1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "private/bionic_allocator.h"
30
31 #include <stdlib.h>
32 #include <string.h>
33 #include <sys/mman.h>
34 #include <sys/param.h>
35 #include <sys/prctl.h>
36 #include <unistd.h>
37
38 #include <new>
39
40 #include <async_safe/log.h>
41 #include <async_safe/CHECK.h>
42
43 #include "platform/bionic/page.h"
44 #include "platform/bionic/macros.h"
45
46 //
47 // BionicAllocator is a general purpose allocator designed to provide the same
48 // functionality as the malloc/free/realloc/memalign libc functions.
49 //
50 // On alloc:
51 // If size is > 1k allocator proxies malloc call directly to mmap.
52 // If size <= 1k allocator uses BionicSmallObjectAllocator for the size
53 // rounded up to the nearest power of two.
54 //
55 // On free:
56 //
57 // For a pointer allocated using proxy-to-mmap allocator unmaps
58 // the memory.
59 //
60 // For a pointer allocated using BionicSmallObjectAllocator it adds
61 // the block to free_blocks_list in the corresponding page. If the number of
62 // free pages reaches 2, BionicSmallObjectAllocator munmaps one of the pages
63 // keeping the other one in reserve.
64
65 // Memory management for large objects is fairly straightforward, but for small
66 // objects it is more complicated. If you are changing this code, one simple
67 // way to evaluate the memory usage change is by running 'dd' and examine the
68 // memory usage by 'showmap $(pidof dd)'. 'dd' is nice in that:
69 // 1. It links in quite a few libraries, so you get some linker memory use.
70 // 2. When run with no arguments, it sits waiting for input, so it is easy to
71 // examine its memory usage with showmap.
72 // 3. Since it does nothing while waiting for input, the memory usage is
73 // determinisitic.
74
75 static const char kSignature[4] = {'L', 'M', 'A', 1};
76
77 static const size_t kSmallObjectMaxSize = 1 << kSmallObjectMaxSizeLog2;
78
79 // This type is used for large allocations (with size >1k)
80 static const uint32_t kLargeObject = 111;
81
82 // Allocated pointers must be at least 16-byte aligned. Round up the size of
83 // page_info to multiple of 16.
84 static constexpr size_t kPageInfoSize = __BIONIC_ALIGN(sizeof(page_info), 16);
85
log2(size_t number)86 static inline uint16_t log2(size_t number) {
87 uint16_t result = 0;
88 number--;
89
90 while (number != 0) {
91 result++;
92 number >>= 1;
93 }
94
95 return result;
96 }
97
BionicSmallObjectAllocator(uint32_t type,size_t block_size)98 BionicSmallObjectAllocator::BionicSmallObjectAllocator(uint32_t type,
99 size_t block_size)
100 : type_(type),
101 block_size_(block_size),
102 blocks_per_page_((PAGE_SIZE - sizeof(small_object_page_info)) /
103 block_size),
104 free_pages_cnt_(0),
105 page_list_(nullptr) {}
106
alloc()107 void* BionicSmallObjectAllocator::alloc() {
108 CHECK(block_size_ != 0);
109
110 if (page_list_ == nullptr) {
111 alloc_page();
112 }
113
114 // Fully allocated pages are de-managed and removed from the page list, so
115 // every page from the page list must be useable. Let's just take the first
116 // one.
117 small_object_page_info* page = page_list_;
118 CHECK(page->free_block_list != nullptr);
119
120 small_object_block_record* const block_record = page->free_block_list;
121 if (block_record->free_blocks_cnt > 1) {
122 small_object_block_record* next_free =
123 reinterpret_cast<small_object_block_record*>(
124 reinterpret_cast<uint8_t*>(block_record) + block_size_);
125 next_free->next = block_record->next;
126 next_free->free_blocks_cnt = block_record->free_blocks_cnt - 1;
127 page->free_block_list = next_free;
128 } else {
129 page->free_block_list = block_record->next;
130 }
131
132 if (page->free_blocks_cnt == blocks_per_page_) {
133 free_pages_cnt_--;
134 }
135
136 page->free_blocks_cnt--;
137
138 memset(block_record, 0, block_size_);
139
140 if (page->free_blocks_cnt == 0) {
141 // De-manage fully allocated pages. These pages will be managed again if
142 // a block is freed.
