
3447      *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
3448      * By picking X to be a power of 2, "*X" is just shifting, and it's
3449      * been reduced to 3 multiplies on numbers half the size.
3450      */
3451 
3452     /* We want to split based on the larger number; fiddle so that b
3453      * is largest.
3454      */
3455     if (asize > bsize) {
3456         t1 = a;
3457         a = b;
3458         b = t1;
3459 
3460         i = asize;
3461         asize = bsize;
3462         bsize = i;
3463     }
3464 
3465     /* Use gradeschool math when either number is too small. */
3466     i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
3467     if (asize <= i) {
3468         if (asize == 0)
3469             return (PyLongObject *)PyLong_FromLong(0);
3470         else
3471             return x_mul(a, b);
3472     }
3473 
3474     /* If a is small compared to b, splitting on b gives a degenerate
3475      * case with ah==0, and Karatsuba may be (even much) less efficient
3476      * than "grade school" then.  However, we can still win, by viewing
3477      * b as a string of "big digits", each of width a->ob_size.  That
3478      * leads to a sequence of balanced calls to k_mul.
3479      */
3480     if (2 * asize <= bsize)
3481         return k_lopsided_mul(a, b);
3482 
3483     /* Split a & b into hi & lo pieces. */
3484     shift = bsize >> 1;
3485     if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
3486     assert(Py_SIZE(ah) > 0);            /* the split isn't degenerate */
3487 
3488     if (a == b) {
3489         bh = ah;
3490         bl = al;
3491         Py_INCREF(bh);
3492         Py_INCREF(bl);
3493     }
3494     else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
3495 
3496     /* The plan:
3497      * 1. Allocate result space (asize + bsize digits:  that's always
3498      *    enough).
3499      * 2. Compute ah*bh, and copy into result at 2*shift.
3500      * 3. Compute al*bl, and copy into result at 0.  Note that this
3501      *    can't overlap with #2.
3502      * 4. Subtract al*bl from the result, starting at shift.  This may
3503      *    underflow (borrow out of the high digit), but we don't care:
3504      *    we're effectively doing unsigned arithmetic mod
3505      *    BASE**(sizea + sizeb), and so long as the *final* result fits,
3506      *    borrows and carries out of the high digit can be ignored.
3507      * 5. Subtract ah*bh from the result, starting at shift.
3508      * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
3509      *    at shift.
3510      */
3511 
3512     /* 1. Allocate result space. */
3513     ret = _PyLong_New(asize + bsize);
3514     if (ret == NULL) goto fail;
3515 #ifdef Py_DEBUG
3516     /* Fill with trash, to catch reference to uninitialized digits. */
3517     memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
3518 #endif
3519 
3520     /* 2. t1 <- ah*bh, and copy into high digits of result. */
3521     if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
3522     assert(Py_SIZE(t1) >= 0);
3523     assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
3524     memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
3525            Py_SIZE(t1) * sizeof(digit));
3526 
3527     /* Zero-out the digits higher than the ah*bh copy. */
3528     i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
3529     if (i)
3530         memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
3531                i * sizeof(digit));
3532 
3533     /* 3. t2 <- al*bl, and copy into the low digits. */
3534     if ((t2 = k_mul(al, bl)) == NULL) {
3535         Py_DECREF(t1);
3536         goto fail;
3537     }
3538     assert(Py_SIZE(t2) >= 0);
3539     assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
3540     memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
3541 
3542     /* Zero out remaining digits. */
3543     i = 2*shift - Py_SIZE(t2);          /* number of uninitialized digits */
3544     if (i)
3545         memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
3546 
3547     /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
3548      * because it's fresher in cache.
3549      */
3550     i = Py_SIZE(ret) - shift;  /* # digits after shift */
3551     (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
3552     Py_DECREF(t2);
3553 
3554     (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
3555     Py_DECREF(t1);
3556 
3557     /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
3558     if ((t1 = x_add(ah, al)) == NULL) goto fail;
3559     Py_DECREF(ah);
3560     Py_DECREF(al);
3561     ah = al = NULL;
3562 
3563     if (a == b) {
3564         t2 = t1;
3565         Py_INCREF(t2);
3566     }
3567     else if ((t2 = x_add(bh, bl)) == NULL) {
3568         Py_DECREF(t1);
3569         goto fail;
3570     }
3571     Py_DECREF(bh);
3572     Py_DECREF(bl);
3573     bh = bl = NULL;
3574 
3575     t3 = k_mul(t1, t2);
3576     Py_DECREF(t1);
3577     Py_DECREF(t2);
3578     if (t3 == NULL) goto fail;
3579     assert(Py_SIZE(t3) >= 0);
3580 
3581     /* Add t3.  It's not obvious why we can't run out of room here.
3582      * See the (*) comment after this function.
3583      */
3584     (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
3585     Py_DECREF(t3);
3586 
3587     return long_normalize(ret);
3588 
3589   fail:
3590     Py_XDECREF(ret);
3591     Py_XDECREF(ah);
3592     Py_XDECREF(al);
3593     Py_XDECREF(bh);
3594     Py_XDECREF(bl);
3595     return NULL;
3596 }
3597 
3598 /* (*) Why adding t3 can't "run out of room" above.
3599 
3600 Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
3601 to start with:
3602 
3603 1. For any integer i, i = c(i/2) + f(i/2).  In particular,
3604    bsize = c(bsize/2) + f(bsize/2).
3605 2. shift = f(bsize/2)
3606 3. asize <= bsize
3607 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
3608    routine, so asize > bsize/2 >= f(bsize/2) in this routine.
3609 
3610 We allocated asize + bsize result digits, and add t3 into them at an offset
3611 of shift.  This leaves asize+bsize-shift allocated digit positions for t3
3612 to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
3613 asize + c(bsize/2) available digit positions.
3614 
3615 bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
3616 at most c(bsize/2) digits + 1 bit.
3617 
3618 If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
3619 digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
3620 most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
3621 
3622 The product (ah+al)*(bh+bl) therefore has at most
3623 
3624     c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
3625 
3626 and we have asize + c(bsize/2) available digit positions.  We need to show
3627 this is always enough.  An instance of c(bsize/2) cancels out in both, so
3628 the question reduces to whether asize digits is enough to hold
3629 (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
3630 then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
3631 asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
3632 digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
3633 asize == bsize, then we're asking whether bsize digits is enough to hold
3634 c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
3635 is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
3636 bsize >= KARATSUBA_CUTOFF >= 2.
3637 
3638 Note that since there's always enough room for (ah+al)*(bh+bl), and that's
3639 clearly >= each of ah*bh and al*bl, there's always enough room to subtract
3640 ah*bh and al*bl too.
3641 */
3642 
3643 /* b has at least twice the digits of a, and a is big enough that Karatsuba
3644  * would pay off *if* the inputs had balanced sizes.  View b as a sequence
3645  * of slices, each with a->ob_size digits, and multiply the slices by a,
3646  * one at a time.  This gives k_mul balanced inputs to work with, and is
3647  * also cache-friendly (we compute one double-width slice of the result
3648  * at a time, then move on, never backtracking except for the helpful
3649  * single-width slice overlap between successive partial sums).
3650  */
3651 static PyLongObject *
k_lopsided_mul(PyLongObject * a,PyLongObject * b)3652 k_lopsided_mul(PyLongObject *a, PyLongObject *b)
3653 {
3654     const Py_ssize_t asize = Py_ABS(Py_SIZE(a));
3655     Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
3656     Py_ssize_t nbdone;          /* # of b digits already multiplied */
3657     PyLongObject *ret;
3658     PyLongObject *bslice = NULL;
3659 
3660     assert(asize > KARATSUBA_CUTOFF);
3661     assert(2 * asize <= bsize);
3662 
3663     /* Allocate result space, and zero it out. */
3664     ret = _PyLong_New(asize + bsize);
3665     if (ret == NULL)
3666         return NULL;
3667     memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
3668 
3669     /* Successive slices of b are copied into bslice. */
3670     bslice = _PyLong_New(asize);
3671     if (bslice == NULL)
3672         goto fail;
3673 
3674     nbdone = 0;
3675     while (bsize > 0) {
3676         PyLongObject *product;
3677         const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
3678 
3679         /* Multiply the next slice of b by a. */
3680         memcpy(bslice->ob_digit, b->ob_digit + nbdone,
3681                nbtouse * sizeof(digit));
3682         Py_SIZE(bslice) = nbtouse;
3683         product = k_mul(a, bslice);
3684         if (product == NULL)
3685             goto fail;
3686 
3687         /* Add into result. */
3688         (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
3689                      product->ob_digit, Py_SIZE(product));
3690         Py_DECREF(product);
3691 
3692         bsize -= nbtouse;
3693         nbdone += nbtouse;
3694     }
3695 
3696     Py_DECREF(bslice);
3697     return long_normalize(ret);
3698 
3699   fail:
3700     Py_DECREF(ret);
3701     Py_XDECREF(bslice);
3702     return NULL;
3703 }
3704 
3705 static PyObject *
long_mul(PyLongObject * a,PyLongObject * b)3706 long_mul(PyLongObject *a, PyLongObject *b)
3707 {
3708     PyLongObject *z;
3709 
3710     CHECK_BINOP(a, b);
3711 
3712     /* fast path for single-digit multiplication */
3713     if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
3714         stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b);
3715         return PyLong_FromLongLong((long long)v);
3716     }
3717 
3718     z = k_mul(a, b);
3719     /* Negate if exactly one of the inputs is negative. */
3720     if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) {
3721         _PyLong_Negate(&z);
3722         if (z == NULL)
3723             return NULL;
3724     }
3725     return (PyObject *)z;
3726 }
3727 
3728 /* Fast modulo division for single-digit longs. */
3729 static PyObject *
fast_mod(PyLongObject * a,PyLongObject * b)3730 fast_mod(PyLongObject *a, PyLongObject *b)
3731 {
3732     sdigit left = a->ob_digit[0];
3733     sdigit right = b->ob_digit[0];
3734     sdigit mod;
3735 
3736     assert(Py_ABS(Py_SIZE(a)) == 1);
3737     assert(Py_ABS(Py_SIZE(b)) == 1);
3738 
3739     if (Py_SIZE(a) == Py_SIZE(b)) {
3740         /* 'a' and 'b' have the same sign. */
3741         mod = left % right;
3742     }
3743     else {
3744         /* Either 'a' or 'b' is negative. */
3745         mod = right - 1 - (left - 1) % right;
3746     }
3747 
3748     return PyLong_FromLong(mod * (sdigit)Py_SIZE(b));
3749 }
3750 
3751 /* Fast floor division for single-digit longs. */
3752 static PyObject *
fast_floor_div(PyLongObject * a,PyLongObject * b)3753 fast_floor_div(PyLongObject *a, PyLongObject *b)
3754 {
3755     sdigit left = a->ob_digit[0];
3756     sdigit right = b->ob_digit[0];
3757     sdigit div;
3758 
3759     assert(Py_ABS(Py_SIZE(a)) == 1);
3760     assert(Py_ABS(Py_SIZE(b)) == 1);
3761 
3762     if (Py_SIZE(a) == Py_SIZE(b)) {
3763         /* 'a' and 'b' have the same sign. */
3764         div = left / right;
3765     }
3766     else {
3767         /* Either 'a' or 'b' is negative. */
3768         div = -1 - (left - 1) / right;
3769     }
3770 
3771     return PyLong_FromLong(div);
3772 }
3773 
3774 /* The / and % operators are now defined in terms of divmod().
