1# Lint as: python2, python3 2# Copyright 2018 The TensorFlow Authors. All Rights Reserved. 3# 4# Licensed under the Apache License, Version 2.0 (the "License"); 5# you may not use this file except in compliance with the License. 6# You may obtain a copy of the License at 7# 8# http://www.apache.org/licenses/LICENSE-2.0 9# 10# Unless required by applicable law or agreed to in writing, software 11# distributed under the License is distributed on an "AS IS" BASIS, 12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13# See the License for the specific language governing permissions and 14# limitations under the License. 15# ============================================================================== 16"""Python TF-Lite interpreter.""" 17from __future__ import absolute_import 18from __future__ import division 19from __future__ import print_function 20 21import ctypes 22import platform 23import sys 24 25import numpy as np 26 27# pylint: disable=g-import-not-at-top 28if not __file__.endswith('tflite_runtime/interpreter.py'): 29 # This file is part of tensorflow package. 30 from tensorflow.python.util.lazy_loader import LazyLoader 31 from tensorflow.python.util.tf_export import tf_export as _tf_export 32 33 # Lazy load since some of the performance benchmark skylark rules 34 # break dependencies. Must use double quotes to match code internal rewrite 35 # rule. 36 # pylint: disable=g-inconsistent-quotes 37 _interpreter_wrapper = LazyLoader( 38 "_interpreter_wrapper", globals(), 39 "tensorflow.lite.python.interpreter_wrapper." 40 "tensorflow_wrap_interpreter_wrapper") 41 # pylint: enable=g-inconsistent-quotes 42 43 del LazyLoader 44else: 45 # This file is part of tflite_runtime package. 46 from tflite_runtime import interpreter_wrapper as _interpreter_wrapper 47 48 def _tf_export(*x, **kwargs): 49 del x, kwargs 50 return lambda x: x 51 52 53class Delegate(object): 54 """Python wrapper class to manage TfLiteDelegate objects. 55 56 The shared library is expected to have two functions: 57 TfLiteDelegate* tflite_plugin_create_delegate( 58 char**, char**, size_t, void (*report_error)(const char *)) 59 void tflite_plugin_destroy_delegate(TfLiteDelegate*) 60 61 The first one creates a delegate object. It may return NULL to indicate an 62 error (with a suitable error message reported by calling report_error()). 63 The second one destroys delegate object and must be called for every 64 created delegate object. Passing NULL as argument value is allowed, i.e. 65 66 tflite_plugin_destroy_delegate(tflite_plugin_create_delegate(...)) 67 68 always works. 69 """ 70 71 def __init__(self, library, options=None): 72 """Loads delegate from the shared library. 73 74 Args: 75 library: Shared library name. 76 options: Dictionary of options that are required to load the delegate. All 77 keys and values in the dictionary should be serializable. Consult the 78 documentation of the specific delegate for required and legal options. 79 (default None) 80 Raises: 81 RuntimeError: This is raised if the Python implementation is not CPython. 82 """ 83 84 # TODO(b/136468453): Remove need for __del__ ordering needs of CPython 85 # by using explicit closes(). See implementation of Interpreter __del__. 86 if platform.python_implementation() != 'CPython': 87 raise RuntimeError('Delegates are currently only supported into CPython' 88 'due to missing immediate reference counting.') 89 90 self._library = ctypes.pydll.LoadLibrary(library) 91 self._library.tflite_plugin_create_delegate.argtypes = [ 92 ctypes.POINTER(ctypes.c_char_p), 93 ctypes.POINTER(ctypes.c_char_p), ctypes.c_int, 94 ctypes.CFUNCTYPE(None, ctypes.c_char_p) 95 ] 96 self._library.tflite_plugin_create_delegate.restype = ctypes.c_void_p 97 98 # Convert the options from a dictionary to lists of char pointers. 