• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************
2  *
3  * The author of this software is David M. Gay.
4  *
5  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose without fee is hereby granted, provided that this entire notice
9  * is included in all copies of any software which is or includes a copy
10  * or modification of this software and in all copies of the supporting
11  * documentation for such software.
12  *
13  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17  *
18  ***************************************************************/
19 
20 /****************************************************************
21  * This is dtoa.c by David M. Gay, downloaded from
22  * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23  * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24  *
25  * Please remember to check http://www.netlib.org/fp regularly (and especially
26  * before any Python release) for bugfixes and updates.
27  *
28  * The major modifications from Gay's original code are as follows:
29  *
30  *  0. The original code has been specialized to Python's needs by removing
31  *     many of the #ifdef'd sections.  In particular, code to support VAX and
32  *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33  *     treatment of the decimal point, and setting of the inexact flag have
34  *     been removed.
35  *
36  *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37  *
38  *  2. The public functions strtod, dtoa and freedtoa all now have
39  *     a _Py_dg_ prefix.
40  *
41  *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42  *     PyMem_Malloc failures through the code.  The functions
43  *
44  *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45  *
46  *     of return type *Bigint all return NULL to indicate a malloc failure.
47  *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48  *     failure.  bigcomp now has return type int (it used to be void) and
49  *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50  *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51  *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52  *
53  *  4. The static variable dtoa_result has been removed.  Callers of
54  *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55  *     the memory allocated by _Py_dg_dtoa.
56  *
57  *  5. The code has been reformatted to better fit with Python's
58  *     C style guide (PEP 7).
59  *
60  *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61  *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62  *     Kmax.
63  *
64  *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65  *     leading whitespace.
66  *
67  ***************************************************************/
68 
69 /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
70  * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
71  * Please report bugs for this modified version using the Python issue tracker
72  * (http://bugs.python.org). */
73 
74 /* On a machine with IEEE extended-precision registers, it is
75  * necessary to specify double-precision (53-bit) rounding precision
76  * before invoking strtod or dtoa.  If the machine uses (the equivalent
77  * of) Intel 80x87 arithmetic, the call
78  *      _control87(PC_53, MCW_PC);
79  * does this with many compilers.  Whether this or another call is
80  * appropriate depends on the compiler; for this to work, it may be
81  * necessary to #include "float.h" or another system-dependent header
82  * file.
83  */
84 
85 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
86  *
87  * This strtod returns a nearest machine number to the input decimal
88  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
89  * broken by the IEEE round-even rule.  Otherwise ties are broken by
90  * biased rounding (add half and chop).
91  *
92  * Inspired loosely by William D. Clinger's paper "How to Read Floating
93  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
94  *
95  * Modifications:
96  *
97  *      1. We only require IEEE, IBM, or VAX double-precision
98  *              arithmetic (not IEEE double-extended).
99  *      2. We get by with floating-point arithmetic in a case that
100  *              Clinger missed -- when we're computing d * 10^n
101  *              for a small integer d and the integer n is not too
102  *              much larger than 22 (the maximum integer k for which
103  *              we can represent 10^k exactly), we may be able to
104  *              compute (d*10^k) * 10^(e-k) with just one roundoff.
105  *      3. Rather than a bit-at-a-time adjustment of the binary
106  *              result in the hard case, we use floating-point
107  *              arithmetic to determine the adjustment to within
108  *              one bit; only in really hard cases do we need to
109  *              compute a second residual.
110  *      4. Because of 3., we don't need a large table of powers of 10
111  *              for ten-to-e (just some small tables, e.g. of 10^k
112  *              for 0 <= k <= 22).
113  */
114 
115 /* Linking of Python's #defines to Gay's #defines starts here. */
116 
117 #include "Python.h"
118 
119 /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
120    the following code */
121 #ifndef PY_NO_SHORT_FLOAT_REPR
122 
123 #include "float.h"
124 
125 #define MALLOC PyMem_Malloc
126 #define FREE PyMem_Free
127 
128 /* This code should also work for ARM mixed-endian format on little-endian
129    machines, where doubles have byte order 45670123 (in increasing address
130    order, 0 being the least significant byte). */
131 #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
132 #  define IEEE_8087
133 #endif
134 #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
135   defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
136 #  define IEEE_MC68k
137 #endif
138 #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
139 #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
140 #endif
141 
142 /* The code below assumes that the endianness of integers matches the
143    endianness of the two 32-bit words of a double.  Check this. */
144 #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
145                                  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
146 #error "doubles and ints have incompatible endianness"
147 #endif
148 
149 #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
150 #error "doubles and ints have incompatible endianness"
151 #endif
152 
153 
154 typedef uint32_t ULong;
155 typedef int32_t Long;
156 typedef uint64_t ULLong;
157 
158 #undef DEBUG
159 #ifdef Py_DEBUG
160 #define DEBUG
161 #endif
162 
163 /* End Python #define linking */
164 
165 #ifdef DEBUG
166 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
167 #endif
168 
169 #ifndef PRIVATE_MEM
170 #define PRIVATE_MEM 2304
171 #endif
172 #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
173 static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
174 
175 #ifdef __cplusplus
176 extern "C" {
177 #endif
178 
179 typedef union { double d; ULong L[2]; } U;
180 
181 #ifdef IEEE_8087
182 #define word0(x) (x)->L[1]
183 #define word1(x) (x)->L[0]
184 #else
185 #define word0(x) (x)->L[0]
186 #define word1(x) (x)->L[1]
187 #endif
188 #define dval(x) (x)->d
189 
190 #ifndef STRTOD_DIGLIM
191 #define STRTOD_DIGLIM 40
192 #endif
193 
194 /* maximum permitted exponent value for strtod; exponents larger than
195    MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
196    should fit into an int. */
197 #ifndef MAX_ABS_EXP
198 #define MAX_ABS_EXP 1100000000U
199 #endif
200 /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
201    this is used to bound the total number of digits ignoring leading zeros and
202    the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
203    should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
204    exponent clipping in _Py_dg_strtod can't affect the value of the output. */
205 #ifndef MAX_DIGITS
206 #define MAX_DIGITS 1000000000U
207 #endif
208 
209 /* Guard against trying to use the above values on unusual platforms with ints
210  * of width less than 32 bits. */
211 #if MAX_ABS_EXP > INT_MAX
212 #error "MAX_ABS_EXP should fit in an int"
213 #endif
214 #if MAX_DIGITS > INT_MAX
215 #error "MAX_DIGITS should fit in an int"
216 #endif
217 
218 /* The following definition of Storeinc is appropriate for MIPS processors.
219  * An alternative that might be better on some machines is
220  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
221  */
222 #if defined(IEEE_8087)
223 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
224                          ((unsigned short *)a)[0] = (unsigned short)c, a++)
225 #else
226 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
227                          ((unsigned short *)a)[1] = (unsigned short)c, a++)
228 #endif
229 
230 /* #define P DBL_MANT_DIG */
231 /* Ten_pmax = floor(P*log(2)/log(5)) */
232 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
233 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
234 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
235 
236 #define Exp_shift  20
237 #define Exp_shift1 20
238 #define Exp_msk1    0x100000
239 #define Exp_msk11   0x100000
240 #define Exp_mask  0x7ff00000
241 #define P 53
242 #define Nbits 53
243 #define Bias 1023
244 #define Emax 1023
245 #define Emin (-1022)
246 #define Etiny (-1074)  /* smallest denormal is 2**Etiny */
247 #define Exp_1  0x3ff00000
248 #define Exp_11 0x3ff00000
249 #define Ebits 11
250 #define Frac_mask  0xfffff
251 #define Frac_mask1 0xfffff
252 #define Ten_pmax 22
253 #define Bletch 0x10
254 #define Bndry_mask  0xfffff
255 #define Bndry_mask1 0xfffff
256 #define Sign_bit 0x80000000
257 #define Log2P 1
258 #define Tiny0 0
259 #define Tiny1 1
260 #define Quick_max 14
261 #define Int_max 14
262 
263 #ifndef Flt_Rounds
264 #ifdef FLT_ROUNDS
265 #define Flt_Rounds FLT_ROUNDS
266 #else
267 #define Flt_Rounds 1
268 #endif
269 #endif /*Flt_Rounds*/
270 
271 #define Rounding Flt_Rounds
272 
273 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
274 #define Big1 0xffffffff
275 
276 /* Standard NaN used by _Py_dg_stdnan. */
277 
278 #define NAN_WORD0 0x7ff80000
279 #define NAN_WORD1 0
280 
281 /* Bits of the representation of positive infinity. */
282 
283 #define POSINF_WORD0 0x7ff00000
284 #define POSINF_WORD1 0
285 
286 /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
287 
288 typedef struct BCinfo BCinfo;
289 struct
290 BCinfo {
291     int e0, nd, nd0, scale;
292 };
293 
294 #define FFFFFFFF 0xffffffffUL
295 
296 #define Kmax 7
297 
298 /* struct Bigint is used to represent arbitrary-precision integers.  These
299    integers are stored in sign-magnitude format, with the magnitude stored as
300    an array of base 2**32 digits.  Bigints are always normalized: if x is a
301    Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
302 
303    The Bigint fields are as follows:
304 
305      - next is a header used by Balloc and Bfree to keep track of lists
306          of freed Bigints;  it's also used for the linked list of
307          powers of 5 of the form 5**2**i used by pow5mult.
308      - k indicates which pool this Bigint was allocated from
309      - maxwds is the maximum number of words space was allocated for
310        (usually maxwds == 2**k)
311      - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
312        (ignored on inputs, set to 0 on outputs) in almost all operations
313        involving Bigints: a notable exception is the diff function, which
314        ignores signs on inputs but sets the sign of the output correctly.
315      - wds is the actual number of significant words
316      - x contains the vector of words (digits) for this Bigint, from least
317        significant (x[0]) to most significant (x[wds-1]).
318 */
319 
320 struct
321 Bigint {
322     struct Bigint *next;
323     int k, maxwds, sign, wds;
324     ULong x[1];
325 };
326 
327 typedef struct Bigint Bigint;
328 
329 #ifndef Py_USING_MEMORY_DEBUGGER
330 
331 /* Memory management: memory is allocated from, and returned to, Kmax+1 pools
332    of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
333    1 << k.  These pools are maintained as linked lists, with freelist[k]
334    pointing to the head of the list for pool k.
335 
336    On allocation, if there's no free slot in the appropriate pool, MALLOC is
337    called to get more memory.  This memory is not returned to the system until
338    Python quits.  There's also a private memory pool that's allocated from
339    in preference to using MALLOC.