3775    The expression a mod b has the value a - b*floor(a/b).
3776    The long_divrem function gives the remainder after division of
3777    |a| by |b|, with the sign of a.  This is also expressed
3778    as a - b*trunc(a/b), if trunc truncates towards zero.
3779    Some examples:
3780      a           b      a rem b         a mod b
3781      13          10      3               3
3782     -13          10     -3               7
3783      13         -10      3              -7
3784     -13         -10     -3              -3
3785    So, to get from rem to mod, we have to add b if a and b
3786    have different signs.  We then subtract one from the 'div'
3787    part of the outcome to keep the invariant intact. */
3788 
3789 /* Compute
3790  *     *pdiv, *pmod = divmod(v, w)
3791  * NULL can be passed for pdiv or pmod, in which case that part of
3792  * the result is simply thrown away.  The caller owns a reference to
3793  * each of these it requests (does not pass NULL for).
3794  */
3795 static int
l_divmod(PyLongObject * v,PyLongObject * w,PyLongObject ** pdiv,PyLongObject ** pmod)3796 l_divmod(PyLongObject *v, PyLongObject *w,
3797          PyLongObject **pdiv, PyLongObject **pmod)
3798 {
3799     PyLongObject *div, *mod;
3800 
3801     if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) {
3802         /* Fast path for single-digit longs */
3803         div = NULL;
3804         if (pdiv != NULL) {
3805             div = (PyLongObject *)fast_floor_div(v, w);
3806             if (div == NULL) {
3807                 return -1;
3808             }
3809         }
3810         if (pmod != NULL) {
3811             mod = (PyLongObject *)fast_mod(v, w);
3812             if (mod == NULL) {
3813                 Py_XDECREF(div);
3814                 return -1;
3815             }
3816             *pmod = mod;
3817         }
3818         if (pdiv != NULL) {
3819             /* We only want to set `*pdiv` when `*pmod` is
3820                set successfully. */
3821             *pdiv = div;
3822         }
3823         return 0;
3824     }
3825     if (long_divrem(v, w, &div, &mod) < 0)
3826         return -1;
3827     if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
3828         (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
3829         PyLongObject *temp;
3830         temp = (PyLongObject *) long_add(mod, w);
3831         Py_DECREF(mod);
3832         mod = temp;
3833         if (mod == NULL) {
3834             Py_DECREF(div);
3835             return -1;
3836         }
3837         temp = (PyLongObject *) long_sub(div, (PyLongObject *)_PyLong_One);
3838         if (temp == NULL) {
3839             Py_DECREF(mod);
3840             Py_DECREF(div);
3841             return -1;
3842         }
3843         Py_DECREF(div);
3844         div = temp;
3845     }
3846     if (pdiv != NULL)
3847         *pdiv = div;
3848     else
3849         Py_DECREF(div);
3850 
3851     if (pmod != NULL)
3852         *pmod = mod;
3853     else
3854         Py_DECREF(mod);
3855 
3856     return 0;
3857 }
3858 
3859 static PyObject *
long_div(PyObject * a,PyObject * b)3860 long_div(PyObject *a, PyObject *b)
3861 {
3862     PyLongObject *div;
3863 
3864     CHECK_BINOP(a, b);
3865 
3866     if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
3867         return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
3868     }
3869 
3870     if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
3871         div = NULL;
3872     return (PyObject *)div;
3873 }
3874 
3875 /* PyLong/PyLong -> float, with correctly rounded result. */
3876 
3877 #define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
3878 #define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
3879 
3880 static PyObject *
long_true_divide(PyObject * v,PyObject * w)3881 long_true_divide(PyObject *v, PyObject *w)
3882 {
3883     PyLongObject *a, *b, *x;
3884     Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
3885     digit mask, low;
3886     int inexact, negate, a_is_small, b_is_small;
3887     double dx, result;
3888 
3889     CHECK_BINOP(v, w);
3890     a = (PyLongObject *)v;
3891     b = (PyLongObject *)w;
3892 
3893     /*
3894        Method in a nutshell:
3895 
3896          0. reduce to case a, b > 0; filter out obvious underflow/overflow
3897          1. choose a suitable integer 'shift'
3898          2. use integer arithmetic to compute x = floor(2**-shift*a/b)
3899          3. adjust x for correct rounding
3900          4. convert x to a double dx with the same value
3901          5. return ldexp(dx, shift).
3902 
3903        In more detail:
3904 
3905        0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
3906        returns either 0.0 or -0.0, depending on the sign of b.  For a and
3907        b both nonzero, ignore signs of a and b, and add the sign back in
3908        at the end.  Now write a_bits and b_bits for the bit lengths of a
3909        and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
3910        for b).  Then
3911 
3912           2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
3913 
3914        So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
3915        so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP -
3916        DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of
3917        the way, we can assume that
3918 
3919           DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
3920 
3921        1. The integer 'shift' is chosen so that x has the right number of
3922        bits for a double, plus two or three extra bits that will be used
3923        in the rounding decisions.  Writing a_bits and b_bits for the
3924        number of significant bits in a and b respectively, a
3925        straightforward formula for shift is:
3926 
3927           shift = a_bits - b_bits - DBL_MANT_DIG - 2
3928 
3929        This is fine in the usual case, but if a/b is smaller than the
3930        smallest normal float then it can lead to double rounding on an
3931        IEEE 754 platform, giving incorrectly rounded results.  So we
3932        adjust the formula slightly.  The actual formula used is:
3933 
3934            shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
3935 
3936        2. The quantity x is computed by first shifting a (left -shift bits
3937        if shift <= 0, right shift bits if shift > 0) and then dividing by
3938        b.  For both the shift and the division, we keep track of whether
3939        the result is inexact, in a flag 'inexact'; this information is
3940        needed at the rounding stage.
3941 
3942        With the choice of shift above, together with our assumption that
3943        a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
3944        that x >= 1.
3945 
3946        3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace
3947        this with an exactly representable float of the form
3948 
3949           round(x/2**extra_bits) * 2**(extra_bits+shift).
3950 
3951        For float representability, we need x/2**extra_bits <
3952        2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
3953        DBL_MANT_DIG.  This translates to the condition:
3954 
3955           extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
3956 
3957        To round, we just modify the bottom digit of x in-place; this can
3958        end up giving a digit with value > PyLONG_MASK, but that's not a
3959        problem since digits can hold values up to 2*PyLONG_MASK+1.
3960 
3961        With the original choices for shift above, extra_bits will always
3962        be 2 or 3.  Then rounding under the round-half-to-even rule, we
3963        round up iff the most significant of the extra bits is 1, and
3964        either: (a) the computation of x in step 2 had an inexact result,
3965        or (b) at least one other of the extra bits is 1, or (c) the least
3966        significant bit of x (above those to be rounded) is 1.
3967 
3968        4. Conversion to a double is straightforward; all floating-point
3969        operations involved in the conversion are exact, so there's no
3970        danger of rounding errors.
3971 
3972        5. Use ldexp(x, shift) to compute x*2**shift, the final result.
3973        The result will always be exactly representable as a double, except
3974        in the case that it overflows.  To avoid dependence on the exact
3975        behaviour of ldexp on overflow, we check for overflow before
3976        applying ldexp.  The result of ldexp is adjusted for sign before
3977        returning.
3978     */
3979 
3980     /* Reduce to case where a and b are both positive. */
3981     a_size = Py_ABS(Py_SIZE(a));
3982     b_size = Py_ABS(Py_SIZE(b));
3983     negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
3984     if (b_size == 0) {
3985         PyErr_SetString(PyExc_ZeroDivisionError,
3986                         "division by zero");
3987         goto error;
3988     }
3989     if (a_size == 0)
3990         goto underflow_or_zero;
3991 
3992     /* Fast path for a and b small (exactly representable in a double).