99 options = options or {} 100 options_keys = (ctypes.c_char_p * len(options))() 101 options_values = (ctypes.c_char_p * len(options))() 102 for idx, (key, value) in enumerate(options.items()): 103 options_keys[idx] = str(key).encode('utf-8') 104 options_values[idx] = str(value).encode('utf-8') 105 106 class ErrorMessageCapture(object): 107 108 def __init__(self): 109 self.message = '' 110 111 def report(self, x): 112 self.message += x if isinstance(x, str) else x.decode('utf-8') 113 114 capture = ErrorMessageCapture() 115 error_capturer_cb = ctypes.CFUNCTYPE(None, ctypes.c_char_p)(capture.report) 116 # Do not make a copy of _delegate_ptr. It is freed by Delegate's finalizer. 117 self._delegate_ptr = self._library.tflite_plugin_create_delegate( 118 options_keys, options_values, len(options), error_capturer_cb) 119 if self._delegate_ptr is None: 120 raise ValueError(capture.message) 121 122 def __del__(self): 123 # __del__ can not be called multiple times, so if the delegate is destroyed. 124 # don't try to destroy it twice. 125 if self._library is not None: 126 self._library.tflite_plugin_destroy_delegate.argtypes = [ctypes.c_void_p] 127 self._library.tflite_plugin_destroy_delegate(self._delegate_ptr) 128 self._library = None 129 130 def _get_native_delegate_pointer(self): 131 """Returns the native TfLiteDelegate pointer. 132 133 It is not safe to copy this pointer because it needs to be freed. 134 135 Returns: 136 TfLiteDelegate * 137 """ 138 return self._delegate_ptr 139 140 141@_tf_export('lite.experimental.load_delegate') 142def load_delegate(library, options=None): 143 """Returns loaded Delegate object. 144 145 Args: 146 library: Name of shared library containing the 147 [TfLiteDelegate](https://www.tensorflow.org/lite/performance/delegates). 148 options: Dictionary of options that are required to load the delegate. All 149 keys and values in the dictionary should be convertible to str. Consult 150 the documentation of the specific delegate for required and legal options. 151 (default None) 152 153 Returns: 154 Delegate object. 155 156 Raises: 157 ValueError: Delegate failed to load. 158 RuntimeError: If delegate loading is used on unsupported platform. 159 """ 160 try: 161 delegate = Delegate(library, options) 162 except ValueError as e: 163 raise ValueError('Failed to load delegate from {}\n{}'.format( 164 library, str(e))) 165 return delegate 166 167 168@_tf_export('lite.Interpreter') 169class Interpreter(object): 170 """Interpreter interface for TensorFlow Lite Models. 171 172 This makes the TensorFlow Lite interpreter accessible in Python. 173 It is possible to use this interpreter in a multithreaded Python environment, 174 but you must be sure to call functions of a particular instance from only 175 one thread at a time. So if you want to have 4 threads running different 176 inferences simultaneously, create an interpreter for each one as thread-local 177 data. Similarly, if you are calling invoke() in one thread on a single 178 interpreter but you want to use tensor() on another thread once it is done, 179 you must use a synchronization primitive between the threads to ensure invoke 180 has returned before calling tensor(). 181 """ 182 183 def __init__(self, 184 model_path=None, 185 model_content=None, 186 experimental_delegates=None): 187 """Constructor. 188 189 Args: 190 model_path: Path to TF-Lite Flatbuffer file. 191 model_content: Content of model. 192 experimental_delegates: Experimental. Subject to change. List of 193 [TfLiteDelegate](https://www.tensorflow.org/lite/performance/delegates) 194 objects returned by lite.load_delegate(). 195 196 Raises: 197 ValueError: If the interpreter was unable to create. 198 """ 199 if not hasattr(self, '_custom_op_registerers'): 200 self._custom_op_registerers = [] 201 if model_path and not model_content: 202 self._interpreter = ( 203 _interpreter_wrapper.InterpreterWrapper_CreateWrapperCPPFromFile( 204 model_path, self._custom_op_registerers)) 205 if not self._interpreter: 206 raise ValueError('Failed to open {}'.format(model_path)) 207 elif model_content and not model_path: 208 # Take a reference, so the pointer remains valid. 209 # Since python strings are immutable then PyString_XX functions 210 # will always return the same pointer. 