340 
341    For Bigints with more than (1 << Kmax) digits (which implies at least 1233
342    decimal digits), memory is directly allocated using MALLOC, and freed using
343    FREE.
344 
345    XXX: it would be easy to bypass this memory-management system and
346    translate each call to Balloc into a call to PyMem_Malloc, and each
347    Bfree to PyMem_Free.  Investigate whether this has any significant
348    performance on impact. */
349 
350 static Bigint *freelist[Kmax+1];
351 
352 /* Allocate space for a Bigint with up to 1<<k digits */
353 
354 static Bigint *
Balloc(int k)355 Balloc(int k)
356 {
357     int x;
358     Bigint *rv;
359     unsigned int len;
360 
361     if (k <= Kmax && (rv = freelist[k]))
362         freelist[k] = rv->next;
363     else {
364         x = 1 << k;
365         len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
366             /sizeof(double);
367         if (k <= Kmax && pmem_next - private_mem + len <= (Py_ssize_t)PRIVATE_mem) {
368             rv = (Bigint*)pmem_next;
369             pmem_next += len;
370         }
371         else {
372             rv = (Bigint*)MALLOC(len*sizeof(double));
373             if (rv == NULL)
374                 return NULL;
375         }
376         rv->k = k;
377         rv->maxwds = x;
378     }
379     rv->sign = rv->wds = 0;
380     return rv;
381 }
382 
383 /* Free a Bigint allocated with Balloc */
384 
385 static void
Bfree(Bigint * v)386 Bfree(Bigint *v)
387 {
388     if (v) {
389         if (v->k > Kmax)
390             FREE((void*)v);
391         else {
392             v->next = freelist[v->k];
393             freelist[v->k] = v;
394         }
395     }
396 }
397 
398 #else
399 
400 /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
401    PyMem_Free directly in place of the custom memory allocation scheme above.
402    These are provided for the benefit of memory debugging tools like
403    Valgrind. */
404 
405 /* Allocate space for a Bigint with up to 1<<k digits */
406 
407 static Bigint *
Balloc(int k)408 Balloc(int k)
409 {
410     int x;
411     Bigint *rv;
412     unsigned int len;
413 
414     x = 1 << k;
415     len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
416         /sizeof(double);
417 
418     rv = (Bigint*)MALLOC(len*sizeof(double));
419     if (rv == NULL)
420         return NULL;
421 
422     rv->k = k;
423     rv->maxwds = x;
424     rv->sign = rv->wds = 0;
425     return rv;
426 }
427 
428 /* Free a Bigint allocated with Balloc */
429 
430 static void
Bfree(Bigint * v)431 Bfree(Bigint *v)
432 {
433     if (v) {
434         FREE((void*)v);
435     }
436 }
437 
438 #endif /* Py_USING_MEMORY_DEBUGGER */
439 
440 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
441                           y->wds*sizeof(Long) + 2*sizeof(int))
442 
443 /* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
444    a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
445    On failure, return NULL.  In this case, b will have been already freed. */
446 
447 static Bigint *
multadd(Bigint * b,int m,int a)448 multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
449 {
450     int i, wds;
451     ULong *x;
452     ULLong carry, y;
453     Bigint *b1;
454 
455     wds = b->wds;
456     x = b->x;
457     i = 0;
458     carry = a;
459     do {
460         y = *x * (ULLong)m + carry;
461         carry = y >> 32;
462         *x++ = (ULong)(y & FFFFFFFF);
463     }
464     while(++i < wds);
465     if (carry) {
466         if (wds >= b->maxwds) {
467             b1 = Balloc(b->k+1);
468             if (b1 == NULL){
469                 Bfree(b);
470                 return NULL;
471             }
472             Bcopy(b1, b);
473             Bfree(b);
474             b = b1;
475         }
476         b->x[wds++] = (ULong)carry;
477         b->wds = wds;
478     }
479     return b;
480 }
481 
482 /* convert a string s containing nd decimal digits (possibly containing a
483    decimal separator at position nd0, which is ignored) to a Bigint.  This
484    function carries on where the parsing code in _Py_dg_strtod leaves off: on
485    entry, y9 contains the result of converting the first 9 digits.  Returns
486    NULL on failure. */
487 
488 static Bigint *
s2b(const char * s,int nd0,int nd,ULong y9)489 s2b(const char *s, int nd0, int nd, ULong y9)
490 {
491     Bigint *b;
492     int i, k;
493     Long x, y;
494 
495     x = (nd + 8) / 9;
496     for(k = 0, y = 1; x > y; y <<= 1, k++) ;
497     b = Balloc(k);
498     if (b == NULL)
499         return NULL;
500     b->x[0] = y9;
501     b->wds = 1;
502 
503     if (nd <= 9)
504       return b;
505 
506     s += 9;
507     for (i = 9; i < nd0; i++) {
508         b = multadd(b, 10, *s++ - '0');
509         if (b == NULL)
510             return NULL;
511     }
512     s++;
513     for(; i < nd; i++) {
514         b = multadd(b, 10, *s++ - '0');
515         if (b == NULL)
516             return NULL;
517     }
518     return b;
519 }
520 
521 /* count leading 0 bits in the 32-bit integer x. */
522 
523 static int
hi0bits(ULong x)524 hi0bits(ULong x)
525 {
526     int k = 0;
527 
528     if (!(x & 0xffff0000)) {
529         k = 16;
530         x <<= 16;
531     }
532     if (!(x & 0xff000000)) {
533         k += 8;
534         x <<= 8;
535     }
536     if (!(x & 0xf0000000)) {
537         k += 4;
538         x <<= 4;
539     }
540     if (!(x & 0xc0000000)) {
541         k += 2;
542         x <<= 2;
543     }
544     if (!(x & 0x80000000)) {
545         k++;
546         if (!(x & 0x40000000))
547             return 32;
548     }
549     return k;
550 }
551 
552 /* count trailing 0 bits in the 32-bit integer y, and shift y right by that
553    number of bits. */
554 
555 static int
lo0bits(ULong * y)556 lo0bits(ULong *y)
557 {
558     int k;
559     ULong x = *y;
560 
561     if (x & 7) {
562         if (x & 1)
563             return 0;
564         if (x & 2) {
565             *y = x >> 1;
566             return 1;
567         }
568         *y = x >> 2;
569         return 2;
570     }
571     k = 0;
572     if (!(x & 0xffff)) {
573         k = 16;
574         x >>= 16;
575     }
576     if (!(x & 0xff)) {
577         k += 8;
578         x >>= 8;
579     }
580     if (!(x & 0xf)) {
581         k += 4;
582         x >>= 4;
583     }
584     if (!(x & 0x3)) {
585         k += 2;
586         x >>= 2;
587     }
588     if (!(x & 1)) {
589         k++;
590         x >>= 1;
591         if (!x)
592             return 32;
593     }
594     *y = x;
595     return k;
596 }
597 
598 /* convert a small nonnegative integer to a Bigint */
599 
600 static Bigint *
i2b(int i)601 i2b(int i)
602 {
603     Bigint *b;
604 
605     b = Balloc(1);
606     if (b == NULL)
607         return NULL;
608     b->x[0] = i;
609     b->wds = 1;
610     return b;
611 }
612 
613 /* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
614    the signs of a and b. */
615 
616 static Bigint *
mult(Bigint * a,Bigint * b)617 mult(Bigint *a, Bigint *b)
618 {
619     Bigint *c;
620     int k, wa, wb, wc;
621     ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
622     ULong y;
623     ULLong carry, z;
624 
625     if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
626         c = Balloc(0);
627         if (c == NULL)
628             return NULL;
629         c->wds = 1;
630         c->x[0] = 0;
631         return c;
632     }
633 
634     if (a->wds < b->wds) {
635         c = a;
636         a = b;
637         b = c;
638     }
639     k = a->k;
640     wa = a->wds;
641     wb = b->wds;
642     wc = wa + wb;
643     if (wc > a->maxwds)
644         k++;
645     c = Balloc(k);
646     if (c == NULL)
647         return NULL;
648     for(x = c->x, xa = x + wc; x < xa; x++)
649         *x = 0;
650     xa = a->x;
651     xae = xa + wa;
652     xb = b->x;
653     xbe = xb + wb;
654     xc0 = c->x;
655     for(; xb < xbe; xc0++) {
656         if ((y = *xb++)) {
657             x = xa;
658             xc = xc0;
659             carry = 0;
660             do {
661                 z = *x++ * (ULLong)y + *xc + carry;
662                 carry = z >> 32;
663                 *xc++ = (ULong)(z & FFFFFFFF);
664             }
665             while(x < xae);
666             *xc = (ULong)carry;
667         }
668     }
669     for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
670     c->wds = wc;
671     return c;
672 }
673 
674 #ifndef Py_USING_MEMORY_DEBUGGER
675 
676 /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
677 
678 static Bigint *p5s;
679 
680 /* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
681    failure; if the returned pointer is distinct from b then the original
682    Bigint b will have been Bfree'd.   Ignores the sign of b. */
683 
684 static Bigint *
pow5mult(Bigint * b,int k)685 pow5mult(Bigint *b, int k)
686 {
687     Bigint *b1, *p5, *p51;
688     int i;
689     static const int p05[3] = { 5, 25, 125 };
690 
691     if ((i = k & 3)) {
692         b = multadd(b, p05[i-1], 0);
693         if (b == NULL)
694             return NULL;
695     }
696 
697     if (!(k >>= 2))
698         return b;
699     p5 = p5s;
700     if (!p5) {
701         /* first time */
702         p5 = i2b(625);
703         if (p5 == NULL) {
704             Bfree(b);
705             return NULL;
706         }
707         p5s = p5;
708         p5->next = 0;
709     }
710     for(;;) {