3993        Relies on floating-point division being correctly rounded; results
3994        may be subject to double rounding on x86 machines that operate with
3995        the x87 FPU set to 64-bit precision. */
3996     a_is_small = a_size <= MANT_DIG_DIGITS ||
3997         (a_size == MANT_DIG_DIGITS+1 &&
3998          a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
3999     b_is_small = b_size <= MANT_DIG_DIGITS ||
4000         (b_size == MANT_DIG_DIGITS+1 &&
4001          b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
4002     if (a_is_small && b_is_small) {
4003         double da, db;
4004         da = a->ob_digit[--a_size];
4005         while (a_size > 0)
4006             da = da * PyLong_BASE + a->ob_digit[--a_size];
4007         db = b->ob_digit[--b_size];
4008         while (b_size > 0)
4009             db = db * PyLong_BASE + b->ob_digit[--b_size];
4010         result = da / db;
4011         goto success;
4012     }
4013 
4014     /* Catch obvious cases of underflow and overflow */
4015     diff = a_size - b_size;
4016     if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
4017         /* Extreme overflow */
4018         goto overflow;
4019     else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
4020         /* Extreme underflow */
4021         goto underflow_or_zero;
4022     /* Next line is now safe from overflowing a Py_ssize_t */
4023     diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
4024         bits_in_digit(b->ob_digit[b_size - 1]);
4025     /* Now diff = a_bits - b_bits. */
4026     if (diff > DBL_MAX_EXP)
4027         goto overflow;
4028     else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
4029         goto underflow_or_zero;
4030 
4031     /* Choose value for shift; see comments for step 1 above. */
4032     shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
4033 
4034     inexact = 0;
4035 
4036     /* x = abs(a * 2**-shift) */
4037     if (shift <= 0) {
4038         Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
4039         digit rem;
4040         /* x = a << -shift */
4041         if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
4042             /* In practice, it's probably impossible to end up
4043                here.  Both a and b would have to be enormous,
4044                using close to SIZE_T_MAX bytes of memory each. */
4045             PyErr_SetString(PyExc_OverflowError,
4046                             "intermediate overflow during division");
4047             goto error;
4048         }
4049         x = _PyLong_New(a_size + shift_digits + 1);
4050         if (x == NULL)
4051             goto error;
4052         for (i = 0; i < shift_digits; i++)
4053             x->ob_digit[i] = 0;
4054         rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
4055                        a_size, -shift % PyLong_SHIFT);
4056         x->ob_digit[a_size + shift_digits] = rem;
4057     }
4058     else {
4059         Py_ssize_t shift_digits = shift / PyLong_SHIFT;
4060         digit rem;
4061         /* x = a >> shift */
4062         assert(a_size >= shift_digits);
4063         x = _PyLong_New(a_size - shift_digits);
4064         if (x == NULL)
4065             goto error;
4066         rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
4067                        a_size - shift_digits, shift % PyLong_SHIFT);
4068         /* set inexact if any of the bits shifted out is nonzero */
4069         if (rem)
4070             inexact = 1;
4071         while (!inexact && shift_digits > 0)
4072             if (a->ob_digit[--shift_digits])
4073                 inexact = 1;
4074     }
4075     long_normalize(x);
4076     x_size = Py_SIZE(x);
4077 
4078     /* x //= b. If the remainder is nonzero, set inexact.  We own the only
4079        reference to x, so it's safe to modify it in-place. */
4080     if (b_size == 1) {
4081         digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
4082                               b->ob_digit[0]);
4083         long_normalize(x);
4084         if (rem)
4085             inexact = 1;
4086     }
4087     else {
4088         PyLongObject *div, *rem;
4089         div = x_divrem(x, b, &rem);
4090         Py_DECREF(x);
4091         x = div;
4092         if (x == NULL)
4093             goto error;
4094         if (Py_SIZE(rem))
4095             inexact = 1;
4096         Py_DECREF(rem);
4097     }
4098     x_size = Py_ABS(Py_SIZE(x));
4099     assert(x_size > 0); /* result of division is never zero */
4100     x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
4101 
4102     /* The number of extra bits that have to be rounded away. */
4103     extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
4104     assert(extra_bits == 2 || extra_bits == 3);
4105 
4106     /* Round by directly modifying the low digit of x. */
4107     mask = (digit)1 << (extra_bits - 1);
4108     low = x->ob_digit[0] | inexact;
4109     if ((low & mask) && (low & (3U*mask-1U)))
4110         low += mask;
4111     x->ob_digit[0] = low & ~(2U*mask-1U);
4112 
4113     /* Convert x to a double dx; the conversion is exact. */
4114     dx = x->ob_digit[--x_size];
4115     while (x_size > 0)
4116         dx = dx * PyLong_BASE + x->ob_digit[--x_size];
4117     Py_DECREF(x);
4118 
4119     /* Check whether ldexp result will overflow a double. */
4120     if (shift + x_bits >= DBL_MAX_EXP &&
4121         (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
4122         goto overflow;
4123     result = ldexp(dx, (int)shift);
4124 
4125   success:
4126     return PyFloat_FromDouble(negate ? -result : result);
4127 
4128   underflow_or_zero:
4129     return PyFloat_FromDouble(negate ? -0.0 : 0.0);
4130 
4131   overflow:
4132     PyErr_SetString(PyExc_OverflowError,
4133                     "integer division result too large for a float");
4134   error:
4135     return NULL;
4136 }
4137 
4138 static PyObject *
long_mod(PyObject * a,PyObject * b)4139 long_mod(PyObject *a, PyObject *b)
4140 {
4141     PyLongObject *mod;
4142 
4143     CHECK_BINOP(a, b);
4144 
4145     if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
4146         return fast_mod((PyLongObject*)a, (PyLongObject*)b);
4147     }
4148 
4149     if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0)
4150         mod = NULL;
4151     return (PyObject *)mod;
4152 }
4153 
4154 static PyObject *
long_divmod(PyObject * a,PyObject * b)4155 long_divmod(PyObject *a, PyObject *b)
4156 {
4157     PyLongObject *div, *mod;
4158     PyObject *z;
4159 
4160     CHECK_BINOP(a, b);
4161 
4162     if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
4163         return NULL;
4164     }
4165     z = PyTuple_New(2);
4166     if (z != NULL) {
4167         PyTuple_SET_ITEM(z, 0, (PyObject *) div);
4168         PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
4169     }
4170     else {
4171         Py_DECREF(div);
4172         Py_DECREF(mod);
4173     }
4174     return z;
4175 }
4176 
4177 
4178 /* Compute an inverse to a modulo n, or raise ValueError if a is not
4179    invertible modulo n. Assumes n is positive. The inverse returned
4180    is whatever falls out of the extended Euclidean algorithm: it may
4181    be either positive or negative, but will be smaller than n in
4182    absolute value.
4183 
4184    Pure Python equivalent for long_invmod:
4185 
4186         def invmod(a, n):
4187             b, c = 1, 0
4188             while n:
4189                 q, r = divmod(a, n)
4190                 a, b, c, n = n, c, b - q*c, r
4191 
4192             # at this point a is the gcd of the original inputs
4193             if a == 1:
4194                 return b
4195             raise ValueError("Not invertible")
4196 */
4197 
4198 static PyLongObject *
long_invmod(PyLongObject * a,PyLongObject * n)4199 long_invmod(PyLongObject *a, PyLongObject *n)
4200 {
4201     PyLongObject *b, *c;
4202 
4203     /* Should only ever be called for positive n */
4204     assert(Py_SIZE(n) > 0);
4205 
4206     b = (PyLongObject *)PyLong_FromLong(1L);
4207     if (b == NULL) {
4208         return NULL;
4209     }
4210     c = (PyLongObject *)PyLong_FromLong(0L);
4211     if (c == NULL) {
4212         Py_DECREF(b);
4213         return NULL;
4214     }
4215     Py_INCREF(a);
4216     Py_INCREF(n);
4217 
4218     /* references now owned: a, b, c, n */
4219     while (Py_SIZE(n) != 0) {
4220         PyLongObject *q, *r, *s, *t;
4221 
4222         if (l_divmod(a, n, &q, &r) == -1) {
4223             goto Error;
4224         }
4225         Py_DECREF(a);
4226         a = n;
4227         n = r;
4228         t = (PyLongObject *)long_mul(q, c);
4229         Py_DECREF(q);
4230         if (t == NULL) {
4231             goto Error;
4232         }
4233         s = (PyLongObject *)long_sub(b, t);
4234         Py_DECREF(t);
4235         if (s == NULL) {
4236             goto Error;
4237         }
4238         Py_DECREF(b);
4239         b = c;
4240         c = s;
4241     }
4242     /* references now owned: a, b, c, n */
4243 
4244     Py_DECREF(c);
4245     Py_DECREF(n);
4246     if (long_compare(a, (PyLongObject *)_PyLong_One)) {
4247         /* a != 1; we don't have an inverse. */
4248         Py_DECREF(a);
4249         Py_DECREF(b);
4250         PyErr_SetString(PyExc_ValueError,
4251                         "base is not invertible for the given modulus");
4252         return NULL;
4253     }
4254     else {
4255         /* a == 1; b gives an inverse modulo n */
4256         Py_DECREF(a);
4257         return b;
4258     }
4259 
4260   Error:
4261     Py_DECREF(a);
4262     Py_DECREF(b);
4263     Py_DECREF(c);
4264     Py_DECREF(n);
4265     return NULL;
4266 }
4267 
4268 
4269 /* pow(v, w, x) */
4270 static PyObject *
long_pow(PyObject * v,PyObject * w,PyObject * x)4271 long_pow(PyObject *v, PyObject *w, PyObject *x)
4272 {
4273     PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
4274     int negativeOutput = 0;  /* if x<0 return negative output */
4275 
4276     PyLongObject *z = NULL;  /* accumulated result */
4277     Py_ssize_t i, j, k;             /* counters */
4278     PyLongObject *temp = NULL;
4279 
4280     /* 5-ary values.  If the exponent is large enough, table is
4281      * precomputed so that table[i] == a**i % c for i in range(32).
4282      */
4283     PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
4284                                0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
4285 
4286     /* a, b, c = v, w, x */
4287     CHECK_BINOP(v, w);
4288     a = (PyLongObject*)v; Py_INCREF(a);
4289     b = (PyLongObject*)w; Py_INCREF(b);
4290     if (PyLong_Check(x)) {
4291         c = (PyLongObject *)x;
4292         Py_INCREF(x);
4293     }
4294     else if (x == Py_None)
4295         c = NULL;
4296     else {
4297         Py_DECREF(a);
4298         Py_DECREF(b);
4299         Py_RETURN_NOTIMPLEMENTED;
4300     }
4301 
4302     if (Py_SIZE(b) < 0 && c == NULL) {
4303         /* if exponent is negative and there's no modulus:
4304                return a float.  This works because we know
4305                that this calls float_pow() which converts its
4306                arguments to double. */
4307         Py_DECREF(a);
4308         Py_DECREF(b);
4309         return PyFloat_Type.tp_as_number->nb_power(v, w, x);
4310     }
4311 
4312     if (c) {
4313         /* if modulus == 0:
4314                raise ValueError() */
4315         if (Py_SIZE(c) == 0) {
4316             PyErr_SetString(PyExc_ValueError,
4317                             "pow() 3rd argument cannot be 0");
4318             goto Error;
4319         }
4320 
4321         /* if modulus < 0:
4322                negativeOutput = True
4323                modulus = -modulus */
4324         if (Py_SIZE(c) < 0) {
4325             negativeOutput = 1;
4326             temp = (PyLongObject *)_PyLong_Copy(c);
4327             if (temp == NULL)
4328                 goto Error;
4329             Py_DECREF(c);
4330             c = temp;
4331             temp = NULL;
4332             _PyLong_Negate(&c);
4333             if (c == NULL)
4334                 goto Error;
4335         }
4336 
4337         /* if modulus == 1:
4338                return 0 */
4339         if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
4340             z = (PyLongObject *)PyLong_FromLong(0L);
4341             goto Done;
4342         }
4343 
4344         /* if exponent is negative, negate the exponent and
4345            replace the base with a modular inverse */
4346         if (Py_SIZE(b) < 0) {
4347             temp = (PyLongObject *)_PyLong_Copy(b);
4348             if (temp == NULL)
4349                 goto Error;
4350             Py_DECREF(b);
4351             b = temp;
4352             temp = NULL;
4353             _PyLong_Negate(&b);
4354             if (b == NULL)
4355                 goto Error;
4356 
4357             temp = long_invmod(a, c);
4358             if (temp == NULL)
4359                 goto Error;
4360             Py_DECREF(a);
4361             a = temp;
4362         }
4363 
4364         /* Reduce base by modulus in some cases:
4365            1. If base < 0.  Forcing the base non-negative makes things easier.
4366            2. If base is obviously larger than the modulus.  The "small
4367               exponent" case later can multiply directly by base repeatedly,
4368               while the "large exponent" case multiplies directly by base 31
4369               times.  It can be unboundedly faster to multiply by
4370               base % modulus instead.
4371            We could _always_ do this reduction, but l_divmod() isn't cheap,
4372            so we only do it when it buys something. */
4373         if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) {
4374             if (l_divmod(a, c, NULL, &temp) < 0)
4375                 goto Error;
4376             Py_DECREF(a);
4377             a = temp;
4378             temp = NULL;
4379         }
4380     }
4381 
4382     /* At this point a, b, and c are guaranteed non-negative UNLESS
4383        c is NULL, in which case a may be negative. */
4384 
4385     z = (PyLongObject *)PyLong_FromLong(1L);
4386     if (z == NULL)
4387         goto Error;
4388 
4389     /* Perform a modular reduction, X = X % c, but leave X alone if c
4390      * is NULL.