211 self._model_content = model_content 212 self._interpreter = ( 213 _interpreter_wrapper.InterpreterWrapper_CreateWrapperCPPFromBuffer( 214 model_content, self._custom_op_registerers)) 215 elif not model_path and not model_path: 216 raise ValueError('`model_path` or `model_content` must be specified.') 217 else: 218 raise ValueError('Can\'t both provide `model_path` and `model_content`') 219 220 # Each delegate is a wrapper that owns the delegates that have been loaded 221 # as plugins. The interpreter wrapper will be using them, but we need to 222 # hold them in a list so that the lifetime is preserved at least as long as 223 # the interpreter wrapper. 224 self._delegates = [] 225 if experimental_delegates: 226 self._delegates = experimental_delegates 227 for delegate in self._delegates: 228 self._interpreter.ModifyGraphWithDelegate( 229 delegate._get_native_delegate_pointer()) # pylint: disable=protected-access 230 231 def __del__(self): 232 # Must make sure the interpreter is destroyed before things that 233 # are used by it like the delegates. NOTE this only works on CPython 234 # probably. 235 # TODO(b/136468453): Remove need for __del__ ordering needs of CPython 236 # by using explicit closes(). See implementation of Interpreter __del__. 237 self._interpreter = None 238 self._delegates = None 239 240 def allocate_tensors(self): 241 self._ensure_safe() 242 return self._interpreter.AllocateTensors() 243 244 def _safe_to_run(self): 245 """Returns true if there exist no numpy array buffers. 246 247 This means it is safe to run tflite calls that may destroy internally 248 allocated memory. This works, because in the wrapper.cc we have made 249 the numpy base be the self._interpreter. 250 """ 251 # NOTE, our tensor() call in cpp will use _interpreter as a base pointer. 252 # If this environment is the only _interpreter, then the ref count should be 253 # 2 (1 in self and 1 in temporary of sys.getrefcount). 254 return sys.getrefcount(self._interpreter) == 2 255 256 def _ensure_safe(self): 257 """Makes sure no numpy arrays pointing to internal buffers are active. 258 259 This should be called from any function that will call a function on 260 _interpreter that may reallocate memory e.g. invoke(), ... 261 262 Raises: 263 RuntimeError: If there exist numpy objects pointing to internal memory 264 then we throw. 265 """ 266 if not self._safe_to_run(): 267 raise RuntimeError("""There is at least 1 reference to internal data 268 in the interpreter in the form of a numpy array or slice. Be sure to 269 only hold the function returned from tensor() if you are using raw 270 data access.""") 271 272 # Experimental and subject to change 273 def _get_op_details(self, op_index): 274 """Gets a dictionary with arrays of ids for tensors involved with an op. 275 276 Args: 277 op_index: Operation/node index of node to query. 278 279 Returns: 280 a dictionary containing the index, op name, and arrays with lists of the 281 indices for the inputs and outputs of the op/node. 282 """ 283 op_index = int(op_index) 284 op_name = self._interpreter.NodeName(op_index) 285 op_inputs = self._interpreter.NodeInputs(op_index) 286 op_outputs = self._interpreter.NodeOutputs(op_index) 287 288 details = { 289 'index': op_index, 290 'op_name': op_name, 291 'inputs': op_inputs, 292 'outputs': op_outputs, 293 } 294 295 return details 296 297 def _get_tensor_details(self, tensor_index): 298 """Gets tensor details. 299 300 Args: 301 tensor_index: Tensor index of tensor to query. 302 303 Returns: 304 A dictionary containing the following fields of the tensor: 305 'name': The tensor name. 306 'index': The tensor index in the interpreter. 307 'shape': The shape of the tensor. 308 'quantization': Deprecated, use 'quantization_parameters'. This field 309 only works for per-tensor quantization, whereas 310 'quantization_parameters' works in all cases. 311 'quantization_parameters': The parameters used to quantize the tensor: 312 'scales': List of scales (one if per-tensor quantization) 313 'zero_points': List of zero_points (one if per-tensor quantization) 314 'quantized_dimension': Specifies the dimension of per-axis 315 quantization, in the case of multiple scales/zero_points. 