711         if (k & 1) {
712             b1 = mult(b, p5);
713             Bfree(b);
714             b = b1;
715             if (b == NULL)
716                 return NULL;
717         }
718         if (!(k >>= 1))
719             break;
720         p51 = p5->next;
721         if (!p51) {
722             p51 = mult(p5,p5);
723             if (p51 == NULL) {
724                 Bfree(b);
725                 return NULL;
726             }
727             p51->next = 0;
728             p5->next = p51;
729         }
730         p5 = p51;
731     }
732     return b;
733 }
734 
735 #else
736 
737 /* Version of pow5mult that doesn't cache powers of 5. Provided for
738    the benefit of memory debugging tools like Valgrind. */
739 
740 static Bigint *
pow5mult(Bigint * b,int k)741 pow5mult(Bigint *b, int k)
742 {
743     Bigint *b1, *p5, *p51;
744     int i;
745     static const int p05[3] = { 5, 25, 125 };
746 
747     if ((i = k & 3)) {
748         b = multadd(b, p05[i-1], 0);
749         if (b == NULL)
750             return NULL;
751     }
752 
753     if (!(k >>= 2))
754         return b;
755     p5 = i2b(625);
756     if (p5 == NULL) {
757         Bfree(b);
758         return NULL;
759     }
760 
761     for(;;) {
762         if (k & 1) {
763             b1 = mult(b, p5);
764             Bfree(b);
765             b = b1;
766             if (b == NULL) {
767                 Bfree(p5);
768                 return NULL;
769             }
770         }
771         if (!(k >>= 1))
772             break;
773         p51 = mult(p5, p5);
774         Bfree(p5);
775         p5 = p51;
776         if (p5 == NULL) {
777             Bfree(b);
778             return NULL;
779         }
780     }
781     Bfree(p5);
782     return b;
783 }
784 
785 #endif /* Py_USING_MEMORY_DEBUGGER */
786 
787 /* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
788    or NULL on failure.  If the returned pointer is distinct from b then the
789    original b will have been Bfree'd.   Ignores the sign of b. */
790 
791 static Bigint *
lshift(Bigint * b,int k)792 lshift(Bigint *b, int k)
793 {
794     int i, k1, n, n1;
795     Bigint *b1;
796     ULong *x, *x1, *xe, z;
797 
798     if (!k || (!b->x[0] && b->wds == 1))
799         return b;
800 
801     n = k >> 5;
802     k1 = b->k;
803     n1 = n + b->wds + 1;
804     for(i = b->maxwds; n1 > i; i <<= 1)
805         k1++;
806     b1 = Balloc(k1);
807     if (b1 == NULL) {
808         Bfree(b);
809         return NULL;
810     }
811     x1 = b1->x;
812     for(i = 0; i < n; i++)
813         *x1++ = 0;
814     x = b->x;
815     xe = x + b->wds;
816     if (k &= 0x1f) {
817         k1 = 32 - k;
818         z = 0;
819         do {
820             *x1++ = *x << k | z;
821             z = *x++ >> k1;
822         }
823         while(x < xe);
824         if ((*x1 = z))
825             ++n1;
826     }
827     else do
828              *x1++ = *x++;
829         while(x < xe);
830     b1->wds = n1 - 1;
831     Bfree(b);
832     return b1;
833 }
834 
835 /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
836    1 if a > b.  Ignores signs of a and b. */
837 
838 static int
cmp(Bigint * a,Bigint * b)839 cmp(Bigint *a, Bigint *b)
840 {
841     ULong *xa, *xa0, *xb, *xb0;
842     int i, j;
843 
844     i = a->wds;
845     j = b->wds;
846 #ifdef DEBUG
847     if (i > 1 && !a->x[i-1])
848         Bug("cmp called with a->x[a->wds-1] == 0");
849     if (j > 1 && !b->x[j-1])
850         Bug("cmp called with b->x[b->wds-1] == 0");
851 #endif
852     if (i -= j)
853         return i;
854     xa0 = a->x;
855     xa = xa0 + j;
856     xb0 = b->x;
857     xb = xb0 + j;
858     for(;;) {
859         if (*--xa != *--xb)
860             return *xa < *xb ? -1 : 1;
861         if (xa <= xa0)
862             break;
863     }
864     return 0;
865 }
866 
867 /* Take the difference of Bigints a and b, returning a new Bigint.  Returns
868    NULL on failure.  The signs of a and b are ignored, but the sign of the
869    result is set appropriately. */
870 
871 static Bigint *
diff(Bigint * a,Bigint * b)872 diff(Bigint *a, Bigint *b)
873 {
874     Bigint *c;
875     int i, wa, wb;
876     ULong *xa, *xae, *xb, *xbe, *xc;
877     ULLong borrow, y;
878 
879     i = cmp(a,b);
880     if (!i) {
881         c = Balloc(0);
882         if (c == NULL)
883             return NULL;
884         c->wds = 1;
885         c->x[0] = 0;
886         return c;
887     }
888     if (i < 0) {
889         c = a;
890         a = b;
891         b = c;
892         i = 1;
893     }
894     else
895         i = 0;
896     c = Balloc(a->k);
897     if (c == NULL)
898         return NULL;
899     c->sign = i;
900     wa = a->wds;
901     xa = a->x;
902     xae = xa + wa;
903     wb = b->wds;
904     xb = b->x;
905     xbe = xb + wb;
906     xc = c->x;
907     borrow = 0;
908     do {
909         y = (ULLong)*xa++ - *xb++ - borrow;
910         borrow = y >> 32 & (ULong)1;
911         *xc++ = (ULong)(y & FFFFFFFF);
912     }
913     while(xb < xbe);
914     while(xa < xae) {
915         y = *xa++ - borrow;
916         borrow = y >> 32 & (ULong)1;
917         *xc++ = (ULong)(y & FFFFFFFF);
918     }
919     while(!*--xc)
920         wa--;
921     c->wds = wa;
922     return c;
923 }
924 
925 /* Given a positive normal double x, return the difference between x and the
926    next double up.  Doesn't give correct results for subnormals. */
927 
928 static double
ulp(U * x)929 ulp(U *x)
930 {
931     Long L;
932     U u;
933 
934     L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
935     word0(&u) = L;
936     word1(&u) = 0;
937     return dval(&u);
938 }
939 
940 /* Convert a Bigint to a double plus an exponent */
941 
942 static double
b2d(Bigint * a,int * e)943 b2d(Bigint *a, int *e)
944 {
945     ULong *xa, *xa0, w, y, z;
946     int k;
947     U d;
948 
949     xa0 = a->x;
950     xa = xa0 + a->wds;
951     y = *--xa;
952 #ifdef DEBUG
953     if (!y) Bug("zero y in b2d");
954 #endif
955     k = hi0bits(y);
956     *e = 32 - k;
957     if (k < Ebits) {
958         word0(&d) = Exp_1 | y >> (Ebits - k);
959         w = xa > xa0 ? *--xa : 0;
960         word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
961         goto ret_d;
962     }
963     z = xa > xa0 ? *--xa : 0;
964     if (k -= Ebits) {
965         word0(&d) = Exp_1 | y << k | z >> (32 - k);
966         y = xa > xa0 ? *--xa : 0;
967         word1(&d) = z << k | y >> (32 - k);
968     }
969     else {
970         word0(&d) = Exp_1 | y;
971         word1(&d) = z;
972     }
973   ret_d:
974     return dval(&d);
975 }
976 
977 /* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
978    except that it accepts the scale parameter used in _Py_dg_strtod (which
979    should be either 0 or 2*P), and the normalization for the return value is
980    different (see below).  On input, d should be finite and nonnegative, and d
981    / 2**scale should be exactly representable as an IEEE 754 double.
982 
983    Returns a Bigint b and an integer e such that
984 
985      dval(d) / 2**scale = b * 2**e.
986 
987    Unlike d2b, b is not necessarily odd: b and e are normalized so
988    that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
989    and e == Etiny.  This applies equally to an input of 0.0: in that
990    case the return values are b = 0 and e = Etiny.
991 
992    The above normalization ensures that for all possible inputs d,
993    2**e gives ulp(d/2**scale).
994 
995    Returns NULL on failure.
996 */
997 
998 static Bigint *
sd2b(U * d,int scale,int * e)999 sd2b(U *d, int scale, int *e)
1000 {
1001     Bigint *b;
1002 
1003     b = Balloc(1);
1004     if (b == NULL)
1005         return NULL;
1006 
1007     /* First construct b and e assuming that scale == 0. */
1008     b->wds = 2;
1009     b->x[0] = word1(d);
1010     b->x[1] = word0(d) & Frac_mask;
1011     *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
1012     if (*e < Etiny)
1013         *e = Etiny;
1014     else
1015         b->x[1] |= Exp_msk1;
1016 
1017     /* Now adjust for scale, provided that b != 0. */
1018     if (scale && (b->x[0] || b->x[1])) {
1019         *e -= scale;
1020         if (*e < Etiny) {
1021             scale = Etiny - *e;
1022             *e = Etiny;
1023             /* We can't shift more than P-1 bits without shifting out a 1. */
1024             assert(0 < scale && scale <= P - 1);
1025             if (scale >= 32) {
1026                 /* The bits shifted out should all be zero. */
1027                 assert(b->x[0] == 0);
1028                 b->x[0] = b->x[1];
1029                 b->x[1] = 0;
1030                 scale -= 32;
1031             }
1032             if (scale) {
1033                 /* The bits shifted out should all be zero. */
1034                 assert(b->x[0] << (32 - scale) == 0);
1035                 b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1036                 b->x[1] >>= scale;
1037             }
1038         }
1039     }
1040     /* Ensure b is normalized. */
1041     if (!b->x[1])
1042         b->wds = 1;
1043 
1044     return b;
1045 }
1046 
1047 /* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1048 
1049    Given a finite nonzero double d, return an odd Bigint b and exponent *e
1050    such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1051    significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1052 