4391      */
4392 #define REDUCE(X)                                       \
4393     do {                                                \
4394         if (c != NULL) {                                \
4395             if (l_divmod(X, c, NULL, &temp) < 0)        \
4396                 goto Error;                             \
4397             Py_XDECREF(X);                              \
4398             X = temp;                                   \
4399             temp = NULL;                                \
4400         }                                               \
4401     } while(0)
4402 
4403     /* Multiply two values, then reduce the result:
4404        result = X*Y % c.  If c is NULL, skip the mod. */
4405 #define MULT(X, Y, result)                      \
4406     do {                                        \
4407         temp = (PyLongObject *)long_mul(X, Y);  \
4408         if (temp == NULL)                       \
4409             goto Error;                         \
4410         Py_XDECREF(result);                     \
4411         result = temp;                          \
4412         temp = NULL;                            \
4413         REDUCE(result);                         \
4414     } while(0)
4415 
4416     if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
4417         /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
4418         /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */
4419         for (i = Py_SIZE(b) - 1; i >= 0; --i) {
4420             digit bi = b->ob_digit[i];
4421 
4422             for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
4423                 MULT(z, z, z);
4424                 if (bi & j)
4425                     MULT(z, a, z);
4426             }
4427         }
4428     }
4429     else {
4430         /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
4431         Py_INCREF(z);           /* still holds 1L */
4432         table[0] = z;
4433         for (i = 1; i < 32; ++i)
4434             MULT(table[i-1], a, table[i]);
4435 
4436         for (i = Py_SIZE(b) - 1; i >= 0; --i) {
4437             const digit bi = b->ob_digit[i];
4438 
4439             for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
4440                 const int index = (bi >> j) & 0x1f;
4441                 for (k = 0; k < 5; ++k)
4442                     MULT(z, z, z);
4443                 if (index)
4444                     MULT(z, table[index], z);
4445             }
4446         }
4447     }
4448 
4449     if (negativeOutput && (Py_SIZE(z) != 0)) {
4450         temp = (PyLongObject *)long_sub(z, c);
4451         if (temp == NULL)
4452             goto Error;
4453         Py_DECREF(z);
4454         z = temp;
4455         temp = NULL;
4456     }
4457     goto Done;
4458 
4459   Error:
4460     Py_CLEAR(z);
4461     /* fall through */
4462   Done:
4463     if (Py_SIZE(b) > FIVEARY_CUTOFF) {
4464         for (i = 0; i < 32; ++i)
4465             Py_XDECREF(table[i]);
4466     }
4467     Py_DECREF(a);
4468     Py_DECREF(b);
4469     Py_XDECREF(c);
4470     Py_XDECREF(temp);
4471     return (PyObject *)z;
4472 }
4473 
4474 static PyObject *
long_invert(PyLongObject * v)4475 long_invert(PyLongObject *v)
4476 {
4477     /* Implement ~x as -(x+1) */
4478     PyLongObject *x;
4479     if (Py_ABS(Py_SIZE(v)) <=1)
4480         return PyLong_FromLong(-(MEDIUM_VALUE(v)+1));
4481     x = (PyLongObject *) long_add(v, (PyLongObject *)_PyLong_One);
4482     if (x == NULL)
4483         return NULL;
4484     _PyLong_Negate(&x);
4485     /* No need for maybe_small_long here, since any small
4486        longs will have been caught in the Py_SIZE <= 1 fast path. */
4487     return (PyObject *)x;
4488 }
4489 
4490 static PyObject *
long_neg(PyLongObject * v)4491 long_neg(PyLongObject *v)
4492 {
4493     PyLongObject *z;
4494     if (Py_ABS(Py_SIZE(v)) <= 1)
4495         return PyLong_FromLong(-MEDIUM_VALUE(v));
4496     z = (PyLongObject *)_PyLong_Copy(v);
4497     if (z != NULL)
4498         Py_SIZE(z) = -(Py_SIZE(v));
4499     return (PyObject *)z;
4500 }
4501 
4502 static PyObject *
long_abs(PyLongObject * v)4503 long_abs(PyLongObject *v)
4504 {
4505     if (Py_SIZE(v) < 0)
4506         return long_neg(v);
4507     else
4508         return long_long((PyObject *)v);
4509 }
4510 
4511 static int
long_bool(PyLongObject * v)4512 long_bool(PyLongObject *v)
4513 {
4514     return Py_SIZE(v) != 0;
4515 }
4516 
4517 /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
4518 static int
divmod_shift(PyObject * shiftby,Py_ssize_t * wordshift,digit * remshift)4519 divmod_shift(PyObject *shiftby, Py_ssize_t *wordshift, digit *remshift)
4520 {
4521     assert(PyLong_Check(shiftby));
4522     assert(Py_SIZE(shiftby) >= 0);
4523     Py_ssize_t lshiftby = PyLong_AsSsize_t((PyObject *)shiftby);
4524     if (lshiftby >= 0) {
4525         *wordshift = lshiftby / PyLong_SHIFT;
4526         *remshift = lshiftby % PyLong_SHIFT;
4527         return 0;
4528     }
4529     /* PyLong_Check(shiftby) is true and Py_SIZE(shiftby) >= 0, so it must
4530        be that PyLong_AsSsize_t raised an OverflowError. */
4531     assert(PyErr_ExceptionMatches(PyExc_OverflowError));
4532     PyErr_Clear();
4533     PyLongObject *wordshift_obj = divrem1((PyLongObject *)shiftby, PyLong_SHIFT, remshift);
4534     if (wordshift_obj == NULL) {
4535         return -1;
4536     }
4537     *wordshift = PyLong_AsSsize_t((PyObject *)wordshift_obj);
4538     Py_DECREF(wordshift_obj);
4539     if (*wordshift >= 0 && *wordshift < PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(digit)) {
4540         return 0;
4541     }
4542     PyErr_Clear();
4543     /* Clip the value.  With such large wordshift the right shift
4544        returns 0 and the left shift raises an error in _PyLong_New(). */
4545     *wordshift = PY_SSIZE_T_MAX / sizeof(digit);
4546     *remshift = 0;
4547     return 0;
4548 }
4549 
4550 static PyObject *
long_rshift1(PyLongObject * a,Py_ssize_t wordshift,digit remshift)4551 long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
4552 {
4553     PyLongObject *z = NULL;
4554     Py_ssize_t newsize, hishift, i, j;
4555     digit lomask, himask;
4556 
4557     if (Py_SIZE(a) < 0) {
4558         /* Right shifting negative numbers is harder */
4559         PyLongObject *a1, *a2;
4560         a1 = (PyLongObject *) long_invert(a);
4561         if (a1 == NULL)
4562             return NULL;
4563         a2 = (PyLongObject *) long_rshift1(a1, wordshift, remshift);
4564         Py_DECREF(a1);
4565         if (a2 == NULL)
4566             return NULL;
4567         z = (PyLongObject *) long_invert(a2);
4568         Py_DECREF(a2);
4569     }
4570     else {
4571         newsize = Py_SIZE(a) - wordshift;
4572         if (newsize <= 0)
4573             return PyLong_FromLong(0);
4574         hishift = PyLong_SHIFT - remshift;
4575         lomask = ((digit)1 << hishift) - 1;
4576         himask = PyLong_MASK ^ lomask;
4577         z = _PyLong_New(newsize);
4578         if (z == NULL)
4579             return NULL;
4580         for (i = 0, j = wordshift; i < newsize; i++, j++) {
4581             z->ob_digit[i] = (a->ob_digit[j] >> remshift) & lomask;
4582             if (i+1 < newsize)
4583                 z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask;
4584         }
4585         z = maybe_small_long(long_normalize(z));
4586     }
4587     return (PyObject *)z;
4588 }
4589 
4590 static PyObject *
long_rshift(PyObject * a,PyObject * b)4591 long_rshift(PyObject *a, PyObject *b)
4592 {
4593     Py_ssize_t wordshift;
4594     digit remshift;
4595 
4596     CHECK_BINOP(a, b);
4597 
4598     if (Py_SIZE(b) < 0) {
4599         PyErr_SetString(PyExc_ValueError, "negative shift count");
4600         return NULL;
4601     }
4602     if (Py_SIZE(a) == 0) {
4603         return PyLong_FromLong(0);
4604     }
4605     if (divmod_shift(b, &wordshift, &remshift) < 0)
4606         return NULL;
4607     return long_rshift1((PyLongObject *)a, wordshift, remshift);
4608 }
4609 
4610 /* Return a >> shiftby. */
4611 PyObject *
_PyLong_Rshift(PyObject * a,size_t shiftby)4612 _PyLong_Rshift(PyObject *a, size_t shiftby)
4613 {
4614     Py_ssize_t wordshift;
4615     digit remshift;
4616 
4617     assert(PyLong_Check(a));
4618     if (Py_SIZE(a) == 0) {
4619         return PyLong_FromLong(0);
4620     }
4621     wordshift = shiftby / PyLong_SHIFT;
4622     remshift = shiftby % PyLong_SHIFT;
4623     return long_rshift1((PyLongObject *)a, wordshift, remshift);
4624 }
4625 
4626 static PyObject *
long_lshift1(PyLongObject * a,Py_ssize_t wordshift,digit remshift)4627 long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
4628 {
4629     /* This version due to Tim Peters */
4630     PyLongObject *z = NULL;
4631     Py_ssize_t oldsize, newsize, i, j;
4632     twodigits accum;
4633 
4634     oldsize = Py_ABS(Py_SIZE(a));
4635     newsize = oldsize + wordshift;
4636     if (remshift)
4637         ++newsize;
4638     z = _PyLong_New(newsize);
4639     if (z == NULL)
4640         return NULL;
4641     if (Py_SIZE(a) < 0) {
4642         assert(Py_REFCNT(z) == 1);
4643         Py_SIZE(z) = -Py_SIZE(z);
4644     }
4645     for (i = 0; i < wordshift; i++)
4646         z->ob_digit[i] = 0;
4647     accum = 0;
4648     for (i = wordshift, j = 0; j < oldsize; i++, j++) {
4649         accum |= (twodigits)a->ob_digit[j] << remshift;
4650         z->ob_digit[i] = (digit)(accum & PyLong_MASK);
4651         accum >>= PyLong_SHIFT;
4652     }
4653     if (remshift)
4654         z->ob_digit[newsize-1] = (digit)accum;
4655     else
4656         assert(!accum);
4657     z = long_normalize(z);
4658     return (PyObject *) maybe_small_long(z);
4659 }
4660 
4661 static PyObject *
long_lshift(PyObject * a,PyObject * b)4662 long_lshift(PyObject *a, PyObject *b)
4663 {
4664     Py_ssize_t wordshift;