143 remove_from_page_list(page);
144 }
145
146 return block_record;
147 }
148
free_page(small_object_page_info * page)149 void BionicSmallObjectAllocator::free_page(small_object_page_info* page) {
150 CHECK(page->free_blocks_cnt == blocks_per_page_);
151 if (page->prev_page) {
152 page->prev_page->next_page = page->next_page;
153 }
154 if (page->next_page) {
155 page->next_page->prev_page = page->prev_page;
156 }
157 if (page_list_ == page) {
158 page_list_ = page->next_page;
159 }
160 munmap(page, PAGE_SIZE);
161 free_pages_cnt_--;
162 }
163
free(void * ptr)164 void BionicSmallObjectAllocator::free(void* ptr) {
165 small_object_page_info* const page =
166 reinterpret_cast<small_object_page_info*>(
167 PAGE_START(reinterpret_cast<uintptr_t>(ptr)));
168
169 if (reinterpret_cast<uintptr_t>(ptr) % block_size_ != 0) {
170 async_safe_fatal("invalid pointer: %p (block_size=%zd)", ptr, block_size_);
171 }
172
173 memset(ptr, 0, block_size_);
174 small_object_block_record* const block_record =
175 reinterpret_cast<small_object_block_record*>(ptr);
176
177 block_record->next = page->free_block_list;
178 block_record->free_blocks_cnt = 1;
179
180 page->free_block_list = block_record;
181 page->free_blocks_cnt++;
182
183 if (page->free_blocks_cnt == blocks_per_page_) {
184 if (++free_pages_cnt_ > 1) {
185 // if we already have a free page - unmap this one.
186 free_page(page);
187 }
188 } else if (page->free_blocks_cnt == 1) {
189 // We just freed from a full page. Add this page back to the list.
190 add_to_page_list(page);
191 }
192 }
193
alloc_page()194 void BionicSmallObjectAllocator::alloc_page() {
195 void* const map_ptr = mmap(nullptr, PAGE_SIZE, PROT_READ | PROT_WRITE,
196 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
197 if (map_ptr == MAP_FAILED) {
198 async_safe_fatal("mmap failed: %s", strerror(errno));
199 }
200
201 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, PAGE_SIZE,
202 "bionic_alloc_small_objects");
203
204 small_object_page_info* const page =
205 reinterpret_cast<small_object_page_info*>(map_ptr);
206 memcpy(page->info.signature, kSignature, sizeof(kSignature));
207 page->info.type = type_;
208 page->info.allocator_addr = this;
209
210 page->free_blocks_cnt = blocks_per_page_;
211
212 // Align the first block to block_size_.
213 const uintptr_t first_block_addr =
214 __BIONIC_ALIGN(reinterpret_cast<uintptr_t>(page + 1), block_size_);
215 small_object_block_record* const first_block =
216 reinterpret_cast<small_object_block_record*>(first_block_addr);
217
218 first_block->next = nullptr;
219 first_block->free_blocks_cnt = blocks_per_page_;
220
221 page->free_block_list = first_block;
222
223 add_to_page_list(page);
224
225 free_pages_cnt_++;
226 }
227
add_to_page_list(small_object_page_info * page)228 void BionicSmallObjectAllocator::add_to_page_list(small_object_page_info* page) {
229 page->next_page = page_list_;
230 page->prev_page = nullptr;
231 if (page_list_) {
232 page_list_->prev_page = page;
233 }
234 page_list_ = page;
235 }
236
remove_from_page_list(small_object_page_info * page)237 void BionicSmallObjectAllocator::remove_from_page_list(
238 small_object_page_info* page) {
239 if (page->prev_page) {
240 page->prev_page->next_page = page->next_page;
241 }
242 if (page->next_page) {
243 page->next_page->prev_page = page->prev_page;
244 }
245 if (page_list_ == page) {
246 page_list_ = page->next_page;
247 }
248 page->prev_page = nullptr;
249 page->next_page = nullptr;
250 }
251
initialize_allocators()252 void BionicAllocator::initialize_allocators() {
253 if (allocators_ != nullptr) {
254 return;
255 }
256
257 BionicSmallObjectAllocator* allocators =
258 reinterpret_cast<BionicSmallObjectAllocator*>(allocators_buf_);
259
260 for (size_t i = 0; i < kSmallObjectAllocatorsCount; ++i) {
261 uint32_t type = i + kSmallObjectMinSizeLog2;
262 new (allocators + i) BionicSmallObjectAllocator(type, 1 << type);
263 }
264
265 allocators_ = allocators;
266 }
267
alloc_mmap(size_t align,size_t size)268 void* BionicAllocator::alloc_mmap(size_t align, size_t size) {
269 size_t header_size = __BIONIC_ALIGN(kPageInfoSize, align);
270 size_t allocated_size;