1053    If d is zero, then b == 0, *e == -1010, *bbits = 0.
1054  */
1055 
1056 static Bigint *
d2b(U * d,int * e,int * bits)1057 d2b(U *d, int *e, int *bits)
1058 {
1059     Bigint *b;
1060     int de, k;
1061     ULong *x, y, z;
1062     int i;
1063 
1064     b = Balloc(1);
1065     if (b == NULL)
1066         return NULL;
1067     x = b->x;
1068 
1069     z = word0(d) & Frac_mask;
1070     word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1071     if ((de = (int)(word0(d) >> Exp_shift)))
1072         z |= Exp_msk1;
1073     if ((y = word1(d))) {
1074         if ((k = lo0bits(&y))) {
1075             x[0] = y | z << (32 - k);
1076             z >>= k;
1077         }
1078         else
1079             x[0] = y;
1080         i =
1081             b->wds = (x[1] = z) ? 2 : 1;
1082     }
1083     else {
1084         k = lo0bits(&z);
1085         x[0] = z;
1086         i =
1087             b->wds = 1;
1088         k += 32;
1089     }
1090     if (de) {
1091         *e = de - Bias - (P-1) + k;
1092         *bits = P - k;
1093     }
1094     else {
1095         *e = de - Bias - (P-1) + 1 + k;
1096         *bits = 32*i - hi0bits(x[i-1]);
1097     }
1098     return b;
1099 }
1100 
1101 /* Compute the ratio of two Bigints, as a double.  The result may have an
1102    error of up to 2.5 ulps. */
1103 
1104 static double
ratio(Bigint * a,Bigint * b)1105 ratio(Bigint *a, Bigint *b)
1106 {
1107     U da, db;
1108     int k, ka, kb;
1109 
1110     dval(&da) = b2d(a, &ka);
1111     dval(&db) = b2d(b, &kb);
1112     k = ka - kb + 32*(a->wds - b->wds);
1113     if (k > 0)
1114         word0(&da) += k*Exp_msk1;
1115     else {
1116         k = -k;
1117         word0(&db) += k*Exp_msk1;
1118     }
1119     return dval(&da) / dval(&db);
1120 }
1121 
1122 static const double
1123 tens[] = {
1124     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1125     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1126     1e20, 1e21, 1e22
1127 };
1128 
1129 static const double
1130 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1131 static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1132                                    9007199254740992.*9007199254740992.e-256
1133                                    /* = 2^106 * 1e-256 */
1134 };
1135 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1136 /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1137 #define Scale_Bit 0x10
1138 #define n_bigtens 5
1139 
1140 #define ULbits 32
1141 #define kshift 5
1142 #define kmask 31
1143 
1144 
1145 static int
dshift(Bigint * b,int p2)1146 dshift(Bigint *b, int p2)
1147 {
1148     int rv = hi0bits(b->x[b->wds-1]) - 4;
1149     if (p2 > 0)
1150         rv -= p2;
1151     return rv & kmask;
1152 }
1153 
1154 /* special case of Bigint division.  The quotient is always in the range 0 <=
1155    quotient < 10, and on entry the divisor S is normalized so that its top 4
1156    bits (28--31) are zero and bit 27 is set. */
1157 
1158 static int
quorem(Bigint * b,Bigint * S)1159 quorem(Bigint *b, Bigint *S)
1160 {
1161     int n;
1162     ULong *bx, *bxe, q, *sx, *sxe;
1163     ULLong borrow, carry, y, ys;
1164 
1165     n = S->wds;
1166 #ifdef DEBUG
1167     /*debug*/ if (b->wds > n)
1168         /*debug*/       Bug("oversize b in quorem");
1169 #endif
1170     if (b->wds < n)
1171         return 0;
1172     sx = S->x;
1173     sxe = sx + --n;
1174     bx = b->x;
1175     bxe = bx + n;
1176     q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1177 #ifdef DEBUG
1178     /*debug*/ if (q > 9)
1179         /*debug*/       Bug("oversized quotient in quorem");
1180 #endif
1181     if (q) {
1182         borrow = 0;
1183         carry = 0;
1184         do {
1185             ys = *sx++ * (ULLong)q + carry;
1186             carry = ys >> 32;
1187             y = *bx - (ys & FFFFFFFF) - borrow;
1188             borrow = y >> 32 & (ULong)1;
1189             *bx++ = (ULong)(y & FFFFFFFF);
1190         }
1191         while(sx <= sxe);
1192         if (!*bxe) {
1193             bx = b->x;
1194             while(--bxe > bx && !*bxe)
1195                 --n;
1196             b->wds = n;
1197         }
1198     }
1199     if (cmp(b, S) >= 0) {
1200         q++;
1201         borrow = 0;
1202         carry = 0;
1203         bx = b->x;
1204         sx = S->x;
1205         do {
1206             ys = *sx++ + carry;
1207             carry = ys >> 32;
1208             y = *bx - (ys & FFFFFFFF) - borrow;
1209             borrow = y >> 32 & (ULong)1;
1210             *bx++ = (ULong)(y & FFFFFFFF);
1211         }
1212         while(sx <= sxe);
1213         bx = b->x;
1214         bxe = bx + n;
1215         if (!*bxe) {
1216             while(--bxe > bx && !*bxe)
1217                 --n;
1218             b->wds = n;
1219         }
1220     }
1221     return q;
1222 }
1223 
1224 /* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1225 
1226    Assuming that x is finite and nonnegative (positive zero is fine
1227    here) and x / 2^bc.scale is exactly representable as a double,
1228    sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1229 
1230 static double
sulp(U * x,BCinfo * bc)1231 sulp(U *x, BCinfo *bc)
1232 {
1233     U u;
1234 
1235     if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1236         /* rv/2^bc->scale is subnormal */
1237         word0(&u) = (P+2)*Exp_msk1;
1238         word1(&u) = 0;
1239         return u.d;
1240     }
1241     else {
1242         assert(word0(x) || word1(x)); /* x != 0.0 */
1243         return ulp(x);
1244     }
1245 }
1246 
1247 /* The bigcomp function handles some hard cases for strtod, for inputs
1248    with more than STRTOD_DIGLIM digits.  It's called once an initial
1249    estimate for the double corresponding to the input string has
1250    already been obtained by the code in _Py_dg_strtod.
1251 
1252    The bigcomp function is only called after _Py_dg_strtod has found a
1253    double value rv such that either rv or rv + 1ulp represents the
1254    correctly rounded value corresponding to the original string.  It
1255    determines which of these two values is the correct one by
1256    computing the decimal digits of rv + 0.5ulp and comparing them with
1257    the corresponding digits of s0.
1258 
1259    In the following, write dv for the absolute value of the number represented
1260    by the input string.
1261 
1262    Inputs:
1263 
1264      s0 points to the first significant digit of the input string.
1265 
1266      rv is a (possibly scaled) estimate for the closest double value to the
1267         value represented by the original input to _Py_dg_strtod.  If
1268         bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1269         the input value.
1270 
1271      bc is a struct containing information gathered during the parsing and
1272         estimation steps of _Py_dg_strtod.  Description of fields follows:
1273 
1274         bc->e0 gives the exponent of the input value, such that dv = (integer
1275            given by the bd->nd digits of s0) * 10**e0
1276 
1277         bc->nd gives the total number of significant digits of s0.  It will
1278            be at least 1.
1279 
1280         bc->nd0 gives the number of significant digits of s0 before the
1281            decimal separator.  If there's no decimal separator, bc->nd0 ==
1282            bc->nd.
1283 
1284         bc->scale is the value used to scale rv to avoid doing arithmetic with
1285            subnormal values.  It's either 0 or 2*P (=106).
1286 
1287    Outputs:
1288 
1289      On successful exit, rv/2^(bc->scale) is the closest double to dv.
1290 
1291      Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1292 
1293 static int
bigcomp(U * rv,const char * s0,BCinfo * bc)1294 bigcomp(U *rv, const char *s0, BCinfo *bc)
1295 {
1296     Bigint *b, *d;
1297     int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1298 
1299     nd = bc->nd;
1300     nd0 = bc->nd0;
1301     p5 = nd + bc->e0;
1302     b = sd2b(rv, bc->scale, &p2);
1303     if (b == NULL)
1304         return -1;
1305 
1306     /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1307        case, this is used for round to even. */
1308     odd = b->x[0] & 1;
1309 
1310     /* left shift b by 1 bit and or a 1 into the least significant bit;
1311        this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1312     b = lshift(b, 1);
1313     if (b == NULL)
1314         return -1;
1315     b->x[0] |= 1;
1316     p2--;
1317 
1318     p2 -= p5;
1319     d = i2b(1);
1320     if (d == NULL) {
1321         Bfree(b);
1322         return -1;
1323     }
1324     /* Arrange for convenient computation of quotients:
1325      * shift left if necessary so divisor has 4 leading 0 bits.
1326      */
1327     if (p5 > 0) {
1328         d = pow5mult(d, p5);
1329         if (d == NULL) {
1330             Bfree(b);
1331             return -1;
1332         }
1333     }
1334     else if (p5 < 0) {
1335         b = pow5mult(b, -p5);
1336         if (b == NULL) {
1337             Bfree(d);
1338             return -1;
1339         }
1340     }
1341     if (p2 > 0) {
1342         b2 = p2;
1343         d2 = 0;
1344     }
1345     else {
1346         b2 = 0;
1347         d2 = -p2;
1348     }
1349     i = dshift(d, d2);
1350     if ((b2 += i) > 0) {
1351         b = lshift(b, b2);
1352         if (b == NULL) {
1353             Bfree(d);
1354             return -1;
1355         }
1356     }
1357     if ((d2 += i) > 0) {
1358         d = lshift(d, d2);
1359         if (d == NULL) {
1360             Bfree(b);
1361             return -1;
1362         }
1363     }
1364 
1365     /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1366      * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1367      * a number in the range [0.1, 1). */
1368     if (cmp(b, d) >= 0)
1369         /* b/d >= 1 */
1370         dd = -1;
1371     else {
1372         i = 0;
1373         for(;;) {
1374             b = multadd(b, 10, 0);
1375             if (b == NULL) {
1376                 Bfree(d);
1377                 return -1;
1378             }
1379             dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1380             i++;
1381 
1382             if (dd)
1383                 break;
1384             if (!b->x[0] && b->wds == 1) {
1385                 /* b/d == 0 */
1386                 dd = i < nd;
1387                 break;
1388             }
1389             if (!(i < nd)) {
1390                 /* b/d != 0, but digits of s0 exhausted */
1391                 dd = -1;
1392                 break;
1393             }
1394         }
1395     }
1396     Bfree(b);
1397     Bfree(d);
1398     if (dd > 0 || (dd == 0 && odd))
1399         dval(rv) += sulp(rv, bc);
1400     return 0;
1401 }
1402 
1403 /* Return a 'standard' NaN value.
1404 
1405    There are exactly two quiet NaNs that don't arise by 'quieting' signaling
1406    NaNs (see IEEE 754-2008, section 6.2.1).  If sign == 0, return the one whose
1407    sign bit is cleared.  Otherwise, return the one whose sign bit is set.