4665     digit remshift;
4666 
4667     CHECK_BINOP(a, b);
4668 
4669     if (Py_SIZE(b) < 0) {
4670         PyErr_SetString(PyExc_ValueError, "negative shift count");
4671         return NULL;
4672     }
4673     if (Py_SIZE(a) == 0) {
4674         return PyLong_FromLong(0);
4675     }
4676     if (divmod_shift(b, &wordshift, &remshift) < 0)
4677         return NULL;
4678     return long_lshift1((PyLongObject *)a, wordshift, remshift);
4679 }
4680 
4681 /* Return a << shiftby. */
4682 PyObject *
_PyLong_Lshift(PyObject * a,size_t shiftby)4683 _PyLong_Lshift(PyObject *a, size_t shiftby)
4684 {
4685     Py_ssize_t wordshift;
4686     digit remshift;
4687 
4688     assert(PyLong_Check(a));
4689     if (Py_SIZE(a) == 0) {
4690         return PyLong_FromLong(0);
4691     }
4692     wordshift = shiftby / PyLong_SHIFT;
4693     remshift = shiftby % PyLong_SHIFT;
4694     return long_lshift1((PyLongObject *)a, wordshift, remshift);
4695 }
4696 
4697 /* Compute two's complement of digit vector a[0:m], writing result to
4698    z[0:m].  The digit vector a need not be normalized, but should not
4699    be entirely zero.  a and z may point to the same digit vector. */
4700 
4701 static void
v_complement(digit * z,digit * a,Py_ssize_t m)4702 v_complement(digit *z, digit *a, Py_ssize_t m)
4703 {
4704     Py_ssize_t i;
4705     digit carry = 1;
4706     for (i = 0; i < m; ++i) {
4707         carry += a[i] ^ PyLong_MASK;
4708         z[i] = carry & PyLong_MASK;
4709         carry >>= PyLong_SHIFT;
4710     }
4711     assert(carry == 0);
4712 }
4713 
4714 /* Bitwise and/xor/or operations */
4715 
4716 static PyObject *
long_bitwise(PyLongObject * a,char op,PyLongObject * b)4717 long_bitwise(PyLongObject *a,
4718              char op,  /* '&', '|', '^' */
4719              PyLongObject *b)
4720 {
4721     int nega, negb, negz;
4722     Py_ssize_t size_a, size_b, size_z, i;
4723     PyLongObject *z;
4724 
4725     /* Bitwise operations for negative numbers operate as though
4726        on a two's complement representation.  So convert arguments
4727        from sign-magnitude to two's complement, and convert the
4728        result back to sign-magnitude at the end. */
4729 
4730     /* If a is negative, replace it by its two's complement. */
4731     size_a = Py_ABS(Py_SIZE(a));
4732     nega = Py_SIZE(a) < 0;
4733     if (nega) {
4734         z = _PyLong_New(size_a);
4735         if (z == NULL)
4736             return NULL;
4737         v_complement(z->ob_digit, a->ob_digit, size_a);
4738         a = z;
4739     }
4740     else
4741         /* Keep reference count consistent. */
4742         Py_INCREF(a);
4743 
4744     /* Same for b. */
4745     size_b = Py_ABS(Py_SIZE(b));
4746     negb = Py_SIZE(b) < 0;
4747     if (negb) {
4748         z = _PyLong_New(size_b);
4749         if (z == NULL) {
4750             Py_DECREF(a);
4751             return NULL;
4752         }
4753         v_complement(z->ob_digit, b->ob_digit, size_b);
4754         b = z;
4755     }
4756     else
4757         Py_INCREF(b);
4758 
4759     /* Swap a and b if necessary to ensure size_a >= size_b. */
4760     if (size_a < size_b) {
4761         z = a; a = b; b = z;
4762         size_z = size_a; size_a = size_b; size_b = size_z;
4763         negz = nega; nega = negb; negb = negz;
4764     }
4765 
4766     /* JRH: The original logic here was to allocate the result value (z)
4767        as the longer of the two operands.  However, there are some cases
4768        where the result is guaranteed to be shorter than that: AND of two
4769        positives, OR of two negatives: use the shorter number.  AND with
4770        mixed signs: use the positive number.  OR with mixed signs: use the
4771        negative number.
4772     */
4773     switch (op) {
4774     case '^':
4775         negz = nega ^ negb;
4776         size_z = size_a;
4777         break;
4778     case '&':
4779         negz = nega & negb;
4780         size_z = negb ? size_a : size_b;
4781         break;
4782     case '|':
4783         negz = nega | negb;
4784         size_z = negb ? size_b : size_a;
4785         break;
4786     default:
4787         Py_UNREACHABLE();
4788     }
4789 
4790     /* We allow an extra digit if z is negative, to make sure that
4791        the final two's complement of z doesn't overflow. */
4792     z = _PyLong_New(size_z + negz);
4793     if (z == NULL) {
4794         Py_DECREF(a);
4795         Py_DECREF(b);
4796         return NULL;
4797     }
4798 
4799     /* Compute digits for overlap of a and b. */
4800     switch(op) {
4801     case '&':
4802         for (i = 0; i < size_b; ++i)
4803             z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
4804         break;
4805     case '|':
4806         for (i = 0; i < size_b; ++i)
4807             z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
4808         break;
4809     case '^':
4810         for (i = 0; i < size_b; ++i)
4811             z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
4812         break;
4813     default:
4814         Py_UNREACHABLE();
4815     }
4816 
4817     /* Copy any remaining digits of a, inverting if necessary. */
4818     if (op == '^' && negb)
4819         for (; i < size_z; ++i)
4820             z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
4821     else if (i < size_z)
4822         memcpy(&z->ob_digit[i], &a->ob_digit[i],
4823                (size_z-i)*sizeof(digit));
4824 
4825     /* Complement result if negative. */
4826     if (negz) {
4827         Py_SIZE(z) = -(Py_SIZE(z));
4828         z->ob_digit[size_z] = PyLong_MASK;
4829         v_complement(z->ob_digit, z->ob_digit, size_z+1);
4830     }
4831 
4832     Py_DECREF(a);
4833     Py_DECREF(b);
4834     return (PyObject *)maybe_small_long(long_normalize(z));
4835 }
4836 
4837 static PyObject *
long_and(PyObject * a,PyObject * b)4838 long_and(PyObject *a, PyObject *b)
4839 {
4840     PyObject *c;
4841     CHECK_BINOP(a, b);
4842     c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b);
4843     return c;
4844 }
4845 
4846 static PyObject *
long_xor(PyObject * a,PyObject * b)4847 long_xor(PyObject *a, PyObject *b)
4848 {
4849     PyObject *c;
4850     CHECK_BINOP(a, b);
4851     c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b);
4852     return c;
4853 }
4854 
4855 static PyObject *
long_or(PyObject * a,PyObject * b)4856 long_or(PyObject *a, PyObject *b)
4857 {
4858     PyObject *c;
4859     CHECK_BINOP(a, b);
4860     c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b);
4861     return c;
4862 }
4863 
4864 static PyObject *
long_long(PyObject * v)4865 long_long(PyObject *v)
4866 {
4867     if (PyLong_CheckExact(v))
4868         Py_INCREF(v);
4869     else
4870         v = _PyLong_Copy((PyLongObject *)v);
4871     return v;
4872 }
4873 
4874 PyObject *
_PyLong_GCD(PyObject * aarg,PyObject * barg)4875 _PyLong_GCD(PyObject *aarg, PyObject *barg)
4876 {
4877     PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
4878     stwodigits x, y, q, s, t, c_carry, d_carry;
4879     stwodigits A, B, C, D, T;
4880     int nbits, k;
4881     Py_ssize_t size_a, size_b, alloc_a, alloc_b;
4882     digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
4883 
4884     a = (PyLongObject *)aarg;
4885     b = (PyLongObject *)barg;
4886     size_a = Py_SIZE(a);
4887     size_b = Py_SIZE(b);
4888     if (-2 <= size_a && size_a <= 2 && -2 <= size_b && size_b <= 2) {
4889         Py_INCREF(a);
4890         Py_INCREF(b);
4891         goto simple;
4892     }
4893 
4894     /* Initial reduction: make sure that 0 <= b <= a. */
4895     a = (PyLongObject *)long_abs(a);
4896     if (a == NULL)
4897         return NULL;
4898     b = (PyLongObject *)long_abs(b);
4899     if (b == NULL) {
4900         Py_DECREF(a);
4901         return NULL;
4902     }
4903     if (long_compare(a, b) < 0) {
4904         r = a;
4905         a = b;
4906         b = r;
4907     }
4908     /* We now own references to a and b */
4909 
4910     alloc_a = Py_SIZE(a);
4911     alloc_b = Py_SIZE(b);
4912     /* reduce until a fits into 2 digits */
4913     while ((size_a = Py_SIZE(a)) > 2) {
4914         nbits = bits_in_digit(a->ob_digit[size_a-1]);
4915         /* extract top 2*PyLong_SHIFT bits of a into x, along with
4916            corresponding bits of b into y */
4917         size_b = Py_SIZE(b);
4918         assert(size_b <= size_a);
4919         if (size_b == 0) {
4920             if (size_a < alloc_a) {
4921                 r = (PyLongObject *)_PyLong_Copy(a);
4922                 Py_DECREF(a);
4923             }
4924             else
4925                 r = a;
4926             Py_DECREF(b);
4927             Py_XDECREF(c);
4928             Py_XDECREF(d);
4929             return (PyObject *)r;
4930         }
4931         x = (((twodigits)a->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
4932              ((twodigits)a->ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
4933              (a->ob_digit[size_a-3] >> nbits));
4934 
4935         y = ((size_b >= size_a - 2 ? b->ob_digit[size_a-3] >> nbits : 0) |
4936              (size_b >= size_a - 1 ? (twodigits)b->ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
4937              (size_b >= size_a ? (twodigits)b->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
4938 
4939         /* inner loop of Lehmer's algorithm; A, B, C, D never grow
4940            larger than PyLong_MASK during the algorithm. */
4941         A = 1; B = 0; C = 0; D = 1;
4942         for (k=0;; k++) {
4943             if (y-C == 0)
4944                 break;
4945             q = (x+(A-1))/(y-C);
4946             s = B+q*D;
4947             t = x-q*y;
4948             if (s > t)
4949                 break;
4950             x = y; y = t;
4951             t = A+q*C; A = D; B = C; C = s; D = t;
4952         }
4953 
4954         if (k == 0) {