316 317 Raises: 318 ValueError: If tensor_index is invalid. 319 """ 320 tensor_index = int(tensor_index) 321 tensor_name = self._interpreter.TensorName(tensor_index) 322 tensor_size = self._interpreter.TensorSize(tensor_index) 323 tensor_size_signature = self._interpreter.TensorSizeSignature(tensor_index) 324 tensor_type = self._interpreter.TensorType(tensor_index) 325 tensor_quantization = self._interpreter.TensorQuantization(tensor_index) 326 tensor_quantization_params = self._interpreter.TensorQuantizationParameters( 327 tensor_index) 328 329 if not tensor_name or not tensor_type: 330 raise ValueError('Could not get tensor details') 331 332 details = { 333 'name': tensor_name, 334 'index': tensor_index, 335 'shape': tensor_size, 336 'shape_signature': tensor_size_signature, 337 'dtype': tensor_type, 338 'quantization': tensor_quantization, 339 'quantization_parameters': { 340 'scales': tensor_quantization_params[0], 341 'zero_points': tensor_quantization_params[1], 342 'quantized_dimension': tensor_quantization_params[2], 343 } 344 } 345 346 return details 347 348 # Experimental and subject to change 349 def _get_ops_details(self): 350 """Gets op details for every node. 351 352 Returns: 353 A list of dictionaries containing arrays with lists of tensor ids for 354 tensors involved in the op. 355 """ 356 return [ 357 self._get_op_details(idx) for idx in range(self._interpreter.NumNodes()) 358 ] 359 360 def get_tensor_details(self): 361 """Gets tensor details for every tensor with valid tensor details. 362 363 Tensors where required information about the tensor is not found are not 364 added to the list. This includes temporary tensors without a name. 365 366 Returns: 367 A list of dictionaries containing tensor information. 368 """ 369 tensor_details = [] 370 for idx in range(self._interpreter.NumTensors()): 371 try: 372 tensor_details.append(self._get_tensor_details(idx)) 373 except ValueError: 374 pass 375 return tensor_details 376 377 def get_input_details(self): 378 """Gets model input details. 379 380 Returns: 381 A list of input details. 382 """ 383 return [ 384 self._get_tensor_details(i) for i in self._interpreter.InputIndices() 385 ] 386 387 def set_tensor(self, tensor_index, value): 388 """Sets the value of the input tensor. Note this copies data in `value`. 389 390 If you want to avoid copying, you can use the `tensor()` function to get a 391 numpy buffer pointing to the input buffer in the tflite interpreter. 392 393 Args: 394 tensor_index: Tensor index of tensor to set. This value can be gotten from 395 the 'index' field in get_input_details. 396 value: Value of tensor to set. 397 398 Raises: 399 ValueError: If the interpreter could not set the tensor. 400 """ 401 self._interpreter.SetTensor(tensor_index, value) 402 403 def resize_tensor_input(self, input_index, tensor_size): 404 """Resizes an input tensor. 405 406 Args: 407 input_index: Tensor index of input to set. This value can be gotten from 408 the 'index' field in get_input_details. 409 tensor_size: The tensor_shape to resize the input to. 410 411 Raises: 412 ValueError: If the interpreter could not resize the input tensor. 413 """ 414 self._ensure_safe() 415 # `ResizeInputTensor` now only accepts int32 numpy array as `tensor_size 416 # parameter. 417 tensor_size = np.array(tensor_size, dtype=np.int32) 418 self._interpreter.ResizeInputTensor(input_index, tensor_size) 419 420 def get_output_details(self): 421 """Gets model output details. 422 423 Returns: 424 A list of output details. 425 """ 426 return [ 427 self._get_tensor_details(i) for i in self._interpreter.OutputIndices() 428 ] 429 430 def get_tensor(self, tensor_index): 431 """Gets the value of the input tensor (get a copy). 432 433 If you wish to avoid the copy, use `tensor()`. This function cannot be used 434 to read intermediate results. 435 436 Args: 437 tensor_index: Tensor index of tensor to get. This value can be gotten from 438 the 'index' field in get_output_details. 439 440 Returns: 441 a numpy array. 