1408 */
1409 
1410 double
_Py_dg_stdnan(int sign)1411 _Py_dg_stdnan(int sign)
1412 {
1413     U rv;
1414     word0(&rv) = NAN_WORD0;
1415     word1(&rv) = NAN_WORD1;
1416     if (sign)
1417         word0(&rv) |= Sign_bit;
1418     return dval(&rv);
1419 }
1420 
1421 /* Return positive or negative infinity, according to the given sign (0 for
1422  * positive infinity, 1 for negative infinity). */
1423 
1424 double
_Py_dg_infinity(int sign)1425 _Py_dg_infinity(int sign)
1426 {
1427     U rv;
1428     word0(&rv) = POSINF_WORD0;
1429     word1(&rv) = POSINF_WORD1;
1430     return sign ? -dval(&rv) : dval(&rv);
1431 }
1432 
1433 double
_Py_dg_strtod(const char * s00,char ** se)1434 _Py_dg_strtod(const char *s00, char **se)
1435 {
1436     int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1437     int esign, i, j, k, lz, nd, nd0, odd, sign;
1438     const char *s, *s0, *s1;
1439     double aadj, aadj1;
1440     U aadj2, adj, rv, rv0;
1441     ULong y, z, abs_exp;
1442     Long L;
1443     BCinfo bc;
1444     Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1445     size_t ndigits, fraclen;
1446     double result;
1447 
1448     dval(&rv) = 0.;
1449 
1450     /* Start parsing. */
1451     c = *(s = s00);
1452 
1453     /* Parse optional sign, if present. */
1454     sign = 0;
1455     switch (c) {
1456     case '-':
1457         sign = 1;
1458         /* fall through */
1459     case '+':
1460         c = *++s;
1461     }
1462 
1463     /* Skip leading zeros: lz is true iff there were leading zeros. */
1464     s1 = s;
1465     while (c == '0')
1466         c = *++s;
1467     lz = s != s1;
1468 
1469     /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1470        number of digits between the decimal point and the end of the
1471        digit string.  ndigits will be the total number of digits ignoring
1472        leading zeros. */
1473     s0 = s1 = s;
1474     while ('0' <= c && c <= '9')
1475         c = *++s;
1476     ndigits = s - s1;
1477     fraclen = 0;
1478 
1479     /* Parse decimal point and following digits. */
1480     if (c == '.') {
1481         c = *++s;
1482         if (!ndigits) {
1483             s1 = s;
1484             while (c == '0')
1485                 c = *++s;
1486             lz = lz || s != s1;
1487             fraclen += (s - s1);
1488             s0 = s;
1489         }
1490         s1 = s;
1491         while ('0' <= c && c <= '9')
1492             c = *++s;
1493         ndigits += s - s1;
1494         fraclen += s - s1;
1495     }
1496 
1497     /* Now lz is true if and only if there were leading zero digits, and
1498        ndigits gives the total number of digits ignoring leading zeros.  A
1499        valid input must have at least one digit. */
1500     if (!ndigits && !lz) {
1501         if (se)
1502             *se = (char *)s00;
1503         goto parse_error;
1504     }
1505 
1506     /* Range check ndigits and fraclen to make sure that they, and values
1507        computed with them, can safely fit in an int. */
1508     if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1509         if (se)
1510             *se = (char *)s00;
1511         goto parse_error;
1512     }
1513     nd = (int)ndigits;
1514     nd0 = (int)ndigits - (int)fraclen;
1515 
1516     /* Parse exponent. */
1517     e = 0;
1518     if (c == 'e' || c == 'E') {
1519         s00 = s;
1520         c = *++s;
1521 
1522         /* Exponent sign. */
1523         esign = 0;
1524         switch (c) {
1525         case '-':
1526             esign = 1;
1527             /* fall through */
1528         case '+':
1529             c = *++s;
1530         }
1531 
1532         /* Skip zeros.  lz is true iff there are leading zeros. */
1533         s1 = s;
1534         while (c == '0')
1535             c = *++s;
1536         lz = s != s1;
1537 
1538         /* Get absolute value of the exponent. */
1539         s1 = s;
1540         abs_exp = 0;
1541         while ('0' <= c && c <= '9') {
1542             abs_exp = 10*abs_exp + (c - '0');
1543             c = *++s;
1544         }
1545 
1546         /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1547            there are at most 9 significant exponent digits then overflow is
1548            impossible. */
1549         if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1550             e = (int)MAX_ABS_EXP;
1551         else
1552             e = (int)abs_exp;
1553         if (esign)
1554             e = -e;
1555 
1556         /* A valid exponent must have at least one digit. */
1557         if (s == s1 && !lz)
1558             s = s00;
1559     }
1560 
1561     /* Adjust exponent to take into account position of the point. */
1562     e -= nd - nd0;
1563     if (nd0 <= 0)
1564         nd0 = nd;
1565 
1566     /* Finished parsing.  Set se to indicate how far we parsed */
1567     if (se)
1568         *se = (char *)s;
1569 
1570     /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1571        strip trailing zeros: scan back until we hit a nonzero digit. */
1572     if (!nd)
1573         goto ret;
1574     for (i = nd; i > 0; ) {
1575         --i;
1576         if (s0[i < nd0 ? i : i+1] != '0') {
1577             ++i;
1578             break;
1579         }
1580     }
1581     e += nd - i;
1582     nd = i;
1583     if (nd0 > nd)
1584         nd0 = nd;
1585 
1586     /* Summary of parsing results.  After parsing, and dealing with zero
1587      * inputs, we have values s0, nd0, nd, e, sign, where:
1588      *
1589      *  - s0 points to the first significant digit of the input string
1590      *
1591      *  - nd is the total number of significant digits (here, and
1592      *    below, 'significant digits' means the set of digits of the
1593      *    significand of the input that remain after ignoring leading
1594      *    and trailing zeros).
1595      *
1596      *  - nd0 indicates the position of the decimal point, if present; it
1597      *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1598      *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1599      *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1600      *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1601      *
1602      *  - e is the adjusted exponent: the absolute value of the number
1603      *    represented by the original input string is n * 10**e, where
1604      *    n is the integer represented by the concatenation of
1605      *    s0[0:nd0] and s0[nd0+1:nd+1]
1606      *
1607      *  - sign gives the sign of the input:  1 for negative, 0 for positive
1608      *
1609      *  - the first and last significant digits are nonzero
1610      */
1611 
1612     /* put first DBL_DIG+1 digits into integer y and z.
1613      *
1614      *  - y contains the value represented by the first min(9, nd)
1615      *    significant digits
1616      *
1617      *  - if nd > 9, z contains the value represented by significant digits
1618      *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1619      *    gives the value represented by the first min(16, nd) sig. digits.
1620      */
1621 
1622     bc.e0 = e1 = e;
1623     y = z = 0;
1624     for (i = 0; i < nd; i++) {
1625         if (i < 9)
1626             y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1627         else if (i < DBL_DIG+1)
1628             z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1629         else
1630             break;
1631     }
1632 
1633     k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1634     dval(&rv) = y;
1635     if (k > 9) {
1636         dval(&rv) = tens[k - 9] * dval(&rv) + z;
1637     }
1638     if (nd <= DBL_DIG
1639         && Flt_Rounds == 1
1640         ) {
1641         if (!e)
1642             goto ret;
1643         if (e > 0) {
1644             if (e <= Ten_pmax) {
1645                 dval(&rv) *= tens[e];
1646                 goto ret;
1647             }
1648             i = DBL_DIG - nd;
1649             if (e <= Ten_pmax + i) {
1650                 /* A fancier test would sometimes let us do
1651                  * this for larger i values.
1652                  */
1653                 e -= i;
1654                 dval(&rv) *= tens[i];
1655                 dval(&rv) *= tens[e];
1656                 goto ret;
1657             }
1658         }
1659         else if (e >= -Ten_pmax) {
1660             dval(&rv) /= tens[-e];
1661             goto ret;
1662         }
1663     }
1664     e1 += nd - k;
1665 
1666     bc.scale = 0;
1667 
1668     /* Get starting approximation = rv * 10**e1 */
1669 
1670     if (e1 > 0) {
1671         if ((i = e1 & 15))
1672             dval(&rv) *= tens[i];
1673         if (e1 &= ~15) {
1674             if (e1 > DBL_MAX_10_EXP)
1675                 goto ovfl;
1676             e1 >>= 4;
1677             for(j = 0; e1 > 1; j++, e1 >>= 1)
1678                 if (e1 & 1)
1679                     dval(&rv) *= bigtens[j];
1680             /* The last multiplication could overflow. */
1681             word0(&rv) -= P*Exp_msk1;
1682             dval(&rv) *= bigtens[j];
1683             if ((z = word0(&rv) & Exp_mask)
1684                 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1685                 goto ovfl;
1686             if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1687                 /* set to largest number */
1688                 /* (Can't trust DBL_MAX) */
1689                 word0(&rv) = Big0;
1690                 word1(&rv) = Big1;
1691             }
1692             else
1693                 word0(&rv) += P*Exp_msk1;
1694         }
1695     }
1696     else if (e1 < 0) {
1697         /* The input decimal value lies in [10**e1, 10**(e1+16)).
1698 
1699            If e1 <= -512, underflow immediately.
1700            If e1 <= -256, set bc.scale to 2*P.
1701 
1702            So for input value < 1e-256, bc.scale is always set;
1703            for input value >= 1e-240, bc.scale is never set.
1704            For input values in [1e-256, 1e-240), bc.scale may or may
1705            not be set. */
1706 
1707         e1 = -e1;
1708         if ((i = e1 & 15))
1709             dval(&rv) /= tens[i];
1710         if (e1 >>= 4) {
1711             if (e1 >= 1 << n_bigtens)
1712                 goto undfl;
1713             if (e1 & Scale_Bit)
1714                 bc.scale = 2*P;
1715             for(j = 0; e1 > 0; j++, e1 >>= 1)
1716                 if (e1 & 1)
1717                     dval(&rv) *= tinytens[j];
1718             if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1719                                             >> Exp_shift)) > 0) {
1720                 /* scaled rv is denormal; clear j low bits */
1721                 if (j >= 32) {
1722                     word1(&rv) = 0;
1723                     if (j >= 53)
1724                         word0(&rv) = (P+2)*Exp_msk1;
1725                     else
1726                         word0(&rv) &= 0xffffffff << (j-32);
1727                 }
1728                 else
1729                     word1(&rv) &= 0xffffffff << j;
1730             }
1731             if (!dval(&rv))
1732                 goto undfl;
1733         }
1734     }
1735 
1736     /* Now the hard part -- adjusting rv to the correct value.*/
1737 
1738     /* Put digits into bd: true value = bd * 10^e */
1739 
1740     bc.nd = nd;
1741     bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1742                         /* to silence an erroneous warning about bc.nd0 */
1743                         /* possibly not being initialized. */
1744     if (nd > STRTOD_DIGLIM) {
1745         /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1746         /* minimum number of decimal digits to distinguish double values */
1747         /* in IEEE arithmetic. */
1748 
1749         /* Truncate input to 18 significant digits, then discard any trailing
1750            zeros on the result by updating nd, nd0, e and y suitably. (There's
1751            no need to update z; it's not reused beyond this point.) */
1752         for (i = 18; i > 0; ) {
1753             /* scan back until we hit a nonzero digit.  significant digit 'i'
1754             is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1755             --i;
1756             if (s0[i < nd0 ? i : i+1] != '0') {
1757                 ++i;
1758                 break;
1759             }
1760         }
1761         e += nd - i;
1762         nd = i;
1763         if (nd0 > nd)
1764             nd0 = nd;
1765         if (nd < 9) { /* must recompute y */
1766             y = 0;
1767             for(i = 0; i < nd0; ++i)
1768                 y = 10*y + s0[i] - '0';
1769             for(; i < nd; ++i)
1770                 y = 10*y + s0[i+1] - '0';
1771         }
1772     }
1773     bd0 = s2b(s0, nd0, nd, y);
1774     if (bd0 == NULL)
1775         goto failed_malloc;
1776 
1777     /* Notation for the comments below.  Write:
1778 
1779          - dv for the absolute value of the number represented by the original
1780            decimal input string.
1781 
1782          - if we've truncated dv, write tdv for the truncated value.
1783            Otherwise, set tdv == dv.
1784 
1785          - srv for the quantity rv/2^bc.scale; so srv is the current binary
1786            approximation to tdv (and dv).  It should be exactly representable
1787            in an IEEE 754 double.
1788     */
1789 
1790     for(;;) {
1791 
1792         /* This is the main correction loop for _Py_dg_strtod.
1793 
1794            We've got a decimal value tdv, and a floating-point approximation
1795            srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1796            close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1797            approximation if not.