4955             /* no progress; do a Euclidean step */
4956             if (l_divmod(a, b, NULL, &r) < 0)
4957                 goto error;
4958             Py_DECREF(a);
4959             a = b;
4960             b = r;
4961             alloc_a = alloc_b;
4962             alloc_b = Py_SIZE(b);
4963             continue;
4964         }
4965 
4966         /*
4967           a, b = A*b-B*a, D*a-C*b if k is odd
4968           a, b = A*a-B*b, D*b-C*a if k is even
4969         */
4970         if (k&1) {
4971             T = -A; A = -B; B = T;
4972             T = -C; C = -D; D = T;
4973         }
4974         if (c != NULL)
4975             Py_SIZE(c) = size_a;
4976         else if (Py_REFCNT(a) == 1) {
4977             Py_INCREF(a);
4978             c = a;
4979         }
4980         else {
4981             alloc_a = size_a;
4982             c = _PyLong_New(size_a);
4983             if (c == NULL)
4984                 goto error;
4985         }
4986 
4987         if (d != NULL)
4988             Py_SIZE(d) = size_a;
4989         else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
4990             Py_INCREF(b);
4991             d = b;
4992             Py_SIZE(d) = size_a;
4993         }
4994         else {
4995             alloc_b = size_a;
4996             d = _PyLong_New(size_a);
4997             if (d == NULL)
4998                 goto error;
4999         }
5000         a_end = a->ob_digit + size_a;
5001         b_end = b->ob_digit + size_b;
5002 
5003         /* compute new a and new b in parallel */
5004         a_digit = a->ob_digit;
5005         b_digit = b->ob_digit;
5006         c_digit = c->ob_digit;
5007         d_digit = d->ob_digit;
5008         c_carry = 0;
5009         d_carry = 0;
5010         while (b_digit < b_end) {
5011             c_carry += (A * *a_digit) - (B * *b_digit);
5012             d_carry += (D * *b_digit++) - (C * *a_digit++);
5013             *c_digit++ = (digit)(c_carry & PyLong_MASK);
5014             *d_digit++ = (digit)(d_carry & PyLong_MASK);
5015             c_carry >>= PyLong_SHIFT;
5016             d_carry >>= PyLong_SHIFT;
5017         }
5018         while (a_digit < a_end) {
5019             c_carry += A * *a_digit;
5020             d_carry -= C * *a_digit++;
5021             *c_digit++ = (digit)(c_carry & PyLong_MASK);
5022             *d_digit++ = (digit)(d_carry & PyLong_MASK);
5023             c_carry >>= PyLong_SHIFT;
5024             d_carry >>= PyLong_SHIFT;
5025         }
5026         assert(c_carry == 0);
5027         assert(d_carry == 0);
5028 
5029         Py_INCREF(c);
5030         Py_INCREF(d);
5031         Py_DECREF(a);
5032         Py_DECREF(b);
5033         a = long_normalize(c);
5034         b = long_normalize(d);
5035     }
5036     Py_XDECREF(c);
5037     Py_XDECREF(d);
5038 
5039 simple:
5040     assert(Py_REFCNT(a) > 0);
5041     assert(Py_REFCNT(b) > 0);
5042 /* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
5043    undefined behaviour when LONG_MAX type is smaller than 60 bits */
5044 #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5045     /* a fits into a long, so b must too */
5046     x = PyLong_AsLong((PyObject *)a);
5047     y = PyLong_AsLong((PyObject *)b);
5048 #elif PY_LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5049     x = PyLong_AsLongLong((PyObject *)a);
5050     y = PyLong_AsLongLong((PyObject *)b);
5051 #else
5052 # error "_PyLong_GCD"
5053 #endif
5054     x = Py_ABS(x);
5055     y = Py_ABS(y);
5056     Py_DECREF(a);
5057     Py_DECREF(b);
5058 
5059     /* usual Euclidean algorithm for longs */
5060     while (y != 0) {
5061         t = y;
5062         y = x % y;
5063         x = t;
5064     }
5065 #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5066     return PyLong_FromLong(x);
5067 #elif PY_LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5068     return PyLong_FromLongLong(x);
5069 #else
5070 # error "_PyLong_GCD"
5071 #endif
5072 
5073 error:
5074     Py_DECREF(a);
5075     Py_DECREF(b);
5076     Py_XDECREF(c);
5077     Py_XDECREF(d);
5078     return NULL;
5079 }
5080 
5081 static PyObject *
long_float(PyObject * v)5082 long_float(PyObject *v)
5083 {
5084     double result;
5085     result = PyLong_AsDouble(v);
5086     if (result == -1.0 && PyErr_Occurred())
5087         return NULL;
5088     return PyFloat_FromDouble(result);
5089 }
5090 
5091 static PyObject *
5092 long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
5093 
5094 /*[clinic input]
5095 @classmethod
5096 int.__new__ as long_new
5097     x: object(c_default="NULL") = 0
5098     /
5099     base as obase: object(c_default="NULL") = 10
5100 [clinic start generated code]*/
5101 
5102 static PyObject *
long_new_impl(PyTypeObject * type,PyObject * x,PyObject * obase)5103 long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
5104 /*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
5105 {
5106     Py_ssize_t base;
5107 
5108     if (type != &PyLong_Type)
5109         return long_subtype_new(type, x, obase); /* Wimp out */
5110     if (x == NULL) {
5111         if (obase != NULL) {
5112             PyErr_SetString(PyExc_TypeError,
5113                             "int() missing string argument");
5114             return NULL;
5115         }
5116         return PyLong_FromLong(0L);
5117     }
5118     if (obase == NULL)
5119         return PyNumber_Long(x);
5120 
5121     base = PyNumber_AsSsize_t(obase, NULL);
5122     if (base == -1 && PyErr_Occurred())
5123         return NULL;
5124     if ((base != 0 && base < 2) || base > 36) {
5125         PyErr_SetString(PyExc_ValueError,
5126                         "int() base must be >= 2 and <= 36, or 0");
5127         return NULL;
5128     }
5129 
5130     if (PyUnicode_Check(x))
5131         return PyLong_FromUnicodeObject(x, (int)base);
5132     else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
5133         char *string;
5134         if (PyByteArray_Check(x))
5135             string = PyByteArray_AS_STRING(x);
5136         else
5137             string = PyBytes_AS_STRING(x);
5138         return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
5139     }
5140     else {
5141         PyErr_SetString(PyExc_TypeError,
5142                         "int() can't convert non-string with explicit base");
5143         return NULL;
5144     }
5145 }
5146 
5147 /* Wimpy, slow approach to tp_new calls for subtypes of int:
5148    first create a regular int from whatever arguments we got,
5149    then allocate a subtype instance and initialize it from
5150    the regular int.  The regular int is then thrown away.
5151 */
5152 static PyObject *
long_subtype_new(PyTypeObject * type,PyObject * x,PyObject * obase)5153 long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
5154 {
5155     PyLongObject *tmp, *newobj;
5156     Py_ssize_t i, n;
5157 
5158     assert(PyType_IsSubtype(type, &PyLong_Type));
5159     tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
5160     if (tmp == NULL)
5161         return NULL;
5162     assert(PyLong_Check(tmp));
5163     n = Py_SIZE(tmp);
5164     if (n < 0)
5165         n = -n;
5166     newobj = (PyLongObject *)type->tp_alloc(type, n);
5167     if (newobj == NULL) {
5168         Py_DECREF(tmp);
5169         return NULL;
5170     }
5171     assert(PyLong_Check(newobj));
5172     Py_SIZE(newobj) = Py_SIZE(tmp);
5173     for (i = 0; i < n; i++)
5174         newobj->ob_digit[i] = tmp->ob_digit[i];
5175     Py_DECREF(tmp);
5176     return (PyObject *)newobj;
5177 }
5178 
5179 /*[clinic input]
5180 int.__getnewargs__
5181 [clinic start generated code]*/
5182 
5183 static PyObject *
int___getnewargs___impl(PyObject * self)5184 int___getnewargs___impl(PyObject *self)
5185 /*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
5186 {
5187     return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
5188 }
5189 
5190 static PyObject *
long_get0(PyObject * Py_UNUSED (self),void * Py_UNUSED (context))5191 long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
5192 {
5193     return PyLong_FromLong(0L);
5194 }
5195 
5196 static PyObject *
long_get1(PyObject * Py_UNUSED (self),void * Py_UNUSED (ignored))5197 long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
5198 {
5199     return PyLong_FromLong(1L);
5200 }
5201 
5202 /*[clinic input]
5203 int.__format__
5204 
5205     format_spec: unicode
5206     /
5207 [clinic start generated code]*/
5208 
5209 static PyObject *
int___format___impl(PyObject * self,PyObject * format_spec)5210 int___format___impl(PyObject *self, PyObject *format_spec)
5211 /*[clinic end generated code: output=b4929dee9ae18689 input=e31944a9b3e428b7]*/
5212 {
5213     _PyUnicodeWriter writer;
5214     int ret;
5215 
5216     _PyUnicodeWriter_Init(&writer);
5217     ret = _PyLong_FormatAdvancedWriter(
5218         &writer,
5219         self,
5220         format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
5221     if (ret == -1) {
5222         _PyUnicodeWriter_Dealloc(&writer);
5223         return NULL;
5224     }
5225     return _PyUnicodeWriter_Finish(&writer);
5226 }
5227 
5228 /* Return a pair (q, r) such that a = b * q + r, and
5229    abs(r) <= abs(b)/2, with equality possible only if q is even.
5230    In other words, q == a / b, rounded to the nearest integer using
5231    round-half-to-even. */
5232 
5233 PyObject *
_PyLong_DivmodNear(PyObject * a,PyObject * b)5234 _PyLong_DivmodNear(PyObject *a, PyObject *b)
5235 {
5236     PyLongObject *quo = NULL, *rem = NULL;
5237     PyObject *twice_rem, *result, *temp;
5238     int cmp, quo_is_odd, quo_is_neg;
5239 
5240     /* Equivalent Python code:
5241 
5242        def divmod_near(a, b):
5243            q, r = divmod(a, b)
5244            # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
5245            # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
5246            # positive, 2 * r < b if b negative.