442 """ 443 return self._interpreter.GetTensor(tensor_index) 444 445 def tensor(self, tensor_index): 446 """Returns function that gives a numpy view of the current tensor buffer. 447 448 This allows reading and writing to this tensors w/o copies. This more 449 closely mirrors the C++ Interpreter class interface's tensor() member, hence 450 the name. Be careful to not hold these output references through calls 451 to `allocate_tensors()` and `invoke()`. This function cannot be used to read 452 intermediate results. 453 454 Usage: 455 456 ``` 457 interpreter.allocate_tensors() 458 input = interpreter.tensor(interpreter.get_input_details()[0]["index"]) 459 output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) 460 for i in range(10): 461 input().fill(3.) 462 interpreter.invoke() 463 print("inference %s" % output()) 464 ``` 465 466 Notice how this function avoids making a numpy array directly. This is 467 because it is important to not hold actual numpy views to the data longer 468 than necessary. If you do, then the interpreter can no longer be invoked, 469 because it is possible the interpreter would resize and invalidate the 470 referenced tensors. The NumPy API doesn't allow any mutability of the 471 the underlying buffers. 472 473 WRONG: 474 475 ``` 476 input = interpreter.tensor(interpreter.get_input_details()[0]["index"])() 477 output = interpreter.tensor(interpreter.get_output_details()[0]["index"])() 478 interpreter.allocate_tensors() # This will throw RuntimeError 479 for i in range(10): 480 input.fill(3.) 481 interpreter.invoke() # this will throw RuntimeError since input,output 482 ``` 483 484 Args: 485 tensor_index: Tensor index of tensor to get. This value can be gotten from 486 the 'index' field in get_output_details. 487 488 Returns: 489 A function that can return a new numpy array pointing to the internal 490 TFLite tensor state at any point. It is safe to hold the function forever, 491 but it is not safe to hold the numpy array forever. 492 """ 493 return lambda: self._interpreter.tensor(self._interpreter, tensor_index) 494 495 def invoke(self): 496 """Invoke the interpreter. 497 498 Be sure to set the input sizes, allocate tensors and fill values before 499 calling this. Also, note that this function releases the GIL so heavy 500 computation can be done in the background while the Python interpreter 501 continues. No other function on this object should be called while the 502 invoke() call has not finished. 503 504 Raises: 505 ValueError: When the underlying interpreter fails raise ValueError. 506 """ 507 self._ensure_safe() 508 self._interpreter.Invoke() 509 510 def reset_all_variables(self): 511 return self._interpreter.ResetVariableTensors() 512 513 514class InterpreterWithCustomOps(Interpreter): 515 """Interpreter interface for TensorFlow Lite Models that accepts custom ops. 516 517 The interface provided by this class is experimenal and therefore not exposed 518 as part of the public API. 519 520 Wraps the tf.lite.Interpreter class and adds the ability to load custom ops 521 by providing the names of functions that take a pointer to a BuiltinOpResolver 522 and add a custom op. 523 """ 524 525 def __init__(self, 526 model_path=None, 527 model_content=None, 528 experimental_delegates=None, 529 custom_op_registerers=None): 530 """Constructor. 531 532 Args: 533 model_path: Path to TF-Lite Flatbuffer file. 534 model_content: Content of model. 535 experimental_delegates: Experimental. Subject to change. List of 536 [TfLiteDelegate](https://www.tensorflow.org/lite/performance/delegates) 537 objects returned by lite.load_delegate(). 538 custom_op_registerers: List of str, symbol names of functions that take a 539 pointer to a MutableOpResolver and register a custom op. 540 541 Raises: 542 ValueError: If the interpreter was unable to create. 543 """ 544 self._custom_op_registerers = custom_op_registerers 545 super(InterpreterWithCustomOps, self).__init__( 546 model_path=model_path, 547 model_content=model_content, 548 experimental_delegates=experimental_delegates) 549