1798 
1799            To determine whether srv is close enough to tdv, compute integers
1800            bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1801            respectively, and then use integer arithmetic to determine whether
1802            |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1803         */
1804 
1805         bd = Balloc(bd0->k);
1806         if (bd == NULL) {
1807             goto failed_malloc;
1808         }
1809         Bcopy(bd, bd0);
1810         bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1811         if (bb == NULL) {
1812             goto failed_malloc;
1813         }
1814         /* Record whether lsb of bb is odd, in case we need this
1815            for the round-to-even step later. */
1816         odd = bb->x[0] & 1;
1817 
1818         /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1819         bs = i2b(1);
1820         if (bs == NULL) {
1821             goto failed_malloc;
1822         }
1823 
1824         if (e >= 0) {
1825             bb2 = bb5 = 0;
1826             bd2 = bd5 = e;
1827         }
1828         else {
1829             bb2 = bb5 = -e;
1830             bd2 = bd5 = 0;
1831         }
1832         if (bbe >= 0)
1833             bb2 += bbe;
1834         else
1835             bd2 -= bbe;
1836         bs2 = bb2;
1837         bb2++;
1838         bd2++;
1839 
1840         /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1841            and bs == 1, so:
1842 
1843               tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1844               srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1845               0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1846 
1847            It follows that:
1848 
1849               M * tdv = bd * 2**bd2 * 5**bd5
1850               M * srv = bb * 2**bb2 * 5**bb5
1851               M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1852 
1853            for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1854            this fact is not needed below.)
1855         */
1856 
1857         /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1858         i = bb2 < bd2 ? bb2 : bd2;
1859         if (i > bs2)
1860             i = bs2;
1861         if (i > 0) {
1862             bb2 -= i;
1863             bd2 -= i;
1864             bs2 -= i;
1865         }
1866 
1867         /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1868         if (bb5 > 0) {
1869             bs = pow5mult(bs, bb5);
1870             if (bs == NULL) {
1871                 goto failed_malloc;
1872             }
1873             Bigint *bb1 = mult(bs, bb);
1874             Bfree(bb);
1875             bb = bb1;
1876             if (bb == NULL) {
1877                 goto failed_malloc;
1878             }
1879         }
1880         if (bb2 > 0) {
1881             bb = lshift(bb, bb2);
1882             if (bb == NULL) {
1883                 goto failed_malloc;
1884             }
1885         }
1886         if (bd5 > 0) {
1887             bd = pow5mult(bd, bd5);
1888             if (bd == NULL) {
1889                 goto failed_malloc;
1890             }
1891         }
1892         if (bd2 > 0) {
1893             bd = lshift(bd, bd2);
1894             if (bd == NULL) {
1895                 goto failed_malloc;
1896             }
1897         }
1898         if (bs2 > 0) {
1899             bs = lshift(bs, bs2);
1900             if (bs == NULL) {
1901                 goto failed_malloc;
1902             }
1903         }
1904 
1905         /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1906            respectively.  Compute the difference |tdv - srv|, and compare
1907            with 0.5 ulp(srv). */
1908 
1909         delta = diff(bb, bd);
1910         if (delta == NULL) {
1911             goto failed_malloc;
1912         }
1913         dsign = delta->sign;
1914         delta->sign = 0;
1915         i = cmp(delta, bs);
1916         if (bc.nd > nd && i <= 0) {
1917             if (dsign)
1918                 break;  /* Must use bigcomp(). */
1919 
1920             /* Here rv overestimates the truncated decimal value by at most
1921                0.5 ulp(rv).  Hence rv either overestimates the true decimal
1922                value by <= 0.5 ulp(rv), or underestimates it by some small
1923                amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1924                the true decimal value, so it's possible to exit.
1925 
1926                Exception: if scaled rv is a normal exact power of 2, but not
1927                DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1928                next double, so the correctly rounded result is either rv - 0.5
1929                ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1930 
1931             if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1932                 /* rv can't be 0, since it's an overestimate for some
1933                    nonzero value.  So rv is a normal power of 2. */
1934                 j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1935                 /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1936                    rv / 2^bc.scale >= 2^-1021. */
1937                 if (j - bc.scale >= 2) {
1938                     dval(&rv) -= 0.5 * sulp(&rv, &bc);
1939                     break; /* Use bigcomp. */
1940                 }
1941             }
1942 
1943             {
1944                 bc.nd = nd;
1945                 i = -1; /* Discarded digits make delta smaller. */
1946             }
1947         }
1948 
1949         if (i < 0) {
1950             /* Error is less than half an ulp -- check for
1951              * special case of mantissa a power of two.
1952              */
1953             if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1954                 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1955                 ) {
1956                 break;
1957             }
1958             if (!delta->x[0] && delta->wds <= 1) {
1959                 /* exact result */
1960                 break;
1961             }
1962             delta = lshift(delta,Log2P);
1963             if (delta == NULL) {
1964                 goto failed_malloc;
1965             }
1966             if (cmp(delta, bs) > 0)
1967                 goto drop_down;
1968             break;
1969         }
1970         if (i == 0) {
1971             /* exactly half-way between */
1972             if (dsign) {
1973                 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1974                     &&  word1(&rv) == (
1975                         (bc.scale &&
1976                          (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1977                         (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1978                         0xffffffff)) {
1979                     /*boundary case -- increment exponent*/
1980                     word0(&rv) = (word0(&rv) & Exp_mask)
1981                         + Exp_msk1
1982                         ;
1983                     word1(&rv) = 0;
1984                     /* dsign = 0; */
1985                     break;
1986                 }
1987             }
1988             else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1989               drop_down:
1990                 /* boundary case -- decrement exponent */
1991                 if (bc.scale) {
1992                     L = word0(&rv) & Exp_mask;
1993                     if (L <= (2*P+1)*Exp_msk1) {
1994                         if (L > (P+2)*Exp_msk1)
1995                             /* round even ==> */
1996                             /* accept rv */
1997                             break;
1998                         /* rv = smallest denormal */
1999                         if (bc.nd > nd)
2000                             break;
2001                         goto undfl;
2002                     }
2003                 }
2004                 L = (word0(&rv) & Exp_mask) - Exp_msk1;
2005                 word0(&rv) = L | Bndry_mask1;
2006                 word1(&rv) = 0xffffffff;
2007                 break;
2008             }
2009             if (!odd)
2010                 break;
2011             if (dsign)
2012                 dval(&rv) += sulp(&rv, &bc);
2013             else {
2014                 dval(&rv) -= sulp(&rv, &bc);
2015                 if (!dval(&rv)) {
2016                     if (bc.nd >nd)
2017                         break;
2018                     goto undfl;
2019                 }
2020             }
2021             /* dsign = 1 - dsign; */
2022             break;
2023         }
2024         if ((aadj = ratio(delta, bs)) <= 2.) {
2025             if (dsign)
2026                 aadj = aadj1 = 1.;
2027             else if (word1(&rv) || word0(&rv) & Bndry_mask) {
2028                 if (word1(&rv) == Tiny1 && !word0(&rv)) {
2029                     if (bc.nd >nd)
2030                         break;
2031                     goto undfl;
2032                 }
2033                 aadj = 1.;
2034                 aadj1 = -1.;
2035             }
2036             else {
2037                 /* special case -- power of FLT_RADIX to be */
2038                 /* rounded down... */
2039 
2040                 if (aadj < 2./FLT_RADIX)
2041                     aadj = 1./FLT_RADIX;
2042                 else
2043                     aadj *= 0.5;
2044                 aadj1 = -aadj;
2045             }
2046         }
2047         else {
2048             aadj *= 0.5;
2049             aadj1 = dsign ? aadj : -aadj;
2050             if (Flt_Rounds == 0)
2051                 aadj1 += 0.5;
2052         }
2053         y = word0(&rv) & Exp_mask;
2054 
2055         /* Check for overflow */
2056 
2057         if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2058             dval(&rv0) = dval(&rv);
2059             word0(&rv) -= P*Exp_msk1;
2060             adj.d = aadj1 * ulp(&rv);
2061             dval(&rv) += adj.d;
2062             if ((word0(&rv) & Exp_mask) >=
2063                 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2064                 if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2065                     goto ovfl;
2066                 }
2067                 word0(&rv) = Big0;
2068                 word1(&rv) = Big1;
2069                 goto cont;
2070             }
2071             else
2072                 word0(&rv) += P*Exp_msk1;
2073         }
2074         else {
2075             if (bc.scale && y <= 2*P*Exp_msk1) {
2076                 if (aadj <= 0x7fffffff) {
2077                     if ((z = (ULong)aadj) <= 0)
2078                         z = 1;
2079                     aadj = z;
2080                     aadj1 = dsign ? aadj : -aadj;
2081                 }
2082                 dval(&aadj2) = aadj1;
2083                 word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2084                 aadj1 = dval(&aadj2);
2085             }
2086             adj.d = aadj1 * ulp(&rv);
2087             dval(&rv) += adj.d;
2088         }
2089         z = word0(&rv) & Exp_mask;
2090         if (bc.nd == nd) {
2091             if (!bc.scale)
2092                 if (y == z) {
2093                     /* Can we stop now? */
2094                     L = (Long)aadj;
2095                     aadj -= L;
2096                     /* The tolerances below are conservative. */
2097                     if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2098                         if (aadj < .4999999 || aadj > .5000001)
2099                             break;
2100                     }
2101                     else if (aadj < .4999999/FLT_RADIX)
2102                         break;
2103                 }
2104         }
2105       cont:
2106         Bfree(bb); bb = NULL;
2107         Bfree(bd); bd = NULL;
2108         Bfree(bs); bs = NULL;
2109         Bfree(delta); delta = NULL;
2110     }
2111     if (bc.nd > nd) {
2112         error = bigcomp(&rv, s0, &bc);
2113         if (error)
2114             goto failed_malloc;
2115     }
2116 
2117     if (bc.scale) {
2118         word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2119         word1(&rv0) = 0;
2120         dval(&rv) *= dval(&rv0);
2121     }
2122 
2123   ret:
2124     result = sign ? -dval(&rv) : dval(&rv);
2125     goto done;
2126 
2127   parse_error:
2128     result = 0.0;
2129     goto done;
2130 
2131   failed_malloc:
2132     errno = ENOMEM;
2133     result = -1.0;
2134     goto done;
2135 
2136   undfl:
2137     result = sign ? -0.0 : 0.0;
2138     goto done;
2139 
2140   ovfl:
2141     errno = ERANGE;
2142     /* Can't trust HUGE_VAL */
2143     word0(&rv) = Exp_mask;
2144     word1(&rv) = 0;
2145     result = sign ? -dval(&rv) : dval(&rv);
2146     goto done;
2147 
2148   done:
2149     Bfree(bb);
2150     Bfree(bd);
2151     Bfree(bs);
2152     Bfree(bd0);
2153     Bfree(delta);
2154     return result;
2155 
2156 }
2157 
2158 static char *
rv_alloc(int i)2159 rv_alloc(int i)
2160 {
2161     int j, k, *r;
2162 
2163     j = sizeof(ULong);
2164     for(k = 0;
2165         sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2166         j <<= 1)
2167         k++;
2168     r = (int*)Balloc(k);
2169     if (r == NULL)
2170         return NULL;
2171     *r = k;
2172     return (char *)(r+1);
2173 }
2174 
2175 static char *
nrv_alloc(const char * s,char ** rve,int n)2176 nrv_alloc(const char *s, char **rve, int n)
2177 {
2178     char *rv, *t;
2179 
2180     rv = rv_alloc(n);
2181     if (rv == NULL)
2182         return NULL;
2183     t = rv;
2184     while((*t = *s++)) t++;
2185     if (rve)
2186         *rve = t;
2187     return rv;
2188 }
2189 
2190 /* freedtoa(s) must be used to free values s returned by dtoa
2191  * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2192  * but for consistency with earlier versions of dtoa, it is optional
2193  * when MULTIPLE_THREADS is not defined.