5247            greater_than_half = 2*r > b if b > 0 else 2*r < b
5248            exactly_half = 2*r == b
5249            if greater_than_half or exactly_half and q % 2 == 1:
5250                q += 1
5251                r -= b
5252            return q, r
5253 
5254     */
5255     if (!PyLong_Check(a) || !PyLong_Check(b)) {
5256         PyErr_SetString(PyExc_TypeError,
5257                         "non-integer arguments in division");
5258         return NULL;
5259     }
5260 
5261     /* Do a and b have different signs?  If so, quotient is negative. */
5262     quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0);
5263 
5264     if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
5265         goto error;
5266 
5267     /* compare twice the remainder with the divisor, to see
5268        if we need to adjust the quotient and remainder */
5269     twice_rem = long_lshift((PyObject *)rem, _PyLong_One);
5270     if (twice_rem == NULL)
5271         goto error;
5272     if (quo_is_neg) {
5273         temp = long_neg((PyLongObject*)twice_rem);
5274         Py_DECREF(twice_rem);
5275         twice_rem = temp;
5276         if (twice_rem == NULL)
5277             goto error;
5278     }
5279     cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
5280     Py_DECREF(twice_rem);
5281 
5282     quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0);
5283     if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
5284         /* fix up quotient */
5285         if (quo_is_neg)
5286             temp = long_sub(quo, (PyLongObject *)_PyLong_One);
5287         else
5288             temp = long_add(quo, (PyLongObject *)_PyLong_One);
5289         Py_DECREF(quo);
5290         quo = (PyLongObject *)temp;
5291         if (quo == NULL)
5292             goto error;
5293         /* and remainder */
5294         if (quo_is_neg)
5295             temp = long_add(rem, (PyLongObject *)b);
5296         else
5297             temp = long_sub(rem, (PyLongObject *)b);
5298         Py_DECREF(rem);
5299         rem = (PyLongObject *)temp;
5300         if (rem == NULL)
5301             goto error;
5302     }
5303 
5304     result = PyTuple_New(2);
5305     if (result == NULL)
5306         goto error;
5307 
5308     /* PyTuple_SET_ITEM steals references */
5309     PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
5310     PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
5311     return result;
5312 
5313   error:
5314     Py_XDECREF(quo);
5315     Py_XDECREF(rem);
5316     return NULL;
5317 }
5318 
5319 static PyObject *
long_round(PyObject * self,PyObject * args)5320 long_round(PyObject *self, PyObject *args)
5321 {
5322     PyObject *o_ndigits=NULL, *temp, *result, *ndigits;
5323 
5324     /* To round an integer m to the nearest 10**n (n positive), we make use of
5325      * the divmod_near operation, defined by:
5326      *
5327      *   divmod_near(a, b) = (q, r)
5328      *
5329      * where q is the nearest integer to the quotient a / b (the
5330      * nearest even integer in the case of a tie) and r == a - q * b.
5331      * Hence q * b = a - r is the nearest multiple of b to a,
5332      * preferring even multiples in the case of a tie.
5333      *
5334      * So the nearest multiple of 10**n to m is:
5335      *
5336      *   m - divmod_near(m, 10**n)[1].
5337      */
5338     if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
5339         return NULL;
5340     if (o_ndigits == NULL)
5341         return long_long(self);
5342 
5343     ndigits = PyNumber_Index(o_ndigits);
5344     if (ndigits == NULL)
5345         return NULL;
5346 
5347     /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
5348     if (Py_SIZE(ndigits) >= 0) {
5349         Py_DECREF(ndigits);
5350         return long_long(self);
5351     }
5352 
5353     /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
5354     temp = long_neg((PyLongObject*)ndigits);
5355     Py_DECREF(ndigits);
5356     ndigits = temp;
5357     if (ndigits == NULL)
5358         return NULL;
5359 
5360     result = PyLong_FromLong(10L);
5361     if (result == NULL) {
5362         Py_DECREF(ndigits);
5363         return NULL;
5364     }
5365 
5366     temp = long_pow(result, ndigits, Py_None);
5367     Py_DECREF(ndigits);
5368     Py_DECREF(result);
5369     result = temp;
5370     if (result == NULL)
5371         return NULL;
5372 
5373     temp = _PyLong_DivmodNear(self, result);
5374     Py_DECREF(result);
5375     result = temp;
5376     if (result == NULL)
5377         return NULL;
5378 
5379     temp = long_sub((PyLongObject *)self,
5380                     (PyLongObject *)PyTuple_GET_ITEM(result, 1));
5381     Py_DECREF(result);
5382     result = temp;
5383 
5384     return result;
5385 }
5386 
5387 /*[clinic input]
5388 int.__sizeof__ -> Py_ssize_t
5389 
5390 Returns size in memory, in bytes.
5391 [clinic start generated code]*/
5392 
5393 static Py_ssize_t
int___sizeof___impl(PyObject * self)5394 int___sizeof___impl(PyObject *self)
5395 /*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
5396 {
5397     Py_ssize_t res;
5398 
5399     res = offsetof(PyLongObject, ob_digit) + Py_ABS(Py_SIZE(self))*sizeof(digit);
5400     return res;
5401 }
5402 
5403 /*[clinic input]
5404 int.bit_length
5405 
5406 Number of bits necessary to represent self in binary.
5407 
5408 >>> bin(37)
5409 '0b100101'
5410 >>> (37).bit_length()
5411 6
5412 [clinic start generated code]*/
5413 
5414 static PyObject *
int_bit_length_impl(PyObject * self)5415 int_bit_length_impl(PyObject *self)
5416 /*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
5417 {
5418     PyLongObject *result, *x, *y;
5419     Py_ssize_t ndigits;
5420     int msd_bits;
5421     digit msd;
5422 
5423     assert(self != NULL);
5424     assert(PyLong_Check(self));
5425 
5426     ndigits = Py_ABS(Py_SIZE(self));
5427     if (ndigits == 0)
5428         return PyLong_FromLong(0);
5429 
5430     msd = ((PyLongObject *)self)->ob_digit[ndigits-1];
5431     msd_bits = bits_in_digit(msd);
5432 
5433     if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
5434         return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
5435 
5436     /* expression above may overflow; use Python integers instead */
5437     result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
5438     if (result == NULL)
5439         return NULL;
5440     x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
5441     if (x == NULL)
5442         goto error;
5443     y = (PyLongObject *)long_mul(result, x);
5444     Py_DECREF(x);
5445     if (y == NULL)
5446         goto error;
5447     Py_DECREF(result);
5448     result = y;
5449 
5450     x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
5451     if (x == NULL)
5452         goto error;
5453     y = (PyLongObject *)long_add(result, x);
5454     Py_DECREF(x);
5455     if (y == NULL)
5456         goto error;
5457     Py_DECREF(result);
5458     result = y;
5459 
5460     return (PyObject *)result;
5461 
5462   error:
5463     Py_DECREF(result);
5464     return NULL;
5465 }
5466 
5467 #if 0
5468 static PyObject *
5469 long_is_finite(PyObject *v)
5470 {
5471     Py_RETURN_TRUE;
5472 }
5473 #endif
5474 
5475 /*[clinic input]
5476 int.as_integer_ratio
5477 
5478 Return integer ratio.
5479 
5480 Return a pair of integers, whose ratio is exactly equal to the original int
5481 and with a positive denominator.
5482 
5483 >>> (10).as_integer_ratio()
5484 (10, 1)
5485 >>> (-10).as_integer_ratio()
5486 (-10, 1)
5487 >>> (0).as_integer_ratio()
5488 (0, 1)
5489 [clinic start generated code]*/
5490 
5491 static PyObject *
int_as_integer_ratio_impl(PyObject * self)5492 int_as_integer_ratio_impl(PyObject *self)
5493 /*[clinic end generated code: output=e60803ae1cc8621a input=55ce3058e15de393]*/
5494 {
5495     PyObject *ratio_tuple;
5496     PyObject *numerator = long_long(self);
5497     if (numerator == NULL) {
5498         return NULL;
5499     }
5500     ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_One);
5501     Py_DECREF(numerator);
5502     return ratio_tuple;
5503 }
5504 
5505 /*[clinic input]
5506 int.to_bytes
5507 
5508     length: Py_ssize_t
5509         Length of bytes object to use.  An OverflowError is raised if the
5510         integer is not representable with the given number of bytes.
5511     byteorder: unicode
5512         The byte order used to represent the integer.  If byteorder is 'big',
5513         the most significant byte is at the beginning of the byte array.  If
5514         byteorder is 'little', the most significant byte is at the end of the
5515         byte array.  To request the native byte order of the host system, use
5516         `sys.byteorder' as the byte order value.
5517     *
5518     signed as is_signed: bool = False
5519         Determines whether two's complement is used to represent the integer.
5520         If signed is False and a negative integer is given, an OverflowError
5521         is raised.
5522 
5523 Return an array of bytes representing an integer.
5524 [clinic start generated code]*/
5525 
5526 static PyObject *
int_to_bytes_impl(PyObject * self,Py_ssize_t length,PyObject * byteorder,int is_signed)5527 int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
5528                   int is_signed)
5529 /*[clinic end generated code: output=89c801df114050a3 input=ddac63f4c7bf414c]*/
5530 {
5531     int little_endian;
5532     PyObject *bytes;
5533 
5534     if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_little))
5535         little_endian = 1;
5536     else if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_big))
5537         little_endian = 0;
5538     else {
5539         PyErr_SetString(PyExc_ValueError,
5540             "byteorder must be either 'little' or 'big'");
5541         return NULL;
5542     }
5543 
5544     if (length < 0) {
5545         PyErr_SetString(PyExc_ValueError,
5546                         "length argument must be non-negative");
5547         return NULL;
5548     }
5549 
5550     bytes = PyBytes_FromStringAndSize(NULL, length);
5551     if (bytes == NULL)
5552         return NULL;
5553 
5554     if (_PyLong_AsByteArray((PyLongObject *)self,
5555                             (unsigned char *)PyBytes_AS_STRING(bytes),
5556                             length, little_endian, is_signed) < 0) {
5557         Py_DECREF(bytes);
5558         return NULL;
5559     }
5560 
5561     return bytes;
5562 }
5563 
5564 /*[clinic input]
5565 @classmethod
5566 int.from_bytes
5567 
5568     bytes as bytes_obj: object
5569         Holds the array of bytes to convert.  The argument must either
5570         support the buffer protocol or be an iterable object producing bytes.
5571         Bytes and bytearray are examples of built-in objects that support the
5572         buffer protocol.
5573     byteorder: unicode
5574         The byte order used to represent the integer.  If byteorder is 'big',
5575         the most significant byte is at the beginning of the byte array.  If
5576         byteorder is 'little', the most significant byte is at the end of the
5577         byte array.  To request the native byte order of the host system, use
5578         `sys.byteorder' as the byte order value.