271 if (__builtin_add_overflow(header_size, size, &allocated_size) ||
272 PAGE_END(allocated_size) < allocated_size) {
273 async_safe_fatal("overflow trying to alloc %zu bytes", size);
274 }
275 allocated_size = PAGE_END(allocated_size);
276 void* map_ptr = mmap(nullptr, allocated_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
277 -1, 0);
278
279 if (map_ptr == MAP_FAILED) {
280 async_safe_fatal("mmap failed: %s", strerror(errno));
281 }
282
283 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, allocated_size, "bionic_alloc_lob");
284
285 void* result = static_cast<char*>(map_ptr) + header_size;
286 page_info* info = get_page_info_unchecked(result);
287 memcpy(info->signature, kSignature, sizeof(kSignature));
288 info->type = kLargeObject;
289 info->allocated_size = allocated_size;
290
291 return result;
292 }
293
294
alloc_impl(size_t align,size_t size)295 inline void* BionicAllocator::alloc_impl(size_t align, size_t size) {
296 if (size > kSmallObjectMaxSize) {
297 return alloc_mmap(align, size);
298 }
299
300 uint16_t log2_size = log2(size);
301
302 if (log2_size < kSmallObjectMinSizeLog2) {
303 log2_size = kSmallObjectMinSizeLog2;
304 }
305
306 return get_small_object_allocator(log2_size)->alloc();
307 }
308
alloc(size_t size)309 void* BionicAllocator::alloc(size_t size) {
310 // treat alloc(0) as alloc(1)
311 if (size == 0) {
312 size = 1;
313 }
314 return alloc_impl(16, size);
315 }
316
memalign(size_t align,size_t size)317 void* BionicAllocator::memalign(size_t align, size_t size) {
318 // The Bionic allocator only supports alignment up to one page, which is good
319 // enough for ELF TLS.
320 align = MIN(align, PAGE_SIZE);
321 align = MAX(align, 16);
322 if (!powerof2(align)) {
323 align = BIONIC_ROUND_UP_POWER_OF_2(align);
324 }
325 size = MAX(size, align);
326 return alloc_impl(align, size);
327 }
328
get_page_info_unchecked(void * ptr)329 inline page_info* BionicAllocator::get_page_info_unchecked(void* ptr) {
330 uintptr_t header_page = PAGE_START(reinterpret_cast<size_t>(ptr) - kPageInfoSize);
331 return reinterpret_cast<page_info*>(header_page);
332 }
333
get_page_info(void * ptr)334 inline page_info* BionicAllocator::get_page_info(void* ptr) {
335 page_info* info = get_page_info_unchecked(ptr);
336 if (memcmp(info->signature, kSignature, sizeof(kSignature)) != 0) {
337 async_safe_fatal("invalid pointer %p (page signature mismatch)", ptr);
338 }
339
340 return info;
341 }
342
realloc(void * ptr,size_t size)343 void* BionicAllocator::realloc(void* ptr, size_t size) {
344 if (ptr == nullptr) {
345 return alloc(size);
346 }
347
348 if (size == 0) {
349 free(ptr);
350 return nullptr;
351 }
352
353 page_info* info = get_page_info(ptr);
354
355 size_t old_size = 0;
356
357 if (info->type == kLargeObject) {
358 old_size = info->allocated_size - (static_cast<char*>(ptr) - reinterpret_cast<char*>(info));
359 } else {
360 BionicSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
361 if (allocator != info->allocator_addr) {
362 async_safe_fatal("invalid pointer %p (page signature mismatch)", ptr);
363 }
364
365 old_size = allocator->get_block_size();
366 }
367
368 if (old_size < size) {
369 void *result = alloc(size);
370 memcpy(result, ptr, old_size);
371 free(ptr);
372 return result;
373 }
374
375 return ptr;
376 }
377
free(void * ptr)378 void BionicAllocator::free(void* ptr) {
379 if (ptr == nullptr) {
380 return;
381 }
382
383 page_info* info = get_page_info(ptr);
384
385 if (info->type == kLargeObject) {
386 munmap(info, info->allocated_size);
387 } else {
388 BionicSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
389 if (allocator != info->allocator_addr) {
390 async_safe_fatal("invalid pointer %p (invalid allocator address for the page)", ptr);
391 }
392
393 allocator->free(ptr);
394 }
395 }
396
get_small_object_allocator(uint32_t type)397 BionicSmallObjectAllocator* BionicAllocator::get_small_object_allocator(uint32_t type) {
398 if (type < kSmallObjectMinSizeLog2 || type > kSmallObjectMaxSizeLog2) {
399 async_safe_fatal("invalid type: %u", type);
400 }
401
402 initialize_allocators();
403 return &allocators_[type - kSmallObjectMinSizeLog2];
404 }
405