2194  */
2195 
2196 void
_Py_dg_freedtoa(char * s)2197 _Py_dg_freedtoa(char *s)
2198 {
2199     Bigint *b = (Bigint *)((int *)s - 1);
2200     b->maxwds = 1 << (b->k = *(int*)b);
2201     Bfree(b);
2202 }
2203 
2204 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2205  *
2206  * Inspired by "How to Print Floating-Point Numbers Accurately" by
2207  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2208  *
2209  * Modifications:
2210  *      1. Rather than iterating, we use a simple numeric overestimate
2211  *         to determine k = floor(log10(d)).  We scale relevant
2212  *         quantities using O(log2(k)) rather than O(k) multiplications.
2213  *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2214  *         try to generate digits strictly left to right.  Instead, we
2215  *         compute with fewer bits and propagate the carry if necessary
2216  *         when rounding the final digit up.  This is often faster.
2217  *      3. Under the assumption that input will be rounded nearest,
2218  *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2219  *         That is, we allow equality in stopping tests when the
2220  *         round-nearest rule will give the same floating-point value
2221  *         as would satisfaction of the stopping test with strict
2222  *         inequality.
2223  *      4. We remove common factors of powers of 2 from relevant
2224  *         quantities.
2225  *      5. When converting floating-point integers less than 1e16,
2226  *         we use floating-point arithmetic rather than resorting
2227  *         to multiple-precision integers.
2228  *      6. When asked to produce fewer than 15 digits, we first try
2229  *         to get by with floating-point arithmetic; we resort to
2230  *         multiple-precision integer arithmetic only if we cannot
2231  *         guarantee that the floating-point calculation has given
2232  *         the correctly rounded result.  For k requested digits and
2233  *         "uniformly" distributed input, the probability is
2234  *         something like 10^(k-15) that we must resort to the Long
2235  *         calculation.
2236  */
2237 
2238 /* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2239    leakage, a successful call to _Py_dg_dtoa should always be matched by a
2240    call to _Py_dg_freedtoa. */
2241 
2242 char *
_Py_dg_dtoa(double dd,int mode,int ndigits,int * decpt,int * sign,char ** rve)2243 _Py_dg_dtoa(double dd, int mode, int ndigits,
2244             int *decpt, int *sign, char **rve)
2245 {
2246     /*  Arguments ndigits, decpt, sign are similar to those
2247         of ecvt and fcvt; trailing zeros are suppressed from
2248         the returned string.  If not null, *rve is set to point
2249         to the end of the return value.  If d is +-Infinity or NaN,
2250         then *decpt is set to 9999.
2251 
2252         mode:
2253         0 ==> shortest string that yields d when read in
2254         and rounded to nearest.
2255         1 ==> like 0, but with Steele & White stopping rule;
2256         e.g. with IEEE P754 arithmetic , mode 0 gives
2257         1e23 whereas mode 1 gives 9.999999999999999e22.
2258         2 ==> max(1,ndigits) significant digits.  This gives a
2259         return value similar to that of ecvt, except
2260         that trailing zeros are suppressed.
2261         3 ==> through ndigits past the decimal point.  This
2262         gives a return value similar to that from fcvt,
2263         except that trailing zeros are suppressed, and
2264         ndigits can be negative.
2265         4,5 ==> similar to 2 and 3, respectively, but (in
2266         round-nearest mode) with the tests of mode 0 to
2267         possibly return a shorter string that rounds to d.
2268         With IEEE arithmetic and compilation with
2269         -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2270         as modes 2 and 3 when FLT_ROUNDS != 1.
2271         6-9 ==> Debugging modes similar to mode - 4:  don't try
2272         fast floating-point estimate (if applicable).
2273 
2274         Values of mode other than 0-9 are treated as mode 0.
2275 
2276         Sufficient space is allocated to the return value
2277         to hold the suppressed trailing zeros.
2278     */
2279 
2280     int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2281         j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2282         spec_case, try_quick;
2283     Long L;
2284     int denorm;
2285     ULong x;
2286     Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2287     U d2, eps, u;
2288     double ds;
2289     char *s, *s0;
2290 
2291     /* set pointers to NULL, to silence gcc compiler warnings and make
2292        cleanup easier on error */
2293     mlo = mhi = S = 0;
2294     s0 = 0;
2295 
2296     u.d = dd;
2297     if (word0(&u) & Sign_bit) {
2298         /* set sign for everything, including 0's and NaNs */
2299         *sign = 1;
2300         word0(&u) &= ~Sign_bit; /* clear sign bit */
2301     }
2302     else
2303         *sign = 0;
2304 
2305     /* quick return for Infinities, NaNs and zeros */
2306     if ((word0(&u) & Exp_mask) == Exp_mask)
2307     {
2308         /* Infinity or NaN */
2309         *decpt = 9999;
2310         if (!word1(&u) && !(word0(&u) & 0xfffff))
2311             return nrv_alloc("Infinity", rve, 8);
2312         return nrv_alloc("NaN", rve, 3);
2313     }
2314     if (!dval(&u)) {
2315         *decpt = 1;
2316         return nrv_alloc("0", rve, 1);
2317     }
2318 
2319     /* compute k = floor(log10(d)).  The computation may leave k
2320        one too large, but should never leave k too small. */
2321     b = d2b(&u, &be, &bbits);
2322     if (b == NULL)
2323         goto failed_malloc;
2324     if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2325         dval(&d2) = dval(&u);
2326         word0(&d2) &= Frac_mask1;
2327         word0(&d2) |= Exp_11;
2328 
2329         /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2330          * log10(x)      =  log(x) / log(10)
2331          *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2332          * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2333          *
2334          * This suggests computing an approximation k to log10(d) by
2335          *
2336          * k = (i - Bias)*0.301029995663981
2337          *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2338          *
2339          * We want k to be too large rather than too small.
2340          * The error in the first-order Taylor series approximation
2341          * is in our favor, so we just round up the constant enough
2342          * to compensate for any error in the multiplication of
2343          * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2344          * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2345          * adding 1e-13 to the constant term more than suffices.
2346          * Hence we adjust the constant term to 0.1760912590558.
2347          * (We could get a more accurate k by invoking log10,
2348          *  but this is probably not worthwhile.)
2349          */
2350 
2351         i -= Bias;
2352         denorm = 0;
2353     }
2354     else {
2355         /* d is denormalized */
2356 
2357         i = bbits + be + (Bias + (P-1) - 1);
2358         x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2359             : word1(&u) << (32 - i);
2360         dval(&d2) = x;
2361         word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2362         i -= (Bias + (P-1) - 1) + 1;
2363         denorm = 1;
2364     }
2365     ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2366         i*0.301029995663981;
2367     k = (int)ds;
2368     if (ds < 0. && ds != k)
2369         k--;    /* want k = floor(ds) */
2370     k_check = 1;
2371     if (k >= 0 && k <= Ten_pmax) {
2372         if (dval(&u) < tens[k])
2373             k--;
2374         k_check = 0;
2375     }
2376     j = bbits - i - 1;
2377     if (j >= 0) {
2378         b2 = 0;
2379         s2 = j;
2380     }
2381     else {
2382         b2 = -j;
2383         s2 = 0;
2384     }
2385     if (k >= 0) {
2386         b5 = 0;
2387         s5 = k;
2388         s2 += k;
2389     }
2390     else {
2391         b2 -= k;
2392         b5 = -k;
2393         s5 = 0;
2394     }
2395     if (mode < 0 || mode > 9)
2396         mode = 0;
2397 
2398     try_quick = 1;
2399 
2400     if (mode > 5) {
2401         mode -= 4;
2402         try_quick = 0;
2403     }
2404     leftright = 1;
2405     ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2406     /* silence erroneous "gcc -Wall" warning. */
2407     switch(mode) {
2408     case 0:
2409     case 1:
2410         i = 18;
2411         ndigits = 0;
2412         break;
2413     case 2:
2414         leftright = 0;
2415         /* fall through */
2416     case 4:
2417         if (ndigits <= 0)
2418             ndigits = 1;
2419         ilim = ilim1 = i = ndigits;
2420         break;
2421     case 3:
2422         leftright = 0;
2423         /* fall through */
2424     case 5:
2425         i = ndigits + k + 1;
2426         ilim = i;
2427         ilim1 = i - 1;
2428         if (i <= 0)
2429             i = 1;
2430     }
2431     s0 = rv_alloc(i);
2432     if (s0 == NULL)
2433         goto failed_malloc;
2434     s = s0;
2435 
2436 
2437     if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2438 
2439         /* Try to get by with floating-point arithmetic. */
2440 
2441         i = 0;
2442         dval(&d2) = dval(&u);
2443         k0 = k;
2444         ilim0 = ilim;
2445         ieps = 2; /* conservative */
2446         if (k > 0) {
2447             ds = tens[k&0xf];
2448             j = k >> 4;
2449             if (j & Bletch) {
2450                 /* prevent overflows */
2451                 j &= Bletch - 1;
2452                 dval(&u) /= bigtens[n_bigtens-1];
2453                 ieps++;
2454             }
2455             for(; j; j >>= 1, i++)
2456                 if (j & 1) {
2457                     ieps++;
2458                     ds *= bigtens[i];
2459                 }
2460             dval(&u) /= ds;
2461         }
2462         else if ((j1 = -k)) {
2463             dval(&u) *= tens[j1 & 0xf];
2464             for(j = j1 >> 4; j; j >>= 1, i++)
2465                 if (j & 1) {
2466                     ieps++;
2467                     dval(&u) *= bigtens[i];
2468                 }
2469         }
2470         if (k_check && dval(&u) < 1. && ilim > 0) {
2471             if (ilim1 <= 0)
2472                 goto fast_failed;
2473             ilim = ilim1;
2474             k--;
2475             dval(&u) *= 10.;
2476             ieps++;
2477         }
2478         dval(&eps) = ieps*dval(&u) + 7.;
2479         word0(&eps) -= (P-1)*Exp_msk1;
2480         if (ilim == 0) {
2481             S = mhi = 0;
2482             dval(&u) -= 5.;
2483             if (dval(&u) > dval(&eps))
2484                 goto one_digit;
2485             if (dval(&u) < -dval(&eps))
2486                 goto no_digits;
2487             goto fast_failed;
2488         }
2489         if (leftright) {
2490             /* Use Steele & White method of only
2491              * generating digits needed.