5579     *
5580     signed as is_signed: bool = False
5581         Indicates whether two's complement is used to represent the integer.
5582 
5583 Return the integer represented by the given array of bytes.
5584 [clinic start generated code]*/
5585 
5586 static PyObject *
int_from_bytes_impl(PyTypeObject * type,PyObject * bytes_obj,PyObject * byteorder,int is_signed)5587 int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
5588                     PyObject *byteorder, int is_signed)
5589 /*[clinic end generated code: output=efc5d68e31f9314f input=cdf98332b6a821b0]*/
5590 {
5591     int little_endian;
5592     PyObject *long_obj, *bytes;
5593 
5594     if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_little))
5595         little_endian = 1;
5596     else if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_big))
5597         little_endian = 0;
5598     else {
5599         PyErr_SetString(PyExc_ValueError,
5600             "byteorder must be either 'little' or 'big'");
5601         return NULL;
5602     }
5603 
5604     bytes = PyObject_Bytes(bytes_obj);
5605     if (bytes == NULL)
5606         return NULL;
5607 
5608     long_obj = _PyLong_FromByteArray(
5609         (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
5610         little_endian, is_signed);
5611     Py_DECREF(bytes);
5612 
5613     if (long_obj != NULL && type != &PyLong_Type) {
5614         Py_SETREF(long_obj, PyObject_CallFunctionObjArgs((PyObject *)type,
5615                                                          long_obj, NULL));
5616     }
5617 
5618     return long_obj;
5619 }
5620 
5621 static PyObject *
long_long_meth(PyObject * self,PyObject * Py_UNUSED (ignored))5622 long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
5623 {
5624     return long_long(self);
5625 }
5626 
5627 static PyMethodDef long_methods[] = {
5628     {"conjugate",       long_long_meth, METH_NOARGS,
5629      "Returns self, the complex conjugate of any int."},
5630     INT_BIT_LENGTH_METHODDEF
5631 #if 0
5632     {"is_finite",       (PyCFunction)long_is_finite,    METH_NOARGS,
5633      "Returns always True."},
5634 #endif
5635     INT_TO_BYTES_METHODDEF
5636     INT_FROM_BYTES_METHODDEF
5637     INT_AS_INTEGER_RATIO_METHODDEF
5638     {"__trunc__",       long_long_meth, METH_NOARGS,
5639      "Truncating an Integral returns itself."},
5640     {"__floor__",       long_long_meth, METH_NOARGS,
5641      "Flooring an Integral returns itself."},
5642     {"__ceil__",        long_long_meth, METH_NOARGS,
5643      "Ceiling of an Integral returns itself."},
5644     {"__round__",       (PyCFunction)long_round, METH_VARARGS,
5645      "Rounding an Integral returns itself.\n"
5646      "Rounding with an ndigits argument also returns an integer."},
5647     INT___GETNEWARGS___METHODDEF
5648     INT___FORMAT___METHODDEF
5649     INT___SIZEOF___METHODDEF
5650     {NULL,              NULL}           /* sentinel */
5651 };
5652 
5653 static PyGetSetDef long_getset[] = {
5654     {"real",
5655      (getter)long_long_meth, (setter)NULL,
5656      "the real part of a complex number",
5657      NULL},
5658     {"imag",
5659      long_get0, (setter)NULL,
5660      "the imaginary part of a complex number",
5661      NULL},
5662     {"numerator",
5663      (getter)long_long_meth, (setter)NULL,
5664      "the numerator of a rational number in lowest terms",
5665      NULL},
5666     {"denominator",
5667      long_get1, (setter)NULL,
5668      "the denominator of a rational number in lowest terms",
5669      NULL},
5670     {NULL}  /* Sentinel */
5671 };
5672 
5673 PyDoc_STRVAR(long_doc,
5674 "int([x]) -> integer\n\
5675 int(x, base=10) -> integer\n\
5676 \n\
5677 Convert a number or string to an integer, or return 0 if no arguments\n\
5678 are given.  If x is a number, return x.__int__().  For floating point\n\
5679 numbers, this truncates towards zero.\n\
5680 \n\
5681 If x is not a number or if base is given, then x must be a string,\n\
5682 bytes, or bytearray instance representing an integer literal in the\n\
5683 given base.  The literal can be preceded by '+' or '-' and be surrounded\n\
5684 by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.\n\
5685 Base 0 means to interpret the base from the string as an integer literal.\n\
5686 >>> int('0b100', base=0)\n\
5687 4");
5688 
5689 static PyNumberMethods long_as_number = {
5690     (binaryfunc)long_add,       /*nb_add*/
5691     (binaryfunc)long_sub,       /*nb_subtract*/
5692     (binaryfunc)long_mul,       /*nb_multiply*/
5693     long_mod,                   /*nb_remainder*/
5694     long_divmod,                /*nb_divmod*/
5695     long_pow,                   /*nb_power*/
5696     (unaryfunc)long_neg,        /*nb_negative*/
5697     long_long,                  /*tp_positive*/
5698     (unaryfunc)long_abs,        /*tp_absolute*/
5699     (inquiry)long_bool,         /*tp_bool*/
5700     (unaryfunc)long_invert,     /*nb_invert*/
5701     long_lshift,                /*nb_lshift*/
5702     long_rshift,                /*nb_rshift*/
5703     long_and,                   /*nb_and*/
5704     long_xor,                   /*nb_xor*/
5705     long_or,                    /*nb_or*/
5706     long_long,                  /*nb_int*/
5707     0,                          /*nb_reserved*/
5708     long_float,                 /*nb_float*/
5709     0,                          /* nb_inplace_add */
5710     0,                          /* nb_inplace_subtract */
5711     0,                          /* nb_inplace_multiply */
5712     0,                          /* nb_inplace_remainder */
5713     0,                          /* nb_inplace_power */
5714     0,                          /* nb_inplace_lshift */
5715     0,                          /* nb_inplace_rshift */
5716     0,                          /* nb_inplace_and */
5717     0,                          /* nb_inplace_xor */
5718     0,                          /* nb_inplace_or */
5719     long_div,                   /* nb_floor_divide */
5720     long_true_divide,           /* nb_true_divide */
5721     0,                          /* nb_inplace_floor_divide */
5722     0,                          /* nb_inplace_true_divide */
5723     long_long,                  /* nb_index */
5724 };
5725 
5726 PyTypeObject PyLong_Type = {
5727     PyVarObject_HEAD_INIT(&PyType_Type, 0)
5728     "int",                                      /* tp_name */
5729     offsetof(PyLongObject, ob_digit),           /* tp_basicsize */
5730     sizeof(digit),                              /* tp_itemsize */
5731     0,                                          /* tp_dealloc */
5732     0,                                          /* tp_vectorcall_offset */
5733     0,                                          /* tp_getattr */
5734     0,                                          /* tp_setattr */
5735     0,                                          /* tp_as_async */
5736     long_to_decimal_string,                     /* tp_repr */
5737     &long_as_number,                            /* tp_as_number */
5738     0,                                          /* tp_as_sequence */
5739     0,                                          /* tp_as_mapping */
5740     (hashfunc)long_hash,                        /* tp_hash */
5741     0,                                          /* tp_call */
5742     0,                                          /* tp_str */
5743     PyObject_GenericGetAttr,                    /* tp_getattro */
5744     0,                                          /* tp_setattro */
5745     0,                                          /* tp_as_buffer */
5746     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
5747         Py_TPFLAGS_LONG_SUBCLASS,               /* tp_flags */
5748     long_doc,                                   /* tp_doc */
5749     0,                                          /* tp_traverse */
5750     0,                                          /* tp_clear */
5751     long_richcompare,                           /* tp_richcompare */
5752     0,                                          /* tp_weaklistoffset */
5753     0,                                          /* tp_iter */
5754     0,                                          /* tp_iternext */
5755     long_methods,                               /* tp_methods */
5756     0,                                          /* tp_members */
5757     long_getset,                                /* tp_getset */
5758     0,                                          /* tp_base */
5759     0,                                          /* tp_dict */
5760     0,                                          /* tp_descr_get */
5761     0,                                          /* tp_descr_set */
5762     0,                                          /* tp_dictoffset */
5763     0,                                          /* tp_init */
5764     0,                                          /* tp_alloc */
5765     long_new,                                   /* tp_new */
5766     PyObject_Del,                               /* tp_free */
5767 };
5768 
5769 static PyTypeObject Int_InfoType;
5770 
5771 PyDoc_STRVAR(int_info__doc__,
5772 "sys.int_info\n\
5773 \n\
5774 A named tuple that holds information about Python's\n\
5775 internal representation of integers.  The attributes are read only.");
5776 
5777 static PyStructSequence_Field int_info_fields[] = {
5778     {"bits_per_digit", "size of a digit in bits"},
5779     {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
5780     {NULL, NULL}
5781 };
5782 
5783 static PyStructSequence_Desc int_info_desc = {
5784     "sys.int_info",   /* name */
5785     int_info__doc__,  /* doc */
5786     int_info_fields,  /* fields */
5787     2                 /* number of fields */
5788 };
5789 
5790 PyObject *
PyLong_GetInfo(void)5791 PyLong_GetInfo(void)
5792 {
5793     PyObject* int_info;
5794     int field = 0;
5795     int_info = PyStructSequence_New(&Int_InfoType);
5796     if (int_info == NULL)
5797         return NULL;
5798     PyStructSequence_SET_ITEM(int_info, field++,
5799                               PyLong_FromLong(PyLong_SHIFT));
5800     PyStructSequence_SET_ITEM(int_info, field++,
5801                               PyLong_FromLong(sizeof(digit)));
5802     if (PyErr_Occurred()) {
5803         Py_CLEAR(int_info);
5804         return NULL;
5805     }
5806     return int_info;
5807 }
5808 
5809 int
_PyLong_Init(void)5810 _PyLong_Init(void)
5811 {
5812 #if NSMALLNEGINTS + NSMALLPOSINTS > 0
5813     int ival, size;
5814     PyLongObject *v = small_ints;
5815 
5816     for (ival = -NSMALLNEGINTS; ival <  NSMALLPOSINTS; ival++, v++) {
5817         size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1);
5818         if (Py_TYPE(v) == &PyLong_Type) {
5819             /* The element is already initialized, most likely
5820              * the Python interpreter was initialized before.
5821              */
5822             Py_ssize_t refcnt;
5823             PyObject* op = (PyObject*)v;
5824 
5825             refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op);
5826             _Py_NewReference(op);
5827             /* _Py_NewReference sets the ref count to 1 but
5828              * the ref count might be larger. Set the refcnt
5829              * to the original refcnt + 1 */
5830             Py_REFCNT(op) = refcnt + 1;
5831             assert(Py_SIZE(op) == size);
5832             assert(v->ob_digit[0] == (digit)abs(ival));
5833         }
5834         else {
5835             (void)PyObject_INIT(v, &PyLong_Type);
5836         }
5837         Py_SIZE(v) = size;
5838         v->ob_digit[0] = (digit)abs(ival);
5839     }
5840 #endif
5841     _PyLong_Zero = PyLong_FromLong(0);
5842     if (_PyLong_Zero == NULL)
5843         return 0;
5844     _PyLong_One = PyLong_FromLong(1);
5845     if (_PyLong_One == NULL)
5846         return 0;
5847 
5848     /* initialize int_info */
5849     if (Int_InfoType.tp_name == NULL) {
5850         if (PyStructSequence_InitType2(&Int_InfoType, &int_info_desc) < 0) {
5851             return 0;
5852         }
5853     }
5854 
5855     return 1;
5856 }
5857 
5858 void
PyLong_Fini(void)5859 PyLong_Fini(void)
5860 {
5861     /* Integers are currently statically allocated. Py_DECREF is not
5862        needed, but Python must forget about the reference or multiple
5863        reinitializations will fail. */
5864     Py_CLEAR(_PyLong_One);
5865     Py_CLEAR(_PyLong_Zero);
5866 #if NSMALLNEGINTS + NSMALLPOSINTS > 0
5867     int i;
5868     PyLongObject *v = small_ints;
5869     for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) {
5870         _Py_DEC_REFTOTAL;
5871         _Py_ForgetReference((PyObject*)v);
5872     }
5873 #endif
5874 }
5875