2492              */
2493             dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2494             for(i = 0;;) {
2495                 L = (Long)dval(&u);
2496                 dval(&u) -= L;
2497                 *s++ = '0' + (int)L;
2498                 if (dval(&u) < dval(&eps))
2499                     goto ret1;
2500                 if (1. - dval(&u) < dval(&eps))
2501                     goto bump_up;
2502                 if (++i >= ilim)
2503                     break;
2504                 dval(&eps) *= 10.;
2505                 dval(&u) *= 10.;
2506             }
2507         }
2508         else {
2509             /* Generate ilim digits, then fix them up. */
2510             dval(&eps) *= tens[ilim-1];
2511             for(i = 1;; i++, dval(&u) *= 10.) {
2512                 L = (Long)(dval(&u));
2513                 if (!(dval(&u) -= L))
2514                     ilim = i;
2515                 *s++ = '0' + (int)L;
2516                 if (i == ilim) {
2517                     if (dval(&u) > 0.5 + dval(&eps))
2518                         goto bump_up;
2519                     else if (dval(&u) < 0.5 - dval(&eps)) {
2520                         while(*--s == '0');
2521                         s++;
2522                         goto ret1;
2523                     }
2524                     break;
2525                 }
2526             }
2527         }
2528       fast_failed:
2529         s = s0;
2530         dval(&u) = dval(&d2);
2531         k = k0;
2532         ilim = ilim0;
2533     }
2534 
2535     /* Do we have a "small" integer? */
2536 
2537     if (be >= 0 && k <= Int_max) {
2538         /* Yes. */
2539         ds = tens[k];
2540         if (ndigits < 0 && ilim <= 0) {
2541             S = mhi = 0;
2542             if (ilim < 0 || dval(&u) <= 5*ds)
2543                 goto no_digits;
2544             goto one_digit;
2545         }
2546         for(i = 1;; i++, dval(&u) *= 10.) {
2547             L = (Long)(dval(&u) / ds);
2548             dval(&u) -= L*ds;
2549             *s++ = '0' + (int)L;
2550             if (!dval(&u)) {
2551                 break;
2552             }
2553             if (i == ilim) {
2554                 dval(&u) += dval(&u);
2555                 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2556                   bump_up:
2557                     while(*--s == '9')
2558                         if (s == s0) {
2559                             k++;
2560                             *s = '0';
2561                             break;
2562                         }
2563                     ++*s++;
2564                 }
2565                 break;
2566             }
2567         }
2568         goto ret1;
2569     }
2570 
2571     m2 = b2;
2572     m5 = b5;
2573     if (leftright) {
2574         i =
2575             denorm ? be + (Bias + (P-1) - 1 + 1) :
2576             1 + P - bbits;
2577         b2 += i;
2578         s2 += i;
2579         mhi = i2b(1);
2580         if (mhi == NULL)
2581             goto failed_malloc;
2582     }
2583     if (m2 > 0 && s2 > 0) {
2584         i = m2 < s2 ? m2 : s2;
2585         b2 -= i;
2586         m2 -= i;
2587         s2 -= i;
2588     }
2589     if (b5 > 0) {
2590         if (leftright) {
2591             if (m5 > 0) {
2592                 mhi = pow5mult(mhi, m5);
2593                 if (mhi == NULL)
2594                     goto failed_malloc;
2595                 b1 = mult(mhi, b);
2596                 Bfree(b);
2597                 b = b1;
2598                 if (b == NULL)
2599                     goto failed_malloc;
2600             }
2601             if ((j = b5 - m5)) {
2602                 b = pow5mult(b, j);
2603                 if (b == NULL)
2604                     goto failed_malloc;
2605             }
2606         }
2607         else {
2608             b = pow5mult(b, b5);
2609             if (b == NULL)
2610                 goto failed_malloc;
2611         }
2612     }
2613     S = i2b(1);
2614     if (S == NULL)
2615         goto failed_malloc;
2616     if (s5 > 0) {
2617         S = pow5mult(S, s5);
2618         if (S == NULL)
2619             goto failed_malloc;
2620     }
2621 
2622     /* Check for special case that d is a normalized power of 2. */
2623 
2624     spec_case = 0;
2625     if ((mode < 2 || leftright)
2626         ) {
2627         if (!word1(&u) && !(word0(&u) & Bndry_mask)
2628             && word0(&u) & (Exp_mask & ~Exp_msk1)
2629             ) {
2630             /* The special case */
2631             b2 += Log2P;
2632             s2 += Log2P;
2633             spec_case = 1;
2634         }
2635     }
2636 
2637     /* Arrange for convenient computation of quotients:
2638      * shift left if necessary so divisor has 4 leading 0 bits.
2639      *
2640      * Perhaps we should just compute leading 28 bits of S once
2641      * and for all and pass them and a shift to quorem, so it
2642      * can do shifts and ors to compute the numerator for q.
2643      */
2644 #define iInc 28
2645     i = dshift(S, s2);
2646     b2 += i;
2647     m2 += i;
2648     s2 += i;
2649     if (b2 > 0) {
2650         b = lshift(b, b2);
2651         if (b == NULL)
2652             goto failed_malloc;
2653     }
2654     if (s2 > 0) {
2655         S = lshift(S, s2);
2656         if (S == NULL)
2657             goto failed_malloc;
2658     }
2659     if (k_check) {
2660         if (cmp(b,S) < 0) {
2661             k--;
2662             b = multadd(b, 10, 0);      /* we botched the k estimate */
2663             if (b == NULL)
2664                 goto failed_malloc;
2665             if (leftright) {
2666                 mhi = multadd(mhi, 10, 0);
2667                 if (mhi == NULL)
2668                     goto failed_malloc;
2669             }
2670             ilim = ilim1;
2671         }
2672     }
2673     if (ilim <= 0 && (mode == 3 || mode == 5)) {
2674         if (ilim < 0) {
2675             /* no digits, fcvt style */
2676           no_digits:
2677             k = -1 - ndigits;
2678             goto ret;
2679         }
2680         else {
2681             S = multadd(S, 5, 0);
2682             if (S == NULL)
2683                 goto failed_malloc;
2684             if (cmp(b, S) <= 0)
2685                 goto no_digits;
2686         }
2687       one_digit:
2688         *s++ = '1';
2689         k++;
2690         goto ret;
2691     }
2692     if (leftright) {
2693         if (m2 > 0) {
2694             mhi = lshift(mhi, m2);
2695             if (mhi == NULL)
2696                 goto failed_malloc;
2697         }
2698 
2699         /* Compute mlo -- check for special case
2700          * that d is a normalized power of 2.
2701          */
2702 
2703         mlo = mhi;
2704         if (spec_case) {
2705             mhi = Balloc(mhi->k);
2706             if (mhi == NULL)
2707                 goto failed_malloc;
2708             Bcopy(mhi, mlo);
2709             mhi = lshift(mhi, Log2P);
2710             if (mhi == NULL)
2711                 goto failed_malloc;
2712         }
2713 
2714         for(i = 1;;i++) {
2715             dig = quorem(b,S) + '0';
2716             /* Do we yet have the shortest decimal string
2717              * that will round to d?
2718              */
2719             j = cmp(b, mlo);
2720             delta = diff(S, mhi);
2721             if (delta == NULL)
2722                 goto failed_malloc;
2723             j1 = delta->sign ? 1 : cmp(b, delta);
2724             Bfree(delta);
2725             if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2726                 ) {
2727                 if (dig == '9')
2728                     goto round_9_up;
2729                 if (j > 0)
2730                     dig++;
2731                 *s++ = dig;
2732                 goto ret;
2733             }
2734             if (j < 0 || (j == 0 && mode != 1
2735                           && !(word1(&u) & 1)
2736                     )) {
2737                 if (!b->x[0] && b->wds <= 1) {
2738                     goto accept_dig;
2739                 }
2740                 if (j1 > 0) {
2741                     b = lshift(b, 1);
2742                     if (b == NULL)
2743                         goto failed_malloc;
2744                     j1 = cmp(b, S);
2745                     if ((j1 > 0 || (j1 == 0 && dig & 1))
2746                         && dig++ == '9')
2747                         goto round_9_up;
2748                 }
2749               accept_dig:
2750                 *s++ = dig;
2751                 goto ret;
2752             }
2753             if (j1 > 0) {
2754                 if (dig == '9') { /* possible if i == 1 */
2755                   round_9_up:
2756                     *s++ = '9';
2757                     goto roundoff;
2758                 }
2759                 *s++ = dig + 1;
2760                 goto ret;
2761             }
2762             *s++ = dig;
2763             if (i == ilim)
2764                 break;
2765             b = multadd(b, 10, 0);
2766             if (b == NULL)
2767                 goto failed_malloc;
2768             if (mlo == mhi) {
2769                 mlo = mhi = multadd(mhi, 10, 0);
2770                 if (mlo == NULL)
2771                     goto failed_malloc;
2772             }
2773             else {
2774                 mlo = multadd(mlo, 10, 0);
2775                 if (mlo == NULL)
2776                     goto failed_malloc;
2777                 mhi = multadd(mhi, 10, 0);
2778                 if (mhi == NULL)
2779                     goto failed_malloc;
2780             }
2781         }
2782     }
2783     else
2784         for(i = 1;; i++) {
2785             *s++ = dig = quorem(b,S) + '0';
2786             if (!b->x[0] && b->wds <= 1) {
2787                 goto ret;
2788             }
2789             if (i >= ilim)
2790                 break;
2791             b = multadd(b, 10, 0);
2792             if (b == NULL)
2793                 goto failed_malloc;
2794         }
2795 
2796     /* Round off last digit */
2797 
2798     b = lshift(b, 1);
2799     if (b == NULL)
2800         goto failed_malloc;
2801     j = cmp(b, S);
2802     if (j > 0 || (j == 0 && dig & 1)) {
2803       roundoff:
2804         while(*--s == '9')
2805             if (s == s0) {
2806                 k++;
2807                 *s++ = '1';
2808                 goto ret;
2809             }
2810         ++*s++;
2811     }
2812     else {
2813         while(*--s == '0');
2814         s++;
2815     }
2816   ret:
2817     Bfree(S);
2818     if (mhi) {
2819         if (mlo && mlo != mhi)
2820             Bfree(mlo);
2821         Bfree(mhi);
2822     }
2823   ret1:
2824     Bfree(b);
2825     *s = 0;
2826     *decpt = k + 1;
2827     if (rve)
2828         *rve = s;
2829     return s0;
2830   failed_malloc:
2831     if (S)
2832         Bfree(S);
2833     if (mlo && mlo != mhi)
2834         Bfree(mlo);
2835     if (mhi)
2836         Bfree(mhi);
2837     if (b)
2838         Bfree(b);
2839     if (s0)
2840         _Py_dg_freedtoa(s0);
2841     return NULL;
2842 }
2843 #ifdef __cplusplus
2844 }
2845 #endif
2846 
2847 #endif  /* PY_NO_SHORT_FLOAT_REPR */
2848